|
""" |
|
Convert megatron checkpoints to huggingface weights. |
|
|
|
This script will also convert the tokenizer configured. |
|
Set the `--input_dir` to the megatron checkpoint root (i.e. where the |
|
`latest_checkpointed_iteration.txt` file is located) and `--output_dir` to |
|
the directory where the huggingface weights should be stored. |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import json |
|
import os |
|
import sys |
|
import warnings |
|
from argparse import ArgumentParser, Namespace |
|
from pathlib import Path |
|
from tempfile import TemporaryDirectory |
|
|
|
sys.path.append(str(Path(__file__).parent.parent.absolute())) |
|
|
|
import torch |
|
from tqdm.auto import trange |
|
from transformers import ( |
|
AutoTokenizer, |
|
FalconConfig, |
|
FalconForCausalLM, |
|
LlamaConfig, |
|
LlamaForCausalLM, |
|
LlamaTokenizerFast, |
|
MistralConfig, |
|
MistralForCausalLM, |
|
GemmaConfig, |
|
GemmaForCausalLM, |
|
GemmaTokenizerFast, |
|
) |
|
from utils.permute_qkv import permute_qkv |
|
|
|
from megatron.tokenizer import build_tokenizer |
|
|
|
|
|
def write_json(text, path): |
|
with open(path, "w") as f: |
|
json.dump(text, f) |
|
|
|
|
|
def convert_wqkv( |
|
llama_mega, layer_idx=0, n_heads=32, n_heads_kv=8, head_size: int = None |
|
): |
|
qkv_w = llama_mega["transformer"][ |
|
f"layers.{layer_idx}.attention.query_key_value.weight" |
|
] |
|
n_hidden = qkv_w.size(1) |
|
if head_size is None: |
|
hidden_dim = n_hidden // n_heads |
|
else: |
|
hidden_dim = head_size |
|
qkv_w = permute_qkv( |
|
qkv_w, n_hidden, n_heads, n_heads_kv, n_hidden_per_head=head_size, revert=True |
|
) |
|
|
|
n_qs_per_kv = n_heads // n_heads_kv |
|
n_groups = qkv_w.size(0) // hidden_dim // (n_qs_per_kv + 2) |
|
qkv_w = list(torch.split(qkv_w, hidden_dim, dim=0)) |
|
|
|
wq, wk, wv = [], [], [] |
|
for group in range(n_groups): |
|
for qs in range(n_qs_per_kv): |
|
wq.append(qkv_w[0]) |
|
del qkv_w[0] |
|
wk.append(qkv_w[0]) |
|
del qkv_w[0] |
|
wv.append(qkv_w[0]) |
|
del qkv_w[0] |
|
assert len(qkv_w) == 0 |
|
|
|
wq = torch.concat(wq, dim=0) |
|
wk = torch.concat(wk, dim=0) |
|
wv = torch.concat(wv, dim=0) |
|
return wq, wk, wv |
|
|
|
|
|
def convert_ffn(llama_mega, layer_idx=0, n_dense=11008): |
|
mega_ffn = llama_mega["transformer"][f"layers.{layer_idx}.mlp.dense_h_to_4h.weight"] |
|
ffn_w3, ffn_w1 = mega_ffn.split(n_dense, dim=0) |
|
return ffn_w1, ffn_w3 |
|
|
|
|
|
def write_llama_model( |
|
model_path, |
|
input_base_path, |
|
num_output_shards: int = 2, |
|
norm_eps: float = 1e-05, |
|
rope_theta: float = 1e4, |
|
): |
|
|
|
print(f"Fetching all parameters from the checkpoint at {input_base_path}.") |
|
os.makedirs(model_path, exist_ok=True) |
|
with open(os.path.join(input_base_path, "latest_checkpointed_iteration.txt")) as f: |
|
iteration = f.read() |
|
if iteration != "release": |
|
iteration = f"iter_{int(iteration):07d}" |
|
print(f"Fetching iteration {iteration}") |
|
|
|
|
|
base_path = Path(input_base_path) / iteration |
|
assert ( |
|
len(list(base_path.glob("mp_rank_*"))) == 1 |
|
), "Unshard your model with checkpoint_util.py first!" |
|
loaded = torch.load( |
|
base_path / "mp_rank_00" / "model_optim_rng.pt", map_location="cpu" |
|
) |
|
args = loaded["args"] |
|
|
|
loaded = loaded["model"]["language_model"] |
