sonalsannigrahi's picture
Upload 382 files (#1)
a93e458 verified
#! /bin/bash
# default arguments
SIZE=7
TP=8
PP=1
GPUS_PER_NODE=8
MICRO_BATCH=1
GLOBAL_BATCH=12
RANK=0
N_NODES=1
ADDR=localhost
WANDB=0
INSTRUCT=0
CHECKPOINT_PATH=none
DATA=none
WANDB_PROJ=none
WANDB_ID=none
WANDB_ENTITY=none
ITERS=1000
SEQ_LEN=none
DATA_PATH=none
TRAINED_PATH=none
VAL_PATH=none
USR_LR=none
USR_MIN_LR=none
LOSS_MASK=0.0
HELP_STR="[--rank=$RANK] [--size=$SIZE] [--tp=$TP] [--pp=$PP] [--gpus=$GPUS_PER_NODE] \
[--micro-batch=$MICRO_BATCH] [--global-batch=$GLOBAL_BATCH] [--nodes=$N_NODES] \
[--addr=$ADDR] [--wandb] [--instruct] [--checkpoint=...] [--data=...] [--iters=$ITERS] \
[--wandb-proj=none] [--wandb-id=none] [--wandb-entity=none] [--seq-len=...] \
[--val-path=none] [--out=...] [--lr=lr minlr] [--loss-mask=$LOSS_MASK] --help]"
# define help function
help () {
echo "Usage: $0 <gpt/llama/llama2/codellama/falcon> $HELP_STR"
}
# parse arguments, three modes
# mode1 = -h or --help requested
if [[ $# = 1 ]] && [[ $1 = "-h" ]] || [[ $1 = "--help" ]]; then
help
exit 0
# mode2 = not arguments given
elif [[ $# = 0 ]]; then
help
exit 1
fi
# mode3 = correct usage, read model
MODEL=$1
shift
while [[ $# -gt 0 ]]; do
case $1 in
--tp) TP="$2"; shift; shift;;
--pp) PP="$2"; shift; shift;;
--size) SIZE="$2"; shift; shift;;
--gpus) GPUS_PER_NODE="$2"; shift; shift;;
--micro-batch) MICRO_BATCH="$2"; shift; shift;;
--global-batch) GLOBAL_BATCH="$2"; shift; shift;;
--rank) RANK=$2; shift; shift;;
--nodes) N_NODES=$2; shift; shift;;
--addr) ADDR=$2; shift; shift;;
--wandb) WANDB=1; shift;;
--wandb-project) WANDB_PROJ=$2; shift; shift;;
--wandb-id) WANDB_ID=$2; shift; shift;;
--wandb-entity) WANDB_ENTITY=$2; shift; shift;;
--instruct) INSTRUCT=1; shift;;
--checkpoint) CHECKPOINT_PATH=$2; shift; shift;;
--data) DATA_PATH=$2; shift; shift;;
--iters) ITERS=$2; shift; shift;;
--seq-len) SEQ_LEN=$2; shift; shift;;
--out) TRAINED_PATH=$2; shift; shift;;
--val-path) VAL_PATH=$2; shift; shift;;
--lr) USR_LR=$2; USR_MIN_LR=$3; shift; shift; shift;;
--loss-mask) LOSS_MASK=$2; shift; shift;;
*) echo unknown argument $1; help; exit 1;;
esac
done
# set args
if [[ $CHECKPOINT_PATH = none ]]; then
CHECKPOINT_PATH=/pure-mlo-scratch/alhernan/megatron-data/checkpoints/${MODEL}-${SIZE}b-tp$TP-pp$PP
fi
if [[ $INSTRUCT = 1 ]]; then
LR="2e-5"
MIN_LR="2e-6"
if [[ $TRAINED_PATH = none ]]; then
TRAINED_PATH=$CHECKPOINT_PATH-instructed
fi
else
LR="3e-4"
MIN_LR="3e-4"
if [[ $TRAINED_PATH = none ]]; then
TRAINED_PATH=$CHECKPOINT_PATH-pretrained
fi
fi
TENSORBOARD_PATH=$TRAINED_PATH/logging
DISTRIBUTED_ARGS="--nproc_per_node $GPUS_PER_NODE --nnodes $N_NODES --node_rank
$RANK --master_addr $ADDR --master_port 6000"
if [[ $MODEL = falcon ]]; then
if [[ $DATA_PATH = none ]]; then
DATA_PATH=/pure-mlo-scratch/pagliard/data/wikitext-falcon/wiki-train_text_document
fi
TOKENIZER=FalconTokenizer
EXTRA_ARGS="--parallel_attn"
if [[ $SEQ_LEN = none ]]; then
SEQ_LEN=2048
fi
elif [[ $MODEL = llama ]] || [[ $MODEL = llama2 ]] || [[ $MODEL = codellama ]]; then
EXTRA_IDS="[bib_ref],[/bib_ref],[fig_ref],[/fig_ref],[bib],[/bib],[fig],[/fig],[table],[/table],[formula],[/formula]"
EXTRA_ARGS="--vocab_file=/pure-mlo-scratch/llama/tokenizer.model --use_rms_norm
--glu_activation swiglu --no_tie_embed_logits"
if [[ $INSTRUCT = 1 ]]; then
if [[ $DATA_PATH = none ]]; then
DATA_PATH=/pure-mlo-scratch/alhernan/data/orca/orca
fi
EXTRA_IDS="$EXTRA_IDS,<|im_start|>,<|im_end|>"
else
if [[ $DATA_PATH = none ]]; then
