Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
License:
Commit
·
3c35933
1
Parent(s):
c1ac045
Add SST-2 dataset (#4473)
Browse files* Add SST-2 dataset
* Add dataset card
* Add metadata JSON
* Add dummy data
* Fix style
* Fix dataset card
* Remove default config from dataset card
Commit from https://github.com/huggingface/datasets/commit/5eac250e652118dff0ba3d528fb9b336a75ade47
- README.md +177 -0
- dataset_infos.json +1 -0
- dummy/2.0.0/dummy_data.zip +3 -0
- sst2.py +105 -0
README.md
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- found
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- unknown
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- text-classification
|
18 |
+
task_ids:
|
19 |
+
- sentiment-classification
|
20 |
+
paperswithcode_id: sst
|
21 |
+
pretty_name: Stanford Sentiment Treebank v2
|
22 |
+
---
|
23 |
+
|
24 |
+
# Dataset Card for [Dataset Name]
|
25 |
+
|
26 |
+
## Table of Contents
|
27 |
+
- [Table of Contents](#table-of-contents)
|
28 |
+
- [Dataset Description](#dataset-description)
|
29 |
+
- [Dataset Summary](#dataset-summary)
|
30 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
31 |
+
- [Languages](#languages)
|
32 |
+
- [Dataset Structure](#dataset-structure)
|
33 |
+
- [Data Instances](#data-instances)
|
34 |
+
- [Data Fields](#data-fields)
|
35 |
+
- [Data Splits](#data-splits)
|
36 |
+
- [Dataset Creation](#dataset-creation)
|
37 |
+
- [Curation Rationale](#curation-rationale)
|
38 |
+
- [Source Data](#source-data)
|
39 |
+
- [Annotations](#annotations)
|
40 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
41 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
42 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
43 |
+
- [Discussion of Biases](#discussion-of-biases)
|
44 |
+
- [Other Known Limitations](#other-known-limitations)
|
45 |
+
- [Additional Information](#additional-information)
|
46 |
+
- [Dataset Curators](#dataset-curators)
|
47 |
+
- [Licensing Information](#licensing-information)
|
48 |
+
- [Citation Information](#citation-information)
|
49 |
+
- [Contributions](#contributions)
|
50 |
+
|
51 |
+
## Dataset Description
|
52 |
+
|
53 |
+
- **Homepage:** https://nlp.stanford.edu/sentiment/
|
54 |
+
- **Repository:**
|
55 |
+
- **Paper:** [Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank](https://www.aclweb.org/anthology/D13-1170/)
|
56 |
+
- **Leaderboard:**
|
57 |
+
- **Point of Contact:**
|
58 |
+
|
59 |
+
### Dataset Summary
|
60 |
+
|
61 |
+
The Stanford Sentiment Treebank is a corpus with fully labeled parse trees that allows for a complete analysis of the
|
62 |
+
compositional effects of sentiment in language. The corpus is based on the dataset introduced by Pang and Lee (2005)
|
63 |
+
and consists of 11,855 single sentences extracted from movie reviews. It was parsed with the Stanford parser and
|
64 |
+
includes a total of 215,154 unique phrases from those parse trees, each annotated by 3 human judges.
|
65 |
+
|
66 |
+
Binary classification experiments on full sentences (negative or somewhat negative vs somewhat positive or positive
|
67 |
+
with neutral sentences discarded) refer to the dataset as SST-2 or SST binary.
|
68 |
+
|
69 |
+
### Supported Tasks and Leaderboards
|
70 |
+
|
71 |
+
- `sentiment-classification`
|
72 |
+
|
73 |
+
### Languages
|
74 |
+
|
75 |
+
The text in the dataset is in English (`en`).
|
76 |
+
|
77 |
+
## Dataset Structure
|
78 |
+
|
79 |
+
### Data Instances
|
80 |
+
|
81 |
+
```
|
82 |
+
{'idx': 0,
|
83 |
+
'sentence': 'hide new secretions from the parental units ',
|
84 |
+
'label': 0}
|
85 |
+
```
|
86 |
+
|
87 |
+
### Data Fields
|
88 |
+
|
89 |
+
- `idx`: Monotonically increasing index ID.
|
90 |
+
- `sentence`: Complete sentence expressing an opinion about a film.
|
91 |
+
- `label`: Sentiment of the opinion, either "negative" (0) or positive (1).
