|
import math |
|
from typing import Callable |
|
|
|
import torch |
|
|
|
from megatron import get_tokenizer |
|
from megatron.utils import average_losses_across_data_parallel_group |
|
from megatron.core.tensor_parallel import vocab_parallel_max_indices |
|
|
|
|
|
class MetricInput: |
|
def __init__(self, batch: tuple, output: torch.Tensor, loss: torch.Tensor): |
|
|
|
(self.tokens, self.labels, self.loss_mask, self.attention_mask, |
|
self.position_ids) = batch |
|
self.output = output |
|
self.loss = loss |
|
|
|
self._max_indices = None |
|
self._instruct_mask = None |
|
|
|
@property |
|
def max_indices(self) -> torch.Tensor: |
|
if self._max_indices is None: |
|
self._max_indices = vocab_parallel_max_indices(self.output) |
|
return self._max_indices |
|
|
|
@property |
|
def instruct_mask(self) -> torch.Tensor: |
|
if self._instruct_mask is None: |
|
|
|
tokenizer = get_tokenizer() |
|
im_start_id, = tokenizer.tokenize("<|im_start|>") |
|
im_end_id, = tokenizer.tokenize("<|im_end|>") |
|
should_keep = torch.ones_like(self.loss_mask) |
|
|
|
|
|
i, j = torch.nonzero(self.labels == im_start_id, as_tuple=True) |
|
if torch.any(j + 2 >= should_keep.size(1)): |
|
print("Error calculating instruct mask") |
|
self._instruct_mask = None |
|
return self._instruct_mask |
|
should_keep[i, j] = 0.0 |
|
should_keep[i, j + 1] = 0.0 |
|
should_keep[i, j + 2] = 0.0 |
|
|
|
|
|
i, j = torch.nonzero(self.labels == im_end_id, as_tuple=True) |
|
if torch.any(j + 2 >= should_keep.size(1)): |
|
print("Error calculating instruct mask") |
|
self._instruct_mask = None |
|
return self._instruct_mask |
|
should_keep[i, j] = 0.0 |
|
should_keep[i, j] = 0.0 |
|
should_keep[i, j + 1] = 0.0 |
|
should_keep[i, j + 2] = 0.0 |
|
|
|
self._instruct_mask = self.loss_mask*should_keep |
|
return self._instruct_mask |
|
|
|
|
|
def perplexity(inputs: MetricInput): |
|
ppl = math.exp(min(20, inputs.loss.item())) |
|
return {"ppl": ppl} |
|
|
|
|
|
def accuracy(inputs: MetricInput): |
|
matching = torch.masked_fill(inputs.labels == inputs.max_indices, |
|
inputs.loss_mask == 0, False) |
|
accuracy = torch.count_nonzero(matching)/torch.count_nonzero(inputs.loss_mask) |
|
averaged_accuracy = average_losses_across_data_parallel_group([accuracy]) |
|
return {"lm accuracy": averaged_accuracy[0]} |
|
|
|
|
|
|
|
|
|
def instruct_accuracy(inputs: MetricInput): |
|
if inputs.instruct_mask is None: |
|
accuracy = torch.tensor(torch.nan, device=inputs.labels.device) |
|
else: |
|
matching = torch.masked_fill(inputs.labels == inputs.max_indices, |
|
inputs.instruct_mask == 0, False) |
|
accuracy = torch.count_nonzero(matching)/torch.count_nonzero(inputs.instruct_mask) |
|
averaged_accuracy = average_losses_across_data_parallel_group([accuracy]) |
|
return {"instruct accuracy": averaged_accuracy[0]} |
|
|
|
|
|
def count_loss_mask(inputs: MetricInput): |
|
count = torch.count_nonzero(inputs.loss_mask)/inputs.loss_mask.size(0) |
|
return {"count loss mask": count} |
|
|
|
|
|
def count_instruct_mask(inputs: MetricInput): |
|
if inputs.instruct_mask is None: |
|
return {} |
|
count = torch.count_nonzero(inputs.instruct_mask)/inputs.instruct_mask.size(0) |
|
return {"count instruct mask": count} |
|
|
|
|
|
METRICS = { |
|
"perplexity": perplexity, |
|
"accuracy": accuracy, |
|
"instruct_accuracy": instruct_accuracy, |
|
"count_loss_mask": count_loss_mask, |
|
"count_instruct_mask": count_instruct_mask, |
|
} |
|
|
|
|
|
def get_metric(name: str): |
|
return METRICS[name] |
|
|