File size: 24,096 Bytes
64e8aea
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "id": "1a6ca1fd-66c6-4da6-af7f-35879fb663ba",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Requirement already satisfied: tldextract in /home/stefan/.venvs/flair/lib/python3.12/site-packages (5.1.2)\n",
      "Requirement already satisfied: idna in /home/stefan/.venvs/flair/lib/python3.12/site-packages (from tldextract) (3.7)\n",
      "Requirement already satisfied: requests>=2.1.0 in /home/stefan/.venvs/flair/lib/python3.12/site-packages (from tldextract) (2.32.2)\n",
      "Requirement already satisfied: requests-file>=1.4 in /home/stefan/.venvs/flair/lib/python3.12/site-packages (from tldextract) (2.1.0)\n",
      "Requirement already satisfied: filelock>=3.0.8 in /home/stefan/.venvs/flair/lib/python3.12/site-packages (from tldextract) (3.13.1)\n",
      "Requirement already satisfied: charset-normalizer<4,>=2 in /home/stefan/.venvs/flair/lib/python3.12/site-packages (from requests>=2.1.0->tldextract) (3.3.2)\n",
      "Requirement already satisfied: urllib3<3,>=1.21.1 in /home/stefan/.venvs/flair/lib/python3.12/site-packages (from requests>=2.1.0->tldextract) (1.26.18)\n",
      "Requirement already satisfied: certifi>=2017.4.17 in /home/stefan/.venvs/flair/lib/python3.12/site-packages (from requests>=2.1.0->tldextract) (2024.2.2)\n"
     ]
    }
   ],
   "source": [
    "!pip3 install tldextract"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "id": "4906d36b-6a06-4987-b032-4de6a11bfc65",
   "metadata": {},
   "outputs": [],
   "source": [
    "import random\n",
    "import tldextract\n",
    "\n",
    "from collections import Counter\n",
    "from tabulate import tabulate"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "id": "0107c076-c40a-41ae-bf51-92ccddaf2e61",
   "metadata": {},
   "outputs": [],
   "source": [
    "dataset_splits = {\n",
    "    \"train\": \"./original/NER-de-train.tsv\",\n",
    "    \"dev\": \"./original/NER-de-dev.tsv\",\n",
    "    \"test\": \"./original/NER-de-test.tsv\",\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "b11a81f2-0e71-4bbc-9538-b1f3295c4b38",
   "metadata": {},
   "source": [
    "# Dataset Stats"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "id": "530c2634-19ee-4814-842e-b834024fa8c9",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "GermEval 2014 Dataset Stats for train split:\n",
      "| TLD                  | Number of examples (Percentage)   |\n",
      "|----------------------|-----------------------------------|\n",
      "| wikipedia.org        | 12007 (50.03%)                    |\n",
      "| welt.de              | 662 (2.76%)                       |\n",
      "| spiegel.de           | 512 (2.13%)                       |\n",
      "| tagesspiegel.de      | 424 (1.77%)                       |\n",
      "| handelsblatt.com     | 369 (1.54%)                       |\n",
      "| fr-aktuell.de        | 344 (1.43%)                       |\n",
      "| sueddeutsche.de      | 308 (1.28%)                       |\n",
      "| abendblatt.de        | 283 (1.18%)                       |\n",
      "| berlinonline.de      | 255 (1.06%)                       |\n",
      "| szon.de              | 249 (1.04%)                       |\n",
      "| n-tv.de              | 195 (0.81%)                       |\n",
      "| yahoo.com            | 192 (0.8%)                        |\n",
      "| feedsportal.com      | 173 (0.72%)                       |\n",
      "| ngz-online.de        | 173 (0.72%)                       |\n",
      "| faz.net              | 156 (0.65%)                       |\n",
      "| nzz.ch               | 146 (0.61%)                       |\n",
      "| morgenweb.de         | 134 (0.56%)                       |\n",
      "| rp-online.de         | 132 (0.55%)                       |\n",
      "| gea.de               | 131 (0.55%)                       |\n",
      "| sat1.de              | 126 (0.53%)                       |\n",
      "| tagesschau.de        | 124 (0.52%)                       |\n",
      "| pnp.de               | 101 (0.42%)                       |\n",
      "| orf.at               | 98 (0.41%)                        |\n",
      "| n24.de               | 98 (0.41%)                        |\n",
      "| finanznachrichten.de | 91 (0.38%)                        |\n",
      "\n",
      "GermEval 2014 Dataset Stats for dev split:\n",
      "| TLD                  | Number of examples (Percentage)   |\n",
      "|----------------------|-----------------------------------|\n",
      "| wikipedia.org        | 1119 (50.86%)                     |\n",
