system HF staff commited on
Commit
06897cc
·
0 Parent(s):

Update files from the datasets library (from 1.2.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.2.0

.gitattributes ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ *.7z filter=lfs diff=lfs merge=lfs -text
2
+ *.arrow filter=lfs diff=lfs merge=lfs -text
3
+ *.bin filter=lfs diff=lfs merge=lfs -text
4
+ *.bin.* filter=lfs diff=lfs merge=lfs -text
5
+ *.bz2 filter=lfs diff=lfs merge=lfs -text
6
+ *.ftz filter=lfs diff=lfs merge=lfs -text
7
+ *.gz filter=lfs diff=lfs merge=lfs -text
8
+ *.h5 filter=lfs diff=lfs merge=lfs -text
9
+ *.joblib filter=lfs diff=lfs merge=lfs -text
10
+ *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
+ *.model filter=lfs diff=lfs merge=lfs -text
12
+ *.msgpack filter=lfs diff=lfs merge=lfs -text
13
+ *.onnx filter=lfs diff=lfs merge=lfs -text
14
+ *.ot filter=lfs diff=lfs merge=lfs -text
15
+ *.parquet filter=lfs diff=lfs merge=lfs -text
16
+ *.pb filter=lfs diff=lfs merge=lfs -text
17
+ *.pt filter=lfs diff=lfs merge=lfs -text
18
+ *.pth filter=lfs diff=lfs merge=lfs -text
19
+ *.rar filter=lfs diff=lfs merge=lfs -text
20
+ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21
+ *.tar.* filter=lfs diff=lfs merge=lfs -text
22
+ *.tflite filter=lfs diff=lfs merge=lfs -text
23
+ *.tgz filter=lfs diff=lfs merge=lfs -text
24
+ *.xz filter=lfs diff=lfs merge=lfs -text
25
+ *.zip filter=lfs diff=lfs merge=lfs -text
26
+ *.zstandard filter=lfs diff=lfs merge=lfs -text
27
+ *tfevents* filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators: []
3
+ language_creators: []
4
+ languages:
5
+ - en
6
+ licenses: []
7
+ multilinguality:
8
+ - monolingual
9
+ size_categories:
10
+ emergent:
11
+ - 1K<n<10K
12
+ emobank-arousal:
13
+ - 1K<n<10K
14
+ emobank-dominance:
15
+ - 1K<n<10K
16
+ emobank-valence:
17
+ - 1K<n<10K
18
+ gum:
19
+ - 1K<n<10K
20
+ mrda:
21
+ - 10K<n<100K
22
+ pdtb:
23
+ - 10K<n<100K
24
+ persuasiveness-claimtype:
25
+ - n<1K
26
+ persuasiveness-eloquence:
27
+ - n<1K
28
+ persuasiveness-premisetype:
29
+ - n<1K
30
+ persuasiveness-relevance:
31
+ - n<1K
32
+ persuasiveness-specificity:
33
+ - n<1K
34
+ persuasiveness-strength:
35
+ - n<1K
36
+ sarcasm:
37
+ - 1K<n<10K
38
+ squinky-formality:
39
+ - 1K<n<10K
40
+ squinky-implicature:
41
+ - 1K<n<10K
42
+ squinky-informativeness:
43
+ - 1K<n<10K
44
+ stac:
45
+ - 10K<n<100K
46
+ switchboard:
47
+ - 10K<n<100K
48
+ verifiability:
49
+ - 1K<n<10K
50
+ source_datasets: []
51
+ task_categories:
52
+ - text-classification
53
+ task_ids:
54
+ - multi-class-classification
55
+ ---
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"verifiability": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "@inproceedings{park2014identifying,\n title={Identifying appropriate support for propositions in online user comments},\n author={Park, Joonsuk and Cardie, Claire},\n booktitle={Proceedings of the first workshop on argumentation mining},\n pages={29--38},\n year={2014}\n }\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["experiential", "unverifiable", "non-experiential"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "verifiability", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 592520, "num_examples": 5712, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 65215, "num_examples": 634, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 251799, "num_examples": 2424, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 909534, "size_in_bytes": 6240258}, "emobank-arousal": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\"\n @inproceedings{buechel-hahn-2017-emobank,\n title = \"{E}mo{B}ank: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis\",\n author = \"Buechel, Sven and\n Hahn, Udo\",\n booktitle = \"Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers\",\n month = apr,\n year = \"2017\",\n address = \"Valencia, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/E17-2092\",\n pages = \"578--585\",\n abstract = \"We describe EmoBank, a corpus of 10k English sentences balancing multiple genres, which we annotated with dimensional emotion metadata in the Valence-Arousal-Dominance (VAD) representation format. EmoBank excels with a bi-perspectival and bi-representational design. On the one hand, we distinguish between writer{'}s and reader{'}s emotions, on the other hand, a subset of the corpus complements dimensional VAD annotations with categorical ones based on Basic Emotions. We find evidence for the supremacy of the reader{'}s perspective in terms of IAA and rating intensity, and achieve close-to-human performance when mapping between dimensional and categorical formats.\",\n }\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "emobank-arousal", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 567660, "num_examples": 5470, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 71221, "num_examples": 684, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 69276, "num_examples": 683, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 708157, "size_in_bytes": 6038881}, "switchboard": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{Godfrey:1992:STS:1895550.1895693,\n author = {Godfrey, John J. and Holliman, Edward C. and McDaniel, Jane},\n title = {SWITCHBOARD: Telephone Speech Corpus for Research and Development},\n booktitle = {Proceedings of the 1992 IEEE International Conference on Acoustics, Speech and Signal Processing - Volume 1},\n series = {ICASSP'92},\n year = {1992},\n isbn = {0-7803-0532-9},\n location = {San Francisco, California},\n pages = {517--520},\n numpages = {4},\n url = {http://dl.acm.org/citation.cfm?id=1895550.1895693},\n acmid = {1895693},\n publisher = {IEEE Computer Society},\n address = {Washington, DC, USA},\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 41, "names": ["Response Acknowledgement", "Uninterpretable", "Or-Clause", "Reject", "Statement-non-opinion", "3rd-party-talk", "Repeat-phrase", "Hold Before Answer/Agreement", "Signal-non-understanding", "Offers, Options Commits", "Agree/Accept", "Dispreferred Answers", "Hedge", "Action-directive", "Tag-Question", "Self-talk", "Yes-No-Question", "Rhetorical-Question", "No Answers", "Open-Question", "Conventional-closing", "Other Answers", "Acknowledge (Backchannel)", "Wh-Question", "Declarative Wh-Question", "Thanking", "Yes Answers", "Affirmative Non-yes Answers", "Declarative Yes-No-Question", "Backchannel in Question Form", "Apology", "Downplayer", "Conventional-opening", "Collaborative Completion", "Summarize/Reformulate", "Negative Non-no Answers", "Statement-opinion", "Appreciation", "Other", "Quotation", "Maybe/Accept-part"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "switchboard", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 1021220, "num_examples": 18930, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 116058, "num_examples": 2113, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 34013, "num_examples": 649, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 1171291, "size_in_bytes": 6502015}, "persuasiveness-eloquence": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{Persuasion2018Ng,\n title = \"Give Me More Feedback: Annotating Argument