File size: 1,818 Bytes
db6eb0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 |
import logging
import os
import datasets as ds
import pytest
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", level=logging.INFO
)
@pytest.fixture
def dataset_path() -> str:
return "cocostuff.py"
@pytest.mark.skipif(
bool(os.environ.get("CI", False)),
reason="Because this test downloads a large data set, we will skip running it on CI.",
)
def test_load_stuff_thing_dataset(dataset_path: str):
dataset = ds.load_dataset(path=dataset_path, name="stuff-thing")
expected_features = [
"image",
"image_id",
"image_filename",
"width",
"height",
"stuff_map",
"objects",
]
for expected_feature in expected_features:
assert expected_feature in dataset["train"].features.keys() # type: ignore
assert expected_feature in dataset["validation"].features.keys() # type: ignore
assert dataset["train"].num_rows == 118280 # type: ignore
assert dataset["validation"].num_rows == 5000 # type: ignore
@pytest.mark.skipif(
bool(os.environ.get("CI", False)),
reason="Because this test downloads a large data set, we will skip running it on CI.",
)
def test_load_stuff_only_dataset(dataset_path: str):
dataset = ds.load_dataset(path=dataset_path, name="stuff-only")
expected_features = [
"image",
"image_id",
"image_filename",
"width",
"height",
"objects",
]
for expected_feature in expected_features:
assert expected_feature in dataset["train"].features.keys() # type: ignore
assert expected_feature in dataset["validation"].features.keys() # type: ignore
assert dataset["train"].num_rows == 118280 # type: ignore
assert dataset["validation"].num_rows == 5000 # type: ignore
|