|
92 |
+
|
93 |
+
### Data Splits
|
94 |
+
|
95 |
+
| | train | validation | test |
|
96 |
+
|--------------------|---------:|-----------:|-----:|
|
97 |
+
| Number of examples | 67349 | 872 | 1821 |
|
98 |
+
|
99 |
+
## Dataset Creation
|
100 |
+
|
101 |
+
### Curation Rationale
|
102 |
+
|
103 |
+
[More Information Needed]
|
104 |
+
|
105 |
+
### Source Data
|
106 |
+
|
107 |
+
#### Initial Data Collection and Normalization
|
108 |
+
|
109 |
+
[More Information Needed]
|
110 |
+
|
111 |
+
#### Who are the source language producers?
|
112 |
+
|
113 |
+
Rotten Tomatoes reviewers.
|
114 |
+
|
115 |
+
### Annotations
|
116 |
+
|
117 |
+
#### Annotation process
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Who are the annotators?
|
122 |
+
|
123 |
+
[More Information Needed]
|
124 |
+
|
125 |
+
### Personal and Sensitive Information
|
126 |
+
|
127 |
+
[More Information Needed]
|
128 |
+
|
129 |
+
## Considerations for Using the Data
|
130 |
+
|
131 |
+
### Social Impact of Dataset
|
132 |
+
|
133 |
+
[More Information Needed]
|
134 |
+
|
135 |
+
### Discussion of Biases
|
136 |
+
|
137 |
+
[More Information Needed]
|
138 |
+
|
139 |
+
### Other Known Limitations
|
140 |
+
|
141 |
+
[More Information Needed]
|
142 |
+
|
143 |
+
## Additional Information
|
144 |
+
|
145 |
+
### Dataset Curators
|
146 |
+
|
147 |
+
[More Information Needed]
|
148 |
+
|
149 |
+
### Licensing Information
|
150 |
+
|
151 |
+
Unknown.
|
152 |
+
|
153 |
+
### Citation Information
|
154 |
+
|
155 |
+
```bibtex
|
156 |
+
@inproceedings{socher-etal-2013-recursive,
|
157 |
+
title = "Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank",
|
158 |
+
author = "Socher, Richard and
|
159 |
+
Perelygin, Alex and
|
160 |
+
Wu, Jean and
|
161 |
+
Chuang, Jason and
|
162 |
+
Manning, Christopher D. and
|
163 |
+
Ng, Andrew and
|
164 |
+
Potts, Christopher",
|
165 |
+
booktitle = "Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing",
|
166 |
+
month = oct,
|
167 |
+
year = "2013",
|
168 |
+
address = "Seattle, Washington, USA",
|
169 |
+
publisher = "Association for Computational Linguistics",
|
170 |
+
url = "https://www.aclweb.org/anthology/D13-1170",
|
171 |
+
pages = "1631--1642",
|
172 |
+
}
|
173 |
+
```
|
174 |
+
|
175 |
+
### Contributions
|
176 |
+
|
177 |
+
Thanks to [@albertvillanova](https://github.com/albertvillanova) for adding this dataset.
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"default": {"description": "The Stanford Sentiment Treebank consists of sentences from movie reviews and\nhuman annotations of their sentiment. The task is to predict the sentiment of a\ngiven sentence. We use the two-way (positive/negative) class split, and use only\nsentence-level labels.\n", "citation": "@inproceedings{socher2013recursive,\n title={Recursive deep models for semantic compositionality over a sentiment treebank},\n author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},\n booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},\n pages={1631--1642},\n year={2013}\n}\n", "homepage": "https://nlp.stanford.edu/sentiment/", "license": "Unknown", "features": {"idx": {"dtype": "int32", "id": null, "_type": "Value"}, "sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["negative", "positive"], "id": null, "_type": "ClassLabel"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "sst2", "config_name": "default", "version": {"version_str": "2.0.0", "description": null, "major": 2, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 4690022, "num_examples": 67349, "dataset_name": "sst2"}, "validation": {"name": "validation", "num_bytes": 106361, "num_examples": 872, "dataset_name": "sst2"}, "test": {"name": "test", "num_bytes": 216868, "num_examples": 1821, "dataset_name": "sst2"}}, "download_checksums": {"https://dl.fbaipublicfiles.com/glue/data/SST-2.zip": {"num_bytes": 7439277, "checksum": "d67e16fb55739c1b32cdce9877596db1c127dc322d93c082281f64057c16deaa"}}, "download_size": 7439277, "post_processing_size": null, "dataset_size": 5013251, "size_in_bytes": 12452528}}
|
dummy/2.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6cbcdd7df5dc2856008783c13b5cc7d1817b317c26776c44ef55f5814326ec28
|
3 |
+
size 4694
|
sst2.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""SST-2 (Stanford Sentiment Treebank v2) dataset."""