Persuasiveness and Related Attributes in Student Essays\",\n author = \"Carlile, Winston and\n Gurrapadi, Nishant and\n Ke, Zixuan and\n Ng, Vincent\",\n booktitle = \"Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = jul,\n year = \"2018\",\n address = \"Melbourne, Australia\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P18-1058\",\n pages = \"621--631\",\n abstract = \"While argument persuasiveness is one of the most important dimensions of argumentative essay quality, it is relatively little studied in automated essay scoring research. Progress on scoring argument persuasiveness is hindered in part by the scarcity of annotated corpora. We present the first corpus of essays that are simultaneously annotated with argument components, argument persuasiveness scores, and attributes of argument components that impact an argument{'}s persuasiveness. This corpus could trigger the development of novel computational models concerning argument persuasiveness that provide useful feedback to students on why their arguments are (un)persuasive in addition to how persuasive they are.\",\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "persuasiveness-eloquence", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 153946, "num_examples": 725, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 19376, "num_examples": 91, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 18379, "num_examples": 90, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 191701, "size_in_bytes": 5522425}, "mrda": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{shriberg2004icsi,\n title={The ICSI meeting recorder dialog act (MRDA) corpus},\n author={Shriberg, Elizabeth and Dhillon, Raj and Bhagat, Sonali and Ang, Jeremy and Carvey, Hannah},\n booktitle={Proceedings of the 5th SIGdial Workshop on Discourse and Dialogue at HLT-NAACL 2004},\n year={2004}\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 51, "names": ["Declarative-Question", "Statement", "Reject", "Or-Clause", "3rd-party-talk", "Continuer", "Hold Before Answer/Agreement", "Assessment/Appreciation", "Signal-non-understanding", "Floor Holder", "Sympathy", "Dispreferred Answers", "Reformulate/Summarize", "Exclamation", "Interrupted/Abandoned/Uninterpretable", "Expansions of y/n Answers", "Action-directive", "Tag-Question", "Accept", "Rhetorical-question Continue", "Self-talk", "Rhetorical-Question", "Yes-No-question", "Open-Question", "Rising Tone", "Other Answers", "Commit", "Wh-Question", "Repeat", "Follow Me", "Thanking", "Offer", "About-task", "Reject-part", "Affirmative Non-yes Answers", "Apology", "Downplayer", "Humorous Material", "Accept-part", "Collaborative Completion", "Mimic Other", "Understanding Check", "Misspeak Self-Correction", "Or-Question", "Topic Change", "Negative Non-no Answers", "Floor Grabber", "Correct-misspeaking", "Maybe", "Acknowledge-answer", "Defending/Explanation"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "mrda", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 963913, "num_examples": 14484, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 111813, "num_examples": 1630, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 419797, "num_examples": 6459, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 1495523, "size_in_bytes": 6826247}, "gum": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@Article{Zeldes2017,\n author = {Amir Zeldes},\n title = {The {GUM} Corpus: Creating Multilayer Resources in the Classroom},\n journal = {Language Resources and Evaluation},\n year = {2017},\n volume = {51},\n number = {3},\n pages = {581--612},\n doi = {http://dx.doi.org/10.1007/s10579-016-9343-x}\n }\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 17, "names": ["preparation", "evaluation", "circumstance", "solutionhood", "justify", "result", "evidence", "purpose", "concession", "elaboration", "background", "condition", "cause", "restatement", "motivation", "antithesis", "no_relation"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "gum", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 270401, "num_examples": 1700, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 35405, "num_examples": 259, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 40334, "num_examples": 248, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 346140, "size_in_bytes": 5676864}, "emergent": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{Ferreira2016EmergentAN,\n title={Emergent: a novel data-set for stance classification},\n author={William Ferreira and Andreas Vlachos},\n booktitle={HLT-NAACL},\n year={2016}\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["observing", "for", "against"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "emergent", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 313257, "num_examples": 2076, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 38948, "num_examples": 259, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 38842, "num_examples": 259, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 391047, "size_in_bytes": 5721771}, "persuasiveness-relevance": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{Persuasion2018Ng,\n title = \"Give Me More Feedback: Annotating Argument Persuasiveness and Related Attributes in Student Essays\",\n author = \"Carlile, Winston and\n Gurrapadi, Nishant and\n Ke, Zixuan and\n Ng, Vincent\",\n booktitle = \"Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = jul,\n year = \"2018\",\n address = \"Melbourne, Australia\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P18-1058\",\n pages = \"621--631\",\n abstract = \"While argument persuasiveness is one of the most important dimensions of argumentative essay quality, it is relatively little studied in automated essay scoring research. Progress on scoring argument persuasiveness is hindered in part by the scarcity of annotated corpora. We present the first corpus of essays that are simultaneously annotated with argument components, argument persuasiveness scores, and attributes of argument components that impact an argument{'}s persuasiveness. This corpus could trigger the development of novel computational models concerning argument persuasiveness that provide useful feedback to students on why their arguments are (un)persuasive in addition to how persuasive they are.\",\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "persuasiveness-relevance", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 153158, "num_examples": 725, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 19663, "num_examples": 91, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 18880, "num_examples": 90, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 191701, "size_in_bytes": 5522425}, "persuasiveness-specificity": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{Persuasion2018Ng,\n title = \"Give Me More Feedback: Annotating Argument Persuasiveness and Related Attributes in Student Essays\",\n author = \"Carlile, Winston and\n Gurrapadi, Nishant and\n Ke, Zixuan and\n Ng, Vincent\",\n booktitle = \"Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = jul,\n year = \"2018\",\n address = \"Melbourne, Australia\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P18-1058\",\n pages = \"621--631\",\n abstract = \"While argument persuasiveness is one of the most important dimensions of argumentative essay quality, it is relatively little studied in automated essay scoring research. Progress on scoring argument persuasiveness is hindered in part by the scarcity of annotated corpora. We present the first corpus of essays that are simultaneously annotated with argument components, argument persuasiveness scores, and attributes of argument components that impact an argument{'}s persuasiveness. This corpus could trigger the development of novel computational models concerning argument persuasiveness that provide useful feedback to students on why their arguments are (un)persuasive in addition to how persuasive they are.