KshitijAmbilduke's picture
Upload 382 files
9ef89a4 verified
raw
history blame
4.18 kB
import math
from typing import Callable
import torch
from megatron import get_tokenizer
from megatron.utils import average_losses_across_data_parallel_group
from megatron.core.tensor_parallel import vocab_parallel_max_indices
class MetricInput:
def __init__(self, batch: tuple, output: torch.Tensor, loss: torch.Tensor):
# regular parameters
(self.tokens, self.labels, self.loss_mask, self.attention_mask,
self.position_ids) = batch
self.output = output
self.loss = loss
# lazy parameters
self._max_indices = None
self._instruct_mask = None
@property
def max_indices(self) -> torch.Tensor:
if self._max_indices is None:
self._max_indices = vocab_parallel_max_indices(self.output)
return self._max_indices
@property
def instruct_mask(self) -> torch.Tensor:
if self._instruct_mask is None:
# like loss_mask but ignoring the <|im_end|> and <|im_start|>role\n too
tokenizer = get_tokenizer()
im_start_id, = tokenizer.tokenize("<|im_start|>")
im_end_id, = tokenizer.tokenize("<|im_end|>")
should_keep = torch.ones_like(self.loss_mask)
# mask all indices where <|im_start|> is found plus the next two tokens
# (corresponds to the role and the newline)
i, j = torch.nonzero(self.labels == im_start_id, as_tuple=True)
if torch.any(j + 2 >= should_keep.size(1)):
print("Error calculating instruct mask")
self._instruct_mask = None
return self._instruct_mask
should_keep[i, j] = 0.0
should_keep[i, j + 1] = 0.0
should_keep[i, j + 2] = 0.0
# mask <|im_end|> plus the next token (newline) and the next one
# that is a weird space or something
i, j = torch.nonzero(self.labels == im_end_id, as_tuple=True)
if torch.any(j + 2 >= should_keep.size(1)):
print("Error calculating instruct mask")
self._instruct_mask = None
return self._instruct_mask
should_keep[i, j] = 0.0
should_keep[i, j] = 0.0
should_keep[i, j + 1] = 0.0
should_keep[i, j + 2] = 0.0
# update mask
self._instruct_mask = self.loss_mask*should_keep
return self._instruct_mask
def perplexity(inputs: MetricInput):
ppl = math.exp(min(20, inputs.loss.item()))
return {"ppl": ppl}
def accuracy(inputs: MetricInput):
matching = torch.masked_fill(inputs.labels == inputs.max_indices,
inputs.loss_mask == 0, False)
accuracy = torch.count_nonzero(matching)/torch.count_nonzero(inputs.loss_mask)
averaged_accuracy = average_losses_across_data_parallel_group([accuracy])
return {"lm accuracy": averaged_accuracy[0]}
# like accuracy but ignoring the <|im_end|> and <|im_start|> in the
# accuracy calculation
def instruct_accuracy(inputs: MetricInput):
if inputs.instruct_mask is None:
accuracy = torch.tensor(torch.nan, device=inputs.labels.device)
else:
matching = torch.masked_fill(inputs.labels == inputs.max_indices,
inputs.instruct_mask == 0, False)
accuracy = torch.count_nonzero(matching)/torch.count_nonzero(inputs.instruct_mask)
averaged_accuracy = average_losses_across_data_parallel_group([accuracy])
return {"instruct accuracy": averaged_accuracy[0]}
def count_loss_mask(inputs: MetricInput):
count = torch.count_nonzero(inputs.loss_mask)/inputs.loss_mask.size(0)
return {"count loss mask": count}
def count_instruct_mask(inputs: MetricInput):
if inputs.instruct_mask is None:
return {}
count = torch.count_nonzero(inputs.instruct_mask)/inputs.instruct_mask.size(0)
return {"count instruct mask": count}
METRICS = {
"perplexity": perplexity,
"accuracy": accuracy,
"instruct_accuracy": instruct_accuracy,
"count_loss_mask": count_loss_mask,
"count_instruct_mask": count_instruct_mask,
}
def get_metric(name: str):
return METRICS[name]