|
if "transformer" not in loaded: |
|
loaded["transformer"] = loaded.pop("encoder") |
|
for key in list(loaded["transformer"].keys()): |
|
loaded["transformer"][key.replace("self_attention", "attention")] = loaded[ |
|
"transformer" |
|
].pop(key) |
|
loaded["embedding"]["word_embeddings.weight"] = loaded["embedding"].pop( |
|
"word_embeddings" |
|
)["weight"] |
|
args.num_layers = args.encoder_num_layers |
|
|
|
|
|
n_layers = args.num_layers |
|
n_heads = args.num_attention_heads |
|
n_heads_kv = getattr(args, "num_attention_heads_kv", n_heads) |
|
n_dense = args.ffn_hidden_size |
|
n_hidden = args.hidden_size |
|
hidden_per_head = n_hidden // n_heads |
|
intermediate_size = args.ffn_hidden_size |
|
inv_freq = 1.0 / ( |
|
rope_theta ** (torch.arange(0, hidden_per_head, 2).float() / hidden_per_head) |
|
) |
|
|
|
print("Llama-Megatron Loaded!") |
|
param_count = 0 |
|
index_dict = {"weight_map": {}} |
|
|
|
|
|
with TemporaryDirectory() as tmp_model_path: |
|
print(f"Weighted Converting for {n_layers} layers...") |
|
for layer_i in range(n_layers): |
|
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" |
|
wq_proj, wk_proj, wv_proj = convert_wqkv( |
|
llama_mega=loaded, |
|
layer_idx=layer_i, |
|
n_heads=n_heads, |
|
n_heads_kv=n_heads_kv, |
|
) |
|
ffn_w1, ffn_w3 = convert_ffn( |
|
llama_mega=loaded, layer_idx=layer_i, n_dense=n_dense |
|
) |
|
state_dict = { |
|
f"model.layers.{layer_i}.self_attn.q_proj.weight": wq_proj, |
|
f"model.layers.{layer_i}.self_attn.k_proj.weight": wk_proj, |
|
f"model.layers.{layer_i}.self_attn.v_proj.weight": wv_proj, |
|
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[ |
|
"transformer" |
|
][f"layers.{layer_i}.attention.dense.weight"], |
|
f"model.layers.{layer_i}.mlp.gate_proj.weight": ffn_w1, |
|
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded["transformer"][ |
|
f"layers.{layer_i}.mlp.dense_4h_to_h.weight" |
|
], |
|
f"model.layers.{layer_i}.mlp.up_proj.weight": ffn_w3, |
|
f"model.layers.{layer_i}.input_layernorm.weight": loaded["transformer"][ |
|
f"layers.{layer_i}.input_layernorm.weight" |
|
], |
|
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[ |
|
"transformer" |
|
][f"layers.{layer_i}.post_attention_layernorm.weight"], |
|
f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq": inv_freq, |
|
} |
|
|
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
print(f"Sharded file saved to {filename}") |
|
|
|
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" |
|
state_dict = { |
|
"model.norm.weight": loaded["transformer"]["final_layernorm.weight"], |
|
"lm_head.weight": loaded["lm_head"], |
|
"model.embed_tokens.weight": loaded["embedding"]["word_embeddings.weight"], |
|
} |
|
|
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch_dtype = state_dict["lm_head.weight"].dtype |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
print(f"Sharded file saved to {filename}") |
|
|
|
|
|
index_dict["metadata"] = {"total_size": param_count * 2} |
|
write_json( |
|
index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json") |
|
) |
|
config = LlamaConfig( |
|
vocab_size=args.padded_vocab_size, |
|
hidden_size=n_hidden, |
|
intermediate_size=intermediate_size, |
|
num_attention_heads=n_heads, |
|
num_hidden_layers=n_layers, |
|