      "| welt.de              | 46 (2.09%)                        |\n",
      "| spiegel.de           | 43 (1.95%)                        |\n",
      "| fr-aktuell.de        | 38 (1.73%)                        |\n",
      "| tagesspiegel.de      | 37 (1.68%)                        |\n",
      "| handelsblatt.com     | 35 (1.59%)                        |\n",
      "| sueddeutsche.de      | 28 (1.27%)                        |\n",
      "| szon.de              | 25 (1.14%)                        |\n",
      "| feedsportal.com      | 24 (1.09%)                        |\n",
      "| berlinonline.de      | 22 (1.0%)                         |\n",
      "| rp-online.de         | 21 (0.95%)                        |\n",
      "| abendblatt.de        | 20 (0.91%)                        |\n",
      "| ngz-online.de        | 19 (0.86%)                        |\n",
      "| n-tv.de              | 18 (0.82%)                        |\n",
      "| yahoo.com            | 15 (0.68%)                        |\n",
      "| sat1.de              | 15 (0.68%)                        |\n",
      "| orf.at               | 13 (0.59%)                        |\n",
      "| finanznachrichten.de | 13 (0.59%)                        |\n",
      "| tagesschau.de        | 13 (0.59%)                        |\n",
      "| nzz.ch               | 12 (0.55%)                        |\n",
      "| faz.net              | 12 (0.55%)                        |\n",
      "| morgenweb.de         | 12 (0.55%)                        |\n",
      "| 20min.ch             | 11 (0.5%)                         |\n",
      "| pnp.de               | 11 (0.5%)                         |\n",
      "| focus.de             | 10 (0.45%)                        |\n",
      "\n",
      "GermEval 2014 Dataset Stats for test split:\n",
      "| TLD                  | Number of examples (Percentage)   |\n",
      "|----------------------|-----------------------------------|\n",
      "| wikipedia.org        | 2547 (49.94%)                     |\n",
      "| welt.de              | 139 (2.73%)                       |\n",
      "| spiegel.de           | 88 (1.73%)                        |\n",
      "| tagesspiegel.de      | 86 (1.69%)                        |\n",
      "| handelsblatt.com     | 84 (1.65%)                        |\n",
      "| sueddeutsche.de      | 78 (1.53%)                        |\n",
      "| abendblatt.de        | 72 (1.41%)                        |\n",
      "| fr-aktuell.de        | 62 (1.22%)                        |\n",
      "| berlinonline.de      | 59 (1.16%)                        |\n",
      "| szon.de              | 57 (1.12%)                        |\n",
      "| feedsportal.com      | 52 (1.02%)                        |\n",
      "| n-tv.de              | 47 (0.92%)                        |\n",
      "| sat1.de              | 42 (0.82%)                        |\n",
      "| nzz.ch               | 39 (0.76%)                        |\n",
      "| yahoo.com            | 38 (0.75%)                        |\n",
      "| ngz-online.de        | 37 (0.73%)                        |\n",
      "| faz.net              | 37 (0.73%)                        |\n",
      "| morgenweb.de         | 36 (0.71%)                        |\n",
      "| taz.de               | 28 (0.55%)                        |\n",
      "| finanznachrichten.de | 25 (0.49%)                        |\n",
      "| tagesschau.de        | 24 (0.47%)                        |\n",
      "| gea.de               | 24 (0.47%)                        |\n",
      "| bernerzeitung.ch     | 23 (0.45%)                        |\n",
      "| ftd.de               | 22 (0.43%)                        |\n",
      "| orf.at               | 21 (0.41%)                        |\n",
      "\n"
     ]
    }
   ],
   "source": [
    "def print_stats(dataset_split, dataset_path, limit=25):\n",
    "    hostname_counter = Counter()\n",
    "\n",
    "    with open(dataset_path, \"rt\") as f_p:\n",
    "        for line in f_p:\n",
    "            if not line.startswith(\"#\"):\n",
    "                continue\n",
    "    \n",
    "            current_url = line.split(\"\\t\")[1].split(\" \")[0]\n",
    "    \n",
    "            ext = tldextract.extract(current_url)\n",
    "    \n",
    "            hostname = ext.registered_domain\n",
    "    \n",
    "            hostname_counter[hostname] += 1\n",
    "\n",
    "    # Print nice table\n",
    "    headers = [\"TLD\", \"Number of examples (Percentage)\"]\n",
    "\n",
    "    table = []\n",
    "\n",
    "    total_examples = sum(hostname_counter.values())\n",
    "    \n",
