# -*- coding: utf-8 -*- """using_dataset_hugginface.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1soGxkZu4antYbYG23GioJ6zoSt_GhSNT """ """**Hugginface loggin for push on Hub**""" ### # # Used bibliografy: # https://huggingface.co./learn/nlp-course/chapter5/5 # ### import os import time import math from huggingface_hub import login from datasets import load_dataset, concatenate_datasets from functools import reduce from pathlib import Path import pandas as pd # Load model directly from transformers import AutoTokenizer, AutoModelForCausalLM HF_TOKEN = '' DATASET_TO_LOAD = 'bigbio/distemist' DATASET_TO_UPDATE = 'somosnlp/spanish_medica_llm' DATASET_SOURCE_ID = '9' #Loggin to Huggin Face login(token = HF_TOKEN) dataset_CODING = load_dataset(DATASET_TO_LOAD) royalListOfCode = {} issues_path = 'dataset' tokenizer = AutoTokenizer.from_pretrained("DeepESP/gpt2-spanish-medium") #Read current path path = Path(__file__).parent.absolute() #print (dataset_CODING) # with open( str(path) + os.sep + 'ICD-O-3_valid-codes.txt',encoding='utf8') as file: # """ # # Build a dictionary with ICD-O-3 associated with # # healtcare problems # """ # linesInFile = file.readlines() # for iLine in linesInFile: # listOfData = iLine.split('\t') # code = listOfData[0] # description = reduce(lambda a, b: a + " "+ b, listOfData[1:2], "") # royalListOfCode[code.strip()] = description.strip() # def getCodeDescription(labels_of_type, royalListOfCode): # """ # Search description associated with some code # in royalListOfCode # """ # classification = [] # for iValue in labels_of_type: # if iValue in royalListOfCode.keys(): # classification.append(royalListOfCode[iValue]) # return classification # # raw_text: Texto asociado al documento, pregunta, caso clínico u otro tipo de información. # # topic: (puede ser healthcare_treatment, healthcare_diagnosis, tema, respuesta a pregunta, o estar vacío p.ej en el texto abierto) # # speciality: (especialidad médica a la que se relaciona el raw_text p.ej: cardiología, cirugía, otros) # # raw_text_type: (puede ser caso clínico, open_text, question) # # topic_type: (puede ser medical_topic, medical_diagnostic,answer,natural_medicine_topic, other, o vacio) # # source: Identificador de la fuente asociada al documento que aparece en el README y descripción del dataset. # # country: Identificador del país de procedencia de la fuente (p.ej.; ch, es) usando el estándar ISO 3166-1 alfa-2 (Códigos de país de dos letras.). cantemistDstDict = { 'raw_text': '', 'topic': '', 'speciallity': '', 'raw_text_type': 'clinic_case', 'topic_type': '', 'source': DATASET_SOURCE_ID, 'country': 'es', 'document_id': '' } totalOfTokens = 0 corpusToLoad = [] countCopySeveralDocument = 0 counteOriginalDocument = 0 #print (dataset_CODING['train'][5]['entities']) # for item in dataset_CODING['train']: # for passage in item['passages']: # print ("Keys " + str( passage.keys())) # print("Clinical case type " + str(passage['text'])) for iDataset in dataset_CODING: for item in dataset_CODING[iDataset]: for passageItem in item['passages']: #print ("Element in dataset") idFile = passageItem['id'] + '_' + str(iDataset) text = passageItem['text'][0] #Find topic or diagnosti clasification about the text counteOriginalDocument += 1 listOfTokens = tokenizer.tokenize(text) currentSizeOfTokens = len(listOfTokens) totalOfTokens += currentSizeOfTokens newCorpusRow = cantemistDstDict.copy() #print('Current text has ', currentSizeOfTokens) #print('Total of tokens is ', totalOfTokens) newCorpusRow['raw_text'] = text newCorpusRow['document_id'] = str(idFile) corpusToLoad.append(newCorpusRow) df = pd.DataFrame.from_records(corpusToLoad) if os.path.exists(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl"): os.remove(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl") df.to_json(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", orient="records", lines=True) print( f"Downloaded all the issues for {DATASET_TO_LOAD}! Dataset stored at {issues_path}/spanish_medical_llms.jsonl" ) print(' On dataset there are as document ', counteOriginalDocument) print(' On dataset there are as copy document ', countCopySeveralDocument) print(' On dataset there are as size of Tokens ', totalOfTokens) file = Path(f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl") # or Path('./doc.txt') size = file.stat().st_size print ('File size on Kilobytes (kB)', size >> 10) # 5242880 kilobytes (kB) print ('File size on Megabytes (MB)', size >> 20 ) # 5120 megabytes (MB) print ('File size on Gigabytes (GB)', size >> 30 ) # 5 gigabytes (GB) #Once the issues are downloaded we can load them locally using our local_spanish_dataset = load_dataset("json", data_files=f"{str(path)}/{issues_path}/spanish_medical_llms.jsonl", split="train") ##Update local dataset with cloud dataset try: spanish_dataset = load_dataset(DATASET_TO_UPDATE, split="train") spanish_dataset = concatenate_datasets([spanish_dataset, local_spanish_dataset]) except Exception: spanish_dataset = local_spanish_dataset spanish_dataset.push_to_hub(DATASET_TO_UPDATE) print(spanish_dataset) # Augmenting the dataset #Importan if exist element on DATASET_TO_UPDATE we must to update element # in list, and review if the are repeted elements