|
15 |
+
|
16 |
+
|
17 |
+
import csv
|
18 |
+
import os
|
19 |
+
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
|
23 |
+
_CITATION = """\
|
24 |
+
@inproceedings{socher2013recursive,
|
25 |
+
title={Recursive deep models for semantic compositionality over a sentiment treebank},
|
26 |
+
author={Socher, Richard and Perelygin, Alex and Wu, Jean and Chuang, Jason and Manning, Christopher D and Ng, Andrew and Potts, Christopher},
|
27 |
+
booktitle={Proceedings of the 2013 conference on empirical methods in natural language processing},
|
28 |
+
pages={1631--1642},
|
29 |
+
year={2013}
|
30 |
+
}
|
31 |
+
"""
|
32 |
+
|
33 |
+
_DESCRIPTION = """\
|
34 |
+
The Stanford Sentiment Treebank consists of sentences from movie reviews and
|
35 |
+
human annotations of their sentiment. The task is to predict the sentiment of a
|
36 |
+
given sentence. We use the two-way (positive/negative) class split, and use only
|
37 |
+
sentence-level labels.
|
38 |
+
"""
|
39 |
+
|
40 |
+
_HOMEPAGE = "https://nlp.stanford.edu/sentiment/"
|
41 |
+
|
42 |
+
_LICENSE = "Unknown"
|
43 |
+
|
44 |
+
_URL = "https://dl.fbaipublicfiles.com/glue/data/SST-2.zip"
|
45 |
+
|
46 |
+
|
47 |
+
class Sst2(datasets.GeneratorBasedBuilder):
|
48 |
+
"""SST-2 dataset."""
|
49 |
+
|
50 |
+
VERSION = datasets.Version("2.0.0")
|
51 |
+
|
52 |
+
def _info(self):
|
53 |
+
features = datasets.Features(
|
54 |
+
{
|
55 |
+
"idx": datasets.Value("int32"),
|
56 |
+
"sentence": datasets.Value("string"),
|
57 |
+
"label": datasets.features.ClassLabel(names=["negative", "positive"]),
|
58 |
+
}
|
59 |
+
)
|
60 |
+
return datasets.DatasetInfo(
|
61 |
+
description=_DESCRIPTION,
|
62 |
+
features=features,
|
63 |
+
homepage=_HOMEPAGE,
|
64 |
+
license=_LICENSE,
|
65 |
+
citation=_CITATION,
|
66 |
+
)
|
67 |
+
|
68 |
+
def _split_generators(self, dl_manager):
|
69 |
+
dl_dir = dl_manager.download_and_extract(_URL)
|
70 |
+
return [
|
71 |
+
datasets.SplitGenerator(
|
72 |
+
name=datasets.Split.TRAIN,
|
73 |
+
gen_kwargs={
|
74 |
+
"file_paths": dl_manager.iter_files(dl_dir),
|
75 |
+
"data_filename": "train.tsv",
|
76 |
+
},
|
77 |
+
),
|
78 |
+
datasets.SplitGenerator(
|
79 |
+
name=datasets.Split.VALIDATION,
|
80 |
+
gen_kwargs={
|
81 |
+
"file_paths": dl_manager.iter_files(dl_dir),
|
82 |
+
"data_filename": "dev.tsv",
|
83 |
+
},
|
84 |
+
),
|
85 |
+
datasets.SplitGenerator(
|
86 |
+
name=datasets.Split.TEST,
|
87 |
+
gen_kwargs={
|
88 |
+
"file_paths": dl_manager.iter_files(dl_dir),
|
89 |
+
"data_filename": "test.tsv",
|
90 |
+
},
|
91 |
+
),
|
92 |
+
]
|
93 |
+
|
94 |
+
def _generate_examples(self, file_paths, data_filename):
|
95 |
+
for file_path in file_paths:
|
96 |
+
filename = os.path.basename(file_path)
|
97 |
+
if filename == data_filename:
|
98 |
+
with open(file_path, encoding="utf8") as f:
|
99 |
+
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
|
100 |
+
for idx, row in enumerate(reader):
|
101 |
+
yield idx, {
|
102 |
+
"idx": row["index"] if "index" in row else idx,
|
103 |
+
"sentence": row["sentence"],
|
104 |
+
"label": int(row["label"]) if "label" in row else -1,
|
105 |
+
}
|