    "    for tld_name, examples in hostname_counter.most_common(limit):\n",
    "        current_percentage = round(examples / total_examples * 100, 2)\n",
    "        table.append([tld_name, f\"{examples} ({current_percentage}%)\"])\n",
    "\n",
    "    print(tabulate(table, headers=headers, tablefmt=\"github\"))\n",
    "\n",
    "for dataset_split in dataset_splits.keys():\n",
    "    print(f\"GermEval 2014 Dataset Stats for {dataset_split} split:\")\n",
    "    print_stats(dataset_split, dataset_splits[dataset_split])\n",
    "    print(\"\")"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "d97e3e86-ae0e-4a54-af15-de195608a071",
   "metadata": {},
   "source": [
    "# Generate New Dataset Split without Wikipedia"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "id": "4a081af0-f2fe-4e1a-ae56-da10b2bd7be1",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Writing out train split...\n",
      "Writing out dev split...\n",
      "Writing out test split...\n"
     ]
    }
   ],
   "source": [
    "def filter_out_wikipedia(dataset_split):\n",
    "    with open(dataset_splits[dataset_split], \"rt\") as f_p:\n",
    "        all_sentences = []\n",
    "        current_sentence = []\n",
    "        for line in f_p:\n",
    "            line = line.strip()\n",
    "            if not line:\n",
    "                # We found new sentence, yeah!\n",
    "\n",
    "                if len(current_sentence) == 0:\n",
    "                    continue\n",
    "                \n",
    "                all_sentences.append(current_sentence)\n",
    "                current_sentence = []\n",
    "                continue\n",
    "\n",
    "            current_sentence.append(line)\n",
    "\n",
    "        if len(current_sentence) > 0:\n",
    "            all_sentences.append(current_sentence)\n",
    "    \n",
    "    with open(f\"NER-de-without-wikipedia-{dataset_split}.tsv\", \"wt\") as f_out:\n",
    "        for sentence in all_sentences:\n",
    "\n",
    "            header = sentence[0]\n",
    "            assert header.startswith(\"#\")\n",
    "\n",
    "            current_url = header.split(\"\\t\")[1].split(\" \")[0]\n",
    "            ext = tldextract.extract(current_url)\n",
    "            hostname = ext.registered_domain\n",
    "\n",
    "            if hostname == \"wikipedia.org\":\n",
    "                continue\n",
    "\n",
    "            f_out.write(\"\\n\".join(sentence) + \"\\n\\n\")\n",
    "\n",
    "for dataset_split in dataset_splits.keys():\n",
    "    print(f\"Writing out {dataset_split} split...\")\n",
    "    filter_out_wikipedia(dataset_split)"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "84321c99-7085-467d-8d9c-7966bddd21de",
   "metadata": {},
   "source": [
    "# Load with Flair"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "id": "be671ee3-e562-43a5-8734-144b3a129993",
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "2024-05-29 17:08:26.593572: I external/local_tsl/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n",
      "2024-05-29 17:08:26.597226: I external/local_tsl/tsl/cuda/cudart_stub.cc:32] Could not find cuda drivers on your machine, GPU will not be used.\n",
      "2024-05-29 17:08:26.644331: I tensorflow/core/platform/cpu_feature_guard.cc:210] This TensorFlow binary is optimized to use available CPU instructions in performance-critical operations.\n",
      "To enable the following instructions: AVX2 FMA, in other operations, rebuild TensorFlow with the appropriate compiler flags.\n",
      "2024-05-29 17:08:27.578466: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT\n"
     ]
    }
   ],
   "source": [
    "import flair\n",
    "\n",
    "from flair.datasets import NER_GERMAN_GERMEVAL\n",
    "from flair.datasets.sequence_labeling import ColumnCorpus\n",
    "from flair.file_utils import cached_path\n",
    "\n",
    "from pathlib import Path\n",
    "from typing import Optional, Union\n",
    "\n",
    "\n",
    "class NER_GERMEVAL_2014_NO_WIKIPEDIA(ColumnCorpus):\n",
    "    def __init__(\n",
    "        self,\n",
    "        base_path: Optional[Union[str, Path]] = None,\n",
    "        in_memory: bool = True,\n",
    "        **corpusargs,\n",
    "    ) -> None:\n",
    "        base_path = flair.cache_root / \"datasets\" if not base_path else Path(base_path)\n",
    "        dataset_name = self.__class__.__name__.lower()\n",
    "        data_folder = base_path / dataset_name\n",
    "        data_path = flair.cache_root / \"datasets\" / dataset_name\n",
    "\n",
    "        column_format = {1: \"text\", 2: \"ner\"}\n",
