File size: 20,276 Bytes
3ce159a
 
 
 
 
3b2b0ce
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492c23f
 
 
 
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2b0ce
 
 
 
 
3ce159a
 
3b2b0ce
3ce159a
 
 
 
 
3b2b0ce
 
3ce159a
 
 
 
 
3b2b0ce
 
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2b0ce
 
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2b0ce
 
 
 
3ce159a
3b2b0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2b0ce
3ce159a
 
 
 
 
3b2b0ce
 
 
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2b0ce
3ce159a
3b2b0ce
3ce159a
 
 
 
3b2b0ce
 
 
3ce159a
 
 
 
 
3b2b0ce
 
 
 
 
3ce159a
 
3b2b0ce
3ce159a
3b2b0ce
 
3ce159a
 
 
 
 
 
 
 
 
492c23f
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2b0ce
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ce159a
 
 
 
 
 
3b2b0ce
3ce159a
 
 
 
 
3b2b0ce
 
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492c23f
 
 
3ce159a
492c23f
3ce159a
 
 
 
 
 
 
 
492c23f
3ce159a
 
 
 
 
 
 
492c23f
 
 
 
 
 
 
 
 
 
3ce159a
 
 
 
 
492c23f
 
 
 
3ce159a
492c23f
 
 
 
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b2b0ce
 
 
 
 
3ce159a
 
 
 
 
 
3b2b0ce
3ce159a
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import json
import logging
import os
from collections import defaultdict
from dataclasses import asdict, dataclass
from typing import Any, Dict, List, Literal, Optional, Tuple, Type, TypedDict, Union

import datasets as ds
import numpy as np
from PIL import Image
from PIL.Image import Image as PilImage
from tqdm.auto import tqdm

logger = logging.getLogger(__name__)
JsonDict = Dict[str, Any]

ImageId = int
AnnotationId = int
LicenseId = int


_CITATION = """\
@inproceedings{zhu2017semantic,
  title={Semantic amodal segmentation},
  author={Zhu, Yan and Tian, Yuandong and Metaxas, Dimitris and Doll{\'a}r, Piotr},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={1464--1472},
  year={2017}
}
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={Computer Vision--ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13},
  pages={740--755},
  year={2014},
  organization={Springer}
}
@article{arbelaez2010contour,
  title={Contour detection and hierarchical image segmentation},
  author={Arbelaez, Pablo and Maire, Michael and Fowlkes, Charless and Malik, Jitendra},
  journal={IEEE transactions on pattern analysis and machine intelligence},
  volume={33},
  number={5},
  pages={898--916},
  year={2010},
  publisher={IEEE}
}
"""

_DESCRIPTION = """\
COCOA dataset targets amodal segmentation, which aims to recognize and segment objects beyond their visible parts. \
This dataset includes labels not only for the visible parts of objects, but also for their occluded parts hidden \
by other objects. This enables learning to understand the full shape and position of objects. 
"""

_HOMEPAGE = "https://github.com/Wakeupbuddy/amodalAPI"

_LICENSE = """\
The annotations in the COCO dataset along with this website belong to the COCO Consortium and are licensed under a Creative Commons Attribution 4.0 License.
"""

_URLS = {
    "COCO": {
        "images": {
            "train": "http://images.cocodataset.org/zips/train2014.zip",
            "validation": "http://images.cocodataset.org/zips/val2014.zip",
            "test": "http://images.cocodataset.org/zips/test2014.zip",
        },
    },
    "BSDS": {
        "images": "http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/BSR/BSR_bsds500.tgz",
    },
    # The author of this loading script has uploaded the annotation files to the HuggingFace's private repository to facilitate testing.
    # If you are using this loading script, please download the annotations from the appropriate channels, such as the Google Drive link provided by the COCOA's author.
    # (To the author of COCOA, if there are any issues regarding this matter, please contact us. We will address it promptly.)
    "annotations": "https://huggingface.co./datasets/shunk031/COCOA-annotation/resolve/main/annotations.tar.gz",
}


def _load_image(image_path: str) -> PilImage:
    return Image.open(image_path)