rms_norm_eps=norm_eps, |
|
num_key_value_heads=n_heads_kv, |
|
max_position_embeddings=args.seq_length, |
|
) |
|
config.save_pretrained(tmp_model_path) |
|
|
|
|
|
del state_dict |
|
del loaded |
|
gc.collect() |
|
|
|
print("Loading the checkpoint in a Llama model...") |
|
model = LlamaForCausalLM.from_pretrained( |
|
tmp_model_path, torch_dtype=torch_dtype |
|
) |
|
|
|
del model.config._name_or_path |
|
|
|
print("Saving in the Transformers format.") |
|
max_num_params_per_shard = param_count * 2 // max(1, (num_output_shards - 1)) |
|
model.save_pretrained( |
|
model_path, max_shard_size=max_num_params_per_shard, safe_serialization=False |
|
) |
|
|
|
|
|
def write_gemma_model( |
|
model_path, |
|
input_base_path, |
|
num_output_shards: int = 2, |
|
norm_eps: float = 1e-06, |
|
rope_theta: float = 1e4, |
|
): |
|
|
|
print(f"Fetching all parameters from the checkpoint at {input_base_path}.") |
|
os.makedirs(model_path, exist_ok=True) |
|
with open(os.path.join(input_base_path, "latest_checkpointed_iteration.txt")) as f: |
|
iteration = f.read() |
|
if iteration != "release": |
|
iteration = f"iter_{int(iteration):07d}" |
|
print(f"Fetching iteration {iteration}") |
|
|
|
|
|
base_path = Path(input_base_path) / iteration |
|
assert ( |
|
len(list(base_path.glob("mp_rank_*"))) == 1 |
|
), "Unshard your model with checkpoint_util.py first!" |
|
loaded = torch.load( |
|
base_path / "mp_rank_00" / "model_optim_rng.pt", map_location="cpu" |
|
) |
|
args = loaded["args"] |
|
|
|
loaded = loaded["model"]["language_model"] |
|
if "transformer" not in loaded: |
|
loaded["transformer"] = loaded.pop("encoder") |
|
for key in list(loaded["transformer"].keys()): |
|
loaded["transformer"][key.replace("self_attention", "attention")] = loaded[ |
|
"transformer" |
|
].pop(key) |
|
loaded["embedding"]["word_embeddings.weight"] = loaded["embedding"].pop( |
|
"word_embeddings" |
|
)["weight"] |
|
args.num_layers = args.encoder_num_layers |
|
|
|
|
|
n_layers = args.num_layers |
|
n_heads = args.num_attention_heads |
|
n_heads_kv = getattr(args, "num_attention_heads_kv", n_heads) |
|
n_dense = args.ffn_hidden_size |
|
n_hidden = args.hidden_size |
|
hidden_per_head = n_hidden // n_heads |
|
intermediate_size = args.ffn_hidden_size |
|
inv_freq = 1.0 / ( |
|
rope_theta ** (torch.arange(0, hidden_per_head, 2).float() / hidden_per_head) |
|
) |
|
|
|
print("Gemma-Megatron Loaded!") |
|
param_count = 0 |
|
index_dict = {"weight_map": {}} |
|
|
|
|
|
gemma_headsize = 256 |
|
with TemporaryDirectory() as tmp_model_path: |
|
print(f"Weighted Converting for {n_layers} layers...") |
|
for layer_i in range(n_layers): |
|
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" |
|
wq_proj, wk_proj, wv_proj = convert_wqkv( |
|
llama_mega=loaded, |
|
layer_idx=layer_i, |
|
n_heads=n_heads, |
|
n_heads_kv=n_heads_kv, |
|
head_size=gemma_headsize, |
|
) |
|
ffn_w1, ffn_w3 = convert_ffn( |
|
llama_mega=loaded, layer_idx=layer_i, n_dense=n_dense |
|
) |
|
state_dict = { |
|
f"model.layers.{layer_i}.self_attn.q_proj.weight": wq_proj, |
|
f"model.layers.{layer_i}.self_attn.k_proj.weight": wk_proj, |
|
f"model.layers.{layer_i}.self_attn.v_proj.weight": wv_proj, |
|
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[ |
|
"transformer" |
|
][f"layers.{layer_i}.attention.dense.weight"], |
