Datasets:
shibing624
commited on
Commit
·
3ecf529
1
Parent(s):
c273d21
Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,130 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- shibing624
|
4 |
+
language_creators:
|
5 |
+
- shibing624
|
6 |
+
language:
|
7 |
+
- zh
|
8 |
+
license:
|
9 |
+
- cc-by-4.0
|
10 |
+
multilinguality:
|
11 |
+
- zh
|
12 |
+
size_categories:
|
13 |
+
- 100K<n<20M
|
14 |
+
source_datasets:
|
15 |
+
- https://www.biendata.xyz/competition/sohu_2021/data/
|
16 |
+
task_categories:
|
17 |
+
- text-classification
|
18 |
+
- Sentence-Similarity
|
19 |
+
task_ids:
|
20 |
+
- natural-language-inference
|
21 |
+
- semantic-similarity-scoring
|
22 |
+
- text-scoring
|
23 |
+
paperswithcode_id: sts
|
24 |
+
pretty_name: Sentence Text Similarity SOHU2021
|
25 |
---
|
26 |
+
# Dataset Card for NLI_zh
|
27 |
+
|
28 |
+
## Dataset Description
|
29 |
+
- **Repository:** [Chinese NLI dataset](https://github.com/shibing624/text2vec)
|
30 |
+
- **Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec) (located on the homepage)
|
31 |
+
- **Size of downloaded dataset files:** 218 MB
|
32 |
+
- **Total amount of disk used:** 218 MB
|
33 |
+
### Dataset Summary
|
34 |
+
|
35 |
+
2021搜狐校园文本匹配算法大赛数据集
|
36 |
+
|
37 |
+
- 数据源:https://www.biendata.xyz/competition/sohu_2021/data/
|
38 |
+
|
39 |
+
分为 A 和 B 两个文件,A 和 B 文件匹配标准不一样。其中 A 和 B 文件又分为“短短文本匹配”、“短长文本匹配”和“长长文本匹配”。
|
40 |
+
A 文件匹配标准较为宽泛,两段文字是同一个话题便视为匹配,B 文件匹配标准较为严格,两段文字须是同一个事件才视为匹配。
|
41 |
+
|
42 |
+
|
43 |
+
数据类型:
|
44 |
+
|
45 |
+
|
46 |
+
| type | 数据类型 |
|
47 |
+
| --- | ------------|
|
48 |
+
| dda | 短短匹配 A 类 |
|
49 |
+
| ddb | 短短匹配 B 类 |
|
50 |
+
| dca | 短长匹配 A 类 |
|
51 |
+
| dcb | 短长匹配 B 类 |
|
52 |
+
| cca | 长长匹配 A 类 |
|
53 |
+
| ccb | 长长匹配 B 类 |
|
54 |
+
|
55 |
+
### Supported Tasks and Leaderboards
|
56 |
+
|
57 |
+
Supported Tasks: 支持中文文本匹配任务,文本相似度计算等相关任务。
|
58 |
+
|
59 |
+
中文匹配任务的结果目前在顶会paper上出现较少,我罗列一个我自己训练的结果:
|
60 |
+
|
61 |
+
**Leaderboard:** [NLI_zh leaderboard](https://github.com/shibing624/text2vec)
|
62 |
+
|
63 |
+
### Languages
|
64 |
+
|
65 |
+
数据集均是简体中文文本。
|
66 |
+
|
67 |
+
## Dataset Structure
|
68 |
+
### Data Instances
|
69 |
+
An example of 'train' looks as follows.
|
70 |
+
```python
|
71 |
+
# A 类 短短 样本示例
|
72 |
+
{
|
73 |
+
"sentence1": "小艺的故事让爱回家2021年2月16日大年初五19:30带上你最亲爱的人与团团君相约《小艺的故事》直播间!",
|
74 |
+
"sentence2": "香港代购了不起啊,宋点卷竟然在直播间“炫富”起来",
|
75 |
+
"label": 0
|
76 |
+
}
|
77 |
+
|
78 |
+
# B 类 短短 样本示例
|
79 |
+
{
|
80 |
+
"sentence1": "让很多网友好奇的是,张柏芝在一小时后也在社交平台发文:“给大家拜年啦。”还有网友猜测:谢霆锋的经纪人发文,张柏芝也发文,并且配图,似乎都在证实,谢霆锋依旧和王菲在一起,而张柏芝也有了新的恋人,并且生了孩子,两人也找到了各自的归宿,有了自己的幸福生活,让传言不攻自破。",
|
81 |
+
"sentence2": "陈晓东谈旧爱张柏芝,一个口误暴露她的秘密,难怪谢霆锋会离开她",
|
82 |
+
"label": 0
|
83 |
+
}
|
84 |
+
```
|
85 |
+
|
86 |
+
label: 0表示不匹配,1表示匹配。
|
87 |
+
|
88 |
+
### Data Fields
|
89 |
+
The data fields are the same among all splits.
|
90 |
+
|
91 |
+
- `sentence1`: a `string` feature.
|
92 |
+
- `sentence2`: a `string` feature.
|
93 |
+
- `label`: a classification label, with possible values including `similarity` (1), `dissimilarity` (0).
|
94 |
+
|
95 |
+
### Data Splits
|
96 |
+
|
97 |
+
|
98 |
+
```shell
|
99 |
+
> wc -l *.jsonl
|
100 |
+
11690 cca.jsonl
|
101 |
+
11690 ccb.jsonl
|
102 |
+
11592 dca.jsonl
|
103 |
+
11593 dcb.jsonl
|
104 |
+
11512 dda.jsonl
|
105 |
+
11501 ddb.jsonl
|
106 |
+
69578 total
|
107 |
+
```
|
108 |
+
|
109 |
+
### Curation Rationale
|
110 |
+
作为中文NLI(natural langauge inference)数据集,这里把这个数据集上传到huggingface的datasets,方便大家使用。
|
111 |
+
|
112 |
+
#### Who are the source language producers?
|
113 |
+
数据集的版权归原作者所有,使用各数据集时请尊重原数据集的版权。
|
114 |
+
|
115 |
+
#### Who are the annotators?
|
116 |
+
原作者。
|
117 |
+
|
118 |
+
### Social Impact of Dataset
|
119 |
+
This dataset was developed as a benchmark for evaluating representational systems for text, especially including those induced by representation learning methods, in the task of predicting truth conditions in a given context.
|
120 |
+
|
121 |
+
Systems that are successful at such a task may be more successful in modeling semantic representations.
|
122 |
+
|
123 |
+
### Licensing Information
|
124 |
+
|
125 |
+
用于学术研究。
|
126 |
+
|
127 |
+
|
128 |
+
### Contributions
|
129 |
+
|
130 |
+
[shibing624](https://github.com/shibing624) upload this dataset.
|