complexity
int64 1
56
| n_identifiers
int64 1
114
| code
stringlengths 19
12.7k
| path
stringlengths 8
134
| n_ast_nodes
int64 12
2.35k
| ast_errors
stringlengths 0
4.01k
| repo
stringlengths 3
28
| documentation
dict | n_words
int64 2
866
| language
stringclasses 1
value | vocab_size
int64 2
323
| commit_id
stringlengths 40
40
| file_name
stringlengths 5
79
| id
int64 243
338k
| nloc
int64 1
228
| token_counts
int64 5
1.4k
| fun_name
stringlengths 1
77
| url
stringlengths 31
60
| commit_message
stringlengths 3
15.3k
| n_whitespaces
int64 1
3.23k
| n_ast_errors
int64 0
20
| d_id
int64 74
121k
| ast_levels
int64 4
29
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | def dodecahedral_graph(create_using=None):
G = LCF_graph(20, [10, 7, 4, -4, -7, 10, -4, 7, -7, 4], 2, create_using)
G.name = "Dodecahedral Graph"
return G
| networkx/generators/small.py | 74 | networkx | {
"docstring": "\n Returns the Platonic Dodecahedral graph.\n\n The dodecahedral graph has 20 nodes and 30 edges. The skeleton of the\n dodecahedron forms a graph. It is one of 5 Platonic graphs [1]_.\n It can be described in LCF notation as:\n ``[10, 7, 4, -4, -7, 10, -4, 7, -7, 4]^2`` [2]_.\n\n Parameters\n ----------\n create_using : NetworkX graph constructor, optional (default=nx.Graph)\n Graph type to create. If graph instance, then cleared before populated.\n\n Returns\n -------\n G : networkx Graph\n Dodecahedral Graph with 20 nodes and 30 edges\n\n References\n ----------\n .. [1] https://en.wikipedia.org/wiki/Regular_dodecahedron#Dodecahedral_graph\n .. [2] https://mathworld.wolfram.com/DodecahedralGraph.html\n\n ",
"language": "en",
"n_whitespaces": 153,
"n_words": 91,
"vocab_size": 69
} | 23 | Python | 18 | dec723f072eb997a497a159dbe8674cd39999ee9 | small.py | 176,163 | 4 | 51 | dodecahedral_graph | https://github.com/networkx/networkx.git | Docstrings for the small.py module (#5240)
* added description for the first 5 small graphs
* modified descriptions based on comment and added description for two more functions
* added doctrings to all the functions
* Minor touchups.
Co-authored-by: Ross Barnowski <[email protected]> | 35 | 0 | 41,733 | 10 |
|
1 | 4 | def as_integer_ratio(self):
return (self._numerator, self._denominator)
| python3.10.4/Lib/fractions.py | 27 | XX-Net | {
"docstring": "Return the integer ratio as a tuple.\n\n Return a tuple of two integers, whose ratio is equal to the\n Fraction and with a positive denominator.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 25,
"vocab_size": 20
} | 5 | Python | 5 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | fractions.py | 217,396 | 2 | 16 | as_integer_ratio | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 19 | 0 | 54,748 | 7 |
|
5 | 25 | def get_iso_3166_2_state_code(address):
import pycountry
country_code = frappe.db.get_value("Country", address.get("country"), "code")
error_message = _(
).format(address.get("state"))
state = address.get("state").upper().strip()
# The max length for ISO state codes is 3, excluding the country code
if len(state) <= 3:
# PyCountry returns state code as {country_code}-{state-code} (e.g. US-FL)
address_state = (country_code + "-" + state).upper()
states = pycountry.subdivisions.get(country_code=country_code.upper())
states = [pystate.code for pystate in states]
if address_state in states:
return state
frappe.throw(_(error_message))
else:
try:
lookup_state = pycountry.subdivisions.lookup(state)
except LookupError:
frappe.throw(_(error_message))
else:
return lookup_state.code.split("-")[1]
| erpnext/erpnext_integrations/taxjar_integration.py | 280 | erpnext | {
"docstring": "{0} is not a valid state! Check for typos or enter the ISO code for your state.",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 16
} | 78 | Python | 58 | 494bd9ef78313436f0424b918f200dab8fc7c20b | taxjar_integration.py | 66,028 | 21 | 162 | get_iso_3166_2_state_code | https://github.com/frappe/erpnext.git | style: format code with black | 56 | 0 | 14,090 | 15 |
|
1 | 4 | def snapshot(self):
self._prechange_snapshot = self.serialize_object()
| netbox/netbox/models/features.py | 28 | netbox | {
"docstring": "\n Save a snapshot of the object's current state in preparation for modification. The snapshot is saved as\n `_prechange_snapshot` on the instance.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 21,
"vocab_size": 19
} | 5 | Python | 5 | 23f391c5b59d5e01321cf5b83e5337c45f9a09ac | features.py | 265,277 | 2 | 15 | snapshot | https://github.com/netbox-community/netbox.git | Closes #9228: Add serialize_object() method to ChangeLoggingMixin | 19 | 0 | 78,058 | 8 |
|
4 | 41 | def test_sub_dag_task_group():
execution_date = pendulum.parse("20200101")
with DAG("test_test_task_group_sub_dag", start_date=execution_date) as dag:
task1 = EmptyOperator(task_id="task1")
with TaskGroup("group234") as group234:
_ = EmptyOperator(task_id="task2")
with TaskGroup("group34") as group34:
_ = EmptyOperator(task_id="task3")
_ = EmptyOperator(task_id="task4")
with TaskGroup("group6") as group6:
_ = EmptyOperator(task_id="task6")
task7 = EmptyOperator(task_id="task7")
task5 = EmptyOperator(task_id="task5")
task1 >> group234
group34 >> task5
group234 >> group6
group234 >> task7
subdag = dag.partial_subset(task_ids_or_regex="task5", include_upstream=True, include_downstream=False)
assert extract_node_id(task_group_to_dict(subdag.task_group)) == {
'id': None,
'children': [
{
'id': 'group234',
'children': [
{
'id': 'group234.group34',
'children': [
{'id': 'group234.group34.task3'},
{'id': 'group234.group34.task4'},
{'id': 'group234.group34.downstream_join_id'},
],
},
{'id': 'group234.upstream_join_id'},
],
},
{'id': 'task1'},
{'id': 'task5'},
],
}
edges = dag_edges(subdag)
assert sorted((e["source_id"], e["target_id"]) for e in edges) == [
('group234.group34.downstream_join_id', 'task5'),
('group234.group34.task3', 'group234.group34.downstream_join_id'),
('group234.group34.task4', 'group234.group34.downstream_join_id'),
('group234.upstream_join_id', 'group234.group34.task3'),
('group234.upstream_join_id', 'group234.group34.task4'),
('task1', 'group234.upstream_join_id'),
]
subdag_task_groups = subdag.task_group.get_task_group_dict()
assert subdag_task_groups.keys() == {None, "group234", "group234.group34"}
included_group_ids = {"group234", "group234.group34"}
included_task_ids = {'group234.group34.task3', 'group234.group34.task4', 'task1', 'task5'}
for task_group in subdag_task_groups.values():
assert task_group.upstream_group_ids.issubset(included_group_ids)
assert task_group.downstream_group_ids.issubset(included_group_ids)
assert task_group.upstream_task_ids.issubset(included_task_ids)
assert task_group.downstream_task_ids.issubset(included_task_ids)
for task in subdag.task_group:
assert task.upstream_task_ids.issubset(included_task_ids)
assert task.downstream_task_ids.issubset(included_task_ids)
| tests/utils/test_task_group.py | 704 | airflow | {
"docstring": "\n Tests dag.partial_subset() updates task_group correctly.\n ",
"language": "en",
"n_whitespaces": 12,
"n_words": 5,
"vocab_size": 5
} | 160 | Python | 97 | 49e336ae0302b386a2f47269a6d13988382d975f | test_task_group.py | 47,692 | 60 | 396 | test_sub_dag_task_group | https://github.com/apache/airflow.git | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | 732 | 0 | 9,214 | 18 |
|
1 | 13 | def test_app_with_import(self):
| tests/admin_scripts/tests.py | 28 | """manage.py check does noterrors when an app imports a | django | {
"docstring": "manage.py check does not raise errors when an app imports a base",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | 2 | Python | 2 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 207,392 | 15 | 63 | test_app_with_import | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 9 | 2 | 51,948 | 6 |
1 | 9 | def normalize_sort(self, names, os_sep, character):
names.sort(key=lambda item: item.replace(os_sep, character))
| awscli/customizations/s3/filegenerator.py | 47 | aws-cli | {
"docstring": "\n The purpose of this function is to ensure that the same path separator\n is used when sorting. In windows, the path operator is a backslash as\n opposed to a forward slash which can lead to differences in sorting\n between s3 and a windows machine.\n ",
"language": "en",
"n_whitespaces": 81,
"n_words": 44,
"vocab_size": 36
} | 9 | Python | 9 | 08542a0ad75642b52eebf15b3e052e3387904b05 | filegenerator.py | 189,207 | 2 | 30 | normalize_sort | https://github.com/aws/aws-cli.git | Fix a few typos | 23 | 0 | 46,015 | 11 |
|
2 | 14 | def _load_module_shim(self, fullname):
msg = ("the load_module() method is deprecated and slated for removal in "
"Python 3.12; use exec_module() instead")
_warnings.warn(msg, DeprecationWarning)
spec = spec_from_loader(fullname, self)
if fullname in sys.modules:
module = sys.modules[fullname]
_exec(spec, module)
return sys.modules[fullname]
else:
return _load(spec)
# Module specifications #######################################################
| python3.10.4/Lib/importlib/_bootstrap.py | 108 | XX-Net | {
"docstring": "Load the specified module into sys.modules and return it.\n\n This method is deprecated. Use loader.exec_module() instead.\n\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 16,
"vocab_size": 16
} | 45 | Python | 40 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _bootstrap.py | 218,069 | 11 | 65 | _load_module_shim | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 99 | 0 | 55,111 | 10 |
|
2 | 20 | def get_ext_fullpath(self, ext_name):
fullname = self.get_ext_fullname(ext_name)
modpath = fullname.split('.')
filename = self.get_ext_filename(modpath[-1])
if not self.inplace:
# no further work needed
# returning :
# build_dir/package/path/filename
filename = os.path.join(*modpath[:-1]+[filename])
return os.path.join(self.build_lib, filename)
# the inplace option requires to find the package directory
# using the build_py command for that
package = '.'.join(modpath[0:-1])
build_py = self.get_finalized_command('build_py')
package_dir = os.path.abspath(build_py.get_package_dir(package))
# returning
# package_dir/filename
return os.path.join(package_dir, filename)
| python3.10.4/Lib/distutils/command/build_ext.py | 209 | XX-Net | {
"docstring": "Returns the path of the filename for a given extension.\n\n The file is located in `build_lib` or directly in the package\n (inplace option).\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 23,
"vocab_size": 20
} | 64 | Python | 44 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | build_ext.py | 222,679 | 11 | 123 | get_ext_fullpath | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 214 | 0 | 56,693 | 15 |
|
2 | 8 | def check_idle(self):
if self._message_queue.empty():
self.post_message_no_wait(messages.Prompt(sender=self))
| src/textual/message_pump.py | 49 | textual | {
"docstring": "Prompt the message pump to call idle if the queue is empty.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | 5 | Python | 5 | 237c556673f058a60aa59f441a8bbb7c953be55f | message_pump.py | 182,485 | 3 | 28 | check_idle | https://github.com/Textualize/textual.git | refactor of compositor | 30 | 0 | 43,842 | 12 |
|
2 | 10 | def flush(self) -> None:
self._connected = True
for info in self._cache:
self.show(**dataclasses.asdict(info))
self._cache = []
global_bridge = GlobalMessageBridge()
| qutebrowser/utils/message.py | 73 | qutebrowser | {
"docstring": "Flush messages which accumulated while no handler was connected.\n\n This is so we don't miss messages shown during some early init phase.\n It needs to be called once the show_message signal is connected.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 33,
"vocab_size": 30
} | 18 | Python | 16 | 5616a99eff34f7074641d1391ed77d6b4b743529 | message.py | 320,923 | 10 | 38 | flush | https://github.com/qutebrowser/qutebrowser.git | Add a MessageInfo data class
Preparation for #7246 | 56 | 0 | 117,438 | 12 |
|
1 | 5 | def default_params(self) -> dict:
return {"order": "asc", "sort": self.sort_key, "limit": self.limit}
| airbyte-integrations/connectors/source-recurly/source_recurly/streams.py | 49 | airbyte | {
"docstring": "\n Returns the parameters to be sent together with the API call to Recurly\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 11
} | 11 | Python | 11 | 63af98e3b999d4b223237b51472a819915c5a558 | streams.py | 4,171 | 5 | 26 | default_params | https://github.com/airbytehq/airbyte.git | 🎉 Recurly Schema Revamp (#9866)
* Cleanup Recurly connector schemas
* Add more Recurly schemas to the connector
- `billing_infos`
- `shipping_addresses`
- `shipping_methods`
- `subscription_changes`
* Add Recurly `add-on` resouce
* Add Recurly's account notes resource schema
* Add unique coupons to Recurly source
* Add credit payments to Recurly connector
* Add Recurly resources to integration tests configurations
* Bump Recurly source version to `0.4.0`
* Add `line_items` Recurly resource
* Add `line_items` to Recurly documentation
* Add missing `line_items` JSON schema
* Replace Subscription Change Recurly API call with Subscription `pending_changes` field
* Replace Recurly unique coupon codes API call with coupons `unique_coupon` field
To avoid the extra API call to import unique coupon calls
* Revert "Replace Recurly unique coupon codes API call with coupons `unique_coupon` field"
This reverts commit 1c4592d82da3c5e5e0026dda8eb2ed7a896ac5b8.