\",\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "persuasiveness-specificity", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 106594, "num_examples": 504, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 13766, "num_examples": 62, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 12712, "num_examples": 62, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 133072, "size_in_bytes": 5463796}, "persuasiveness-strength": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{Persuasion2018Ng,\n title = \"Give Me More Feedback: Annotating Argument Persuasiveness and Related Attributes in Student Essays\",\n author = \"Carlile, Winston and\n Gurrapadi, Nishant and\n Ke, Zixuan and\n Ng, Vincent\",\n booktitle = \"Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = jul,\n year = \"2018\",\n address = \"Melbourne, Australia\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P18-1058\",\n pages = \"621--631\",\n abstract = \"While argument persuasiveness is one of the most important dimensions of argumentative essay quality, it is relatively little studied in automated essay scoring research. Progress on scoring argument persuasiveness is hindered in part by the scarcity of annotated corpora. We present the first corpus of essays that are simultaneously annotated with argument components, argument persuasiveness scores, and attributes of argument components that impact an argument{'}s persuasiveness. This corpus could trigger the development of novel computational models concerning argument persuasiveness that provide useful feedback to students on why their arguments are (un)persuasive in addition to how persuasive they are.\",\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "persuasiveness-strength", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 79679, "num_examples": 371, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 10052, "num_examples": 46, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 10225, "num_examples": 46, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 99956, "size_in_bytes": 5430680}, "emobank-dominance": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\"\n @inproceedings{buechel-hahn-2017-emobank,\n title = \"{E}mo{B}ank: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis\",\n author = \"Buechel, Sven and\n Hahn, Udo\",\n booktitle = \"Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers\",\n month = apr,\n year = \"2017\",\n address = \"Valencia, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/E17-2092\",\n pages = \"578--585\",\n abstract = \"We describe EmoBank, a corpus of 10k English sentences balancing multiple genres, which we annotated with dimensional emotion metadata in the Valence-Arousal-Dominance (VAD) representation format. EmoBank excels with a bi-perspectival and bi-representational design. On the one hand, we distinguish between writer{'}s and reader{'}s emotions, on the other hand, a subset of the corpus complements dimensional VAD annotations with categorical ones based on Basic Emotions. We find evidence for the supremacy of the reader{'}s perspective in terms of IAA and rating intensity, and achieve close-to-human performance when mapping between dimensional and categorical formats.\",\n }\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "emobank-dominance", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 660303, "num_examples": 6392, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 86802, "num_examples": 798, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 83319, "num_examples": 798, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 830424, "size_in_bytes": 6161148}, "squinky-implicature": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@article{DBLP:journals/corr/Lahiri15,\n author = {Shibamouli Lahiri},\n title = {{SQUINKY! A Corpus of Sentence-level Formality, Informativeness,\n and Implicature}},\n journal = {CoRR},\n volume = {abs/1506.02306},\n year = {2015},\n url = {http://arxiv.org/abs/1506.02306},\n timestamp = {Wed, 01 Jul 2015 15:10:24 +0200},\n biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/Lahiri15},\n bibsource = {dblp computer science bibliography, http://dblp.org}\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "squinky-implicature", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 471552, "num_examples": 3724, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 58087, "num_examples": 465, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 56549, "num_examples": 465, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 586188, "size_in_bytes": 5916912}, "sarcasm": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@InProceedings{OrabySarc,\n author = \"Oraby, Shereen\n and Harrison, Vrindavan\n and Reed, Lena\n and Hernandez, Ernesto\n and Riloff, Ellen\n and Walker, Marilyn\",\n title =\"Creating and Characterizing a Diverse Corpus of Sarcasm in Dialogue\",\n booktitle =\"Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue \",\n year =\"2016\",\n publisher =\"Association for Computational Linguistics\",\n pages =\"31--41\",\n location =\"Los Angeles\",\n doi =\"10.18653/v1/W16-3604\",\n url =\"http://aclweb.org/anthology/W16-3604\"\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["notsarc", "sarc"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "sarcasm", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2177332, "num_examples": 3754, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 257834, "num_examples": 469, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 269724, "num_examples": 469, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 2704890, "size_in_bytes": 8035614}, "squinky-formality": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@article{DBLP:journals/corr/Lahiri15,\n author = {Shibamouli Lahiri},\n title = {{SQUINKY! A Corpus of Sentence-level Formality, Informativeness,\n and Implicature}},\n journal = {CoRR},\n volume = {abs/1506.02306},\n year = {2015},\n url = {http://arxiv.org/abs/1506.02306},\n timestamp = {Wed, 01 Jul 2015 15:10:24 +0200},\n biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/Lahiri15},\n bibsource = {dblp computer science bibliography, http://dblp.org}\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "squinky-formality", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 459721, "num_examples": 3622, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 