|
f"model.layers.{layer_i}.mlp.gate_proj.weight": ffn_w1, |
|
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded["transformer"][ |
|
f"layers.{layer_i}.mlp.dense_4h_to_h.weight" |
|
], |
|
f"model.layers.{layer_i}.mlp.up_proj.weight": ffn_w3, |
|
f"model.layers.{layer_i}.input_layernorm.weight": loaded["transformer"][ |
|
f"layers.{layer_i}.input_layernorm.weight" |
|
], |
|
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[ |
|
"transformer" |
|
][f"layers.{layer_i}.post_attention_layernorm.weight"], |
|
f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq": inv_freq, |
|
} |
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
print(f"Sharded file saved to {filename}") |
|
|
|
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" |
|
state_dict = { |
|
"model.norm.weight": loaded["transformer"]["final_layernorm.weight"], |
|
|
|
"model.embed_tokens.weight": loaded["embedding"]["word_embeddings.weight"], |
|
} |
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch_dtype = state_dict["model.norm.weight"].dtype |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
print(f"Sharded file saved to {filename}") |
|
|
|
|
|
index_dict["metadata"] = {"total_size": param_count * 2} |
|
write_json( |
|
index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json") |
|
) |
|
config = GemmaConfig( |
|
vocab_size=args.padded_vocab_size, |
|
hidden_size=n_hidden, |
|
intermediate_size=intermediate_size, |
|
num_attention_heads=n_heads, |
|
num_hidden_layers=n_layers, |
|
rms_norm_eps=norm_eps, |
|
num_key_value_heads=n_heads_kv, |
|
max_position_embeddings=args.seq_length, |
|
) |
|
config.save_pretrained(tmp_model_path) |
|
|
|
|
|
del state_dict |
|
del loaded |
|
gc.collect() |
|
|
|
print("Loading the checkpoint in a Gemma model...") |
|
model = GemmaForCausalLM.from_pretrained( |
|
tmp_model_path, torch_dtype=torch_dtype |
|
) |
|
|
|
del model.config._name_or_path |
|
print(model) |
|
|
|
print("Saving in the Transformers format.") |
|
max_num_params_per_shard = param_count * 2 // max(1, (num_output_shards - 1)) |
|
model.save_pretrained( |
|
model_path, max_shard_size=max_num_params_per_shard, safe_serialization=False |
|
) |
|
|
|
|
|
def write_mistral_model( |
|
model_path, |
|
input_base_path, |
|
num_output_shards: int = 2, |
|
norm_eps: float = 1e-5, |
|
rope_theta: float = 10000.0, |
|
vocab_size: int = None, |
|
): |
|
|
|
print(f"Fetching all parameters from the checkpoint at {input_base_path}.") |
|
os.makedirs(model_path, exist_ok=True) |
|
with open(os.path.join(input_base_path, "latest_checkpointed_iteration.txt")) as f: |
|
iteration = f.read() |
|
if iteration != "release": |
|
iteration = f"iter_{int(iteration):07d}" |
|
print(f"Fetching iteration {iteration}") |
|
|
|
|
|
base_path = Path(input_base_path) / iteration |
|
assert ( |
|
len(list(base_path.glob("mp_rank_*"))) == 1 |
|
), "Unshard your model with checkpoint_util.py first!" |
|
loaded = torch.load( |
|
base_path / "mp_rank_00" / "model_optim_rng.pt", map_location="cpu" |
|
) |
|
args = loaded["args"] |
|
|
|
loaded = loaded["model"]["language_model"] |
|
if "transformer" not in loaded: |
|
loaded["transformer"] = loaded.pop("encoder") |
|
for key in list(loaded["transformer"].keys()): |
|