* Add `end_time` parameter to Recurly connector
* Order Recurly specs
* Set the Recurly `begin_time` and `end_time` to be optional
* Add `order` to Recurly `source_spec.yaml`
* Add `maxLength` to Recurly source schemas
* Set `maxLength` for Recurly Subscription and Transaction `uuid`
* Fix Recurly `export_dates` acceptance tests | 25 | 0 | 628 | 8 |
|
2 | 16 | def query_task(doctype, txt, searchfield, start, page_len, filters):
from frappe.desk.reportview import build_match_conditions
search_string = "%%%s%%" % txt
order_by_string = "%s%%" % txt
match_conditions = build_match_conditions("Task")
match_conditions = ("and" + match_conditions) if match_conditions else ""
return frappe.db.sql(
% (searchfield, "%s", "%s", match_conditions, "%s", searchfield, "%s", searchfield, "%s", "%s"),
(search_string, search_string, order_by_string, order_by_string, page_len, start),
)
| erpnext/projects/utils.py | 150 | erpnext | {
"docstring": "select name, subject from `tabTask`\n\t\twhere (`%s` like %s or `subject` like %s) %s\n\t\torder by\n\t\t\tcase when `subject` like %s then 0 else 1 end,\n\t\t\tcase when `%s` like %s then 0 else 1 end,\n\t\t\t`%s`,\n\t\t\tsubject\n\t\tlimit %s offset %s",
"language": "en",
"n_whitespaces": 34,
"n_words": 42,
"vocab_size": 25
} | 53 | Python | 37 | 00ef499739959630cd7cf97419fbb6ca59be05f2 | utils.py | 68,806 | 18 | 96 | query_task | https://github.com/frappe/erpnext.git | refactor: use db independent offset syntax (#31345)
* chore: use db independent offset syntax
* fix: typo
* style: reformat code to black spec
Co-authored-by: Ankush Menat <[email protected]> | 43 | 0 | 14,887 | 10 |
|
2 | 9 | def write(self, pkt): # type: ignore
# type: (_PacketIterable) -> None
# Import here to avoid circular dependency
from scapy.supersocket import IterSocket
for p in IterSocket(pkt).iter:
self.write_packet(p)
| scapy/utils.py | 52 | scapy | {
"docstring": "\n Writes a Packet, a SndRcvList object, or bytes to a ERF file.\n\n :param pkt: Packet(s) to write (one record for each Packet)\n :type pkt: iterable[scapy.packet.Packet], scapy.packet.Packet\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 26,
"vocab_size": 22
} | 27 | Python | 24 | 3df072ecb66b53251f8ec66b0bf7129a649166ae | utils.py | 209,104 | 4 | 30 | write | https://github.com/secdev/scapy.git | Add ERF Ethernet Support | 74 | 0 | 52,606 | 9 |
|
1 | 15 | def info(self, pretty=False, best=False):
# type: (bool, bool) -> InfoDict
return dict(
id=self.id(),
version=self.version(pretty, best),
version_parts=dict(
major=self.major_version(best),
minor=self.minor_version(best),
build_number=self.build_number(best),
),
like=self.like(),
codename=self.codename(),
)
| pipenv/patched/notpip/_vendor/distro.py | 130 | pipenv | {
"docstring": "\n Return certain machine-readable information about the OS\n distribution.\n\n For details, see :func:`distro.info`.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 12,
"vocab_size": 12
} | 23 | Python | 23 | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | distro.py | 20,079 | 12 | 86 | info | https://github.com/pypa/pipenv.git | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 162 | 0 | 3,224 | 13 |
|
2 | 2 | def get_form(self):
| netbox/netbox/views/generic/bulk_views.py | 13 | netbox | {
"docstring": "\n Provide a standard bulk delete form if none has been specified for the view\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 14
} | 2 | Python | 2 | e03593d86f3082c19255ae24f39d1ed860a04c4d | bulk_views.py | 264,315 | 6 | 37 | get_form | https://github.com/netbox-community/netbox.git | Move get_extra_context() to base views | 9 | 0 | 77,684 | 6 |
|
2 | 11 | def push(self, line):
self.buffer.append(line)
source = "\n".join(self.buffer)
more = self.runsource(source, self.filename)
if not more:
self.resetbuffer()
return more
| python3.10.4/Lib/code.py | 84 | XX-Net | {
"docstring": "Push a line to the interpreter.\n\n The line should not have a trailing newline; it may have\n internal newlines. The line is appended to a buffer and the\n interpreter's runsource() method is called with the\n concatenated contents of the buffer as source. If this\n indicates that the command was executed or invalid, the buffer\n is reset; otherwise, the command is incomplete, and the buffer\n is left as it was after the line was appended. The return\n value is 1 if more input is required, 0 if the line was dealt\n with in some way (this is the same as runsource()).\n\n ",
"language": "en",
"n_whitespaces": 173,
"n_words": 100,
"vocab_size": 60
} | 17 | Python | 15 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | code.py | 221,357 | 7 | 49 | push | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 70 | 0 | 56,372 | 9 |
|
1 | 3 | def _update_feature_log_prob(self, alpha):
| sklearn/naive_bayes.py | 15 | scikit-learn | {
"docstring": "Update feature log probabilities based on counts.\n\n This method is called each time `fit` or `partial_fit` update the\n model.\n\n Parameters\n ----------\n alpha : float\n smoothing parameter. See :meth:`_check_alpha`.\n ",
"language": "en",
"n_whitespaces": 81,
"n_words": 28,
"vocab_size": 28
} | 3 | Python | 3 | 1c94c0b0be3b9146aae41376f3f4ef3853e0ca97 | naive_bayes.py | 259,027 | 1 | 8 | _update_feature_log_prob | https://github.com/scikit-learn/scikit-learn.git | DOC Add abstract methods to _BaseDiscreteNB (#22596)
Co-authored-by: avm19 <[email protected]>
Co-authored-by: Thomas J. Fan <[email protected]>
Co-authored-by: Jérémie du Boisberranger <[email protected]> | 10 | 0 | 75,533 | 6 |
|
1 | 26 | def accuracy(rating_true, rating_pred):
with tf.compat.v1.name_scope("accuracy"):
# define and apply the mask
mask = tf.not_equal(rating_true, 0)
n_values = tf.reduce_sum(input_tensor=tf.cast(mask, "float32"), axis=1)
# Take the difference between the input data and the inferred ones. This value is zero whenever
# the two values coincides
vd = tf.compat.v1.where(
mask, x=tf.abs(tf.subtract(rating_true, rating_pred)), y=tf.ones_like(rating_true)
)
# correct values: find the location where rating_true = rating_pred
corr = tf.cast(tf.equal(vd, 0), "float32")
# evaluate accuracy
accuracy_score = tf.reduce_mean(
input_tensor=tf.compat.v1.div(
tf.reduce_sum(input_tensor=corr, axis=1), n_values
)
)
return accuracy_score
| recommenders/evaluation/tf_evaluation.py | 224 | recommenders | {
"docstring": "Accuracy\n\n Evaluates accuracy evaluated on the rated items only (rated items are the ones with non-zero ratings).\n\n :math:`accuracy = 1/m \\sum_{mu=1}^{m} \\sum{i=1}^Nv 1/s(i) I(rating_true - rating_pred = 0)_{mu,i}`\n\n where `m = Nusers`, `Nv = number of items = number of visible units` and `s(i)` is the number of non-zero elements\n per row.\n\n Args:\n rating_true (tf.Tensor, float32): True Data.\n rating_pred (tf.Tensor, float32): Predicted Data.\n\n Returns:\n tf.Tensor: accuracy.\n\n ",
"language": "en",
"n_whitespaces": 108,
"n_words": 66,
"vocab_size": 49
} | 79 | Python | 59 | e2abad62317180f0a2f9200f892320afff3a1dda | tf_evaluation.py | 39,008 | 14 | 139 | accuracy | https://github.com/microsoft/recommenders.git | added newlines | 220 | 0 | 7,074 | 16 |
|
4 | 13 | def density(w, **kwargs):
if kwargs:
warnings.warn(
"Additional keyword arguments are deprecated in version 1.2 and will be"
" removed in version 1.4.",
FutureWarning,
)
if hasattr(w, "toarray"):
d = float(w.nnz) / (w.shape[0] * w.shape[1])
else:
d = 0 if w is None else float((w != 0).sum()) / w.size
return d
| sklearn/utils/extmath.py | 135 | scikit-learn | {
"docstring": "Compute density of a sparse vector.\n\n Parameters\n ----------\n w : array-like\n The sparse vector.\n **kwargs : keyword arguments\n Ignored.\n\n .. deprecated:: 1.2\n ``**kwargs`` were deprecated in version 1.2 and will be removed in\n 1.4.\n\n Returns\n -------\n float\n The density of w, between 0 and 1.\n ",
"language": "en",
"n_whitespaces": 119,
"n_words": 45,
"vocab_size": 36
} | 50 | Python | 42 | 5d8a1994620713c2e4226fb8e40fef7e81af1103 | extmath.py | 261,230 | 12 | 82 | density | https://github.com/scikit-learn/scikit-learn.git | API Deprecate the extra keyword arguments of utils.extmath.density (#24523)
Co-authored-by: Meekail Zain <[email protected]>
Co-authored-by: Jérémie du Boisberranger <[email protected]> | 126 | 0 | 76,700 | 17 |
|
2 | 31 | def test_dataset(ray_start_4_cpus, use_local):
model_creator = mlp_identity.model_creator
optimizer_creator = mlp_identity.optimizer_creator
dataset_creator = mlp_identity.dataset_creator
DatasetOperator = TrainingOperator.from_creators(
model_creator=model_creator,
optimizer_creator=optimizer_creator,
loss_creator=nn.MSELoss,
)
trainer = TorchTrainer(
training_operator_cls=DatasetOperator,
use_local=use_local,
num_workers=2,
)
dataset = dataset_creator()
for i in range(5):
trainer.train(dataset=dataset, num_steps=100)
x = mlp_identity.to_mat(0.5)
prediction = float(trainer.get_model()(x)[0][0])
assert 0.4 <= prediction <= 0.6
trainer.shutdown()
@pytest.mark.parametrize("use_local", [True, False]) | python/ray/util/sgd/tests/test_torch_2.py | 216 | @pytest.mark.parametrize("use_local", [True, False]) | ray | {
"docstring": "\n This test tries training the mlp_identity example. We check the accuracy of\n the model as an all inclusive way of ensuring that we are properly sharding\n and iterating over the entire dataset (instead of repeating the first set\n of points for example).\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 42,
"vocab_size": 35
} | 51 | Python | 41 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | test_torch_2.py | 133,242 | 21 | 130 | test_dataset | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 141 | 1 | 29,963 | 13 |
1 | 11 | def test_export_pipeline_5():
pipeline_string = (
'DecisionTreeRegressor(SelectFromModel(input_matrix, '
'SelectFromModel__ExtraTreesRegressor__max_features=0.05, SelectFromModel__ExtraTreesRegressor__n_estimators=100, '
'SelectFromModel__threshold=0.05), DecisionTreeRegressor__max_depth=8,'
'DecisionTreeRegressor__min_samples_leaf=5, DecisionTreeRegressor__min_samples_split=5)'
)
pipeline = creator.Individual.from_string(pipeline_string, tpot_obj_reg._pset)
expected_code =
assert expected_code == export_pipeline(pipeline, tpot_obj_reg.operators, tpot_obj_reg._pset)
| tests/export_tests.py | 82 | tpot | {
"docstring": "Assert that exported_pipeline() generated a compile source file as expected given a fixed simple pipeline with SelectFromModel.import numpy as np\nimport pandas as pd\nfrom sklearn.ensemble import ExtraTreesRegressor\nfrom sklearn.feature_selection import SelectFromModel\nfrom sklearn.model_selection import train_test_split\nfrom sklearn.pipeline import make_pipeline\nfrom sklearn.tree import DecisionTreeRegressor\n\n# NOTE: Make sure that the outcome column is labeled 'target' in the data file\ntpot_data = pd.read_csv('PATH/TO/DATA/FILE', sep='COLUMN_SEPARATOR', dtype=np.float64)\nfeatures = tpot_data.drop('target', axis=1)\ntraining_features, testing_features, training_target, testing_target = \\\\\n train_test_split(features, tpot_data['target'], random_state=None)\n\nexported_pipeline = make_pipeline(\n SelectFromModel(estimator=ExtraTreesRegressor(max_features=0.05, n_estimators=100), threshold=0.05),\n DecisionTreeRegressor(max_depth=8, min_samples_leaf=5, min_samples_split=5)\n)\n\nexported_pipeline.fit(training_features, training_target)\nresults = exported_pipeline.predict(testing_features)\n",
"language": "en",
"n_whitespaces": 94,
"n_words": 92,
"vocab_size": 73
} | 27 | Python | 22 | 388616b6247ca4ea8de4e2f340d6206aee523541 | export_tests.py | 181,619 | 31 | 45 | test_export_pipeline_5 | https://github.com/EpistasisLab/tpot.git | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 74 | 0 | 43,407 | 9 |
|
1 | 11 | def get_party_gle_currency(party_type, party, company):
def generator():
existing_gle_currency = frappe.db.sql(
,
{"company": company, "party_type": party_type, "party": party},
)
return existing_gle_currency[0][0] if existing_gle_currency else None
return frappe.local_cache(
"party_gle_currency", (party_type, party, company), generator, regenerate_if_none=True
)
| erpnext/accounts/party.py | 109 | erpnext | {
"docstring": "select account_currency from `tabGL Entry`\n\t\t\twhere docstatus=1 and company=%(company)s and party_type=%(party_type)s and party=%(party)s\n\t\t\tlimit 1",
"language": "en",
"n_whitespaces": 12,
"n_words": 15,
"vocab_size": 13
} | 32 | Python | 27 | 494bd9ef78313436f0424b918f200dab8fc7c20b | party.py | 65,129 | 5 | 32 | get_party_gle_currency | https://github.com/frappe/erpnext.git | style: format code with black | 22 | 0 | 13,801 | 13 |
|
5 | 13 | def get_template(self, template_name, skip=None):
tried = []
for origin in self.get_template_sources(template_name):
if skip is not None and origin in skip:
tried.append((origin, "Skipped to avoid recursion"))
continue
try:
contents = self.get_contents(origin)
except TemplateDoesNotExist:
tried.append((origin, "Source does not exist"))
continue
else:
return Template(
contents,
origin,
origin.template_name,
self.engine,
)
raise TemplateDoesNotExist(template_name, tried=tried)
| django/template/loaders/base.py | 155 | django | {
"docstring": "\n Call self.get_template_sources() and return a Template object for\n the first template matching template_name. If skip is provided, ignore\n template origins in skip. This is used to avoid recursion during\n template extending.\n ",
"language": "en",
"n_whitespaces": 67,
"n_words": 31,
"vocab_size": 28
} | 49 | Python | 43 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | base.py | 206,293 | 19 | 98 | get_template | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 302 | 0 | 51,471 | 14 |
|
15 | 20 | def model_is_indexable(cls, model, allow_child_models=False):
if getattr(model, "wagtail_reference_index_ignore", False):
return False
# Don't check any models that have a parental key, references from these will be collected from the parent
if not allow_child_models and any(
[isinstance(field, ParentalKey) for field in model._meta.get_fields()]
):
return False
for field in model._meta.get_fields():
if field.is_relation and field.many_to_one:
if getattr(field, "wagtail_reference_index_ignore", False):
continue
if getattr(
field.related_model, "wagtail_reference_index_ignore", False
):
continue
if isinstance(field, (ParentalKey, GenericRel)):
continue
return True
if hasattr(field, "extract_references"):
return True
if issubclass(model, ClusterableModel):
for child_relation in get_all_child_relations(model):
if cls.model_is_indexable(
child_relation.related_model,
allow_child_models=True,
):
return True
return False
| wagtail/models/reference_index.py | 244 | wagtail | {
"docstring": "\n Returns True if the given model may have outbound references that we would be interested in recording in the index.\n\n\n Args:\n model (type): a Django model class\n allow_child_models (boolean): Child models are not indexable on their own. If you are looking at\n a child model from the perspective of indexing it through its parent,\n set this to True to disable checking for this. Default False.\n ",
"language": "en",
"n_whitespaces": 191,
"n_words": 65,
"vocab_size": 55
} | 91 | Python | 59 | c8689acb3724dc12fb09a0bfc14d7e4755a1ea0f | reference_index.py | 79,676 | 28 | 156 | model_is_indexable | https://github.com/wagtail/wagtail.git | Check field for .extract_references method instead of field type
Co-authored-by: Matt Westcott <[email protected]> | 466 | 0 | 16,955 | 13 |
|
1 | 4 | def is_connected(self) -> bool:
return self._device.is_connected
| homeassistant/components/asuswrt/device_tracker.py | 25 | core | {
"docstring": "Return true if the device is connected to the network.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | 6 | Python | 6 | bc2ba8e1c8c988ae24f6961ce64187782f5ba32d | device_tracker.py | 296,122 | 3 | 14 | is_connected | https://github.com/home-assistant/core.git | Add missing type declaration to AsusWrt Scanner Entity (#69773) | 20 | 0 | 95,126 | 7 |
|
1 | 24 | def test_get_conda_env_dir(tmp_path):
