import numpy as np import datasets from huggingface_hub import HfApi api = HfApi() repo_files = list(api.dataset_info(repo_id="laion/laion2b-en-vit-h-14-embeddings").siblings) filenames = [x.rfilename for x in repo_files] img_embs = [x for x in filenames if x.startswith("img_emb/")] class LAIONEmbeddingsConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super(LAIONEmbeddingsConfig, self).__init__(version=datasets.Version("1.0.0"), **kwargs) class LAIONEmbeddings(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") BUILDER_CONFIGS = [ LAIONEmbeddingsConfig() ] def _get_features(self) -> datasets.Features: return datasets.Features({ "embedding": datasets.Sequence(datasets.Value("float32")), }) def _info(self): features = self._get_features() return datasets.DatasetInfo( features=features, ) def _split_generators(self, dl_manager): main_url = "https://huggingface.co./datasets/laion/laion2b-en-vit-h-14-embeddings/resolve/main/" archive_paths = dl_manager.download([main_url + x for x in img_embs]) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "chunks": archive_paths, "split": "train", }, ), ] def _generate_examples(self, chunks, split): for chunk in chunks: file = np.DataSource().open(chunk) data = np.load(file.name) for example in data: yield "", { "embedding": example }