loaded["transformer"][key.replace("self_attention", "attention")] = loaded[ |
|
"transformer" |
|
].pop(key) |
|
loaded["embedding"]["word_embeddings.weight"] = loaded["embedding"].pop( |
|
"word_embeddings" |
|
)["weight"] |
|
args.num_layers = args.encoder_num_layers |
|
|
|
|
|
n_layers = args.num_layers |
|
n_heads = args.num_attention_heads |
|
n_heads_kv = getattr(args, "num_attention_heads_kv", n_heads) |
|
n_dense = args.ffn_hidden_size |
|
n_hidden = args.hidden_size |
|
hidden_per_head = n_hidden // n_heads |
|
intermediate_size = args.ffn_hidden_size |
|
inv_freq = 1.0 / ( |
|
rope_theta ** (torch.arange(0, hidden_per_head, 2).float() / hidden_per_head) |
|
) |
|
|
|
print("Mistral-Megatron Loaded!") |
|
param_count = 0 |
|
index_dict = {"weight_map": {}} |
|
|
|
|
|
with TemporaryDirectory() as tmp_model_path: |
|
print(f"Weighted Converting for {n_layers} layers...") |
|
for layer_i in range(n_layers): |
|
filename = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" |
|
wq_proj, wk_proj, wv_proj = convert_wqkv( |
|
llama_mega=loaded, |
|
layer_idx=layer_i, |
|
n_heads=n_heads, |
|
n_heads_kv=n_heads_kv, |
|
) |
|
ffn_w1, ffn_w3 = convert_ffn( |
|
llama_mega=loaded, layer_idx=layer_i, n_dense=n_dense |
|
) |
|
state_dict = { |
|
f"model.layers.{layer_i}.self_attn.q_proj.weight": wq_proj, |
|
f"model.layers.{layer_i}.self_attn.k_proj.weight": wk_proj, |
|
f"model.layers.{layer_i}.self_attn.v_proj.weight": wv_proj, |
|
f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[ |
|
"transformer" |
|
][f"layers.{layer_i}.attention.dense.weight"], |
|
f"model.layers.{layer_i}.mlp.gate_proj.weight": ffn_w1, |
|
f"model.layers.{layer_i}.mlp.down_proj.weight": loaded["transformer"][ |
|
f"layers.{layer_i}.mlp.dense_4h_to_h.weight" |
|
], |
|
f"model.layers.{layer_i}.mlp.up_proj.weight": ffn_w3, |
|
f"model.layers.{layer_i}.input_layernorm.weight": loaded["transformer"][ |
|
f"layers.{layer_i}.input_layernorm.weight" |
|
], |
|
f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[ |
|
"transformer" |
|
][f"layers.{layer_i}.post_attention_layernorm.weight"], |
|
f"model.layers.{layer_i}.self_attn.rotary_emb.inv_freq": inv_freq, |
|
} |
|
|
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
print(f"Sharded file saved to {filename}") |
|
|
|
filename = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" |
|
state_dict = { |
|
"model.norm.weight": loaded["transformer"]["final_layernorm.weight"], |
|
"lm_head.weight": loaded["lm_head"], |
|
"model.embed_tokens.weight": loaded["embedding"]["word_embeddings.weight"], |
|
} |
|
|
|
for k, v in state_dict.items(): |
|
index_dict["weight_map"][k] = filename |
|
param_count += v.numel() |
|
torch_dtype = state_dict["lm_head.weight"].dtype |
|
torch.save(state_dict, os.path.join(tmp_model_path, filename)) |
|
print(f"Sharded file saved to {filename}") |
|
|
|
|
|
index_dict["metadata"] = {"total_size": param_count * 2} |
|
write_json( |
|
index_dict, os.path.join(tmp_model_path, "pytorch_model.bin.index.json") |
|
) |
|
|
|
|
|
config = MistralConfig.from_pretrained("mistralai/Mistral-7B-v0.1") |
|
|
|
assert config.hidden_size == n_hidden |
|
assert config.intermediate_size == intermediate_size |
|
assert config.num_attention_heads == n_heads |
|
assert config.num_hidden_layers == n_layers |