# Simulate starting in an env named tf1.
d = tmp_path / "envs" / "tf1"
Path.mkdir(d, parents=True)
with mock.patch.dict(
os.environ, {"CONDA_PREFIX": str(d), "CONDA_DEFAULT_ENV": "tf1"}
):
with pytest.raises(ValueError):
# Env tf2 should not exist.
env_dir = get_conda_env_dir("tf2")
tf2_dir = tmp_path / "envs" / "tf2"
Path.mkdir(tf2_dir, parents=True)
env_dir = get_conda_env_dir("tf2")
assert env_dir == str(tmp_path / "envs" / "tf2")
# Simulate starting in (base) conda env.
with mock.patch.dict(
os.environ, {"CONDA_PREFIX": str(tmp_path), "CONDA_DEFAULT_ENV": "base"}
):
with pytest.raises(ValueError):
# Env tf3 should not exist.
env_dir = get_conda_env_dir("tf3")
# Env tf2 still should exist.
env_dir = get_conda_env_dir("tf2")
assert env_dir == str(tmp_path / "envs" / "tf2")
@pytest.mark.skipif(
os.environ.get("CI") and sys.platform != "linux",
reason="This test is only run on linux CI machines.",
) | python/ray/tests/test_runtime_env_complicated.py | 335 | @pytest.mark.skipif(
os.environ.get("CI") and sys.platform != "linux",
reason="This test is only run on linux CI machines.",
) | ray | {
"docstring": "\n Typical output of `conda env list`, for context:\n\n base /Users/scaly/anaconda3\n my_env_1 /Users/scaly/anaconda3/envs/my_env_1\n\n For this test, `tmp_path` is a stand-in for `Users/scaly/anaconda3`.\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 21,
"vocab_size": 20
} | 117 | Python | 65 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | test_runtime_env_complicated.py | 131,824 | 19 | 152 | test_get_conda_env_dir | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 269 | 1 | 29,601 | 13 |
1 | 15 | def test_create_expiry_time(self) -> None:
# Should fail with a time in the past
channel = self.make_request(
"POST",
self.url + "/new",
{"expiry_time": self.clock.time_msec() - 10000},
access_token=self.admin_user_tok,
)
self.assertEqual(400, channel.code, msg=channel.json_body)
self.assertEqual(channel.json_body["errcode"], Codes.INVALID_PARAM)
# Should fail with float
channel = self.make_request(
"POST",
self.url + "/new",
{"expiry_time": self.clock.time_msec() + 1000000.5},
access_token=self.admin_user_tok,
)
self.assertEqual(400, channel.code, msg=channel.json_body)
self.assertEqual(channel.json_body["errcode"], Codes.INVALID_PARAM)
| tests/rest/admin/test_registration_tokens.py | 226 | synapse | {
"docstring": "Check you can't create a token with an invalid expiry_time.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 54 | Python | 33 | 2281427175e4c93a30c39607fb4ac23c2a1f399f | test_registration_tokens.py | 249,337 | 18 | 142 | test_create_expiry_time | https://github.com/matrix-org/synapse.git | Use literals in place of `HTTPStatus` constants in tests (#13488)
* Use literals in place of `HTTPStatus` constants in tests
* newsfile
* code style
* code style | 219 | 0 | 72,840 | 14 |
|
1 | 2 | def cli() -> None:
@cli.command() | scripts-dev/release.py | 26 | @cli.command() | synapse | {
"docstring": "An interactive script to walk through the parts of creating a release.\n\n Requires the dev dependencies be installed, which can be done via:\n\n pip install -e .[dev]\n\n Then to use:\n\n ./scripts-dev/release.py prepare\n\n # ... ask others to look at the changelog ...\n\n ./scripts-dev/release.py tag\n\n # ... wait for assets to build ...\n\n ./scripts-dev/release.py publish\n\n ./scripts-dev/release.py upload\n\n # Optional: generate some nice links for the announcement\n\n ./scripts-dev/release.py announce\n\n If the env var GH_TOKEN (or GITHUB_TOKEN) is set, or passed into the\n `tag`/`publish` command, then a new draft release will be created/published.\n ",
"language": "en",
"n_whitespaces": 168,
"n_words": 90,
"vocab_size": 69
} | 5 | Python | 5 | 30c8e7e408322967e5beb2a64ef5f796cb8df226 | release.py | 248,082 | 28 | 7 | cli | https://github.com/matrix-org/synapse.git | Make `scripts-dev` pass `mypy --disallow-untyped-defs` (#12356)
Not enforced in config yet. One day. | 7 | 1 | 72,090 | 6 |
5 | 12 | def add_update(self, updates):
call_context = base_layer_utils.call_context()
# No need to run updates during Functional API construction.
if call_context.in_keras_graph:
return
# Callable updates are disabled by setting `trainable=False`.
if not call_context.frozen:
for update in tf.nest.flatten(updates):
if callable(update):
update()
| keras/engine/base_layer.py | 83 | keras | {
"docstring": "Add update op(s), potentially dependent on layer inputs.\n\n Weight updates (for instance, the updates of the moving mean and\n variance in a BatchNormalization layer) may be dependent on the inputs\n passed when calling a layer. Hence, when reusing the same layer on\n different inputs `a` and `b`, some entries in `layer.updates` may be\n dependent on `a` and some on `b`. This method automatically keeps track\n of dependencies.\n\n This call is ignored when eager execution is enabled (in that case,\n variable updates are run on the fly and thus do not need to be tracked\n for later execution).\n\n Args:\n updates: Update op, or list/tuple of update ops, or zero-arg callable\n that returns an update op. A zero-arg callable should be passed in\n order to disable running the updates by setting `trainable=False`\n on this Layer, when executing in Eager mode.\n ",
"language": "en",
"n_whitespaces": 257,
"n_words": 138,
"vocab_size": 92
} | 37 | Python | 33 | 3613c3defc39c236fb1592c4f7ba1a9cc887343a | base_layer.py | 278,684 | 8 | 48 | add_update | https://github.com/keras-team/keras.git | Remove pylint comments.
PiperOrigin-RevId: 452353044 | 135 | 0 | 82,676 | 13 |
|
2 | 48 | def _add_option_iterations(self) -> None:
logger.debug("Adding Iterations Slider")
tk_var = self.vars["display_iterations"]
min_max = (0, 100000)
hlp = _("Set the number of iterations to display. 0 displays the full session.")
ctl_frame = ttk.Frame(self.optsframe)
ctl_frame.pack(padx=2, side=tk.RIGHT)
lbl = ttk.Label(ctl_frame, text="Iterations:", anchor=tk.W)
lbl.pack(pady=5, side=tk.LEFT, anchor=tk.N, expand=True)
tbox = ttk.Entry(ctl_frame, width=6, textvariable=tk_var, justify=tk.RIGHT)
tbox.pack(padx=(0, 5), side=tk.RIGHT)
ctl = ttk.Scale(
ctl_frame,
variable=tk_var,
command=lambda val, var=tk_var, dt=int, rn=1000, mm=min_max: # type:ignore
set_slider_rounding(val, var, dt, rn, mm))
ctl["from_"] = min_max[0]
ctl["to"] = min_max[1]
ctl.pack(padx=5, pady=5, fill=tk.X, expand=True)
for item in (tbox, ctl):
Tooltip(item,
text=hlp,
wrap_length=200)
logger.debug("Added Iterations Slider")
| lib/gui/display_command.py | 384 | faceswap | {
"docstring": " Add a slider to adjust the amount if iterations to display ",
"language": "en",
"n_whitespaces": 12,
"n_words": 11,
"vocab_size": 10
} | 90 | Python | 77 | dab823a3eb7a5257cb1e0818ee10ed234d3de97f | display_command.py | 101,893 | 25 | 254 | _add_option_iterations | https://github.com/deepfakes/faceswap.git | Typing - lib.gui.display_command | 303 | 0 | 21,275 | 12 |
|
3 | 13 | def build_partition(cls, partition_ids, column_widths):
return np.array(
[
[
cls.frame_partition_cls(
part_id[0],
length=part_id[2],
width=col_width,
)
for part_id, col_width in zip(part_ids, column_widths)
]
for part_ids in partition_ids
]
)
| modin/core/io/column_stores/parquet_dispatcher.py | 81 | modin | {
"docstring": "\n Build array with partitions of `cls.frame_partition_cls` class.\n\n Parameters\n ----------\n partition_ids : list\n Array with references to the partitions data.\n column_widths : list\n Number of columns in each partition.\n\n Returns\n -------\n np.ndarray\n array with shape equals to the shape of `partition_ids` and\n filed with partition objects.\n\n Notes\n -----\n The second level of partitions_ids contains a list of object references\n for each read call:\n partition_ids[i][j] -> [ObjectRef(df), ObjectRef(df.index), ObjectRef(len(df))].\n ",
"language": "en",
"n_whitespaces": 210,
"n_words": 67,
"vocab_size": 50
} | 26 | Python | 21 | 8864bc197974da6d8cda2de2f35ca31d561be1cc | parquet_dispatcher.py | 154,121 | 14 | 56 | build_partition | https://github.com/modin-project/modin.git | PERF-#4305: Parallelize `read_parquet` over row groups (#4700)
Co-authored-by: mvashishtha <[email protected]> | 240 | 0 | 35,794 | 13 |
|
2 | 2 | def replace_cfg_vals(ori_cfg):
| mmdet/utils/replace_cfg_vals.py | 13 | mmdetection | {
"docstring": "Replace the string \"${key}\" with the corresponding value.\n\n Replace the \"${key}\" with the value of ori_cfg.key in the config. And\n support replacing the chained ${key}. Such as, replace \"${key0.key1}\"\n with the value of cfg.key0.key1. Code is modified from `vars.py\n < https://github.com/microsoft/SoftTeacher/blob/main/ssod/utils/vars.py>`_ # noqa: E501\n\n Args:\n ori_cfg (mmcv.utils.config.Config):\n The origin config with \"${key}\" generated from a file.\n\n Returns:\n updated_cfg [mmcv.utils.config.Config]:\n The config with \"${key}\" replaced by the corresponding value.\n ",
"language": "en",
"n_whitespaces": 126,
"n_words": 68,
"vocab_size": 46
} | 2 | Python | 2 | 0db1b9b3d2c3f231241b25c54b3632a0413732ed | replace_cfg_vals.py | 244,243 | 10 | 64 | replace_cfg_vals | https://github.com/open-mmlab/mmdetection.git | [Tools] Support replacing the ${key} with the value of cfg.key (#7492)
* Support replacing config
* Support replacing config
* Add unit test for replace_cfig
* pre-commit
* fix
* modify the docstring
* rename function
* fix a bug
* fix a bug and simplify the code
* simplify the code
* add replace_cfg_vals for some scripts
* add replace_cfg_vals for some scripts
* add some unit tests | 5 | 0 | 70,293 | 6 |
|
1 | 6 | def artifacts(self) -> Dict[str, "mlflow.models.EvaluationArtifact"]:
return self._artifacts
_cached_mlflow_client = None
| mlflow/models/evaluation/base.py | 35 | mlflow | {
"docstring": "\n A dictionary mapping standardized artifact names (e.g. \"roc_data\") to\n artifact content and location information\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | 10 | Python | 10 | 4c58179509e6f6047789efb0a95c2b0e20cb6c8f | base.py | 19,154 | 6 | 17 | artifacts | https://github.com/mlflow/mlflow.git | Improve evaluation api (#5256)
* init
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update doc
Signed-off-by: Weichen Xu <[email protected]>
* update doc
Signed-off-by: Weichen Xu <[email protected]>
* address comments
Signed-off-by: Weichen Xu <[email protected]>
* update doc
Signed-off-by: Weichen Xu <[email protected]>
* add shap limitation on value type
Signed-off-by: Weichen Xu <[email protected]>
* fix format
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]> | 23 | 0 | 2,900 | 6 |
|
4 | 28 | def decode(ew):
_, charset, cte, cte_string, _ = ew.split('?')