59921, "num_examples": 453, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 58242, "num_examples": 452, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 577884, "size_in_bytes": 5908608}, "stac": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{asher-etal-2016-discourse,\n title = \"Discourse Structure and Dialogue Acts in Multiparty Dialogue: the {STAC} Corpus\",\n author = \"Asher, Nicholas and\n Hunter, Julie and\n Morey, Mathieu and\n Farah, Benamara and\n Afantenos, Stergos\",\n booktitle = \"Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)\",\n month = may,\n year = \"2016\",\n address = \"Portoro{\u000b{z}}, Slovenia\",\n publisher = \"European Language Resources Association (ELRA)\",\n url = \"https://www.aclweb.org/anthology/L16-1432\",\n pages = \"2721--2727\",\n abstract = \"This paper describes the STAC resource, a corpus of multi-party chats annotated for discourse structure in the style of SDRT (Asher and Lascarides, 2003; Lascarides and Asher, 2009). The main goal of the STAC project is to study the discourse structure of multi-party dialogues in order to understand the linguistic strategies adopted by interlocutors to achieve their conversational goals, especially when these goals are opposed. The STAC corpus is not only a rich source of data on strategic conversation, but also the first corpus that we are aware of that provides full discourse structures for multi-party dialogues. It has other remarkable features that make it an interesting resource for other topics: interleaved threads, creative language, and interactions between linguistic and extra-linguistic contexts.\",\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 18, "names": ["Comment", "Contrast", "Q_Elab", "Parallel", "Explanation", "Narration", "Continuation", "Result", "Acknowledgement", "Alternation", "Question_answer_pair", "Correction", "Clarification_question", "Conditional", "Sequence", "Elaboration", "Background", "no_relation"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "stac", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 645969, "num_examples": 11230, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 71400, "num_examples": 1247, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 70451, "num_examples": 1304, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 787820, "size_in_bytes": 6118544}, "pdtb": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n @inproceedings{prasad-etal-2008-penn,\n title = \"The {P}enn {D}iscourse {T}ree{B}ank 2.0.\",\n author = \"Prasad, Rashmi and\n Dinesh, Nikhil and\n Lee, Alan and\n Miltsakaki, Eleni and\n Robaldo, Livio and\n Joshi, Aravind and\n Webber, Bonnie\",\n booktitle = \"Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)\",\n month = may,\n year = \"2008\",\n address = \"Marrakech, Morocco\",\n publisher = \"European Language Resources Association (ELRA)\",\n url = \"http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf\",\n abstract = \"We present the second version of the Penn Discourse Treebank, PDTB-2.0, describing its lexically-grounded annotations of discourse relations and their two abstract object arguments over the 1 million word Wall Street Journal corpus. We describe all aspects of the annotation, including (a) the argument structure of discourse relations, (b) the sense annotation of the relations, and (c) the attribution of discourse relations and each of their arguments. We list the differences between PDTB-1.0 and PDTB-2.0. We present representative statistics for several aspects of the annotation in the corpus.\",\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 16, "names": ["Synchrony", "Contrast", "Asynchronous", "Conjunction", "List", "Condition", "Pragmatic concession", "Restatement", "Pragmatic cause", "Alternative", "Pragmatic condition", "Pragmatic contrast", "Instantiation", "Exception", "Cause", "Concession"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "pdtb", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 2968638, "num_examples": 12907, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 276997, "num_examples": 1204, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 235851, "num_examples": 1085, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 3481486, "size_in_bytes": 8812210}, "persuasiveness-premisetype": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{Persuasion2018Ng,\n title = \"Give Me More Feedback: Annotating Argument Persuasiveness and Related Attributes in Student Essays\",\n author = \"Carlile, Winston and\n Gurrapadi, Nishant and\n Ke, Zixuan and\n Ng, Vincent\",\n booktitle = \"Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = jul,\n year = \"2018\",\n address = \"Melbourne, Australia\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P18-1058\",\n pages = \"621--631\",\n abstract = \"While argument persuasiveness is one of the most important dimensions of argumentative essay quality, it is relatively little studied in automated essay scoring research. Progress on scoring argument persuasiveness is hindered in part by the scarcity of annotated corpora. We present the first corpus of essays that are simultaneously annotated with argument components, argument persuasiveness scores, and attributes of argument components that impact an argument{'}s persuasiveness. This corpus could trigger the development of novel computational models concerning argument persuasiveness that provide useful feedback to students on why their arguments are (un)persuasive in addition to how persuasive they are.\",\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 8, "names": ["testimony", "warrant", "invented_instance", "common_knowledge", "statistics", "analogy", "definition", "real_example"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "persuasiveness-premisetype", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 122631, "num_examples": 566, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 15920, "num_examples": 71, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 14395, "num_examples": 70, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 152946, "size_in_bytes": 5483670}, "squinky-informativeness": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@article{DBLP:journals/corr/Lahiri15,\n author = {Shibamouli Lahiri},\n title = {{SQUINKY! A Corpus of Sentence-level Formality, Informativeness,\n and Implicature}},\n journal = {CoRR},\n volume = {abs/1506.02306},\n year = {2015},\n url = {http://arxiv.org/abs/1506.02306},\n timestamp = {Wed, 01 Jul 2015 15:10:24 +0200},\n biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/Lahiri15},\n bibsource = {dblp computer science bibliography, http://dblp.org}\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "squinky-informativeness", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 464855, "num_examples": 3719, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 60447, "num_examples": 465, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 56872, "num_examples": 464, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 582174, "size_in_bytes": 5912898}, "persuasiveness-claimtype": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\n@inproceedings{Persuasion2018Ng,\n