KshitijAmbilduke's picture
Upload 382 files
9ef89a4 verified
raw
history blame
8.33 kB
import itertools
import os
import pickle
import shutil
import numpy as np
import torch
from megatron import get_args
from megatron.core import mpu
def detach(tensor):
return tensor.detach().cpu().numpy()
class OpenRetreivalDataStore(object):
"""
Serializable data structure for holding data for blocks --
embeddings and necessary metadata for Retriever
"""
def __init__(self, embedding_path=None, load_from_path=True, rank=None):
self.embed_data = dict()
if embedding_path is None:
args = get_args()
embedding_path = args.embedding_path
rank = args.rank
self.embedding_path = embedding_path
self.rank = rank
if load_from_path:
self.load_from_file()
block_data_name = os.path.splitext(self.embedding_path)[0]
self.temp_dir_name = block_data_name + '_tmp'
def state(self):
return {
'embed_data': self.embed_data,
}
def clear(self):
"""
Clear the embedding data structures to save memory.
The metadata ends up getting used, and is also much smaller in
dimensionality so it isn't really worth clearing.
"""
self.embed_data = dict()
def load_from_file(self):
"""Populate members from instance saved to file"""
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0:
print("\n> Unpickling BlockData", flush=True)
state_dict = pickle.load(open(self.embedding_path, 'rb'))
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0:
print(">> Finished unpickling BlockData\n", flush=True)
self.embed_data = state_dict['embed_data']
def add_block_data(self, row_id, block_embeds, allow_overwrite=False):
"""
Add data for set of blocks
:param row_id: 1D array of unique int ids for the blocks
:param block_embeds: 2D array of embeddings of the blocks
In the case of retriever this will be [start_idx, end_idx, doc_idx]
"""
for idx, embed in zip(row_id, block_embeds):
if not allow_overwrite and idx in self.embed_data:
raise ValueError("Unexpectedly tried to overwrite block data")
self.embed_data[idx] = np.float16(embed)
def save_shard(self):
"""
Save the block data that was created this in this process
"""
if not os.path.isdir(self.temp_dir_name):
os.makedirs(self.temp_dir_name, exist_ok=True)
# save the data for each shard
with open('{}/{}.pkl'.format(self.temp_dir_name, self.rank), 'wb') \
as writer:
pickle.dump(self.state(), writer)
def merge_shards_and_save(self):
#Combine all the shards made using save_shard
shard_names = os.listdir(self.temp_dir_name)
seen_own_shard = False
for fname in os.listdir(self.temp_dir_name):
shard_rank = int(os.path.splitext(fname)[0])
if shard_rank == self.rank:
seen_own_shard = True
continue
with open('{}/{}'.format(self.temp_dir_name, fname), 'rb') as f:
data = pickle.load(f)
old_size = len(self.embed_data)
shard_size = len(data['embed_data'])
# add the shard's data and check to make sure there
# is no overlap
self.embed_data.update(data['embed_data'])
assert len(self.embed_data) == old_size + shard_size
assert seen_own_shard
# save the consolidated shards and remove temporary directory
with open(self.embedding_path, 'wb') as final_file:
pickle.dump(self.state(), final_file)
shutil.rmtree(self.temp_dir_name, ignore_errors=True)
print("Finished merging {} shards for a total of {} embeds".format(
len(shard_names), len(self.embed_data)), flush=True)
class FaissMIPSIndex(object):
"""
Wrapper object for a BlockData which similarity search via FAISS under the hood
"""
def __init__(self, embed_size, embed_data=None, use_gpu=False):
self.embed_size = embed_size
self.embed_data = embed_data
self.use_gpu = use_gpu
self.mips_index = None
self._set_mips_index()
def _set_mips_index(self):
"""
Create a Faiss Flat index with inner product as the metric
to search against
"""
try:
import faiss
except ImportError:
raise Exception("Error: Please install faiss to use FaissMIPSIndex")
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0:
print("\n> Building index", flush=True)
cpu_index = faiss.IndexFlatIP(self.embed_size)
if self.use_gpu:
# create resources and config for GpuIndex
config = faiss.GpuMultipleClonerOptions()
config.shard = True
config.useFloat16 = True
gpu_index = faiss.index_cpu_to_all_gpus(cpu_index, co=config)
self.mips_index = faiss.IndexIDMap(gpu_index)
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0:
print(">> Initialized index on GPU", flush=True)
else:
# CPU index supports IDs so wrap with IDMap
self.mips_index = faiss.IndexIDMap(cpu_index)
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0:
print(">> Initialized index on CPU", flush=True)
# if we were constructed with a BlockData, then automatically load it
# when the FAISS structure is built
if self.embed_data is not None:
self.add_embed_data(self.embed_data)
def reset_index(self):
"""Delete existing index and create a new"""
del self.mips_index
# reset the block data so that _set_block_index will reload it as well
if self.embed_data is not None:
embed_data_path = self.embed_data.embedding_path
del self.embed_data
self.embed_data = OpenRetreivalDataStore(embed_data_path)
self._set_mips_index()
def update_index(self):
"""Delete existing index and create a new"""
del self.mips_index
# reset the block data so that _set_mips_index will reload it as well
if self.embed_data is not None:
self.embed_data.load_from_file()
self._set_mips_index()
def add_embed_data(self, all_embed_data):
"""Add the embedding of each block to the underlying FAISS index"""
# this assumes the embed_data is a dict : {int: np.array<float>}
block_indices, block_embeds = zip(*all_embed_data.embed_data.items())
# the embeddings have to be entered in as float32 even though the math
# internally is done with float16.
embeds_arr = np.float32(np.array(block_embeds))
indices_arr = np.array(block_indices)
# we no longer need the embedding data since it's in the index now
all_embed_data.clear()
self.mips_index.add_with_ids(embeds_arr, indices_arr)
if not mpu.model_parallel_is_initialized() or mpu.get_data_parallel_rank() == 0:
print(">>> Finished adding block data to index", flush=True)
def search_mips_index(self, query_embeds, top_k, reconstruct=True):
"""
Get the top-k blocks by the index distance metric.
:param reconstruct: if True: return a [num_queries x k x embed_dim]
array of blocks
if False: return [num_queries x k] array of
distances, and another for indices
"""
query_embeds = np.float32(detach(query_embeds))
if reconstruct:
# get the vectors themselves
top_k_block_embeds = self.mips_index.search_and_reconstruct(\
query_embeds, top_k)
return top_k_block_embeds
else:
# get distances and indices of closest vectors
distances, block_indices = self.mips_index.search(query_embeds, top_k)
return distances, block_indices