@dataclass
class ImageData(object):
    image_id: ImageId
    license_id: LicenseId
    file_name: str
    height: int
    width: int
    date_captured: str
    flickr_url: str

    @classmethod
    def get_date_captured(cls, json_dict: JsonDict) -> str:
        date_captured = json_dict.get("date_captured")
        if date_captured is None:
            date_captured = json_dict["data_captured"]  # typo?
        return date_captured

    @classmethod
    def get_license_id(cls, json_dict: JsonDict) -> int:
        license_id = json_dict["license"]
        if license_id == "?":
            # Since the test data in BSDS has a license id of `?`,
            # convert it to -100 instead.
            return -100
        else:
            return int(license_id)

    @classmethod
    def to_base_dict(cls, json_dict: JsonDict) -> JsonDict:
        return {
            "image_id": json_dict["id"],
            "file_name": json_dict["file_name"],
            "height": json_dict["height"],
            "width": json_dict["width"],
            "flickr_url": json_dict["flickr_url"],
            "license_id": cls.get_license_id(json_dict),
            "date_captured": cls.get_date_captured(json_dict),
        }

    @property
    def shape(self) -> Tuple[int, int]:
        return (self.height, self.width)


@dataclass
class CocoImageData(ImageData):
    coco_url: str

    @classmethod
    def from_dict(cls, json_dict: JsonDict) -> "CocoImageData":
        return cls(
            **cls.to_base_dict(json_dict),
            coco_url=json_dict["coco_url"],
        )


@dataclass
class BsDsImageData(ImageData):
    bsds_url: str

    @classmethod
    def from_dict(cls, json_dict: JsonDict) -> "BsDsImageData":
        return cls(
            **cls.to_base_dict(json_dict),
            bsds_url=json_dict["bsds_url"],
        )


class RunLengthEncoding(TypedDict):
    counts: str
    size: Tuple[int, int]


@dataclass
class RegionAnnotationData(object):
    segmentation: Union[List[float], np.ndarray]
    name: str
    area: float
    is_stuff: bool
    occlude_rate: float
    order: int
    visible_mask: Optional[Union[np.ndarray, RunLengthEncoding]] = None
    invisible_mask: Optional[Union[np.ndarray, RunLengthEncoding]] = None

    @classmethod
    def rle_segmentation_to_binary_mask(
        cls, segmentation, height: int, width: int
    ) -> np.ndarray:
        from pycocotools import mask as cocomask

        if isinstance(segmentation, list):
            rles = cocomask.frPyObjects([segmentation], h=height, w=width)
            rle = cocomask.merge(rles)
        else:
            raise NotImplementedError

        return cocomask.decode(rle)

    @classmethod
    def rle_segmentation_to_mask(
        cls, segmentation, height: int, width: int
    ) -> np.ndarray:
        binary_mask = cls.rle_segmentation_to_binary_mask(
            segmentation=segmentation, height=height, width=width
        )
        return binary_mask * 255

    @classmethod
    def get_visible_binary_mask(cls, rle_visible_mask=None) -> Optional[np.ndarray]:
        from pycocotools import mask as cocomask

        if rle_visible_mask is None:
            return None
        return cocomask.decode(rle_visible_mask)

    @classmethod
    def get_invisible_binary_mask(cls, rle_invisible_mask=None) -> Optional[np.ndarray]:
        return cls.get_visible_binary_mask(rle_invisible_mask)

    @classmethod
    def get_visible_mask(cls, rle_visible_mask=None) -> Optional[np.ndarray]:
        visible_mask = cls.get_visible_binary_mask(rle_visible_mask=rle_visible_mask)
        return visible_mask * 255 if visible_mask is not None else None

    @classmethod
    def get_invisible_mask(cls, rle_invisible_mask=None) -> Optional[np.ndarray]:
        return cls.get_visible_mask(rle_invisible_mask)

