Datasets:

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
File size: 4,209 Bytes
e7c2267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2079c27
e7c2267
 
 
 
 
 
 
2079c27
e7c2267
 
2079c27
 
e7c2267
 
2079c27
e7c2267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2079c27
e7c2267
2079c27
 
 
e7c2267
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import os

import datasets
from typing import List
import json

logger = datasets.logging.get_logger(__name__)


_CITATION = """
"""

_DESCRIPTION = """
This is the dataset repository for PLOD Dataset accepted to be published at LREC 2022.
The dataset can help build sequence labelling models for the task Abbreviation Detection.
"""

class PLODunfilteredConfig(datasets.BuilderConfig):
    """BuilderConfig for Conll2003"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(PLODunfilteredConfig, self).__init__(**kwargs)


class PLODunfilteredConfig(datasets.GeneratorBasedBuilder):
    """PLOD Unfiltered dataset."""

    BUILDER_CONFIGS = [
        PLODunfilteredConfig(name="PLODunfiltered", version=datasets.Version("0.0.2"), description="PLOD unfiltered dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "ADJ",
                                "ADP",
                                "ADV",
                                "AUX",
                                "CONJ",
                                "CCONJ",
                                "DET",
                                "INTJ",
                                "NOUN",
                                "NUM",
                                "PART",
                                "PRON",
                                "PROPN",
                                "PUNCT",
                                "SCONJ",
                                "SYM",
                                "VERB",
                                "X",
                                "SPACE"
                            ]
                        )
                    ),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                "B-O",
                                "B-AC",
                                "I-AC",
                                "B-LF",
                                "I-LF"
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://github.com/surrey-nlp/PLOD-AbbreviationDetection",
            citation=_CITATION,
        )

    _URL = "https://huggingface.co./datasets/surrey-nlp/PLOD-unfiltered/resolve/main/data/"
    _URLS = {
        "train": _URL + "PLOS-train70-unfiltered-pos_bio.json",
        "dev": _URL + "PLOS-val15-unfiltered-pos_bio.json",
        "test": _URL + "PLOS-test15-unfiltered-pos_bio.json"
    }

    def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
        urls_to_download = self._URLS
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
            datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}),
            datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]})
        ]

    def _generate_examples(self, filepath):
        """This function returns the examples in the raw (text) form."""
        logger.info("generating examples from = %s", filepath)
        with open(filepath) as f:
            plod = json.load(f)
            for object in plod:
                id_ = int(object['id'])
                yield id_, {
                    "id": str(id_),
                    "tokens": object['tokens'],
                    "pos_tags": object['pos_tags'],
                    "ner_tags": object['ner_tags'],
                }