DATA_PATH=/pure-mlo-scratch/data/tokenized/pubmed-all/pubmed-all-llama_text_document
fi
fi
TOKENIZER=SentencePieceTokenizer
EXTRA_ARGS="$EXTRA_ARGS --vocab_extra_ids_list $EXTRA_IDS"
if [[ $MODEL == llama ]]; then
if [[ $SEQ_LEN = none ]]; then
SEQ_LEN=2048
fi
EXTRA_ARGS="$EXTRA_ARGS --vocab_file=/pure-mlo-scratch/llama2/Llama-2-7b-hf/tokenizer.model"
EXTRA_ARGS="$EXTRA_ARGS --layernorm_epsilon 1e-6"
elif [[ $MODEL == llama2 ]]; then
if [[ $SEQ_LEN = none ]]; then
SEQ_LEN=4096
fi
EXTRA_ARGS="$EXTRA_ARGS --vocab_file=/pure-mlo-scratch/llama2/Llama-2-7b-hf/tokenizer.model"
EXTRA_ARGS="$EXTRA_ARGS --layernorm_epsilon 1e-5"
if (( $SIZE > 13 )); then # llama 2, 34B and 70B
LR="1.5e-4"
fi
else # codellama
if [[ $SEQ_LEN = none ]]; then
SEQ_LEN=16384
fi
EXTRA_ARGS="$EXTRA_ARGS --vocab_file=/pure-mlo-scratch/codellama/CodeLlama-7b/tokenizer.model --rope_theta 1e6"
fi
elif [[ $MODEL = gpt ]]; then
if [[ $DATA_PATH = none ]]; then
DATA_PATH=/scratch/wikitext-megatron/wikitext-train_text_document
fi
TOKENIZER=FalconTokenizer
EXTRA_ARGS="--num_layers 4 --hidden_size 512 --num_attention_heads 8"
if [[ $SEQ_LEN = none ]]; then
SEQ_LEN=2048
fi
else
echo "Model should be either gpt, llama or falcon, not $MODEL"
help
exit 1
fi
COMMON_ARGS="--use_flash_attn --no_bias_gelu_fusion
--seq_length $SEQ_LEN --max_position_embeddings $SEQ_LEN
--log_interval 1 --save_interval 800 --eval_interval 200
--eval_iters 10 --hidden_dropout 0.0 --position_embedding_type rotary
--no_bias_dropout_fusion --use_checkpoint_args
--attention_dropout 0.0 --adam_beta1 0.9 --adam_beta2 0.95 --adam_eps 1e-5
--lr_decay_style cosine --lr_warmup_fraction 0.1 --lr $LR --min_lr $MIN_LR
--weight_decay 0.1 --sequence_parallel --recompute_granularity selective
--log_timers_to_tensorboard --scalar_loss_mask=$LOSS_MASK
--rope_scaling_factor 1.0"
if [[ $INSTRUCT = 1 ]]; then
COMMON_ARGS="$COMMON_ARGS --variable_seq_lengths --data_type instruction --metrics all"
if [[ $CHECKPOINT_PATH != $TRAINED_PATH ]]; then
COMMON_ARGS="$COMMON_ARGS --finetune"
fi
else
COMMON_ARGS="$COMMON_ARGS --metrics perplexity accuracy count_loss_mask"
fi
if [[ $CHECKPOINT_PATH != $TRAINED_PATH ]]; then
COMMON_ARGS="$COMMON_ARGS --train_iters $ITERS"
fi
if [[ $WANDB = 1 ]]; then
COMMON_ARGS="$COMMON_ARGS --wandb_logger"
if [[ $WANDB_PROJ != none ]]; then
COMMON_ARGS="$COMMON_ARGS --wandb_project $WANDB_PROJ"
fi
if [[ $WANDB_ID != none ]]; then
COMMON_ARGS="$COMMON_ARGS --wandb_id $WANDB_ID"
fi
if [[ $WANDB_ENTITY != none ]]; then
COMMON_ARGS="$COMMON_ARGS --wandb_entity $WANDB_ENTITY"
fi
fi
if [[ $VAL_PATH = none ]]; then
DATA_ARGS="--data_path $DATA_PATH"
else
DATA_ARGS="--train_data_path $DATA_PATH --valid_data_path $VAL_PATH"
fi
# print some args
echo
echo Settings:
echo RANK=$RANK
echo ADDR=$ADDR
echo N_NODES=$N_NODES
echo DATA_ARGS=$DATA_ARGS
echo CHECKPOINT_PATH=$CHECKPOINT_PATH
echo TRAINED_PATH=$TRAINED_PATH
echo MODEL=$MODEL
echo TP=$TP
echo PP=$PP
echo MICRO_BATCH=$MICRO_BATCH
echo GLOBAL_BATCH=$GLOBAL_BATCH
echo INSTRUCT=$INSTRUCT
echo COMMON_ARGS=$COMMON_ARGS
echo EXTRA_ARGS=$EXTRA_ARGS
echo
# finally, call finetune.py
CUDA_DEVICE_MAX_CONNECTIONS=1 OMP_NUM_THREADS=16 torchrun $DISTRIBUTED_ARGS finetune.py \
--tensor_model_parallel_size $TP \
--pipeline_model_parallel_size $PP \
--load $CHECKPOINT_PATH \
--save $TRAINED_PATH \
--tensorboard_dir $TENSORBOARD_PATH \
$DATA_ARGS \
--model_name $MODEL \
--tokenizer_type $TOKENIZER \
--bf16 \
--global_batch_size $GLOBAL_BATCH \
--micro_batch_size $MICRO_BATCH \
--num_workers=2 \
$EXTRA_ARGS \
$COMMON_ARGS