--- language: - en license: mit task_categories: - text-generation - feature-extraction pretty_name: AI/Technology Articles tags: - temporal series data - language data configs: - config_name: default data_files: - split: train path: data/train-* dataset_info: features: - name: id dtype: int64 - name: year dtype: int64 - name: title dtype: string - name: url dtype: string - name: text dtype: string splits: - name: train num_bytes: 180820047 num_examples: 17092 download_size: 81702921 dataset_size: 180820047 --- # AI/Tech Dataset This dataset is a collection of AI/tech articles scraped from the web. It's hosted on [HuggingFace Datasets](https://huggingface.co./datasets/siavava/ai-tech-articles), so it is easier to load in and work with. ## To load the dataset ### 1. Install [HuggingFace Datasets](https://huggingface.co./docs/datasets/installation.html) ```bash pip install datasets ``` ### 2. Load the dataset ```python from datasets import load_dataset dataset = load_dataset("siavava/ai-tech-articles") # optionally, convert it to a pandas dataframe: df = dataset["train"].to_pandas() ``` You do not need to clone this repo. HuggingFace will download the dataset for you, the first time that you load it, and cache it locally so it does not need to re-download it again (unless it detects a change upstream). ## File Structure - [`analytics.ipynb`](analytics.ipynb) - Notebook containing some details about the dataset. - [`example.ipynb`](example.ipynb) - A minimal notebook that loads in the dataset and converts to Pandas. - [`raw.csv`](raw.csv) - The raw data, in CSV format. - `data/*.parquet`- compressed [parquet](https://www.databricks.com/glossary/what-is-parquet) containing the data. - For raw text files, see the [scraper repo](https://github.com/siavava/scrape.hs) on GitHub.