title = \"Give Me More Feedback: Annotating Argument Persuasiveness and Related Attributes in Student Essays\",\n author = \"Carlile, Winston and\n Gurrapadi, Nishant and\n Ke, Zixuan and\n Ng, Vincent\",\n booktitle = \"Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)\",\n month = jul,\n year = \"2018\",\n address = \"Melbourne, Australia\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P18-1058\",\n pages = \"621--631\",\n abstract = \"While argument persuasiveness is one of the most important dimensions of argumentative essay quality, it is relatively little studied in automated essay scoring research. Progress on scoring argument persuasiveness is hindered in part by the scarcity of annotated corpora. We present the first corpus of essays that are simultaneously annotated with argument components, argument persuasiveness scores, and attributes of argument components that impact an argument{'}s persuasiveness. This corpus could trigger the development of novel computational models concerning argument persuasiveness that provide useful feedback to students on why their arguments are (un)persuasive in addition to how persuasive they are.\",\n}\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence1": {"dtype": "string", "id": null, "_type": "Value"}, "sentence2": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 3, "names": ["Value", "Fact", "Policy"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "persuasiveness-claimtype", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 31259, "num_examples": 160, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 3803, "num_examples": 20, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 3717, "num_examples": 19, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 38779, "size_in_bytes": 5369503}, "emobank-valence": {"description": "Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics\n", "citation": "\"\n @inproceedings{buechel-hahn-2017-emobank,\n title = \"{E}mo{B}ank: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis\",\n author = \"Buechel, Sven and\n Hahn, Udo\",\n booktitle = \"Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers\",\n month = apr,\n year = \"2017\",\n address = \"Valencia, Spain\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/E17-2092\",\n pages = \"578--585\",\n abstract = \"We describe EmoBank, a corpus of 10k English sentences balancing multiple genres, which we annotated with dimensional emotion metadata in the Valence-Arousal-Dominance (VAD) representation format. EmoBank excels with a bi-perspectival and bi-representational design. On the one hand, we distinguish between writer{'}s and reader{'}s emotions, on the other hand, a subset of the corpus complements dimensional VAD annotations with categorical ones based on Basic Emotions. We find evidence for the supremacy of the reader{'}s perspective in terms of IAA and rating intensity, and achieve close-to-human performance when mapping between dimensional and categorical formats.\",\n }\n\n@misc{sileo2019discoursebased,\n title={Discourse-Based Evaluation of Language Understanding},\n author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},\n year={2019},\n eprint={1907.08672},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "", "features": {"sentence": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"num_classes": 2, "names": ["low", "high"], "names_file": null, "id": null, "_type": "ClassLabel"}, "idx": {"dtype": "int32", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "pragmeval", "config_name": "emobank-valence", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 539652, "num_examples": 5150, "dataset_name": "pragmeval"}, "validation": {"name": "validation", "num_bytes": 62809, "num_examples": 644, "dataset_name": "pragmeval"}, "test": {"name": "test", "num_bytes": 66178, "num_examples": 643, "dataset_name": "pragmeval"}}, "download_checksums": {"https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1": {"num_bytes": 5330724, "checksum": "89e058b3b58e46e5401cfd91e3b06f7a1cd4421dc0f761bdd7adfe9723237e0b"}}, "download_size": 5330724, "post_processing_size": null, "dataset_size": 668639, "size_in_bytes": 5999363}}
dummy/emergent/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:15504a54786306617e381b68faebe4d37b36733ae4c67b80489161e660f3e697
3
+ size 5428
dummy/emobank-arousal/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f9345ae8014d4447adfeb849c2ee169f983ba4667b8dd1a8b0ce87f2d3e95e9
3
+ size 5013
dummy/emobank-dominance/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b127ff765d465d9766b4e5b4006a09f49082a16e6dad14b9a5c8505a690abfb0
3
+ size 5694
dummy/emobank-valence/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a1b46587482f6d9dd53decfb79a281e667345b51581ce5bfee46128be46f4b4
3
+ size 5719
dummy/gum/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a77108fd71c454d07e4f527c4b61e6f3b953a1d46cb07d4472fe42ac592ac824
3
+ size 6351
dummy/mrda/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c86b66fe5b2cd2a9caab3c7049180ba0088b56377767322d9a1ccb503a0ee7d4
3
+ size 5407
dummy/pdtb/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:487a8e8dcb8ee3fb2bd0562ad1ac8900f1e2ff88825b17e4b62862b9b03fe574
3
+ size 6204
dummy/persuasiveness-claimtype/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:166bcbc84793893c07b4979c70f4f10fbd9aa9e9d13b90c26e64583d51757d0f
3
+ size 5763
dummy/persuasiveness-eloquence/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cda61d6beba258ba86d33477535aaba0dce9a86955bf495c4a21ab80896825f7
3
+ size 6257
dummy/persuasiveness-premisetype/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:58cfd08f0e1c6d42e0b4c5e1bbe0dc4ac32da5cbfb2d94ed92dff18555ddf1fa
3
+ size 6292
dummy/persuasiveness-relevance/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:47bafc660751d851a975f1d213d016d0911b53e61f58dad20356eaeded9bdaf5
3
+ size 6203
dummy/persuasiveness-specificity/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb3d093ed991bbfcedec5604b7cd92bc875247c05c1b576e8a49c64911189e70
3
+ size 6193
dummy/persuasiveness-strength/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:60232e3e35e8f613a151c90174cad9037f1c76e950717b125d25387704897814
3
+ size 6125
dummy/sarcasm/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74ec7e91d728dc578d637dc45acabdb7406c0789e7e4bb47285fa3caf6df90ff
3
+ size 7695
dummy/squinky-formality/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7883b4bce5af8721bcb04daab4be4e5fabaab1b0e06bc52fd29307b3e2903b39
3
+ size 5616
dummy/squinky-implicature/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41416e12773ce21950901cc4963e158724922e8885802dad8f04b75b9d04ca7d
3
+ size 5679
dummy/squinky-informativeness/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4d82b94af9980c3e5d6964791e5610726ed24adafed1c442ef4a7a9420f7ea8f
3
+ size 5808
dummy/stac/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:33d62eb822020e8f38661eb8d325392375189ac67d2648fc8965632ea0e0df28
3
+ size 4879
dummy/switchboard/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6bf3d81a86fec4a18defae57ffdb67a5d33a81af342c3781a7684e0e7ca039ad
3
+ size 4934