|
assert config.rms_norm_eps == norm_eps |
|
assert config.num_key_value_heads == n_heads_kv |
|
|
|
config.vocab_size = args.padded_vocab_size |
|
config.save_pretrained(tmp_model_path) |
|
|
|
|
|
del state_dict |
|
del loaded |
|
gc.collect() |
|
|
|
if vocab_size is None: |
|
vocab_size = args.padded_vocab_size |
|
else: |
|
print( |
|
f"Using vocab size {vocab_size} from tokenizer and not {args.padded_vocab_size} from args." |
|
) |
|
|
|
config.vocab_size = vocab_size |
|
|
|
print("Loading the checkpoint in a Llama model...") |
|
model = MistralForCausalLM.from_pretrained( |
|
tmp_model_path, torch_dtype=torch_dtype |
|
) |
|
model.config.vocab_size = vocab_size |
|
|
|
model.resize_token_embeddings(vocab_size) |
|
|
|
del model.config._name_or_path |
|
|
|
print("Saving in the Transformers format.") |
|
max_num_params_per_shard = param_count * 2 // max(1, (num_output_shards - 1)) |
|
model.save_pretrained(model_path, max_shard_size=max_num_params_per_shard) |
|
|
|
|
|
def write_falcon_model( |
|
model_path: str, |
|
input_base_path: str, |
|
num_output_shards: int = 2, |
|
safe_serialization: bool = True, |
|
): |
|
|
|
print(f"Fetching all parameters from the checkpoint at {input_base_path}.") |
|
input_base_path = Path(input_base_path) |
|
iteration = (input_base_path / "latest_checkpointed_iteration.txt").read_text() |
|
if iteration != "release": |
|
iteration = f"iter_{int(iteration):07d}" |
|
print(f"Fetching iteration {iteration}") |
|
|
|
|
|
loaded = torch.load( |
|
input_base_path / iteration / "mp_rank_00" / "model_optim_rng.pt", |
|
map_location="cpu", |
|
) |
|
args = loaded["args"] |
|
loaded = loaded["model"]["language_model"] |
|
|
|
if "transformer" not in loaded: |
|
loaded["transformer"] = loaded.pop("encoder") |
|
loaded["embedding"]["word_embeddings.weight"] = loaded["embedding"].pop( |
|
"word_embeddings" |
|
)["weight"] |
|
args.num_layers = args.encoder_num_layers |
|
|
|
|
|
for key in list(loaded["transformer"].keys()): |
|
loaded["transformer"][key.replace("self_attention", "attention")] = loaded[ |
|
"transformer" |
|
].pop(key) |
|
|
|
embedding = loaded["embedding"] |
|
transformer = loaded["transformer"] |
|
|
|
|
|
n_layers = args.num_layers |
|
dim = args.hidden_size |
|
n_heads = args.num_attention_heads |
|
n_heads_kv = args.num_attention_heads_kv |
|
|
|
def permute(qkv_w): |
|
return permute_qkv(qkv_w, dim, n_heads, n_heads_kv, revert=True) |
|
|
|
weights = {} |
|
|
|
|
|
weights["transformer.word_embeddings.weight"] = embedding["word_embeddings.weight"] |
|
weights["lm_head.weight"] = weights["transformer.word_embeddings.weight"] |
|
weights["transformer.ln_f.weight"] = transformer["final_layernorm.weight"] |
|
weights["transformer.ln_f.bias"] = transformer["final_layernorm.bias"] |
|
|
|
|
|
for layer in trange(n_layers, desc="Converting weights"): |
|
prefix1 = f"layers.{layer}" |
|
prefix2 = f"transformer.h.{layer}" |
|
|
|
weights[f"{prefix2}.mlp.dense_h_to_4h.weight"] = transformer[ |
|
f"{prefix1}.mlp.dense_h_to_4h.weight" |
|
] |
|
weights[f"{prefix2}.mlp.dense_4h_to_h.weight"] = transformer[ |
|
f"{prefix1}.mlp.dense_4h_to_h.weight" |
|
] |
|
|
|
|
|
weights[f"{prefix2}.self_attention.query_key_value.weight"] = permute( |
|
transformer[f"{prefix1}.attention.query_key_value.weight"] |