charset, _, lang = charset.partition('*')
cte = cte.lower()
# Recover the original bytes and do CTE decoding.
bstring = cte_string.encode('ascii', 'surrogateescape')
bstring, defects = _cte_decoders[cte](bstring)
# Turn the CTE decoded bytes into unicode.
try:
string = bstring.decode(charset)
except UnicodeError:
defects.append(errors.UndecodableBytesDefect("Encoded word "
"contains bytes not decodable using {} charset".format(charset)))
string = bstring.decode(charset, 'surrogateescape')
except LookupError:
string = bstring.decode('ascii', 'surrogateescape')
if charset.lower() != 'unknown-8bit':
defects.append(errors.CharsetError("Unknown charset {} "
"in encoded word; decoded as unknown bytes".format(charset)))
return string, charset, lang, defects
_cte_encoders = {
'q': encode_q,
'b': encode_b,
}
_cte_encode_length = {
'q': len_q,
'b': len_b,
}
| python3.10.4/Lib/email/_encoded_words.py | 304 | XX-Net | {
"docstring": "Decode encoded word and return (string, charset, lang, defects) tuple.\n\n An RFC 2047/2243 encoded word has the form:\n\n =?charset*lang?cte?encoded_string?=\n\n where '*lang' may be omitted but the other parts may not be.\n\n This function expects exactly such a string (that is, it does not check the\n syntax and may raise errors if the string is not well formed), and returns\n the encoded_string decoded first from its Content Transfer Encoding and\n then from the resulting bytes into unicode using the specified charset. If\n the cte-decoded string does not successfully decode using the specified\n character set, a defect is added to the defects list and the unknown octets\n are replaced by the unicode 'unknown' character \\\\uFDFF.\n\n The specified charset and language are returned. The default for language,\n which is rarely if ever encountered, is the empty string.\n\n ",
"language": "en",
"n_whitespaces": 179,
"n_words": 134,
"vocab_size": 94
} | 104 | Python | 74 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _encoded_words.py | 223,504 | 18 | 149 | decode | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 228 | 0 | 56,938 | 18 |
|
5 | 29 | def add_supercategory_ann(self, annotations):
for i, ann in enumerate(annotations):
assert len(ann['labels']) == len(ann['bboxes']) == \
len(ann['gt_is_group_ofs'])
gt_bboxes = []
gt_is_group_ofs = []
gt_labels = []
for j in range(len(ann['labels'])):
label = ann['labels'][j]
bbox = ann['bboxes'][j]
is_group = ann['gt_is_group_ofs'][j]
label = np.where(self.class_label_tree[label])[0]
if len(label) > 1:
for k in range(len(label)):
gt_bboxes.append(bbox)
gt_is_group_ofs.append(is_group)
gt_labels.append(label[k])
else:
gt_bboxes.append(bbox)
gt_is_group_ofs.append(is_group)
gt_labels.append(label[0])
annotations[i] = dict(
bboxes=np.array(gt_bboxes).astype(np.float32),
labels=np.array(gt_labels).astype(np.int64),
bboxes_ignore=ann['bboxes_ignore'],
gt_is_group_ofs=np.array(gt_is_group_ofs).astype(np.bool))
return annotations
| mmdet/datasets/openimages.py | 384 | mmdetection | {
"docstring": "Add parent classes of the corresponding class of the ground truth\n bboxes.",
"language": "en",
"n_whitespaces": 18,
"n_words": 12,
"vocab_size": 10
} | 64 | Python | 47 | 1516986a616fee8bb741d0ab2be40683045efccd | openimages.py | 243,996 | 27 | 239 | add_supercategory_ann | https://github.com/open-mmlab/mmdetection.git | [Feature] Support OpenImages Dataset (#6331)
* [Feature] support openimage group of eval
* [Feature] support openimage group of eval
* support openimage dataset
* support openimage challenge dataset
* fully support OpenImages-V6 and OpenImages Challenge 2019
* Fix some logic error
* update config file
* fix get data_infos error
* fully support OpenImages evaluation
* update OpenImages config files
* [Feature] support OpenImages datasets
* fix bug
* support load image metas from pipeline
* fix bug
* fix get classes logic error
* update code
* support get image metas
* support openimags
* support collect image metas
* support Open Images
* fix openimages logic
* minor fix
* add a new function to compute openimages tpfp
* minor fix
* fix ci error
* minor fix
* fix indication
* minor fix
* fix returns
* fix returns
* fix returns
* fix returns
* fix returns
* minor fix
* update readme
* support loading image level labels and fix some logic
* minor fix
* minor fix
* add class names
* minor fix
* minor fix
* minor fix
* add openimages test unit
* minor fix
* minor fix
* fix test unit
* minor fix
* fix logic error
* minor fix
* fully support openimages
* minor fix
* fix docstring
* fix docstrings in readthedocs
* update get image metas script
* label_description_file -> label_file
* update openimages readme
* fix test unit
* fix test unit
* minor fix
* update readme file
* Update get_image_metas.py | 464 | 0 | 70,186 | 16 |
|
2 | 5 | def close(self) -> None:
if self.worker:
self.worker.stop()
return super().close()
| src/prefect/logging/handlers.py | 50 | prefect | {
"docstring": "\n Shuts down this handler and the `OrionLogWorker`.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | 9 | Python | 9 | fc20231ae7707ca9ca51a3e25fe8991482a02e2e | handlers.py | 53,059 | 7 | 28 | close | https://github.com/PrefectHQ/prefect.git | Add more docstrings | 41 | 0 | 10,698 | 10 |
|
1 | 9 | def _object2proto(self) -> GetEnumAttributeAction_PB:
return GetEnumAttributeAction_PB(
path=self.path,
id_at_location=serialize(self.id_at_location),
address=serialize(self.address),
msg_id=serialize(self.id),
)
| packages/syft/src/syft/core/node/common/action/get_enum_attribute_action.py | 70 | PySyft | {
"docstring": "Returns a protobuf serialization of self.\n As a requirement of all objects which inherit from Serializable,\n this method transforms the current object into the corresponding\n Protobuf object so that it can be further serialized.\n :return: returns a protobuf object\n :rtype: GetOrSetPropertyAction_PB\n .. note::\n This method is purely an internal method. Please use serialize(object) or one of\n the other public serialization methods if you wish to serialize an\n object.\n ",
"language": "en",
"n_whitespaces": 150,
"n_words": 68,
"vocab_size": 56
} | 11 | Python | 11 | e272ed2fa4c58e0a89e273a3e85da7d13a85e04c | get_enum_attribute_action.py | 2,712 | 18 | 45 | _object2proto | https://github.com/OpenMined/PySyft.git | [syft.core.node.common.action] Change syft import absolute -> relative | 76 | 0 | 343 | 11 |
|
1 | 27 | async def test_doorbell_event_session_update(hass, auth):
events = async_capture_events(hass, NEST_EVENT)
subscriber = await async_setup_devices(
hass,
"sdm.devices.types.DOORBELL",
create_device_traits(
[
"sdm.devices.traits.CameraClipPreview",
"sdm.devices.traits.CameraPerson",
"sdm.devices.traits.CameraMotion",
]
),
auth,
)
registry = er.async_get(hass)
entry = registry.async_get("camera.front")
assert entry is not None
# Message #1 has a motion event
timestamp1 = utcnow()
await subscriber.async_receive_event(
create_events(
{
"sdm.devices.events.CameraMotion.Motion": {
"eventSessionId": EVENT_SESSION_ID,
"eventId": "n:1",
},
"sdm.devices.events.CameraClipPreview.ClipPreview": {
"eventSessionId": EVENT_SESSION_ID,
"previewUrl": "image-url-1",
},
},
timestamp=timestamp1,
)
)
# Message #2 has an extra person event
timestamp2 = utcnow()
await subscriber.async_receive_event(
create_events(
{
"sdm.devices.events.CameraMotion.Motion": {
"eventSessionId": EVENT_SESSION_ID,
"eventId": "n:1",
},
"sdm.devices.events.CameraPerson.Person": {
"eventSessionId": EVENT_SESSION_ID,
"eventId": "n:2",
},
"sdm.devices.events.CameraClipPreview.ClipPreview": {
"eventSessionId": EVENT_SESSION_ID,
"previewUrl": "image-url-1",
},
},
timestamp=timestamp2,
)
)
await hass.async_block_till_done()
assert len(events) == 2
assert event_view(events[0].data) == {
"device_id": entry.device_id,
"type": "camera_motion",
"timestamp": timestamp1.replace(microsecond=0),
}
assert event_view(events[1].data) == {
"device_id": entry.device_id,
"type": "camera_person",
"timestamp": timestamp2.replace(microsecond=0),
}
| tests/components/nest/test_events.py | 434 | core | {
"docstring": "Test a pubsub message with updates to an existing session.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 134 | Python | 75 | 789c0a24dd558207b712ddf10a919d9353853e40 | test_events.py | 309,309 | 65 | 249 | test_doorbell_event_session_update | https://github.com/home-assistant/core.git | Improve nest media player clip/image and event handling for multiple events in a short time range (#63149) | 775 | 0 | 108,015 | 15 |
|
1 | 7 | def test_delete_files_from_storage_task_files_not_existing_files(media_root):
# given
path = "random/test-path"
path_2 = "random/test-path-2"
assert not default_storage.exists(path)
assert not default_storage.exists(path_2)
# when
delete_files_from_storage_task([path, path_2])
| saleor/core/tests/test_tasks.py | 67 | saleor | {
"docstring": "Ensure method not fail when trying to remove not existing file.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | 20 | Python | 16 | 2611883cda3b84ccbfcbf37221f5b62a08bc9af1 | test_tasks.py | 28,452 | 6 | 36 | test_delete_files_from_storage_task_files_not_existing_files | https://github.com/saleor/saleor.git | Fix the migration for removing media marked as to remove (#10429)
* Add celery task for removing multiple files from storage
* Fix the migration for removing media marked as to remove | 44 | 0 | 5,170 | 8 |
|
2 | 8 | def get_project_ids() -> List[str]:
return [project["project_id"] for project in PROJECTS_DATA]
@log_start_end(log=logger) | openbb_terminal/cryptocurrency/due_diligence/tokenterminal_model.py | 48 | @log_start_end(log=logger) | OpenBBTerminal | {
"docstring": "This function returns the available project ids.\n\n Returns\n ----------\n List[str]\n A list with the all the project IDs\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 18,
"vocab_size": 15
} | 11 | Python | 11 | 7979b1fc071a1c3e7463044bea617d7305b4a17e | tokenterminal_model.py | 286,002 | 9 | 21 | get_project_ids | https://github.com/OpenBB-finance/OpenBBTerminal.git | Add 3 Token Terminal commands (#2447)
* add crypto/ov/fun
* add tokenterminal to dependencies
* update website content
* add to main.yml
* fix tests
* add tests
* Update _index.md
* Update _index.md
* fix tests
* fix test
* List hint added
* improve code based on Jose input
* fix tests
* requirements for token terminal
* add source and fix source bug
* some improvements
* colors bars
* fix dependencies
* update kaleido version
* update setuptools for pkg_resources
* replace pkg_resources by importlib_metadata
* Added fixes
* Fixed tests
* fix stuff for Josecas
Co-authored-by: Colin Delahunty <[email protected]>
Co-authored-by: colin99d <[email protected]> | 16 | 1 | 85,500 | 8 |
2 | 8 | def encodePythonUnicodeToC(value):
assert type(value) is unicode, type(value)
result = ""
for c in value:
cv = ord(c)
result += r"\%o" % cv
return 'L"%s"' % result
| nuitka/utils/CStrings.py | 73 | Nuitka | {
"docstring": "Encode a string, so that it gives a wide C string literal.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | 26 | Python | 20 | 70b7eee9555c8d5599d096eaf600521475b001d9 | CStrings.py | 178,838 | 7 | 42 | encodePythonUnicodeToC | https://github.com/Nuitka/Nuitka.git | Python3.7+: Added support for get_resource_reader to our loader
* This allows to avoid a useless file copy to a temporary file
in case a "importlib.resources.path" is used.
* Also fixed a few typos in tests.
* And avoid compiling the meta path based loader separately, so it
can use compiled code helpers easily. | 55 | 0 | 42,841 | 10 |
|
2 | 26 | def test_search_users(self) -> None:
realm = get_realm("zulip")
# A payload to find all users whose email ends with @zulip.com
payload = {
"schemas": ["urn:ietf:params:scim:api:messages:2.0:SearchRequest"],
"filter": 'userName ew "@zulip.com"',
}
result = self.client_post(
"/scim/v2/Users/.search",
payload,
content_type="application/json",
**self.scim_headers(),
)
self.assertEqual(result.status_code, 200)
output_data = orjson.loads(result.content)
user_query = UserProfile.objects.filter(
realm=realm, is_bot=False, delivery_email__endswith="@zulip.com"
)
expected_response_schema = {
"schemas": ["urn:ietf:params:scim:api:messages:2.0:ListResponse"],
"totalResults": user_query.count(),
"itemsPerPage": 50,
"startIndex": 1,
"Resources": [
self.generate_user_schema(user_profile)
for user_profile in UserProfile.objects.filter(realm=realm, is_bot=False).order_by(
"id"
)
],
}
self.assertEqual(output_data, expected_response_schema)
| zerver/tests/test_scim.py | 266 | zulip | {
"docstring": "\n Tests a basic .search POST query:\n https://datatracker.ietf.org/doc/html/rfc7644#section-3.4.3\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 7,
"vocab_size": 7
} | 74 | Python | 63 | b775639f425d257d3367d6e462582ca926b1f7ee | test_scim.py | 84,333 | 34 | 157 | test_search_users | https://github.com/zulip/zulip.git | test: Use list comprehension for dictionary values.