    @classmethod
    def from_dict(
        cls,
        json_dict: JsonDict,
        image_data: ImageData,
        decode_rle: bool,
    ) -> "RegionAnnotationData":
        if decode_rle:
            segmentation_mask = cls.rle_segmentation_to_mask(
                segmentation=json_dict["segmentation"],
                height=image_data.height,
                width=image_data.width,
            )
            visible_mask = cls.get_visible_mask(
                rle_visible_mask=json_dict.get("visible_mask")
            )
            invisible_mask = cls.get_invisible_mask(
                rle_invisible_mask=json_dict.get("invisible_mask")
            )
        else:
            segmentation_mask = json_dict["segmentation"]
            visible_mask = json_dict.get("visible_mask")
            invisible_mask = json_dict.get("invisible_mask")

        return cls(
            segmentation=segmentation_mask,
            visible_mask=visible_mask,
            invisible_mask=invisible_mask,
            name=json_dict["name"],
            area=json_dict["area"],
            is_stuff=json_dict["isStuff"],
            occlude_rate=json_dict["occlude_rate"],
            order=json_dict["order"],
        )


@dataclass
class CocoaAnnotationData(object):
    author: str
    url: str
    regions: List[RegionAnnotationData]
    image_id: ImageId
    depth_constraint: str
    size: int

    @classmethod
    def from_dict(
        cls, json_dict: JsonDict, images: Dict[ImageId, ImageData], decode_rle: bool
    ) -> "CocoaAnnotationData":
        image_id = json_dict["image_id"]

        regions = [
            RegionAnnotationData.from_dict(
                json_dict=region_dict,
                image_data=images[image_id],
                decode_rle=decode_rle,
            )
            for region_dict in json_dict["regions"]
        ]

        return cls(
            author=json_dict["author"],
            url=json_dict["url"],
            regions=regions,
            image_id=image_id,
            depth_constraint=json_dict["depth_constraint"],
            size=json_dict["size"],
        )


def _load_images_data(
    image_dicts: List[JsonDict],
    dataset_name: Literal["COCO", "BSDS"],
    tqdm_desc: str = "Load images",
) -> Dict[ImageId, ImageData]:
    ImageDataClass: Union[Type[CocoImageData], Type[BsDsImageData]]

    if dataset_name == "COCO":
        ImageDataClass = CocoImageData
    elif dataset_name == "BSDS":
        ImageDataClass = BsDsImageData
    else:
        raise ValueError(f"Invalid dataset name: {dataset_name}")

    images: Dict[ImageId, Union[CocoImageData, BsDsImageData]] = {}
    for image_dict in tqdm(image_dicts, desc=tqdm_desc):
        image_data = ImageDataClass.from_dict(image_dict)
        images[image_data.image_id] = image_data
    return images  # type: ignore


def _load_cocoa_data(
    ann_dicts: List[JsonDict],
    images: Dict[ImageId, ImageData],
    decode_rle: bool,
    tqdm_desc: str = "Load COCOA annotations",
) -> Dict[ImageId, List[CocoaAnnotationData]]:
    annotations = defaultdict(list)
    ann_dicts = sorted(ann_dicts, key=lambda d: d["image_id"])

    for ann_dict in tqdm(ann_dicts, desc=tqdm_desc):
        cocoa_data = CocoaAnnotationData.from_dict(
            ann_dict, images=images, decode_rle=decode_rle
        )
        annotations[cocoa_data.image_id].append(cocoa_data)

    return annotations


@dataclass
class CocoaConfig(ds.BuilderConfig):
    decode_rle: bool = False


class CocoaDataset(ds.GeneratorBasedBuilder):
    VERSION = ds.Version("1.0.0")
    BUILDER_CONFIG_CLASS = CocoaConfig
    BUILDER_CONFIGS = [
        CocoaConfig(name="COCO", version=VERSION, decode_rle=False),
        CocoaConfig(name="BSDS", version=VERSION, decode_rle=False),
    ]

    def load_amodal_annotation(self, ann_json_path: str) -> JsonDict:
        logger.info(f"Load from {ann_json_path}")
        with open(ann_json_path, "r") as rf:
            ann_json = json.load(rf)
        return ann_json