    "\n",
    "        #hf_download_path = \"https://huggingface.co./datasets/stefan-it/germeval14_no_wikipedia/resolve/main\"\n",
    "\n",
    "        #for split in [\"train\", \"dev\", \"test\"]:\n",
    "        #    cached_path(f\"{hf_download_path}/NER-de-without-wikipedia-{split}.tsv\", data_path)\n",
    "        \n",
    "        super().__init__(\n",
    "            \"./\", #data_folder,\n",
    "            column_format = {0: \"text\", 1: \"ner\"},\n",
    "            column_delimiter=\"\\t\",\n",
    "            document_separator_token=\"-DOCSTART-\",\n",
    "            in_memory=in_memory,\n",
    "            comment_symbol=\"# \",\n",
    "            **corpusargs,\n",
    "        )"
   ]
  },
  {
   "cell_type": "markdown",
   "id": "7c9d0275-dc4e-4ca0-9a49-b582a42d6bca",
   "metadata": {},
   "source": [
    "# New Corpus Stats"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "id": "8b1a34ab-42c5-4e72-a63e-823f7f2b3cbe",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2024-05-29 17:08:30,120 Reading data from .\n",
      "2024-05-29 17:08:30,121 Train: NER-de-without-wikipedia-train.tsv\n",
      "2024-05-29 17:08:30,123 Dev: NER-de-without-wikipedia-dev.tsv\n",
      "2024-05-29 17:08:30,124 Test: NER-de-without-wikipedia-test.tsv\n",
      "2024-05-29 17:08:34,319 Reading data from /home/stefan/.flair/datasets/ner_german_germeval\n",
      "2024-05-29 17:08:34,320 Train: /home/stefan/.flair/datasets/ner_german_germeval/train.tsv\n",
      "2024-05-29 17:08:34,321 Dev: /home/stefan/.flair/datasets/ner_german_germeval/dev.tsv\n",
      "2024-05-29 17:08:34,321 Test: /home/stefan/.flair/datasets/ner_german_germeval/test.tsv\n"
     ]
    }
   ],
   "source": [
    "corpus = NER_GERMEVAL_2014_NO_WIKIPEDIA()\n",
    "original_corpus = NER_GERMAN_GERMEVAL()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "id": "86047123-c882-433b-8d19-92626e878afd",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Original GermEval 2014 stats: Corpus: 24000 train + 2200 dev + 5100 test sentences\n",
      "Filtered-out GermEval 2014 stats: Corpus: 11993 train + 1081 dev + 2553 test sentences\n"
     ]
    }
   ],
   "source": [
    "print(\"Original GermEval 2014 stats:\", str(original_corpus))\n",
    "print(\"Filtered-out GermEval 2014 stats:\", str(corpus))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "id": "9e6ffb09-b1c0-4559-b954-df8373492876",
   "metadata": {},
   "outputs": [],
   "source": [
    "new_dataset_splits = {\n",
    "    \"train\": \"./NER-de-without-wikipedia-train.tsv\",\n",
    "    \"dev\": \"./NER-de-without-wikipedia-dev.tsv\",\n",
    "    \"test\": \"./NER-de-without-wikipedia-test.tsv\",\n",
    "}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "id": "9ea60c74-70e2-473c-96c7-b6cdfc601297",
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "New GermEval 2014 Dataset Stats for train split:\n",
      "| TLD                  | Number of examples (Percentage)   |\n",
      "|----------------------|-----------------------------------|\n",
      "| welt.de              | 662 (5.52%)                       |\n",
      "| spiegel.de           | 512 (4.27%)                       |\n",
      "| tagesspiegel.de      | 424 (3.54%)                       |\n",
      "| handelsblatt.com     | 369 (3.08%)                       |\n",
      "| fr-aktuell.de        | 344 (2.87%)                       |\n",
      "| sueddeutsche.de      | 308 (2.57%)                       |\n",
      "| abendblatt.de        | 283 (2.36%)                       |\n",
      "| berlinonline.de      | 255 (2.13%)                       |\n",
      "| szon.de              | 249 (2.08%)                       |\n",
      "| n-tv.de              | 195 (1.63%)                       |\n",
      "| yahoo.com            | 192 (1.6%)                        |\n",
      "| feedsportal.com      | 173 (1.44%)                       |\n",
      "| ngz-online.de        | 173 (1.44%)                       |\n",
      "| faz.net              | 156 (1.3%)                        |\n",
      "| nzz.ch               | 146 (1.22%)                       |\n",
      "| morgenweb.de         | 134 (1.12%)                       |\n",
      "| rp-online.de         | 132 (1.1%)                        |\n",
      "| gea.de               | 131 (1.09%)                       |\n",
      "| sat1.de              | 126 (1.05%)                       |\n",
      "| tagesschau.de        | 124 (1.03%)                       |\n",
      "| pnp.de               | 101 (0.84%)                       |\n",
      "| orf.at               | 98 (0.82%)                        |\n",