Signed-off-by: Zixuan James Li <[email protected]> | 379 | 0 | 17,818 | 15 |
|
4 | 13 | def _row_lengths(self):
if self._row_lengths_cache is None:
row_lengths_list = DaskWrapper.materialize(
[
self._get_partition_size_along_axis(obj, axis=0)
for obj in self._partitions.T[0]
]
)
self._row_lengths_cache = [sum(len_list) for len_list in row_lengths_list]
return self._row_lengths_cache
| modin/core/execution/dask/implementations/pandas_on_dask/dataframe/dataframe.py | 95 | modin | {
"docstring": "\n Compute ther row partitions lengths if they are not cached.\n\n Returns\n -------\n list\n A list of row partitions lengths.\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 19,
"vocab_size": 16
} | 27 | Python | 22 | a7354c9ca76525a265da98f2afe882c53f378840 | dataframe.py | 153,954 | 10 | 61 | _row_lengths | https://github.com/modin-project/modin.git | FEAT-#4419: Extend virtual partitioning API to pandas on Dask (#4420)
Signed-off-by: Rehan Durrani <[email protected]>
Co-authored-by: Mahesh Vashishtha <[email protected]> | 149 | 0 | 35,722 | 15 |
|
1 | 14 | def test_multi_page_mixed_no_archive(self):
parser = RasterisedDocumentParser(None)
parser.parse(
os.path.join(self.SAMPLE_FILES, "multi-page-mixed.pdf"),
"application/pdf",
)
self.assertIsNone(parser.archive_path)
self.assertContainsStrings(
parser.get_text().lower(),
["page 4", "page 5", "page 6"],
)
| src/paperless_tesseract/tests/test_parser.py | 109 | paperless-ngx | {
"docstring": "\n GIVEN:\n - File with some text contained in images and some in text layer\n - OCR mode set to skip_noarchive\n WHEN:\n - Document is parsed\n THEN:\n - Text from images is extracted\n - No archive file is created\n ",
"language": "en",
"n_whitespaces": 122,
"n_words": 38,
"vocab_size": 28
} | 20 | Python | 18 | b3b2519bf03185aa12028fa68d3b8f8860555e6e | test_parser.py | 319,926 | 11 | 63 | test_multi_page_mixed_no_archive | https://github.com/paperless-ngx/paperless-ngx.git | Fixes the creation of an archive file, even if noarchive was specified | 113 | 0 | 117,021 | 11 |
|
6 | 25 | def fit(self, X, y=None):
X = self._validate_data(
X, accept_sparse=["csr", "csc"], dtype=[np.float64, np.float32]
)
n_samples, n_features = X.shape
if self.n_components == "auto":
self.n_components_ = johnson_lindenstrauss_min_dim(
n_samples=n_samples, eps=self.eps
)
if self.n_components_ <= 0:
raise ValueError(
"eps=%f and n_samples=%d lead to a target dimension of "
"%d which is invalid" % (self.eps, n_samples, self.n_components_)
)
elif self.n_components_ > n_features:
raise ValueError(
"eps=%f and n_samples=%d lead to a target dimension of "
"%d which is larger than the original space with "
"n_features=%d"
% (self.eps, n_samples, self.n_components_, n_features)
)
else:
if self.n_components <= 0:
raise ValueError(
"n_components must be greater than 0, got %s" % self.n_components
)
elif self.n_components > n_features:
warnings.warn(
"The number of components is higher than the number of"
" features: n_features < n_components (%s < %s)."
"The dimensionality of the problem will not be reduced."
% (n_features, self.n_components),
DataDimensionalityWarning,
)
self.n_components_ = self.n_components
# Generate a projection matrix of size [n_components, n_features]
self.components_ = self._make_random_matrix(
self.n_components_, n_features
).astype(X.dtype, copy=False)
# Check contract
assert self.components_.shape == (self.n_components_, n_features), (
"An error has occurred the self.components_ matrix has "
" not the proper shape."
)
return self
| sklearn/random_projection.py | 357 | scikit-learn | {
"docstring": "Generate a sparse random projection matrix.\n\n Parameters\n ----------\n X : {ndarray, sparse matrix} of shape (n_samples, n_features)\n Training set: only the shape is used to find optimal random\n matrix dimensions based on the theory referenced in the\n afore mentioned papers.\n\n y : Ignored\n Not used, present here for API consistency by convention.\n\n Returns\n -------\n self : object\n BaseRandomProjection class instance.\n ",
"language": "en",
"n_whitespaces": 171,
"n_words": 60,
"vocab_size": 53
} | 185 | Python | 109 | 8b6b519caf3b3b9602958a859b4d3a7eb1d9eadd | random_projection.py | 258,487 | 43 | 220 | fit | https://github.com/scikit-learn/scikit-learn.git | ENH Preserving dtype for np.float32 in RandomProjection (#22114)
Co-authored-by: takoika <>
Co-authored-by: Thomas J. Fan <[email protected]> | 760 | 0 | 75,247 | 16 |
|
1 | 10 | def xbutton(self, name, title, next, xpos):
return self.pushbutton(name, int(self.w*xpos - 28), self.h-27, 56, 17, 3, title, next)
| python3.10.4/Lib/distutils/command/bdist_msi.py | 66 | XX-Net | {
"docstring": "Add a button with a given title, the tab-next button,\n its name in the Control table, giving its x position; the\n y-position is aligned with the other buttons.\n\n Return the button, so that events can be associated",
"language": "en",
"n_whitespaces": 57,
"n_words": 37,
"vocab_size": 29
} | 17 | Python | 16 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | bdist_msi.py | 222,639 | 2 | 48 | xbutton | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 31 | 0 | 56,681 | 12 |
|
1 | 7 | def to_svg(self, size=500):
from dask.array.svg import svg
return svg(self.chunks, size=size)
| dask/array/core.py | 45 | dask | {
"docstring": "Convert chunks from Dask Array into an SVG Image\n\n Parameters\n ----------\n chunks: tuple\n size: int\n Rough size of the image\n\n Examples\n --------\n >>> x.to_svg(size=500) # doctest: +SKIP\n\n Returns\n -------\n text: An svg string depicting the array as a grid of chunks\n ",
"language": "en",
"n_whitespaces": 130,
"n_words": 41,
"vocab_size": 38
} | 10 | Python | 10 | cccb9d8d8e33a891396b1275c2448c352ef40c27 | core.py | 156,038 | 3 | 29 | to_svg | https://github.com/dask/dask.git | absolufy-imports - No relative - PEP8 (#8796)
Conversation in https://github.com/dask/distributed/issues/5889 | 31 | 0 | 36,515 | 8 |
|
5 | 10 | def tokenize(self, text, properties=None):
default_properties = {"annotators": "tokenize,ssplit"}
default_properties.update(properties or {})
result = self.api_call(text, properties=default_properties)
for sentence in result["sentences"]:
for token in sentence["tokens"]:
yield token["originalText"] or token["word"]
| nltk/parse/corenlp.py | 116 | nltk | {
"docstring": "Tokenize a string of text.\n\n Skip these tests if CoreNLP is likely not ready.\n >>> if \"CLASSPATH\" not in os.environ: import pytest; pytest.skip(\"CoreNLP jars unavailable\")\n\n The CoreNLP server can be started using the following notation, although\n we recommend the `with CoreNLPServer() as server:` context manager notation\n to ensure that the server is always stopped.\n >>> server = CoreNLPServer()\n >>> server.start()\n >>> parser = CoreNLPParser(url=server.url)\n\n >>> text = 'Good muffins cost $3.88\\\\nin New York. Please buy me\\\\ntwo of them.\\\\nThanks.'\n >>> list(parser.tokenize(text))\n ['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']\n\n >>> s = \"The colour of the wall is blue.\"\n >>> list(\n ... parser.tokenize(\n ... 'The colour of the wall is blue.',\n ... properties={'tokenize.options': 'americanize=true'},\n ... )\n ... )\n ['The', 'colour', 'of', 'the', 'wall', 'is', 'blue', '.']\n >>> server.stop()\n\n ",
"language": "en",
"n_whitespaces": 313,
"n_words": 137,
"vocab_size": 100
} | 27 | Python | 23 | 1f4a121aa781117bc0daa3b4485cf7757f8112ee | corenlp.py | 42,558 | 7 | 66 | tokenize | https://github.com/nltk/nltk.git | Rework CoreNLP tests for 4.5.1, make them work if CoreNLP is on CLASSPATH
If not, they are skipped. Sadly this does make the docstrings a bit more confusing | 88 | 0 | 7,620 | 13 |
|
1 | 4 | async def async_will_remove_from_hass(self) -> None:
await super().async_will_remove_from_hass()
await self.async_disable()
| homeassistant/components/automation/__init__.py | 43 | core | {
"docstring": "Remove listeners when removing automation from Home Assistant.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 9 | Python | 8 | 5e338d21665cb04f66fcebd9376cdda389c30c01 | __init__.py | 307,671 | 4 | 22 | async_will_remove_from_hass | https://github.com/home-assistant/core.git | Improve type hints in automation (#78368)
* Improve type hints in automation
* Apply suggestion
* Apply suggestion
* Apply suggestion
* Add Protocol for IfAction
* Use ConfigType for IfAction
* Rename variable | 30 | 0 | 106,439 | 10 |
|
1 | 14 | def test_reading_post_data_raises_os_error(self):
mw = CsrfViewMiddleware(post_form_view)
req = self._get_POST_request_with_token(request_class=PostErrorRequest)
req.post_error = OSError("Deleted directories/Missing permissions.")
mw.process_request(req)
with self.assertRaises(OSError):
mw.process_view(req, post_form_view, (), {})
| tests/csrf_tests/tests.py | 99 | django | {
"docstring": "\n An OSError raised while reading the POST data should not be handled by\n the middleware.\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 15,
"vocab_size": 14
} | 20 | Python | 18 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 202,399 | 7 | 58 | test_reading_post_data_raises_os_error | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 73 | 0 | 50,107 | 10 |
|
2 | 10 | def require_mps(test_case):
is_mps_supported = hasattr(torch.backends, "mps") and torch.backends.mps.is_available()
return unittest.skipUnless(is_mps_supported, "test requires a `mps` backend support in `torch`")(test_case)
| src/accelerate/test_utils/testing.py | 66 | accelerate | {
"docstring": "\n Decorator marking a test that requires MPS backend. These tests are skipped when torch doesn't support `mps`\n backend.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 18,
"vocab_size": 17
} | 18 | Python | 18 | bb6ee0b7bc72cb29e496a6d05aee9e11d6f745b1 | testing.py | 338,450 | 3 | 38 | require_mps | https://github.com/huggingface/accelerate.git | Support `init_on_device` (#926)
* Support init_on_device
* Support mps backend as well in testing | 27 | 0 | 121,217 | 11 |
|
3 | 28 | def request_hook(self, method, path, data, params, **kwargs):
# handle params that are already part of the path
url_params = dict(parse_qs(urlsplit(path).query))
url_params.update(params or {})
path = path.split("?")[0]
jwt_payload = {
"iss": JIRA_KEY,
"iat": datetime.datetime.utcnow(),
"exp": datetime.datetime.utcnow() + datetime.timedelta(seconds=5 * 60),
"qsh": get_query_hash(path, method.upper(), url_params),
}
encoded_jwt = jwt.encode(jwt_payload, self.shared_secret)
params = dict(jwt=encoded_jwt, **(url_params or {}))
request_spec = kwargs.copy()
request_spec.update(dict(method=method, path=path, data=data, params=params))
return request_spec
| src/sentry/integrations/jira/client.py | 262 | sentry | {
"docstring": "\n Used by Jira Client to apply the jira-cloud authentication\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | 63 | Python | 54 | 2fbf550ec05c8501cbc9eca62e73526e717dcbdf | client.py | 93,687 | 15 | 165 | request_hook | https://github.com/getsentry/sentry.git | ref(Jira): Split Jira Cloud and Jira Server (#37034)
* Split Jira Cloud and Jira Server | 191 | 0 | 19,009 | 13 |
|
10 | 34 | def _tensorflow_dependency_install(self):
# TODO This will need to be more robust if/when we accept multiple Tensorflow Versions
versions = list(TENSORFLOW_REQUIREMENTS.values())[-1]
condaexe = ["conda", "search"]
pkgs = ["cudatoolkit", "cudnn"]
shell = self.env.os_version[0] == "Windows"
for pkg in pkgs:
with Popen(condaexe + [pkg], shell=shell, stdout=PIPE) as chk:
available = [line.split()
for line
in chk.communicate()[0].decode(self.env.encoding).splitlines()
if line.startswith(pkg)]
compatible = [req for req in available
if (pkg == "cudatoolkit" and req[1].startswith(versions[0]))
or (pkg == "cudnn" and versions[0] in req[2]
and req[1].startswith(versions[1]))]
candidate = "==".join(sorted(compatible, key=lambda x: x[1])[-1][:2])
self.conda_installer(candidate, verbose=True, conda_only=True)
| setup.py | 340 | faceswap | {
"docstring": " Install the Cuda/cuDNN dependencies from Conda when tensorflow is not available\n in Conda.\n\n This was used whilst Tensorflow 2.2 was not available for Windows in Conda. It is kept\n here in case it is required again in the future.\n ",
"language": "en",
"n_whitespaces": 68,
"n_words": 39,
"vocab_size": 29
} | 86 | Python | 68 | c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | setup.py | 100,402 | 17 | 211 | _tensorflow_dependency_install | https://github.com/deepfakes/faceswap.git | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | 373 | 0 | 19,885 | 19 |
|
10 | 22 | def join(self, join, reuse=None):
reuse_aliases = [
a
for a, j in self.alias_map.items()
if (reuse is None or a in reuse) and j.equals(join)
]
if reuse_aliases:
if join.table_alias in reuse_aliases:
reuse_alias = join.table_alias
else:
# Reuse the most recent alias of the joined table
# (a many-to-many relation may be joined multiple times).
reuse_alias = reuse_aliases[-1]
self.ref_alias(reuse_alias)