    @property
    def _manual_download_instructions(self) -> str:
        return (
            "To use COCOA, you need to download the annotations "
            "from the google drive in the official repositories "
            "(https://github.com/Wakeupbuddy/amodalAPI#setup)."
            "Downloading of annotations currently appears to be restricted, "
            "but the author will allow us to download them if we request access privileges."
        )

    def _info(self) -> ds.DatasetInfo:
        features_dict = {
            "image_id": ds.Value("int64"),
            "license_id": ds.Value("int32"),
            "file_name": ds.Value("string"),
            "height": ds.Value("int32"),
            "width": ds.Value("int32"),
            "date_captured": ds.Value("string"),
            "flickr_url": ds.Value("string"),
            "image": ds.Image(),
        }

        if self.config.name == "COCO":
            features_dict["coco_url"] = ds.Value("string")
        elif self.config.name == "BSDS":
            features_dict["bsds_url"] = ds.Value("string")
        else:
            raise ValueError(f"Invalid dataset name: {self.config.name}")

        if self.config.decode_rle:  # type: ignore
            segmentation_feature = ds.Image()
            visible_mask_feature = ds.Image()
            invisible_mask_feature = ds.Image()
        else:
            segmentation_feature = ds.Sequence(ds.Value("float32"))
            visible_mask_feature = {
                "counts": ds.Value("string"),
                "size": ds.Sequence(ds.Value("int32")),
            }
            invisible_mask_feature = {
                "counts": ds.Value("string"),
                "size": ds.Sequence(ds.Value("int32")),
            }

        features_dict["annotations"] = ds.Sequence(
            {
                "author": ds.Value("string"),
                "url": ds.Value("string"),
                "regions": ds.Sequence(
                    {
                        "segmentation": segmentation_feature,
                        "name": ds.Value("string"),
                        "area": ds.Value("float32"),
                        "is_stuff": ds.Value("bool"),
                        "occlude_rate": ds.Value("float32"),
                        "order": ds.Value("int32"),
                        "visible_mask": visible_mask_feature,
                        "invisible_mask": invisible_mask_feature,
                    }
                ),
                "image_id": ds.Value("int64"),
                "depth_constraint": ds.Value("string"),
                "size": ds.Value("int32"),
            }
        )
        features = ds.Features(features_dict)

        return ds.DatasetInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            features=features,
        )

    def _split_generators_coco(self, ann_dir: str, image_dirs: Dict[str, str]):
        tng_ann_path = os.path.join(
            ann_dir,
            f"{self.config.name}_amodal_train2014.json",
        )
        val_ann_path = os.path.join(
            ann_dir,
            f"{self.config.name}_amodal_val2014.json",
        )
        tst_ann_path = os.path.join(
            ann_dir,
            f"{self.config.name}_amodal_test2014.json",
        )
        return [
            ds.SplitGenerator(
                name=ds.Split.TRAIN,  # type: ignore
                gen_kwargs={
                    "base_image_dir": image_dirs["train"],
                    "amodal_annotation_path": tng_ann_path,
                    "split": "train",
                },
            ),
            ds.SplitGenerator(
                name=ds.Split.VALIDATION,  # type: ignore
                gen_kwargs={
                    "base_image_dir": image_dirs["validation"],
                    "amodal_annotation_path": val_ann_path,
                    "split": "val",
                },
            ),
            ds.SplitGenerator(
                name=ds.Split.TEST,  # type: ignore
                gen_kwargs={
                    "base_image_dir": image_dirs["test"],
                    "amodal_annotation_path": tst_ann_path,
                    "split": "test",
                },
            ),
        ]