|
) |
|
|
|
|
|
weights[f"{prefix2}.self_attention.dense.weight"] = transformer[ |
|
f"{prefix1}.attention.dense.weight" |
|
] |
|
|
|
|
|
if n_layers <= 32: |
|
weights[f"{prefix2}.input_layernorm.weight"] = transformer[ |
|
f"{prefix1}.input_layernorm.weight" |
|
] |
|
weights[f"{prefix2}.input_layernorm.bias"] = transformer[ |
|
f"{prefix1}.input_layernorm.bias" |
|
] |
|
else: |
|
weights[f"{prefix2}.ln_attn.weight"] = transformer[ |
|
f"{prefix1}.input_layernorm.weight" |
|
] |
|
weights[f"{prefix2}.ln_mlp.weight"] = transformer[ |
|
f"{prefix1}.mlp_layernorm.weight" |
|
] |
|
weights[f"{prefix2}.ln_attn.bias"] = transformer[ |
|
f"{prefix1}.input_layernorm.bias" |
|
] |
|
weights[f"{prefix2}.ln_mlp.bias"] = transformer[ |
|
f"{prefix1}.mlp_layernorm.bias" |
|
] |
|
|
|
print("Falcon-Megatron Loaded!") |
|
|
|
vocab_size = 65024 |
|
if "padded_vocab_size" in args: |
|
vocab_size = args.padded_vocab_size |
|
|
|
|
|
config = FalconConfig( |
|
vocab_size=vocab_size, |
|
hidden_size=args.hidden_size, |
|
num_hidden_layers=args.num_layers, |
|
num_attention_heads=args.num_attention_heads, |
|
num_kv_heads=( |
|
None if args.num_attention_heads_kv == 1 else args.num_attention_heads_kv |
|
), |
|
new_decoder_architecture=args.num_layers >= 60, |
|
) |
|
|
|
print("Creating FalconForCausalLM") |
|
model = FalconForCausalLM(config=config) |
|
torch_dtype = weights["lm_head.weight"].dtype |
|
print(f"dtype: {torch_dtype}") |
|
print("Loading state dict...") |
|
model.to(torch_dtype) |
|
model.load_state_dict(weights) |
|
print("Done!") |
|
|
|
param_count = 0 |
|
for v in weights.values(): |
|
param_count += v.numel() |
|
print(f"param_count: {param_count:,}") |
|
|
|
|
|
print(f"Saving in the Transformers format to: {model_path} ({torch_dtype})") |
|
bits_per_param = torch.finfo(torch_dtype).bits |
|
max_shard_size = param_count * bits_per_param // num_output_shards // 8 |
|
print(f"max_shard_size: {max_shard_size:,} bytes") |
|
model.save_pretrained( |
|
model_path, |
|
max_shard_size=max_shard_size, |
|
safe_serialization=safe_serialization, |
|
) |
|
|
|
|
|
def write_tokenizer(args: Namespace): |
|
if args.model in {"llama", "llama2", "codellama", "mistral", "gemma"}: |
|
|
|
args.tokenizer_type = "SentencePieceTokenizer" |
|
if args.vocab_file: |
|
|
|
|
|
p = Path(args.vocab_file) |
|
if p.suffix == ".model": |
|
p = p.parent |
|
if args.model == "gemma": |
|
hf_tokenizer = GemmaTokenizerFast.from_pretrained(p) |
|
else: |
|
hf_tokenizer = LlamaTokenizerFast.from_pretrained(p) |
|
args.vocab_file = hf_tokenizer.vocab_file |
|
else: |
|
if args.model == "codellama": |
|
hf_repo_name = "TheBloke/CodeLlama-13B-fp16" |
|
elif args.model == "mistral": |
|
hf_repo_name = "mistralai/Mistral-7B-v0.1" |
|
else: |
|
hf_repo_name = "meta-llama/Llama-2-7b-hf" |
|
try: |
|
hf_tokenizer = LlamaTokenizerFast.from_pretrained( |
|
hf_repo_name, cache_dir=args.cache_dir |
|
) |
|
print("LlamaTokenizerFast loaded from huggingface") |
|
print( |
|
"vocab_file not set, assuming same tokenizer.model used " |
|
"by llama LlamaTokenizerFast" |
|
) |
|
args.vocab_file = hf_tokenizer.vocab_file |
|
except OSError: |
|
print( |
|
f"ERROR: Could not load tokenizer from HF repo '{hf_repo_name}'. " |
|
"Tokenizer processing failed." |