return reuse_alias
# No reuse is possible, so we need a new alias.
alias, _ = self.table_alias(
join.table_name, create=True, filtered_relation=join.filtered_relation
)
if join.join_type:
if self.alias_map[join.parent_alias].join_type == LOUTER or join.nullable:
join_type = LOUTER
else:
join_type = INNER
join.join_type = join_type
join.table_alias = alias
self.alias_map[alias] = join
return alias
| django/db/models/sql/query.py | 239 | django | {
"docstring": "\n Return an alias for the 'join', either reusing an existing alias for\n that join or creating a new one. 'join' is either a base_table_class or\n join_class.\n\n The 'reuse' parameter can be either None which means all joins are\n reusable, or it can be a set containing the aliases that can be reused.\n\n A join is always created as LOUTER if the lhs alias is LOUTER to make\n sure chains like t1 LOUTER t2 INNER t3 aren't generated. All new\n joins are created as LOUTER if the join is nullable.\n ",
"language": "en",
"n_whitespaces": 153,
"n_words": 89,
"vocab_size": 57
} | 104 | Python | 70 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | query.py | 205,866 | 25 | 151 | join | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 392 | 0 | 51,251 | 13 |
|
3 | 49 | def estimate_blur_fft(cls, image, metadata=None):
if metadata is not None:
alignments = metadata["alignments"]
det_face = DetectedFace()
det_face.from_png_meta(alignments)
aln_face = AlignedFace(np.array(alignments["landmarks_xy"], dtype="float32"),
image=image,
centering="legacy",
size=256,
is_aligned=True)
mask = det_face.mask["components"]
mask.set_sub_crop(aln_face.pose.offset[mask.stored_centering],
aln_face.pose.offset["legacy"],
centering="legacy")
mask = cv2.resize(mask.mask, (256, 256), interpolation=cv2.INTER_CUBIC)[..., None]
image = np.minimum(aln_face.face, mask)
if image.ndim == 3:
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
height, width = image.shape
c_height, c_width = (int(height / 2.0), int(width / 2.0))
fft = np.fft.fft2(image)
fft_shift = np.fft.fftshift(fft)
fft_shift[c_height - 75:c_height + 75, c_width - 75:c_width + 75] = 0
ifft_shift = np.fft.ifftshift(fft_shift)
shift_back = np.fft.ifft2(ifft_shift)
magnitude = np.log(np.abs(shift_back))
score = np.mean(magnitude)
return score
| tools/sort/sort.py | 424 | faceswap | {
"docstring": " Estimate the amount of blur a fft filtered image has.\n\n Parameters\n ----------\n image: :class:`numpy.ndarray`\n Use Fourier Transform to analyze the frequency characteristics of the masked\n face using 2D Discrete Fourier Transform (DFT) filter to find the frequency domain.\n A mean value is assigned to the magnitude spectrum and returns a blur score.\n Adapted from https://www.pyimagesearch.com/2020/06/15/\n opencv-fast-fourier-transform-fft-for-blur-detection-in-images-and-video-streams/\n metadata: dict, optional\n The metadata for the face image or ``None`` if no metadata is available. If metadata is\n provided the face will be masked by the \"components\" mask prior to calculating blur.\n Default:``None``\n\n Returns\n -------\n float\n The estimated fft blur score for the face\n ",
"language": "en",
"n_whitespaces": 257,
"n_words": 101,
"vocab_size": 71
} | 94 | Python | 71 | 32950897376b48e0f08b46385602e4df902cf49e | sort.py | 101,185 | 28 | 276 | estimate_blur_fft | https://github.com/deepfakes/faceswap.git | lib.detected_face.Mask
- Add source + target offset and coverage to set_sub_crop method | 478 | 0 | 20,606 | 14 |
|
13 | 29 | def execute_info(self):
roles_path = context.CLIARGS['roles_path']
data = ''
for role in context.CLIARGS['args']:
role_info = {'path': roles_path}
gr = GalaxyRole(self.galaxy, self.lazy_role_api, role)
install_info = gr.install_info
if install_info:
if 'version' in install_info:
install_info['installed_version'] = install_info['version']
del install_info['version']
role_info.update(install_info)
if not context.CLIARGS['offline']:
remote_data = None
try:
remote_data = self.api.lookup_role_by_name(role, False)
except AnsibleError as e:
if e.http_code == 400 and 'Bad Request' in e.message:
# Role does not exist in Ansible Galaxy
data = u"- the role %s was not found" % role
break
raise AnsibleError("Unable to find info about '%s': %s" % (role, e))
if remote_data:
role_info.update(remote_data)
elif context.CLIARGS['offline'] and not gr._exists:
data = u"- the role %s was not found" % role
break
if gr.metadata:
role_info.update(gr.metadata)
req = RoleRequirement()
role_spec = req.role_yaml_parse({'role': role})
if role_spec:
role_info.update(role_spec)
data += self._display_role_info(role_info)
self.pager(data)
| lib/ansible/cli/galaxy.py | 385 | ansible | {
"docstring": "\n prints out detailed information about an installed role as well as info available from the galaxy API.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 17,
"vocab_size": 16
} | 128 | Python | 85 | cb2e434dd2359a9fe1c00e75431f4abeff7381e8 | galaxy.py | 268,620 | 34 | 225 | execute_info | https://github.com/ansible/ansible.git | ansible-galaxy install - fix unnecessary api check when installing a role from git repo (#79090)
* delay server api evaluation until a GalaxyRole needs to make an api call for info, list, and install | 617 | 0 | 79,567 | 17 |
|
5 | 3 | def unwrap(func, *, stop=None):
if stop is None: | python3.10.4/Lib/inspect.py | 29 | XX-Net | {
"docstring": "Get the object wrapped by *func*.\n\n Follows the chain of :attr:`__wrapped__` attributes returning the last\n object in the chain.\n\n *stop* is an optional callback accepting an object in the wrapper chain\n as its sole argument that allows the unwrapping to be terminated early if\n the callback returns a true value. If the callback never returns a true\n value, the last object in the chain is returned as usual. For example,\n :func:`signature` uses this to stop unwrapping if any object in the\n chain has a ``__signature__`` attribute defined.\n\n :exc:`ValueError` is raised if a cycle is encountered.\n\n ",
"language": "en",
"n_whitespaces": 116,
"n_words": 95,
"vocab_size": 58
} | 8 | Python | 8 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | inspect.py | 218,388 | 15 | 94 | unwrap | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 14 | 0 | 55,276 | 6 |
|
2 | 21 | def tick_params(self, axis='both', **kwargs):
for ax in self.figure.axes:
ax.tick_params(axis=axis, **kwargs)
return self
_facet_docs = dict(
data=dedent(),
rowcol=dedent(),
rowcol_order=dedent(),
col_wrap=dedent(),
share_xy=dedent(),
height=dedent(),
aspect=dedent(),
palette=dedent(),
legend_out=dedent(),
margin_titles=dedent(),
facet_kws=dedent(),
)
| seaborn/axisgrid.py | 219 | seaborn | {
"docstring": "Modify the ticks, tick labels, and gridlines.\n\n Parameters\n ----------\n axis : {'x', 'y', 'both'}\n The axis on which to apply the formatting.\n kwargs : keyword arguments\n Additional keyword arguments to pass to\n :meth:`matplotlib.axes.Axes.tick_params`.\n\n Returns\n -------\n self : Grid instance\n Returns self for easy chaining.\n\n \\\n data : DataFrame\n Tidy (\"long-form\") dataframe where each column is a variable and each\n row is an observation.\\\n \\\n row, col : vectors or keys in ``data``\n Variables that define subsets to plot on different facets.\\\n \\\n {row,col}_order : vector of strings\n Specify the order in which levels of the ``row`` and/or ``col`` variables\n appear in the grid of subplots.\\\n \\\n col_wrap : int\n \"Wrap\" the column variable at this width, so that the column facets\n span multiple rows. Incompatible with a ``row`` facet.\\\n \\\n share{x,y} : bool, 'col', or 'row' optional\n If true, the facets will share y axes across columns and/or x axes\n across rows.\\\n \\\n height : scalar\n Height (in inches) of each facet. See also: ``aspect``.\\\n \\\n aspect : scalar\n Aspect ratio of each facet, so that ``aspect * height`` gives the width\n of each facet in inches.\\\n \\\n palette : palette name, list, or dict\n Colors to use for the different levels of the ``hue`` variable. Should\n be something that can be interpreted by :func:`color_palette`, or a\n dictionary mapping hue levels to matplotlib colors.\\\n \\\n legend_out : bool\n If ``True``, the figure size will be extended, and the legend will be\n drawn outside the plot on the center right.\\\n \\\n margin_titles : bool\n If ``True``, the titles for the row variable are drawn to the right of\n the last column. This option is experimental and may not work in all\n cases.\\\n \\\n facet_kws : dict\n Additional parameters passed to :class:`FacetGrid`.\n ",
"language": "en",
"n_whitespaces": 603,
"n_words": 290,
"vocab_size": 175
} | 27 | Python | 27 | 72d1322ee583eb481346e5e661c2998c8a7445dd | axisgrid.py | 42,118 | 4 | 35 | tick_params | https://github.com/mwaskom/seaborn.git | Adding Grid.tick_params() method. (#2944)
* Adding Grid.tick_params() method.
* Address PR comments.
* Add What's New entry.
* Switch tick_params() test to use pad. | 90 | 0 | 7,487 | 10 |
|
15 | 24 | def mac_platforms(version=None, arch=None):
# type: (Optional[MacVersion], Optional[str]) -> Iterator[str]
version_str, _, cpu_arch = platform.mac_ver() # type: ignore
if version is None:
version = cast("MacVersion", tuple(map(int, version_str.split(".")[:2])))
else:
version = version
if arch is None:
arch = _mac_arch(cpu_arch)
else:
arch = arch
if (10, 0) <= version and version < (11, 0):
# Prior to Mac OS 11, each yearly release of Mac OS bumped the
# "minor" version number. The major version was always 10.
for minor_version in range(version[1], -1, -1):
compat_version = 10, minor_version
binary_formats = _mac_binary_formats(compat_version, arch)
for binary_format in binary_formats:
yield "macosx_{major}_{minor}_{binary_format}".format(
major=10, minor=minor_version, binary_format=binary_format
)
if version >= (11, 0):
# Starting with Mac OS 11, each yearly release bumps the major version
# number. The minor versions are now the midyear updates.
for major_version in range(version[0], 10, -1):
compat_version = major_version, 0
binary_formats = _mac_binary_formats(compat_version, arch)
for binary_format in binary_formats:
yield "macosx_{major}_{minor}_{binary_format}".format(
major=major_version, minor=0, binary_format=binary_format
)
if version >= (11, 0):
# Mac OS 11 on x86_64 is compatible with binaries from previous releases.
# Arm64 support was introduced in 11.0, so no Arm binaries from previous
# releases exist.
#
# However, the "universal2" binary format can have a
# macOS version earlier than 11.0 when the x86_64 part of the binary supports
# that version of macOS.
if arch == "x86_64":
for minor_version in range(16, 3, -1):
compat_version = 10, minor_version
binary_formats = _mac_binary_formats(compat_version, arch)
for binary_format in binary_formats:
yield "macosx_{major}_{minor}_{binary_format}".format(
major=compat_version[0],
minor=compat_version[1],
binary_format=binary_format,
)
else:
for minor_version in range(16, 3, -1):
compat_version = 10, minor_version
binary_format = "universal2"
yield "macosx_{major}_{minor}_{binary_format}".format(
major=compat_version[0],
minor=compat_version[1],
binary_format=binary_format,
)
# From PEP 513, PEP 600 | .venv/lib/python3.8/site-packages/pip/_vendor/packaging/tags.py | 506 | transferlearning | {
"docstring": "\n Yields the platform tags for a macOS system.\n\n The `version` parameter is a two-item tuple specifying the macOS version to\n generate platform tags for. The `arch` parameter is the CPU architecture to\n generate platform tags for. Both parameters default to the appropriate value\n for the current system.\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 47,
"vocab_size": 28
} | 268 | Python | 129 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | tags.py | 62,909 | 46 | 319 | mac_platforms | https://github.com/jindongwang/transferlearning.git | upd; format | 889 | 0 | 13,068 | 18 |
|
2 | 13 | def test_asarray_with_order(is_array_api):
if is_array_api:
xp = pytest.importorskip("numpy.array_api")
else:
xp = numpy
X = xp.asarray([1.2, 3.4, 5.1])
X_new = _asarray_with_order(X, order="F")
X_new_np = numpy.asarray(X_new)
assert X_new_np.flags["F_CONTIGUOUS"]
| sklearn/utils/tests/test_array_api.py | 104 | scikit-learn | {
"docstring": "Test _asarray_with_order passes along order for NumPy arrays.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 25 | Python | 20 | 2710a9e7eefd2088ce35fd2fb6651d5f97e5ef8b | test_array_api.py | 261,040 | 9 | 67 | test_asarray_with_order | https://github.com/scikit-learn/scikit-learn.git | ENH Adds Array API support to LinearDiscriminantAnalysis (#22554)
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Julien Jerphanion <[email protected]> | 60 | 0 | 76,641 | 11 |
|
8 | 8 | def _total_channels(self) -> int:
channels = 3
if self._config["mask_type"] and (self._config["learn_mask"] or
self._config["penalized_mask_loss"]):
channels += 1
mults = [area for area in ["eye", "mouth"] if int(self._config[f"{area}_multiplier"]) > 1]
if self._config["penalized_mask_loss"] and mults:
channels += len(mults)
return channels
| lib/training/generator.py | 143 | faceswap | {
"docstring": "int: The total number of channels, including mask channels that the target image\n should hold. ",
"language": "en",
"n_whitespaces": 22,
"n_words": 15,
"vocab_size": 15
} | 37 | Python | 29 | 2beceffad9b15c1fd78f06b9b272563321c5a41e | generator.py | 101,287 | 11 | 82 | _total_channels | https://github.com/deepfakes/faceswap.git | Data Augmentation update (#1263)
- lib.detected_face
- Subclass Masks for Landmark based masks
- Add training mask propery + methods to DetectedFace
- lib.training_training
- subclass TrainingDataGenerator for training and preview data
- Split cache into own module
- Reduce thread count to 1 to prevent image corruption + data re-use
- Process on largest model input/output size rather than stored image size
- Size and crop masks during caching stage
- Implement ring buffer for data flow
- Fix preview reload bug
- augmentation
- typing
- switch color aug order
- better initialization
- Fix warp + landmark warp to correctly apply at different image scales
- Slightly improved warp caching
- Don't store whether image is_preview. Handle all data as training images implicitly
- plugins.trainer: Typing and fixes to work with trainingdata refactor | 142 | 0 | 20,706 | 14 |
|
1 | 20 | def start(self, workflow_state, user=None):
task_state = self.get_task_state_class()(workflow_state=workflow_state)
task_state.status = TaskState.STATUS_IN_PROGRESS
task_state.page_revision = workflow_state.page.get_latest_revision()
task_state.task = self
task_state.save()
task_submitted.send(
sender=task_state.specific.__class__,
instance=task_state.specific,
user=user,
)
return task_state
| wagtail/core/models/__init__.py | 122 | wagtail | {
"docstring": "Start this task on the provided workflow state by creating an instance of TaskState",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 14
} | 24 | Python | 20 | d10f15e55806c6944827d801cd9c2d53f5da4186 | __init__.py | 73,775 | 12 | 77 | start | https://github.com/wagtail/wagtail.git | Reformat with black | 120 | 0 | 16,102 | 10 |
|
2 | 18 | def setup_persistent_compute_target(workspace, cluster_name, vm_size, max_nodes):
# setting vmsize and num nodes creates a persistent AzureML
# compute resource
logger.debug("setup: cluster_name {}".format(cluster_name))
# https://docs.microsoft.com/en-us/azure/machine-learning/service/how-to-set-up-training-targets
try:
cpu_cluster = ComputeTarget(workspace=workspace, name=cluster_name)
logger.debug("setup: Found existing cluster, use it.")