    def _split_generators_bsds(self, ann_dir: str, image_dir: str):
        tng_ann_path = os.path.join(
            ann_dir,
            f"{self.config.name}_amodal_train.json",
        )
        val_ann_path = os.path.join(
            ann_dir,
            f"{self.config.name}_amodal_val.json",
        )
        tst_ann_path = os.path.join(
            ann_dir,
            f"{self.config.name}_amodal_test.json",
        )
        image_dir = os.path.join(image_dir, "BSR", "BSDS500", "data", "images")
        return [
            ds.SplitGenerator(
                name=ds.Split.TRAIN,  # type: ignore
                gen_kwargs={
                    "base_image_dir": os.path.join(image_dir, "train"),
                    "amodal_annotation_path": tng_ann_path,
                    "split": "train",
                },
            ),
            ds.SplitGenerator(
                name=ds.Split.VALIDATION,  # type: ignore
                gen_kwargs={
                    "base_image_dir": os.path.join(image_dir, "val"),
                    "amodal_annotation_path": val_ann_path,
                    "split": "validation",
                },
            ),
            ds.SplitGenerator(
                name=ds.Split.TEST,  # type: ignore
                gen_kwargs={
                    "base_image_dir": os.path.join(image_dir, "test"),
                    "amodal_annotation_path": tst_ann_path,
                    "split": "test",
                },
            ),
        ]

    def _download_annotation_from_hf(self, dl_manager: ds.DownloadManager) -> str:
        data_path = dl_manager.download_and_extract(_URLS["annotations"])
        return data_path  # type: ignore

    def _download_annotation_from_local(self, dl_manager: ds.DownloadManager) -> str:
        assert dl_manager.manual_dir is not None, dl_manager.manual_dir
        data_path = os.path.expanduser(dl_manager.manual_dir)

        if not os.path.exists(data_path):
            raise FileNotFoundError(
                f"{data_path} does not exists. Make sure you insert a manual dir "
                'via `datasets.load_dataset("shunk031/COCOA", data_dir=...)` '
                "that includes tar/untar files from the COCOA annotation tar.gz. "
                f"Manual download instructions: {self._manual_download_instructions}"
            )
        else:
            data_path = (
                dl_manager.extract(data_path)
                if not os.path.isdir(data_path)
                else data_path
            )
        return data_path  # type: ignore

    def _split_generators(self, dl_manager: ds.DownloadManager):
        urls = _URLS[self.config.name]
        image_dirs = dl_manager.download_and_extract(urls["images"])  # type: ignore

        if dl_manager.download_config.token:
            data_path = self._download_annotation_from_hf(dl_manager)
        else:
            data_path = self._download_annotation_from_local(dl_manager)

        assert isinstance(data_path, str)
        ann_dir = os.path.join(data_path, "annotations")

        if self.config.name == "COCO":
            return self._split_generators_coco(
                ann_dir=ann_dir,
                image_dirs=image_dirs,  # type: ignore
            )
        elif self.config.name == "BSDS":
            return self._split_generators_bsds(
                ann_dir=ann_dir,
                image_dir=image_dirs,  # type: ignore
            )
        else:
            raise ValueError(f"Invalid name: {self.config.name}")

    def _generate_examples(
        self,
        split: str,
        base_image_dir: str,
        amodal_annotation_path: str,
    ):
        if self.config.name == "COCO":
            image_dir = os.path.join(base_image_dir, f"{split}2014")
        elif self.config.name == "BSDS":
            image_dir = base_image_dir
        else:
            raise ValueError(f"Invalid task: {self.config.name}")

        ann_json = self.load_amodal_annotation(amodal_annotation_path)

        images = _load_images_data(
            image_dicts=ann_json["images"],
            dataset_name=self.config.name,
        )
        annotations = _load_cocoa_data(
            ann_dicts=ann_json["annotations"],
            images=images,
            decode_rle=self.config.decode_rle,  # type: ignore
        )

        for idx, image_id in enumerate(images.keys()):
            image_data = images[image_id]
            image_anns = annotations[image_id]

            if len(image_anns) < 1:
                # The original COCO and BSDS datasets may not have amodal annotations.
                continue

            image = _load_image(
                image_path=os.path.join(image_dir, image_data.file_name)
            )
            example = asdict(image_data)
            example["image"] = image
            example["annotations"] = []
            for ann in image_anns:
                ann_dict = asdict(ann)
                example["annotations"].append(ann_dict)

            yield idx, example