dummy/verifiability/1.0.0/dummy_data.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbdbe1987ff7b3a68aa01a1135e0f6dca537a1a019da4b771b0306e6e5d9f375
3
+ size 5260
pragmeval.py ADDED
@@ -0,0 +1,582 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Lint as: python3
17
+ """The General Language Understanding Evaluation (Pragmeval) benchmark."""
18
+
19
+ from __future__ import absolute_import, division, print_function
20
+
21
+ import csv
22
+ import os
23
+ import textwrap
24
+
25
+ import six
26
+
27
+ import datasets
28
+
29
+
30
+ _Pragmeval_CITATION = """\
31
+ @misc{sileo2019discoursebased,
32
+ title={Discourse-Based Evaluation of Language Understanding},
33
+ author={Damien Sileo and Tim Van-de-Cruys and Camille Pradel and Philippe Muller},
34
+ year={2019},
35
+ eprint={1907.08672},
36
+ archivePrefix={arXiv},
37
+ primaryClass={cs.CL}
38
+ }
39
+ """
40
+
41
+ _Pragmeval_DESCRIPTION = """\
42
+ Evaluation of language understanding with a 11 datasets benchmark focusing on discourse and pragmatics
43
+ """
44
+
45
+ DATA_URL = "https://www.dropbox.com/s/njcy51alkb17sft/pragmeval.zip?dl=1"
46
+
47
+
48
+ CITATION_DICT = {
49
+ "pdtb": """
50
+ @inproceedings{prasad-etal-2008-penn,
51
+ title = "The {P}enn {D}iscourse {T}ree{B}ank 2.0.",
52
+ author = "Prasad, Rashmi and
53
+ Dinesh, Nikhil and
54
+ Lee, Alan and
55
+ Miltsakaki, Eleni and
56
+ Robaldo, Livio and
57
+ Joshi, Aravind and
58
+ Webber, Bonnie",
59
+ booktitle = "Proceedings of the Sixth International Conference on Language Resources and Evaluation ({LREC}'08)",
60
+ month = may,
61
+ year = "2008",
62
+ address = "Marrakech, Morocco",
63
+ publisher = "European Language Resources Association (ELRA)",
64
+ url = "http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf",
65
+ abstract = "We present the second version of the Penn Discourse Treebank, PDTB-2.0, describing its lexically-grounded annotations of discourse relations and their two abstract object arguments over the 1 million word Wall Street Journal corpus. We describe all aspects of the annotation, including (a) the argument structure of discourse relations, (b) the sense annotation of the relations, and (c) the attribution of discourse relations and each of their arguments. We list the differences between PDTB-1.0 and PDTB-2.0. We present representative statistics for several aspects of the annotation in the corpus.",
66
+ }
67
+ """,
68
+ "stac": """
69
+ @inproceedings{asher-etal-2016-discourse,
70
+ title = "Discourse Structure and Dialogue Acts in Multiparty Dialogue: the {STAC} Corpus",
71
+ author = "Asher, Nicholas and
72
+ Hunter, Julie and
73
+ Morey, Mathieu and
74
+ Farah, Benamara and
75
+ Afantenos, Stergos",
76
+ booktitle = "Proceedings of the Tenth International Conference on Language Resources and Evaluation ({LREC}'16)",
77
+ month = may,
78
+ year = "2016",
79
+ address = "Portoro{\v{z}}, Slovenia",
80
+ publisher = "European Language Resources Association (ELRA)",
81
+ url = "https://www.aclweb.org/anthology/L16-1432",
82
+ pages = "2721--2727",
83
+ abstract = "This paper describes the STAC resource, a corpus of multi-party chats annotated for discourse structure in the style of SDRT (Asher and Lascarides, 2003; Lascarides and Asher, 2009). The main goal of the STAC project is to study the discourse structure of multi-party dialogues in order to understand the linguistic strategies adopted by interlocutors to achieve their conversational goals, especially when these goals are opposed. The STAC corpus is not only a rich source of data on strategic conversation, but also the first corpus that we are aware of that provides full discourse structures for multi-party dialogues. It has other remarkable features that make it an interesting resource for other topics: interleaved threads, creative language, and interactions between linguistic and extra-linguistic contexts.",
84
+ }
85
+ """,
86
+ "gum": """
87
+ @Article{Zeldes2017,
88
+ author = {Amir Zeldes},
89
+ title = {The {GUM} Corpus: Creating Multilayer Resources in the Classroom},
90
+ journal = {Language Resources and Evaluation},
91
+ year = {2017},
92
+ volume = {51},
93
+ number = {3},
94
+ pages = {581--612},
95
+ doi = {http://dx.doi.org/10.1007/s10579-016-9343-x}
96
+ }
97
+ """,
98
+ "emergent": """
99
+ @inproceedings{Ferreira2016EmergentAN,
100
+ title={Emergent: a novel data-set for stance classification},
101
+ author={William Ferreira and Andreas Vlachos},
102
+ booktitle={HLT-NAACL},
103
+ year={2016}
104
+ }
105
+ """,
106
+ "switchboard": """
107
+ @inproceedings{Godfrey:1992:STS:1895550.1895693,
108
+ author = {Godfrey, John J. and Holliman, Edward C. and McDaniel, Jane},
109
+ title = {SWITCHBOARD: Telephone Speech Corpus for Research and Development},
110
+ booktitle = {Proceedings of the 1992 IEEE International Conference on Acoustics, Speech and Signal Processing - Volume 1},
111
+ series = {ICASSP'92},
112
+ year = {1992},
113
+ isbn = {0-7803-0532-9},
114
+ location = {San Francisco, California},
115
+ pages = {517--520},
116
+ numpages = {4},
117
+ url = {http://dl.acm.org/citation.cfm?id=1895550.1895693},
118
+ acmid = {1895693},
119
+ publisher = {IEEE Computer Society},
120
+ address = {Washington, DC, USA},
121
+ }
122
+ """,
123
+ "mrda": """
124
+ @inproceedings{shriberg2004icsi,
125
+ title={The ICSI meeting recorder dialog act (MRDA) corpus},
126
+ author={Shriberg, Elizabeth and Dhillon, Raj and Bhagat, Sonali and Ang, Jeremy and Carvey, Hannah},
127
+ booktitle={Proceedings of the 5th SIGdial Workshop on Discourse and Dialogue at HLT-NAACL 2004},
128
+ year={2004}
129
+ }
130
+ """,
131
+ "persuasiveness": """
132
+ @inproceedings{Persuasion2018Ng,
133
+ title = "Give Me More Feedback: Annotating Argument Persuasiveness and Related Attributes in Student Essays",
134
+ author = "Carlile, Winston and
135
+ Gurrapadi, Nishant and
136
+ Ke, Zixuan and
137
+ Ng, Vincent",
138
+ booktitle = "Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
139
+ month = jul,
140
+ year = "2018",
141
+ address = "Melbourne, Australia",
142
+ publisher = "Association for Computational Linguistics",
143
+ url = "https://www.aclweb.org/anthology/P18-1058",
144
+ pages = "621--631",
145
+ abstract = "While argument persuasiveness is one of the most important dimensions of argumentative essay quality, it is relatively little studied in automated essay scoring research. Progress on scoring argument persuasiveness is hindered in part by the scarcity of annotated corpora. We present the first corpus of essays that are simultaneously annotated with argument components, argument persuasiveness scores, and attributes of argument components that impact an argument{'}s persuasiveness. This corpus could trigger the development of novel computational models concerning argument persuasiveness that provide useful feedback to students on why their arguments are (un)persuasive in addition to how persuasive they are.",
146
+ }
147
+ """,
148
+ "sarcasm": """
149
+ @InProceedings{OrabySarc,
150
+ author = "Oraby, Shereen
151
+ and Harrison, Vrindavan
152
+ and Reed, Lena
153
+ and Hernandez, Ernesto
154
+ and Riloff, Ellen
155
+ and Walker, Marilyn",
156