except ComputeTargetException:
logger.debug("setup: create cluster")
compute_config = AmlCompute.provisioning_configuration(
vm_size=vm_size, max_nodes=max_nodes
)
cpu_cluster = ComputeTarget.create(workspace, cluster_name, compute_config)
cpu_cluster.wait_for_completion(show_output=True)
return cpu_cluster
| tests/ci/aml_tests_old/submit_azureml_pytest.py | 147 | recommenders | {
"docstring": "\n Set up a persistent compute target on AzureML.\n A persistent compute target runs noticeably faster than a\n regular compute target for subsequent runs. The benefit\n is that AzureML manages turning the compute on/off as needed for\n each job so the user does not need to do this.\n\n Args:\n workspace (str): Centralized location on Azure to work with\n all the\n artifacts used by AzureML service\n cluster_name (str): the Azure cluster for this run. It can\n already exist or it will be created.\n vm_size (str): Azure VM size, like STANDARD_D3_V2\n max_nodes (int): Number of VMs, max_nodes=4 will\n autoscale up to 4 VMs\n Returns:\n cpu_cluster : cluster reference\n ",
"language": "en",
"n_whitespaces": 286,
"n_words": 105,
"vocab_size": 82
} | 53 | Python | 44 | f1b06e2f758b5b4a965f7bf428d006621d19c0b0 | submit_azureml_pytest.py | 39,217 | 13 | 88 | setup_persistent_compute_target | https://github.com/microsoft/recommenders.git | changed folder structure for aml tests | 133 | 0 | 7,139 | 12 |
|
10 | 68 | def upgrade():
op.drop_table('ai_table')
op.create_table(
'analysis',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('analysis', mindsdb.interfaces.storage.db.Json(), nullable=False),
sa.Column('created_at', sa.DateTime(), nullable=True),
sa.Column('updated_at', sa.DateTime(), nullable=True),
sa.PrimaryKeyConstraint('id')
)
with op.batch_alter_table('datasource', schema=None) as batch_op:
batch_op.add_column(sa.Column('analysis_id', sa.Integer(), nullable=True))
batch_op.create_foreign_key('fk_analysis_id', 'analysis', ['analysis_id'], ['id'])
batch_op.add_column(sa.Column('ds_class', sa.String(), nullable=True))
conn = op.get_bind()
session = sa.orm.Session(bind=conn)
dsatasources = conn.execute('select id, analysis from datasource').fetchall()
for row in dsatasources:
if row['analysis'] is not None:
# NOTE 'returning' is relatively new in sqlite, so better will be use select after insert.
conn.execute(
text(), {
'id': row['id']
}
)
analysis_id = conn.execute(text()).fetchall()
conn.execute(
text(), {
'analysis_id': analysis_id[0][0],
'id': row['id']
}
)
with op.batch_alter_table('datasource', schema=None) as batch_op:
batch_op.drop_column('analysis')
op.create_table(
'file',
sa.Column('id', sa.Integer(), nullable=False),
sa.Column('name', sa.String(), nullable=False),
sa.Column('company_id', sa.Integer(), nullable=True),
sa.Column('source_file_path', sa.String(), nullable=False),
sa.Column('file_path', sa.String(), nullable=False),
sa.Column('row_count', sa.Integer(), nullable=False),
sa.Column('columns', mindsdb.interfaces.storage.db.Json(), nullable=False),
# sa.Column('created_at', sa.DateTime(), nullable=True, server_default=sa.func.current_timestamp()), # ?????
# sa.Column('updated_at', sa.DateTime(), nullable=True, server_default=sa.func.current_timestamp(), server_onupdate=sa.func.current_timestamp()), # ????? erver_default=func.now()
# sa.Column('created_at', sa.DateTime(), nullable=True, server_default=datetime.datetime.now), # ?????
# sa.Column('updated_at', sa.DateTime(), nullable=True, server_default=datetime.datetime.now, server_onupdate=datetime.datetime.now), # ????? erver_default=func.now()
sa.Column('created_at', sa.DateTime(), nullable=True, server_default=sa.func.current_timestamp()), # ?????
sa.Column('updated_at', sa.DateTime(), nullable=True, server_default=sa.func.current_timestamp(), server_onupdate=sa.func.current_timestamp()), # ????? erver_default=func.now()
sa.Column('analysis_id', sa.Integer(), nullable=True),
sa.ForeignKeyConstraint(['analysis_id'], ['analysis.id'], name='fk_analysis_id'),
sa.PrimaryKeyConstraint('id')
)
# delete ds where data is none
dsatasources = conn.execute(text('select * from datasource')).fetchall()
for ds in dsatasources:
if ds['data'] is None:
conn.execute(text('delete from datasource where id = :id'), {'id': ds['id']})
continue
ds_data = json.loads(ds['data'])
creation_info = json.loads(ds['creation_info'])
datasource_name = ds_data.get('source_type')
if datasource_name == 'file':
created_at = None
if isinstance(ds['created_at'], str):
created_at = datetime.datetime.fromisoformat(ds['created_at'])
elif isinstance(ds['created_at'], [float, int]):
created_at = datetime.fromtimestamp(ds['created_at'])
updated_at = None
if isinstance(ds['updated_at'], str):
updated_at = datetime.datetime.fromisoformat(ds['updated_at'])
elif isinstance(ds['updated_at'], [float, int]):
updated_at = datetime.fromtimestamp(ds['updated_at'])
file = mindsdb.interfaces.storage.db.File(
name=ds['name'],
company_id=ds['company_id'],
source_file_path=ds_data['source'],
file_path=creation_info['args'][0],
row_count=ds_data['row_count'],
columns=ds_data['columns'],
created_at=created_at,
updated_at=updated_at,
analysis_id=ds['analysis_id']
)
session.add(file)
conn.execute(
text(), {
'datasource_name': datasource_name,
'company_id': ds['company_id'],
'ds_class': creation_info['class'],
'id': ds['id']
}
)
session.commit()
op.rename_table('datasource', 'dataset')
op.rename_table('integration', 'datasource')
with op.batch_alter_table('dataset', schema=None) as batch_op:
batch_op.alter_column('integration_id', new_column_name='datasource_id')
batch_op.create_foreign_key('fk_datasource_id', 'datasource', ['datasource_id'], ['id'])
# NOTE two different 'batch' is necessary, in other way FK is not creating
with op.batch_alter_table('predictor', schema=None) as batch_op:
batch_op.alter_column('datasource_id', new_column_name='dataset_id')
with op.batch_alter_table('predictor', schema=None) as batch_op:
batch_op.create_foreign_key('fk_dataset_id', 'dataset', ['dataset_id'], ['id'])
| mindsdb/migrations/versions/2022-02-09_27c5aca9e47e_test.py | 1,602 | mindsdb | {
"docstring": "\n insert into analysis (analysis) select analysis from datasource where id = :id;\n \n select id from analysis order by id desc limit 1;\n \n update datasource set analysis_id = :analysis_id where id = :id\n \n update datasource\n set integration_id = (select id from integration where name = :datasource_name and company_id = :company_id),\n ds_class = :ds_class\n where id = :id\n ",
"language": "en",
"n_whitespaces": 229,
"n_words": 56,
"vocab_size": 31
} | 323 | Python | 174 | e8740eecac16c34cba133ba37939831bb66deea7 | 2022-02-09_27c5aca9e47e_test.py | 114,080 | 108 | 948 | upgrade | https://github.com/mindsdb/mindsdb.git | changes from parent branch | 1,245 | 0 | 25,088 | 17 |
|
3 | 12 | def _verbose_message(message, *args, verbosity=1):
if sys.flags.verbose >= verbosity:
if not message.startswith(('#', 'import ')):
message = '# ' + message
print(message.format(*args), file=sys.stderr)
| python3.10.4/Lib/importlib/_bootstrap.py | 95 | XX-Net | {
"docstring": "Print the message to stderr if -v/PYTHONVERBOSE is turned on.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 21 | Python | 19 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _bootstrap.py | 218,044 | 5 | 56 | _verbose_message | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 52 | 0 | 55,095 | 12 |
|
1 | 5 | def readinto(self, b):
self._check_can_read()
return self._buffer.readinto(b)
| python3.10.4/Lib/bz2.py | 38 | XX-Net | {
"docstring": "Read bytes into b.\n\n Returns the number of bytes read (0 for EOF).\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 13,
"vocab_size": 12
} | 6 | Python | 6 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | bz2.py | 221,182 | 3 | 22 | readinto | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 27 | 0 | 56,252 | 8 |
|
8 | 21 | def check_send_to_kindle(entry):
formats = list()
book_formats = list()
if len(entry.data):
for ele in iter(entry.data):
if ele.uncompressed_size < config.mail_size:
formats.append(ele.format)
if 'MOBI' in formats:
book_formats.append({'format': 'Mobi',
'convert': 0,
'text': _('Send %(format)s to Kindle', format='Mobi')})
if 'PDF' in formats:
book_formats.append({'format': 'Pdf',
'convert': 0,
'text': _('Send %(format)s to Kindle', format='Pdf')})
if 'AZW' in formats:
book_formats.append({'format': 'Azw',
'convert': 0,
'text': _('Send %(format)s to Kindle', format='Azw')})
if config.config_converterpath:
book_formats.extend(check_send_to_kindle_with_converter(formats))
return book_formats
else:
log.error(u'Cannot find book entry %d', entry.id)
return None
# Check if a reader is existing for any of the book formats, if not, return empty list, otherwise return
# list with supported formats | cps/helper.py | 312 | calibre-web | {
"docstring": "\n returns all available book formats for sending to Kindle\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 9,
"vocab_size": 9
} | 100 | Python | 62 | 2e007a160e652b2e7bbdeb5a8319560188324502 | helper.py | 173,231 | 25 | 172 | check_send_to_kindle | https://github.com/janeczku/calibre-web.git | reenable startup logging
Bugfixes from refactoring and merge | 431 | 0 | 40,831 | 17 |
|
3 | 26 | def get_actual_details(name, filters):
budget_against = frappe.scrub(filters.get("budget_against"))
cond = ""
if filters.get("budget_against") == "Cost Center":
cc_lft, cc_rgt = frappe.db.get_value("Cost Center", name, ["lft", "rgt"])
cond = .format(
lft=cc_lft, rgt=cc_rgt
)
ac_details = frappe.db.sql(
.format(
tab=filters.budget_against, budget_against=budget_against, cond=cond
),
(filters.from_fiscal_year, filters.to_fiscal_year, name),
as_dict=1,
)
cc_actual_details = {}
for d in ac_details:
cc_actual_details.setdefault(d.account, []).append(d)
return cc_actual_details
| erpnext/accounts/report/budget_variance_report/budget_variance_report.py | 223 | erpnext | {
"docstring": "\n\t\t\t\tand lft >= \"{lft}\"\n\t\t\t\tand rgt <= \"{rgt}\"\n\t\t\t\n\t\t\tselect\n\t\t\t\tgl.account,\n\t\t\t\tgl.debit,\n\t\t\t\tgl.credit,\n\t\t\t\tgl.fiscal_year,\n\t\t\t\tMONTHNAME(gl.posting_date) as month_name,\n\t\t\t\tb.{budget_against} as budget_against\n\t\t\tfrom\n\t\t\t\t`tabGL Entry` gl,\n\t\t\t\t`tabBudget Account` ba,\n\t\t\t\t`tabBudget` b\n\t\t\twhere\n\t\t\t\tb.name = ba.parent\n\t\t\t\tand b.docstatus = 1\n\t\t\t\tand ba.account=gl.account\n\t\t\t\tand b.{budget_against} = gl.{budget_against}\n\t\t\t\tand gl.fiscal_year between %s and %s\n\t\t\t\tand b.{budget_against} = %s\n\t\t\t\tand exists(\n\t\t\t\t\tselect\n\t\t\t\t\t\tname\n\t\t\t\t\tfrom\n\t\t\t\t\t\t`tab{tab}`\n\t\t\t\t\twhere\n\t\t\t\t\t\tname = gl.{budget_against}\n\t\t\t\t\t\t{cond}\n\t\t\t\t)\n\t\t\t\tgroup by\n\t\t\t\t\tgl.name\n\t\t\t\torder by gl.fiscal_year\n\t\t",
"language": "en",
"n_whitespaces": 38,
"n_words": 70,
"vocab_size": 46
} | 52 | Python | 43 | 494bd9ef78313436f0424b918f200dab8fc7c20b | budget_variance_report.py | 65,173 | 53 | 138 | get_actual_details | https://github.com/frappe/erpnext.git | style: format code with black | 33 | 0 | 13,815 | 12 |
|
4 | 7 | def broadcast_apply(cls, axis, apply_func, left, right, other_name="right"):
| modin/core/dataframe/pandas/partitioning/partition_manager.py | 28 | modin | {
"docstring": "\n Broadcast the `right` partitions to `left` and apply `apply_func` function.\n\n Parameters\n ----------\n axis : {0, 1}\n Axis to apply and broadcast over.\n apply_func : callable\n Function to apply.\n left : np.ndarray\n NumPy array of left partitions.\n right : np.ndarray\n NumPy array of right partitions.\n other_name : str, default: \"right\"\n Name of key-value argument for `apply_func` that\n is used to pass `right` to `apply_func`.\n\n Returns\n -------\n np.ndarray\n NumPy array of result partition objects.\n\n Notes\n -----\n This will often be overridden by implementations. It materializes the\n entire partitions of the right and applies them to the left through `apply`.\n ",
"language": "en",
"n_whitespaces": 287,
"n_words": 97,
"vocab_size": 64
} | 7 | Python | 7 | e4ef652ead6e3fd4bf97deff992fb9065eab4b44 | partition_manager.py | 155,506 | 20 | 98 | broadcast_apply | https://github.com/modin-project/modin.git | REFACTOR-#5459: Install code linters through conda and unpin flake8 (#5450)
Co-authored-by: Vasily Litvinov <[email protected]>
Signed-off-by: Anatoly Myachev <[email protected]> | 14 | 0 | 36,414 | 6 |
|
1 | 6 | def writelines(self, list_of_data):
data = b''.join(list_of_data)
self.write(data)
| python3.10.4/Lib/asyncio/transports.py | 40 | XX-Net | {
"docstring": "Write a list (or any iterable) of data bytes to the transport.\n\n The default implementation concatenates the arguments and\n calls write() on the result.\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 24,
"vocab_size": 22
} | 7 | Python | 7 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | transports.py | 220,852 | 3 | 23 | writelines | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 28 | 0 | 56,155 | 9 |
|
11 | 34 | def make_zipfile(base_name, base_dir, verbose=0, dry_run=0):
zip_filename = base_name + ".zip"
mkpath(os.path.dirname(zip_filename), dry_run=dry_run)
