# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. """GPT-2 model.""" import torch from megatron import get_args from megatron.core import tensor_parallel from .module import MegatronModule from .enums import AttnMaskType from .language_model import parallel_lm_logits import megatron.model.language_model from .utils import init_method_normal from .utils import scaled_init_method_normal def post_language_model_processing(lm_output, labels, logit_weights, parallel_output, fp16_lm_cross_entropy): # Output. Format [s b h] output = parallel_lm_logits( lm_output, logit_weights, parallel_output) if labels is None: # [s b h] => [b s h] return None, output.transpose(0,1).contiguous() else: # [b s] => [s b] labels = labels.transpose(0,1).contiguous() if fp16_lm_cross_entropy: assert output.dtype == torch.half loss = tensor_parallel.vocab_parallel_cross_entropy(output, labels) else: loss = tensor_parallel.vocab_parallel_cross_entropy(output.float(), labels) # [s b] => [b, s] loss = loss.transpose(0,1).contiguous() return loss, output.transpose(0, 1).contiguous() class GPTModel(MegatronModule): """GPT-2 Language model.""" def __init__(self, num_tokentypes=0, parallel_output=True, pre_process=True, post_process=True, model_type=None): args = get_args() super(GPTModel, self).__init__(share_word_embeddings=args.tie_embed_logits) self.tie_embed_logits = args.tie_embed_logits self.parallel_output = parallel_output self.pre_process = pre_process self.post_process = post_process self.fp16_lm_cross_entropy = args.fp16_lm_cross_entropy # self.language_model, self._language_model_key = megatron.model.language_model( self.language_model, self._language_model_key = megatron.model.language_model.get_language_model( num_tokentypes=num_tokentypes, add_pooler=False, encoder_attn_mask_type=AttnMaskType.causal, init_method=init_method_normal(args.init_method_std), scaled_init_method=scaled_init_method_normal(args.init_method_std, args.num_layers), pre_process=self.pre_process, post_process=self.post_process, args=args, model_type=model_type) if self.tie_embed_logits: self.initialize_word_embeddings(init_method_normal, args) def set_input_tensor(self, input_tensor): """See megatron.model.transformer.set_input_tensor()""" self.language_model.set_input_tensor(input_tensor) def forward(self, input_ids, position_ids, attention_mask, labels=None, tokentype_ids=None, inference_params=None): lm_output = self.language_model( input_ids, position_ids, attention_mask, inference_params=inference_params) if self.post_process: return post_language_model_processing( lm_output, labels, self.word_embeddings_weight(), self.parallel_output, self.fp16_lm_cross_entropy) else: return lm_output def state_dict_for_save_checkpoint(self, prefix='', keep_vars=False): state_dict_ = {} state_dict_[self._language_model_key] \ = self.language_model.state_dict_for_save_checkpoint( prefix=prefix, keep_vars=keep_vars) # Save word_embeddings. if self.post_process and not self.pre_process and self.tie_embed_logits: state_dict_[self._word_embeddings_for_head_key] \ = self.word_embeddings.state_dict(prefix=prefix, keep_vars=keep_vars) return state_dict_ def load_state_dict(self, state_dict, strict=True): """Customized load.""" # Load word_embeddings. if self.post_process and not self.pre_process and self.tie_embed_logits: self.word_embeddings.load_state_dict( state_dict[self._word_embeddings_for_head_key], strict=strict) if self._language_model_key in state_dict: state_dict = state_dict[self._language_model_key] self.language_model.load_state_dict(state_dict, strict=strict)