|
) |
|
return |
|
elif args.model == "llama3": |
|
args.tokenizer_type = "PretrainedFromHF" |
|
hf_tokenizer = AutoTokenizer.from_pretrained( |
|
"meta-llama/Meta-Llama-3-8B", cache_dir=args.cache_dir |
|
) |
|
else: |
|
hf_tokenizer = AutoTokenizer.from_pretrained( |
|
"tiiuae/falcon-40b", cache_dir=args.cache_dir |
|
) |
|
args.tokenizer_type = "FalconTokenizer" |
|
|
|
|
|
args.rank = 0 |
|
args.vocab_extra_ids = 0 |
|
args.new_tokens = True |
|
args.make_vocab_size_divisible_by = 1 |
|
args.tensor_model_parallel_size = 1 |
|
mt_tokenizer = build_tokenizer(args) |
|
|
|
if args.tokenizer_type == "SentencePieceTokenizer": |
|
pass |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
elif ( |
|
args.tokenizer_type == "FalconTokenizer" |
|
or args.tokenizer_type == "PretrainedFromHF" |
|
): |
|
hf_tokenizer = mt_tokenizer.tokenizer |
|
else: |
|
raise RuntimeError(f"Unsupported tokenizer type: {args.tokenizer_type}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print("Final HF Tokenizer configuration:") |
|
print(hf_tokenizer) |
|
hf_tokenizer.save_pretrained(args.output_dir) |
|
|
|
|
|
def main(): |
|
|
|
|
|
parser = ArgumentParser() |
|
parser.add_argument( |
|
"--input_dir", help="Location of Megatron weights", required=True |
|
) |
|
parser.add_argument("--num_output_shards", type=int, default=1) |
|
parser.add_argument( |
|
"--model", |
|
choices={ |
|
"falcon", |
|
"llama", |
|
"llama2", |
|
"llama3", |
|
"codellama", |
|
"mistral", |
|
"gemma", |
|
}, |
|
default="llama2", |
|
) |
|
parser.add_argument( |
|
"--output_dir", help="Location to write HF model and tokenizer", required=True |
|
) |
|
parser.add_argument("--cache_dir", help="Huggingface cache_dir (optional)") |
|
parser.add_argument("--vocab_file", type=str, help="Path to the vocab file") |
|
parser.add_argument( |
|
"--vocab_extra_ids_list", |
|
help="comma separated list of special vocab ids to add to the tokenizer", |
|
) |
|
parser.add_argument( |
|
"--override_special_tokens", |
|
nargs="*", |
|
default=[], |
|
help=( |
|
"One or more arguments to override special tokens. " |
|
"Syntax set as `key=value`, e.g. `eos=<|im_end|>`. " |
|
"Overrides available only bos, cls, eos, mask, pad, sep, unk." |
|
), |
|
) |
|
|
|
args = parser.parse_args() |
|
if args.model in {"llama", "llama2", "llama3", "codellama"}: |
|
eps = 1e-6 if args.model == "llama" else 1e-5 |
|
rope_theta = 1e6 if args.model == "codellama" else 1e4 |
|
write_llama_model( |
|
model_path=args.output_dir, |
|
input_base_path=args.input_dir, |
|
num_output_shards=args.num_output_shards, |
|
norm_eps=eps, |
|
rope_theta=rope_theta, |
|
) |
|
elif args.model == "mistral": |
|
write_mistral_model( |
|
model_path=args.output_dir, |
|
input_base_path=args.input_dir, |
|
num_output_shards=args.num_output_shards, |
|
|
|
) |
|
elif args.model == "falcon": |
|
write_falcon_model( |
|
model_path=args.output_dir, |
|
input_base_path=args.input_dir, |
|
num_output_shards=args.num_output_shards, |
|
safe_serialization=True, |
|
) |
|
elif args.model == "gemma": |
|
write_gemma_model( |
|
model_path=args.output_dir, |
|
input_base_path=args.input_dir, |
|
num_output_shards=args.num_output_shards, |
|
) |
|
write_tokenizer(args) |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|