--- configs: - config_name: default data_files: - split: uk path: data/uk-* - split: hi path: data/hi-* - split: zh path: data/zh-* - split: ar path: data/ar-* - split: de path: data/de-* - split: en path: data/en-* - split: ru path: data/ru-* - split: am path: data/am-* - split: es path: data/es-* dataset_info: features: - name: text dtype: string splits: - name: uk num_bytes: 64010 num_examples: 600 - name: hi num_bytes: 84742 num_examples: 600 - name: zh num_bytes: 51159 num_examples: 600 - name: ar num_bytes: 67319 num_examples: 600 - name: de num_bytes: 68242 num_examples: 600 - name: en num_bytes: 37872 num_examples: 600 - name: ru num_bytes: 73326 num_examples: 600 - name: am num_bytes: 110756 num_examples: 600 - name: es num_bytes: 40172 num_examples: 600 download_size: 377419 dataset_size: 597598 --- **MultiParaDetox (Test)** This is the multilingual parallel dataset for text detoxification prepared for [CLEF TextDetox 2024](https://pan.webis.de/clef24/pan24-web/text-detoxification.html) shared task. For each of 9 languages, we collected 1k pairs of toxic<->detoxified instances splitted into two parts: dev (400 pairs) and test (600 pairs). ### !! This is a **test** part of MultiParadetox. For the **dev** part please refer to [textdetox/multilingual_paradetox](https://huggingface.co./datasets/textdetox/multilingual_paradetox) The list of the sources for the original toxic sentences: * English: [Jigsaw](https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge), [Unitary AI Toxicity Dataset](https://github.com/unitaryai/detoxify) * Russian: [Russian Language Toxic Comments](https://www.kaggle.com/datasets/blackmoon/russian-language-toxic-comments), [Toxic Russian Comments](https://www.kaggle.com/datasets/alexandersemiletov/toxic-russian-comments) * Ukrainian: [Ukrainian Twitter texts](https://github.com/saganoren/ukr-twi-corpus) * Spanish: [Detecting and Monitoring Hate Speech in Twitter](https://www.mdpi.com/1424-8220/19/21/4654), [Detoxis](https://rdcu.be/dwhxH), [RoBERTuito: a pre-trained language model for social media text in Spanish](https://aclanthology.org/2022.lrec-1.785/) * German: [GemEval 2018, 2021](https://aclanthology.org/2021.germeval-1.1/) * Amhairc: [Amharic Hate Speech](https://github.com/uhh-lt/AmharicHateSpeech) * Arabic: [OSACT4](https://edinburghnlp.inf.ed.ac.uk/workshops/OSACT4/) * Hindi: [Hostility Detection Dataset in Hindi](https://competitions.codalab.org/competitions/26654#learn_the_details-dataset), [Overview of the HASOC track at FIRE 2019: Hate Speech and Offensive Content Identification in Indo-European Languages](https://dl.acm.org/doi/pdf/10.1145/3368567.3368584?download=true) We also added toxic words from Toxicity-200 [corpus](https://github.com/facebookresearch/flores/blob/main/toxicity/README.md) from Facebook Research for all the languages.