      "| n24.de               | 98 (0.82%)                        |\n",
      "| finanznachrichten.de | 91 (0.76%)                        |\n",
      "| taz.de               | 91 (0.76%)                        |\n",
      "\n",
      "New GermEval 2014 Dataset Stats for dev split:\n",
      "| TLD                  | Number of examples (Percentage)   |\n",
      "|----------------------|-----------------------------------|\n",
      "| welt.de              | 46 (4.26%)                        |\n",
      "| spiegel.de           | 43 (3.98%)                        |\n",
      "| fr-aktuell.de        | 38 (3.52%)                        |\n",
      "| tagesspiegel.de      | 37 (3.42%)                        |\n",
      "| handelsblatt.com     | 35 (3.24%)                        |\n",
      "| sueddeutsche.de      | 28 (2.59%)                        |\n",
      "| szon.de              | 25 (2.31%)                        |\n",
      "| feedsportal.com      | 24 (2.22%)                        |\n",
      "| berlinonline.de      | 22 (2.04%)                        |\n",
      "| rp-online.de         | 21 (1.94%)                        |\n",
      "| abendblatt.de        | 20 (1.85%)                        |\n",
      "| ngz-online.de        | 19 (1.76%)                        |\n",
      "| n-tv.de              | 18 (1.67%)                        |\n",
      "| yahoo.com            | 15 (1.39%)                        |\n",
      "| sat1.de              | 15 (1.39%)                        |\n",
      "| orf.at               | 13 (1.2%)                         |\n",
      "| finanznachrichten.de | 13 (1.2%)                         |\n",
      "| tagesschau.de        | 13 (1.2%)                         |\n",
      "| nzz.ch               | 12 (1.11%)                        |\n",
      "| faz.net              | 12 (1.11%)                        |\n",
      "| morgenweb.de         | 12 (1.11%)                        |\n",
      "| 20min.ch             | 11 (1.02%)                        |\n",
      "| pnp.de               | 11 (1.02%)                        |\n",
      "| focus.de             | 10 (0.93%)                        |\n",
      "| ftd.de               | 9 (0.83%)                         |\n",
      "\n",
      "New GermEval 2014 Dataset Stats for test split:\n",
      "| TLD                  | Number of examples (Percentage)   |\n",
      "|----------------------|-----------------------------------|\n",
      "| welt.de              | 139 (5.44%)                       |\n",
      "| spiegel.de           | 88 (3.45%)                        |\n",
      "| tagesspiegel.de      | 86 (3.37%)                        |\n",
      "| handelsblatt.com     | 84 (3.29%)                        |\n",
      "| sueddeutsche.de      | 78 (3.06%)                        |\n",
      "| abendblatt.de        | 72 (2.82%)                        |\n",
      "| fr-aktuell.de        | 62 (2.43%)                        |\n",
      "| berlinonline.de      | 59 (2.31%)                        |\n",
      "| szon.de              | 57 (2.23%)                        |\n",
      "| feedsportal.com      | 52 (2.04%)                        |\n",
      "| n-tv.de              | 47 (1.84%)                        |\n",
      "| sat1.de              | 42 (1.65%)                        |\n",
      "| nzz.ch               | 39 (1.53%)                        |\n",
      "| yahoo.com            | 38 (1.49%)                        |\n",
      "| ngz-online.de        | 37 (1.45%)                        |\n",
      "| faz.net              | 37 (1.45%)                        |\n",
      "| morgenweb.de         | 36 (1.41%)                        |\n",
      "| taz.de               | 28 (1.1%)                         |\n",
      "| finanznachrichten.de | 25 (0.98%)                        |\n",
      "| tagesschau.de        | 24 (0.94%)                        |\n",
      "| gea.de               | 24 (0.94%)                        |\n",
      "| bernerzeitung.ch     | 23 (0.9%)                         |\n",
      "| ftd.de               | 22 (0.86%)                        |\n",
      "| orf.at               | 21 (0.82%)                        |\n",
      "| rp-online.de         | 21 (0.82%)                        |\n",
      "\n"
     ]
    }
   ],
   "source": [
    "for dataset_split in new_dataset_splits.keys():\n",
    "    print(f\"New GermEval 2014 Dataset Stats for {dataset_split} split:\")\n",
    "    print_stats(dataset_split, new_dataset_splits[dataset_split])\n",
    "    print(\"\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}