File size: 4,783 Bytes
1713963
b826854
1e4be92
 
 
b826854
 
 
 
 
bcf02f8
b826854
 
 
 
 
 
1713963
674282f
 
 
 
 
 
 
 
 
 
 
 
 
1713963
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1e4be92
 
 
 
 
 
 
 
 
 
dcd9ad6
 
 
 
57d7b84
 
 
 
 
 
 
 
 
 
 
 
 
 
1713963
674282f
 
 
 
1713963
 
 
 
1e4be92
 
 
 
57d7b84
 
 
 
1713963
b826854
 
 
451a485
b826854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf02f8
 
25c79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bcf02f8
 
 
 
 
 
 
 
 
 
 
 
25c79fe
b826854
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
annotations_creators:
- expert-generated
language_creators:
- found
language:
- en
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
task_categories:
- feature-extraction
- sentence-similarity
pretty_name: Quora Duplicate Questions
tags:
- sentence-transformers
dataset_info:
- config_name: pair
  features:
  - name: anchor
    dtype: string
  - name: positive
    dtype: string
  splits:
  - name: train
    num_bytes: 19063882.986566573
    num_examples: 149263
  download_size: 10710908
  dataset_size: 19063882.986566573
- config_name: pair-class
  features:
  - name: sentence1
    dtype: string
  - name: sentence2
    dtype: string
  - name: label
    dtype:
      class_label:
        names:
          '0': different
          '1': duplicate
  splits:
  - name: train
    num_bytes: 54870273
    num_examples: 404290
  download_size: 34965546
  dataset_size: 54870273
- config_name: triplet
  features:
  - name: anchor
    dtype: string
  - name: positive
    dtype: string
  - name: negative
    dtype: string
  splits:
  - name: train
    num_bytes: 17575186
    num_examples: 101762
  download_size: 10954551
  dataset_size: 17575186
- config_name: triplet-all
  features:
  - name: anchor
    dtype: string
  - name: positive
    dtype: string
  - name: negative
    dtype: string
  splits:
  - name: train
    num_bytes: 483971801
    num_examples: 2792280
  download_size: 104682424
  dataset_size: 483971801
configs:
- config_name: pair
  data_files:
  - split: train
    path: pair/train-*
- config_name: pair-class
  data_files:
  - split: train
    path: pair-class/train-*
- config_name: triplet
  data_files:
  - split: train
    path: triplet/train-*
- config_name: triplet-all
  data_files:
  - split: train
    path: triplet-all/train-*
---

# Dataset Card for Quora Duplicate Questions

This dataset contains the [Quora](https://huggingface.co./datasets/quora) Question Pairs dataset in four formats that are easily used with Sentence Transformers to train embedding models. The data was originally created by Quora for [this Kaggle Competition](https://www.kaggle.com/c/quora-question-pairs).

## Dataset Subsets

### `pair-class` subset

* Columns: "sentence1", "sentence2", "label"
* Column types: `str`, `str`, `class` with `{"0": "different", "1": "duplicate"}`
* Examples:
    ```python
    {
      'sentence1': 'What is the step by step guide to invest in share market in india?',
      'sentence2': 'What is the step by step guide to invest in share market?',
      'label': 0,
    }
   ```
* Collection strategy: A direct copy of [Quora](https://huggingface.co./datasets/quora), but with more conveniently parsable columns.
* Deduplified: No

### `pair` subset

* Columns: "anchor", "positive"
* Column types: `str`, `str`
* Examples:
    ```python
    {
      'anchor': 'Astrology: I am a Capricorn Sun Cap moon and cap rising...what does that say about me?',
      'positive': "I'm a triple Capricorn (Sun, Moon and ascendant in Capricorn) What does this say about me?",
    }
    ```
* Collection strategy: Filtering away the "different" options from the `pair-class` subset, removing the label column, and renaming the columns.
* Deduplified: No

### `triplet-all` subset

* Columns: "anchor", "positive", "negative"
* Column types: `str`, `str`, `str`
* Examples:
    ```python
    {
      'anchor': 'Why in India do we not have one on one political debate as in USA?",
      'positive': 'Why cant we have a public debate between politicians in India like the one in US?',
      'negative': 'Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?',
    }
    ```
* Collection strategy: Taken from [embedding-training-data](https://huggingface.co./datasets/sentence-transformers/embedding-training-data), which states: "Duplicate question pairs from Quora with additional hard negatives (mined & denoised by cross-encoder)". Then, take all possible triplet pairs.
* Deduplified: No

### `triplet` subset

* Columns: "anchor", "positive", "negative"
* Column types: `str`, `str`, `str`
* Examples:
    ```python
    {
      'anchor': 'Why in India do we not have one on one political debate as in USA?",
      'positive': 'Why cant we have a public debate between politicians in India like the one in US?',
      'negative': 'Can people on Quora stop India Pakistan debate? We are sick and tired seeing this everyday in bulk?',
    }
    ```
* Collection strategy: Taken from [embedding-training-data](https://huggingface.co./datasets/sentence-transformers/embedding-training-data), which states: "Duplicate question pairs from Quora with additional hard negatives (mined & denoised by cross-encoder)". Then, take the anchor, positive and the first negative of each sample.
* Deduplified: No