+ title ="Creating and Characterizing a Diverse Corpus of Sarcasm in Dialogue",
157
+ booktitle ="Proceedings of the 17th Annual Meeting of the Special Interest Group on Discourse and Dialogue ",
158
+ year ="2016",
159
+ publisher ="Association for Computational Linguistics",
160
+ pages ="31--41",
161
+ location ="Los Angeles",
162
+ doi ="10.18653/v1/W16-3604",
163
+ url ="http://aclweb.org/anthology/W16-3604"
164
+ }
165
+ """,
166
+ "squinky": """
167
+ @article{DBLP:journals/corr/Lahiri15,
168
+ author = {Shibamouli Lahiri},
169
+ title = {{SQUINKY! A Corpus of Sentence-level Formality, Informativeness,
170
+ and Implicature}},
171
+ journal = {CoRR},
172
+ volume = {abs/1506.02306},
173
+ year = {2015},
174
+ url = {http://arxiv.org/abs/1506.02306},
175
+ timestamp = {Wed, 01 Jul 2015 15:10:24 +0200},
176
+ biburl = {http://dblp.uni-trier.de/rec/bib/journals/corr/Lahiri15},
177
+ bibsource = {dblp computer science bibliography, http://dblp.org}
178
+ }
179
+ """,
180
+ "verifiability": """@inproceedings{park2014identifying,
181
+ title={Identifying appropriate support for propositions in online user comments},
182
+ author={Park, Joonsuk and Cardie, Claire},
183
+ booktitle={Proceedings of the first workshop on argumentation mining},
184
+ pages={29--38},
185
+ year={2014}
186
+ }""",
187
+ "emobank": """"
188
+ @inproceedings{buechel-hahn-2017-emobank,
189
+ title = "{E}mo{B}ank: Studying the Impact of Annotation Perspective and Representation Format on Dimensional Emotion Analysis",
190
+ author = "Buechel, Sven and
191
+ Hahn, Udo",
192
+ booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
193
+ month = apr,
194
+ year = "2017",
195
+ address = "Valencia, Spain",
196
+ publisher = "Association for Computational Linguistics",
197
+ url = "https://www.aclweb.org/anthology/E17-2092",
198
+ pages = "578--585",
199
+ abstract = "We describe EmoBank, a corpus of 10k English sentences balancing multiple genres, which we annotated with dimensional emotion metadata in the Valence-Arousal-Dominance (VAD) representation format. EmoBank excels with a bi-perspectival and bi-representational design. On the one hand, we distinguish between writer{'}s and reader{'}s emotions, on the other hand, a subset of the corpus complements dimensional VAD annotations with categorical ones based on Basic Emotions. We find evidence for the supremacy of the reader{'}s perspective in terms of IAA and rating intensity, and achieve close-to-human performance when mapping between dimensional and categorical formats.",
200
+ }
201
+ """,
202
+ }
203
+
204
+ TASK_TO_LABELS = {
205
+ "verifiability": ["experiential", "unverifiable", "non-experiential"],
206
+ "emobank-arousal": ["low", "high"],
207
+ "switchboard": [
208
+ "Response Acknowledgement",
209
+ "Uninterpretable",
210
+ "Or-Clause",
211
+ "Reject",
212
+ "Statement-non-opinion",
213
+ "3rd-party-talk",
214
+ "Repeat-phrase",
215
+ "Hold Before Answer/Agreement",
216
+ "Signal-non-understanding",
217
+ "Offers, Options Commits",
218
+ "Agree/Accept",
219
+ "Dispreferred Answers",
220
+ "Hedge",
221
+ "Action-directive",
222
+ "Tag-Question",
223
+ "Self-talk",
224
+ "Yes-No-Question",
225
+ "Rhetorical-Question",
226
+ "No Answers",
227
+ "Open-Question",
228
+ "Conventional-closing",
229
+ "Other Answers",
230
+ "Acknowledge (Backchannel)",
231
+ "Wh-Question",
232
+ "Declarative Wh-Question",
233
+ "Thanking",
234
+ "Yes Answers",
235
+ "Affirmative Non-yes Answers",
236
+ "Declarative Yes-No-Question",
237
+ "Backchannel in Question Form",
238
+ "Apology",
239
+ "Downplayer",
240
+ "Conventional-opening",
241
+ "Collaborative Completion",
242
+ "Summarize/Reformulate",
243
+ "Negative Non-no Answers",
244
+ "Statement-opinion",
245
+ "Appreciation",
246
+ "Other",
247
+ "Quotation",
248
+ "Maybe/Accept-part",
249
+ ],
250
+ "persuasiveness-eloquence": ["low", "high"],
251
+ "mrda": [
252
+ "Declarative-Question",
253
+ "Statement",
254
+ "Reject",
255
+ "Or-Clause",
256
+ "3rd-party-talk",
257
+ "Continuer",
258
+ "Hold Before Answer/Agreement",
259
+ "Assessment/Appreciation",
260
+ "Signal-non-understanding",
261
+ "Floor Holder",
262
+ "Sympathy",
263
+ "Dispreferred Answers",
264
+ "Reformulate/Summarize",
265
+ "Exclamation",
266
+ "Interrupted/Abandoned/Uninterpretable",
267
+ "Expansions of y/n Answers",
268
+ "Action-directive",
269
+ "Tag-Question",
270
+ "Accept",
271
+ "Rhetorical-question Continue",
272
+ "Self-talk",
273
+ "Rhetorical-Question",
274
+ "Yes-No-question",
275
+ "Open-Question",
276
+ "Rising Tone",
277
+ "Other Answers",
278
+ "Commit",
279
+ "Wh-Question",
280
+ "Repeat",
281
+ "Follow Me",
282
+ "Thanking",
283
+ "Offer",
284
+ "About-task",
285
+ "Reject-part",
286
+ "Affirmative Non-yes Answers",
287
+ "Apology",
288
+ "Downplayer",
289
+ "Humorous Material",
290
+ "Accept-part",
291
+ "Collaborative Completion",
292
+ "Mimic Other",
293
+ "Understanding Check",
294
+ "Misspeak Self-Correction",
295
+ "Or-Question",
296
+ "Topic Change",
297
+ "Negative Non-no Answers",
298
+ "Floor Grabber",
299
+ "Correct-misspeaking",
300
+ "Maybe",
301
+ "Acknowledge-answer",
302
+ "Defending/Explanation",
303
+ ],
304
+ "gum": [
305
+ "preparation",
306
+ "evaluation",
307
+ "circumstance",
308
+ "solutionhood",
309
+ "justify",
310
+ "result",
311
+ "evidence",
312
+ "purpose",
313
+ "concession",
314
+ "elaboration",
315
+ "background",
316
+ "condition",
317
+ "cause",
318
+ "restatement",
319
+ "motivation",
320
+ "antithesis",
321
+ "no_relation",
322
+ ],
323
+ "emergent": ["observing", "for", "against"],
324
+ "persuasiveness-relevance": ["low", "high"],
325
+ "persuasiveness-specificity": ["low", "high"],
326
+ "persuasiveness-strength": ["low", "high"],
327
+ "emobank-dominance": ["low", "high"],
328
+ "squinky-implicature": ["low", "high"],
329
+ "sarcasm": ["notsarc", "sarc"],
330
+ "squinky-formality": ["low", "high"],
331
+ "stac": [
332
+ "Comment",
333
+ "Contrast",
334
+ "Q_Elab",
335
+ "Parallel",
336
+ "Explanation",
337
+ "Narration",
338
+ "Continuation",
339
+ "Result",
340
+ "Acknowledgement",
341
+ "Alternation",
342
+ "Question_answer_pair",
343
+ "Correction",
344
+ "Clarification_question",
345
+ "Conditional",
346
+ "Sequence",
347
+ "Elaboration",
348
+ "Background",
349
+ "no_relation",
350
+ ],
351
+ "pdtb": [
352
+ "Synchrony",
353
+ "Contrast",
354
+ "Asynchronous",
355
+ "Conjunction",
356
+ "List",
357
+ "Condition",
358
+ "Pragmatic concession",
359
+ "Restatement",
360
+ "Pragmatic cause",
361
+ "Alternative",
362
+ "Pragmatic condition",
363
+ "Pragmatic contrast",
364
+ "Instantiation",
365
+ "Exception",
366
+ "Cause",
367
+ "Concession",
368
+ ],
369
+ "persuasiveness-premisetype": [
370
+ "testimony",
371
+ "warrant",
372
+ "invented_instance",
373
+ "common_knowledge",
374
+ "statistics",
375
+ "analogy",
376
+ "definition",
377
+ "real_example",
378
+ ],
379
+ "squinky-informativeness": ["low", "high"],
380
+ "persuasiveness-claimtype": ["Value", "Fact", "Policy"],
381
+ "emobank-valence": ["low", "high"],
382
+ }
383
+
384
+
385
+ def get_labels(task):
386
+ return TASK_TO_LABELS[task]
387
+
388
+
389
+ class PragmevalConfig(datasets.BuilderConfig):
390
+ """BuilderConfig for Pragmeval."""
