|
import datasets |
|
|
|
|
|
_CITATION = "" |
|
|
|
_DESCRIPTION = """\ |
|
HisGermaNER is another NER dataset from historical German newspapers. |
|
|
|
In the first release of our dataset, 11 newspapers from 1710 to 1840 from the Austrian National Library (ONB) are selected, resulting in 100 pages. |
|
""" |
|
|
|
|
|
class HisGermaNERConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for HisGermaNER""" |
|
|
|
def __init__(self, data_url, **kwargs): |
|
super(HisGermaNERConfig, self).__init__(**kwargs) |
|
self.data_url = data_url |
|
|
|
|
|
class HisGermaNER(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
HisGermaNERConfig( |
|
name="HisGermaNER", |
|
version=datasets.Version("0.0.1"), |
|
description="HisGermaNER Dataset", |
|
data_url="https://huggingface.co./datasets/stefan-it/HisGermaNER/resolve/main/splits/HisGermaNER_v0_", |
|
) |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"tokens": datasets.Sequence(datasets.Value("string")), |
|
"ner_tags": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"O", |
|
"B-PER", |
|
"I-PER", |
|
"B-ORG", |
|
"I-ORG", |
|
"B-LOC", |
|
"I-LOC", |
|
] |
|
) |
|
) |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="https://huggingface.co./datasets/stefan-it/HisGermaNER", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns generator for dataset splits.""" |
|
download_urls = { |
|
split: self.config.data_url + split + ".tsv" for split in ["train", "dev", "test"] |
|
} |
|
|
|
downloaded_files = dl_manager.download_and_extract(download_urls) |
|
|
|
splits = [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}) |
|
] |
|
|
|
return splits |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, "rt", encoding="utf-8") as f_p: |
|
current_tokens = [] |
|
current_tags = [] |
|
|
|
sentence_counter = 0 |
|
|
|
for line in f_p: |
|
line = line.strip() |
|
if not line: |
|
if len(current_tokens) > 0: |
|
sentence = ( |
|
sentence_counter, { |
|
"id": str(sentence_counter), |
|
"tokens": current_tokens, |
|
"ner_tags": current_tags, |
|
} |
|
) |
|
sentence_counter += 1 |
|
current_tokens = [] |
|
current_tags = [] |
|
yield sentence |
|
continue |
|
|
|
if line.startswith("TOKEN"): |
|
continue |
|
|
|
if line.startswith("# "): |
|
continue |
|
|
|
token, tag, misc = line.split("\t") |
|
current_tokens.append(token) |
|
current_tags.append(tag) |
|
|
|
if len(current_tokens) > 0: |
|
yield sentence_counter, { |
|
"id": str(sentence_counter), |
|
"tokens": current_tokens, |
|
"ner_tags": current_tags, |
|
} |
|
|