tomaarsen HF staff commited on
Commit
92d8df5
·
verified ·
1 Parent(s): 568180c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -1
README.md CHANGED
@@ -1,4 +1,8 @@
1
  ---
 
 
 
 
2
  dataset_info:
3
  - config_name: pair
4
  features:
@@ -25,7 +29,12 @@ dataset_info:
25
  - name: hypothesis
26
  dtype: string
27
  - name: label
28
- dtype: int64
 
 
 
 
 
29
  splits:
30
  - name: train
31
  num_bytes: 138755142
@@ -115,4 +124,61 @@ configs:
115
  path: triplet/dev-*
116
  - split: test
117
  path: triplet/test-*
 
 
 
 
 
 
118
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ multilinguality:
5
+ - monolingual
6
  dataset_info:
7
  - config_name: pair
8
  features:
 
29
  - name: hypothesis
30
  dtype: string
31
  - name: label
32
+ dtype:
33
+ class_label:
34
+ names:
35
+ '0': entailment
36
+ '1': neutral
37
+ '2': contradiction
38
  splits:
39
  - name: train
40
  num_bytes: 138755142
 
124
  path: triplet/dev-*
125
  - split: test
126
  path: triplet/test-*
127
+ task_categories:
128
+ - feature-extraction
129
+ - sentence-similarity
130
+ pretty_name: AllNLI
131
+ size_categories:
132
+ - 1M<n<10M
133
  ---
134
+
135
+ # Dataset Card for AllNLI
136
+
137
+ This dataset is a concatenation of the [SNLI](https://huggingface.co/datasets/stanfordnlp/snli) and [MultiNLI](https://huggingface.co/datasets/nyu-mll/multi_nli) datasets.
138
+ Despite originally being intended for Natural Language Inference (NLI), this dataset can be used for training/finetuning an embedding model for semantic textual similarity.
139
+
140
+ ## Dataset Subsets
141
+
142
+ ### `pair-class` subset
143
+
144
+ * Columns: "premise", "hypothesis", "label"
145
+ * Column types: `str`, `str`, `class` with {"0": "entailment", "1": "neutral", "2", "contradiction"}
146
+ * Examples:
147
+ ```python
148
+ {'premise': 'A person on a horse jumps over a broken down airplane.', 'hypothesis': 'A person is training his horse for a competition.', 'label': 1}
149
+ ```
150
+ * Collection strategy: Reading the premise, hypothesis and integer label from SNLI & MultiNLI datasets.
151
+ * Deduplified: Yes
152
+
153
+ ### `pair-score` subset
154
+
155
+ * Columns: "sentence_1", "sentence_2", "label"
156
+ * Column types: `str`, `str`, `float`
157
+ * Examples:
158
+ ```python
159
+ {'premise': 'A person on a horse jumps over a broken down airplane.', 'hypothesis': 'A person is training his horse for a competition.', 'label': 1.0}
160
+ ```
161
+ * Collection strategy: Taking the `pair-class` subset and remapping "entailment", "neutral" and "contradiction" to 1.0, 0.5 and 0.0, respectively.
162
+ * Deduplified: Yes
163
+
164
+ ### `pair` subset
165
+
166
+ * Columns: "anchor", "positive"
167
+ * Column types: `str`, `str`
168
+ * Examples:
169
+ ```python
170
+ {'anchor': 'A person on a horse jumps over a broken down airplane.', 'positive': 'A person is training his horse for a competition.'}
171
+ ```
172
+ * Collection strategy: Reading the SNLI & MultiNLI datasets and considering the "premise" as the "anchor" and the "hypothesis" as the "positive" if the label is "entailment". The reverse ("entailment" as "anchor" and "premise" as "positive") is not included.
173
+ * Deduplified: Yes
174
+
175
+ ### `triplet` subset
176
+
177
+ * Columns: "anchor", "positive", "negative"
178
+ * Column types: `str`, `str`, `str`
179
+ * Examples:
180
+ ```python
181
+ {'anchor': 'A person on a horse jumps over a broken down airplane.', 'positive': 'A person is outdoors, on a horse.', 'negative': 'A person is at a diner, ordering an omelette.'}
182
+ ```
183
+ * Collection strategy: Reading the SNLI & MultiNLI datasets, for each "premise" making a list of entailing and contradictory sentences using the dataset labels. Then, considering all possible triplets out of these entailing and contradictory lists. The reverse ("entailment" as "anchor" and "premise" as "positive") is also included.
184
+ * Deduplified: Yes