391
+
392
+ def __init__(
393
+ self,
394
+ text_features,
395
+ label_classes=None,
396
+ process_label=lambda x: x,
397
+ **kwargs,
398
+ ):
399
+ """BuilderConfig for Pragmeval.
400
+ Args:
401
+ text_features: `dict[string, string]`, map from the name of the feature
402
+ dict for each text field to the name of the column in the tsv file
403
+ label_column: `string`, name of the column in the tsv file corresponding
404
+ to the label
405
+ data_url: `string`, url to download the zip file from
406
+ data_dir: `string`, the path to the folder containing the tsv files in the
407
+ downloaded zip
408
+ citation: `string`, citation for the data set
409
+ url: `string`, url for information about the data set
410
+ label_classes: `list[string]`, the list of classes if the label is
411
+ categorical. If not provided, then the label will be of type
412
+ `datasets.Value('float32')`.
413
+ process_label: `Function[string, any]`, function taking in the raw value
414
+ of the label and processing it to the form required by the label feature
415
+ **kwargs: keyword arguments forwarded to super.
416
+ """
417
+
418
+ super(PragmevalConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)
419
+
420
+ self.text_features = text_features
421
+ self.label_column = "label"
422
+ self.label_classes = get_labels(self.name)
423
+ self.data_url = DATA_URL
424
+ self.data_dir = os.path.join("pragmeval", self.name)
425
+ self.citation = textwrap.dedent(CITATION_DICT[self.name.split("-")[0]])
426
+ self.process_label = process_label
427
+ self.description = ""
428
+ self.url = ""
429
+
430
+
431
+ class Pragmeval(datasets.GeneratorBasedBuilder):
432
+
433
+ """The General Language Understanding Evaluation (Pragmeval) benchmark."""
434
+
435
+ BUILDER_CONFIG_CLASS = PragmevalConfig
436
+
437
+ BUILDER_CONFIGS = [
438
+ PragmevalConfig(
439
+ name="verifiability",
440
+ text_features={"sentence": "sentence"},
441
+ ),
442
+ PragmevalConfig(
443
+ name="emobank-arousal",
444
+ text_features={"sentence": "sentence"},
445
+ ),
446
+ PragmevalConfig(
447
+ name="switchboard",
448
+ text_features={"sentence": "sentence"},
449
+ ),
450
+ PragmevalConfig(
451
+ name="persuasiveness-eloquence",
452
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
453
+ ),
454
+ PragmevalConfig(
455
+ name="mrda",
456
+ text_features={"sentence": "sentence"},
457
+ ),
458
+ PragmevalConfig(
459
+ name="gum",
460
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
461
+ ),
462
+ PragmevalConfig(
463
+ name="emergent",
464
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
465
+ ),
466
+ PragmevalConfig(
467
+ name="persuasiveness-relevance",
468
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
469
+ ),
470
+ PragmevalConfig(
471
+ name="persuasiveness-specificity",
472
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
473
+ ),
474
+ PragmevalConfig(
475
+ name="persuasiveness-strength",
476
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
477
+ ),
478
+ PragmevalConfig(
479
+ name="emobank-dominance",
480
+ text_features={"sentence": "sentence"},
481
+ ),
482
+ PragmevalConfig(
483
+ name="squinky-implicature",
484
+ text_features={"sentence": "sentence"},
485
+ ),
486
+ PragmevalConfig(
487
+ name="sarcasm",
488
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
489
+ ),
490
+ PragmevalConfig(
491
+ name="squinky-formality",
492
+ text_features={"sentence": "sentence"},
493
+ ),
494
+ PragmevalConfig(
495
+ name="stac",
496
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
497
+ ),
498
+ PragmevalConfig(
499
+ name="pdtb",
500
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
501
+ ),
502
+ PragmevalConfig(
503
+ name="persuasiveness-premisetype",
504
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
505
+ ),
506
+ PragmevalConfig(
507
+ name="squinky-informativeness",
508
+ text_features={"sentence": "sentence"},
509
+ ),
510
+ PragmevalConfig(
511
+ name="persuasiveness-claimtype",
512
+ text_features={"sentence1": "sentence1", "sentence2": "sentence2"},
513
+ ),
514
+ PragmevalConfig(
515
+ name="emobank-valence",
516
+ text_features={"sentence": "sentence"},
517
+ ),
518
+ ]
519
+
520
+ def _info(self):
521
+ features = {text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features)}
522
+ if self.config.label_classes:
523
+ features["label"] = datasets.features.ClassLabel(names=self.config.label_classes)
524
+ else:
525
+ features["label"] = datasets.Value("float32")
526
+ features["idx"] = datasets.Value("int32")
527
+ return datasets.DatasetInfo(
528
+ description=_Pragmeval_DESCRIPTION,
529
+ features=datasets.Features(features),
530
+ homepage=self.config.url,
531
+ citation=self.config.citation + "\n" + _Pragmeval_CITATION,
532
+ )
533
+
534
+ def _split_generators(self, dl_manager):
535
+ dl_dir = dl_manager.download_and_extract(self.config.data_url)
536
+ data_dir = os.path.join(dl_dir, self.config.data_dir)
537
+
538
+ return [
539
+ datasets.SplitGenerator(
540
+ name=datasets.Split.TRAIN,
541
+ gen_kwargs={
542
+ "data_file": os.path.join(data_dir or "", "train.tsv"),
543
+ "split": "train",
544
+ },
545
+ ),
546
+ datasets.SplitGenerator(
547
+ name=datasets.Split.VALIDATION,
548
+ gen_kwargs={
549
+ "data_file": os.path.join(data_dir or "", "dev.tsv"),
550
+ "split": "dev",
551
+ },
552
+ ),
553
+ datasets.SplitGenerator(
554
+ name=datasets.Split.TEST,
555
+ gen_kwargs={
556
+ "data_file": os.path.join(data_dir or "", "test.tsv"),
557
+ "split": "test",
558
+ },
559
+ ),
560
+ ]
561
+
562
+ def _generate_examples(self, data_file, split):
563
+
564
+ process_label = self.config.process_label
565
+ label_classes = self.config.label_classes
566
+
567
+ with open(data_file, encoding="utf8") as f:
568
+ reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
569
+
570
+ for n, row in enumerate(reader):
571
+
572
+ example = {feat: row[col] for feat, col in six.iteritems(self.config.text_features)}
573
+ example["idx"] = n
574
+
575
+ if self.config.label_column in row:
576
+ label = row[self.config.label_column]
577
+ if label_classes and label not in label_classes:
578
+ label = int(label) if label else None
579
+ example["label"] = process_label(label)
580
+ else:
581
+ example["label"] = process_label(-1)
582
+ yield example["idx"], example