# If zipfile module is not available, try spawning an external
# 'zip' command.
if zipfile is None:
if verbose:
zipoptions = "-r"
else:
zipoptions = "-rq"
try:
spawn(["zip", zipoptions, zip_filename, base_dir],
dry_run=dry_run)
except DistutilsExecError:
# XXX really should distinguish between "couldn't find
# external 'zip' command" and "zip failed".
raise DistutilsExecError(("unable to create zip file '%s': "
"could neither import the 'zipfile' module nor "
"find a standalone zip utility") % zip_filename)
else:
log.info("creating '%s' and adding '%s' to it",
zip_filename, base_dir)
if not dry_run:
try:
zip = zipfile.ZipFile(zip_filename, "w",
compression=zipfile.ZIP_DEFLATED)
except RuntimeError:
zip = zipfile.ZipFile(zip_filename, "w",
compression=zipfile.ZIP_STORED)
with zip:
if base_dir != os.curdir:
path = os.path.normpath(os.path.join(base_dir, ''))
zip.write(path, path)
log.info("adding '%s'", path)
for dirpath, dirnames, filenames in os.walk(base_dir):
for name in dirnames:
path = os.path.normpath(os.path.join(dirpath, name, ''))
zip.write(path, path)
log.info("adding '%s'", path)
for name in filenames:
path = os.path.normpath(os.path.join(dirpath, name))
if os.path.isfile(path):
zip.write(path, path)
log.info("adding '%s'", path)
return zip_filename
ARCHIVE_FORMATS = {
'gztar': (make_tarball, [('compress', 'gzip')], "gzip'ed tar-file"),
'bztar': (make_tarball, [('compress', 'bzip2')], "bzip2'ed tar-file"),
'xztar': (make_tarball, [('compress', 'xz')], "xz'ed tar-file"),
'ztar': (make_tarball, [('compress', 'compress')], "compressed tar file"),
'tar': (make_tarball, [('compress', None)], "uncompressed tar file"),
'zip': (make_zipfile, [],"ZIP file")
}
| python3.10.4/Lib/distutils/archive_util.py | 638 | XX-Net | {
"docstring": "Create a zip file from all the files under 'base_dir'.\n\n The output zip file will be named 'base_name' + \".zip\". Uses either the\n \"zipfile\" Python module (if available) or the InfoZIP \"zip\" utility\n (if installed and found on the default search path). If neither tool is\n available, raises DistutilsExecError. Returns the name of the output zip\n file.\n ",
"language": "en",
"n_whitespaces": 78,
"n_words": 57,
"vocab_size": 47
} | 203 | Python | 134 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | archive_util.py | 222,552 | 41 | 290 | make_zipfile | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 860 | 0 | 56,631 | 22 |
|
1 | 8 | def project_state(self, nodes=None, at_end=True):
return self.graph.make_state(
nodes=nodes, at_end=at_end, real_apps=self.unmigrated_apps
)
| django/db/migrations/loader.py | 53 | django | {
"docstring": "\n Return a ProjectState object representing the most recent state\n that the loaded migrations represent.\n\n See graph.make_state() for the meaning of \"nodes\" and \"at_end\".\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 23,
"vocab_size": 21
} | 10 | Python | 10 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | loader.py | 205,304 | 4 | 35 | project_state | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 42 | 0 | 51,080 | 9 |
|
10 | 20 | def provide_database_interface() -> OrionDBInterface:
connection_url = PREFECT_ORION_DATABASE_CONNECTION_URL.value()
database_config = MODELS_DEPENDENCIES.get("database_config")
query_components = MODELS_DEPENDENCIES.get("query_components")
orm = MODELS_DEPENDENCIES.get("orm")
dialect = get_dialect(connection_url)
if database_config is None:
if dialect.name == "postgresql":
database_config = AsyncPostgresConfiguration(connection_url=connection_url)
elif dialect.name == "sqlite":
database_config = AioSqliteConfiguration(connection_url=connection_url)
else:
raise ValueError(
f"Unable to infer database configuration from provided dialect. Got dialect name {dialect.name!r}"
)
MODELS_DEPENDENCIES["database_config"] = database_config
if query_components is None:
if dialect.name == "postgresql":
query_components = AsyncPostgresQueryComponents()
elif dialect.name == "sqlite":
query_components = AioSqliteQueryComponents()
else:
raise ValueError(
f"Unable to infer query components from provided dialect. Got dialect name {dialect.name!r}"
)
MODELS_DEPENDENCIES["query_components"] = query_components
if orm is None:
if dialect.name == "postgresql":
orm = AsyncPostgresORMConfiguration()
elif dialect.name == "sqlite":
orm = AioSqliteORMConfiguration()
else:
raise ValueError(
f"Unable to infer orm configuration from provided dialect. Got dialect name {dialect.name!r}"
)
MODELS_DEPENDENCIES["orm"] = orm
return OrionDBInterface(
database_config=database_config,
query_components=query_components,
orm=orm,
)
| src/prefect/orion/database/dependencies.py | 367 | prefect | {
"docstring": "\n Get the current orion database interface.\n\n If components of the interface are not set, defaults will be inferred\n based on the dialect of the connection url.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 26,
"vocab_size": 22
} | 136 | Python | 54 | 110742d1fee98e793ccdbf47a0a55eeaf70e81e0 | dependencies.py | 54,644 | 47 | 195 | provide_database_interface | https://github.com/PrefectHQ/prefect.git | Add temporary_database_interface | 451 | 0 | 11,117 | 15 |
|
1 | 10 | def test_image_inside_link(self):
# https://github.com/wagtail/wagtail/issues/4602 - ensure that an <embed> inside
# a link is handled. This is not valid in Draftail as images are block-level,
# but should be handled without errors, splitting the image into its own block
converter = ContentstateConverter(features=['image', 'link'])
result = json.loads(converter.from_database_format(
))
self.assertContentStateEqual(result, {
'blocks': [
{'key': '00000', 'inlineStyleRanges': [], 'entityRanges': [{'key': 0, 'offset': 0, 'length': 6}], 'depth': 0, 'text': 'before', 'type': 'unstyled'},
{'key': '00000', 'inlineStyleRanges': [], 'entityRanges': [{'key': 1, 'offset': 0, 'length': 1}], 'depth': 0, 'text': ' ', 'type': 'atomic'},
{'key': '00000', 'inlineStyleRanges': [], 'entityRanges': [{'key': 0, 'offset': 0, 'length': 5}], 'depth': 0, 'text': 'after', 'type': 'unstyled'},
{'key': '00000', 'inlineStyleRanges': [], 'entityRanges': [{'key': 2, 'offset': 0, 'length': 0}], 'depth': 0, 'text': '', 'type': 'unstyled'},
{'key': '00000', 'inlineStyleRanges': [], 'entityRanges': [{'key': 3, 'offset': 0, 'length': 1}], 'depth': 0, 'text': ' ', 'type': 'atomic'},
{'key': '00000', 'inlineStyleRanges': [], 'entityRanges': [{'key': 2, 'offset': 0, 'length': 0}], 'depth': 0, 'text': '', 'type': 'unstyled'},
],
'entityMap': {
'0': {'mutability': 'MUTABLE', 'type': 'LINK', 'data': {'url': 'https://wagtail.org'}},
'1': {
'data': {'format': 'left', 'alt': 'an image', 'id': '1', 'src': '/media/not-found'},
'mutability': 'IMMUTABLE', 'type': 'IMAGE'
},
'2': {'mutability': 'MUTABLE', 'type': 'LINK', 'data': {'url': 'https://wagtail.org'}},
'3': {
'data': {'format': 'left', 'alt': 'an image', 'id': '1', 'src': '/media/not-found'},
'mutability': 'IMMUTABLE', 'type': 'IMAGE'
},
}
})
| wagtail/admin/tests/test_contentstate.py | 782 | wagtail | {
"docstring": "\n <p><a href=\"https://wagtail.org\">before <embed embedtype=\"image\" alt=\"an image\" id=\"1\" format=\"left\" /> after</a></p>\n <p><a href=\"https://wagtail.org\"><embed embedtype=\"image\" alt=\"an image\" id=\"1\" format=\"left\" /></a></p>\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 18,
"vocab_size": 12
} | 210 | Python | 100 | 0a9b23979bbc55c0a95ff357ee589dae5363dc18 | test_contentstate.py | 70,567 | 30 | 398 | test_image_inside_link | https://github.com/wagtail/wagtail.git | Update links to wagtail.io website to point to wagtail.org
This covers only links to the website, not other sites | 577 | 0 | 15,525 | 16 |
|
1 | 8 | def unstack(self, level=-1, fill_value=None) -> DataFrame:
from pandas.core.reshape.reshape import unstack
return unstack(self, level, fill_value)
# ----------------------------------------------------------------------
# function application
| pandas/core/series.py | 55 | pandas | {
"docstring": "\n Unstack, also known as pivot, Series with MultiIndex to produce DataFrame.\n\n Parameters\n ----------\n level : int, str, or list of these, default last level\n Level(s) to unstack, can pass level name.\n fill_value : scalar value, default None\n Value to use when replacing NaN values.\n\n Returns\n -------\n DataFrame\n Unstacked Series.\n\n Notes\n -----\n Reference :ref:`the user guide <reshaping.stacking>` for more examples.\n\n Examples\n --------\n >>> s = pd.Series([1, 2, 3, 4],\n ... index=pd.MultiIndex.from_product([['one', 'two'],\n ... ['a', 'b']]))\n >>> s\n one a 1\n b 2\n two a 3\n b 4\n dtype: int64\n\n >>> s.unstack(level=-1)\n a b\n one 1 2\n two 3 4\n\n >>> s.unstack(level=0)\n one two\n a 1 3\n b 2 4\n ",
"language": "en",
"n_whitespaces": 471,
"n_words": 108,
"vocab_size": 79
} | 19 | Python | 17 | 6294d8490162442f9e73186f38b5545e5f22f7cb | series.py | 163,809 | 44 | 36 | unstack | https://github.com/pandas-dev/pandas.git | DOC: Improve reshaping.rst (#45612) | 46 | 0 | 39,502 | 7 |
|
1 | 10 | def sync_to_async_iter(iter):
loop = asyncio.get_event_loop()
q = asyncio.Queue(1)
exception = None
_END = object()
| freqtrade/misc.py | 52 | freqtrade | {
"docstring": "\n Wrap blocking iterator into an asynchronous by\n offloading computation to thread and using\n pubsub pattern for yielding results\n\n :param iter: A synchronous iterator\n :returns: An asynchronous iterator\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 27,
"vocab_size": 24
} | 14 | Python | 11 | f268187e9b357127151ae45704538aed6c89f7f5 | misc.py | 151,752 | 9 | 50 | sync_to_async_iter | https://github.com/freqtrade/freqtrade.git | offload initial df computation to thread | 29 | 0 | 35,131 | 8 |
|
3 | 6 | def is_right(self):
s = self.sides
return Segment.is_perpendicular(s[0], s[1]) or \
Segment.is_perpendicular(s[1], s[2]) or \
Segment.is_perpendicular(s[0], s[2])
| sympy/geometry/polygon.py | 84 | sympy | {
"docstring": "Is the triangle right-angled.\n\n Returns\n =======\n\n is_right : boolean\n\n See Also\n ========\n\n sympy.geometry.line.LinearEntity.is_perpendicular\n is_equilateral, is_isosceles, is_scalene\n\n Examples\n ========\n\n >>> from sympy import Triangle, Point\n >>> t1 = Triangle(Point(0, 0), Point(4, 0), Point(4, 3))\n >>> t1.is_right()\n True\n\n ",
"language": "en",
"n_whitespaces": 134,
"n_words": 36,
"vocab_size": 31
} | 16 | Python | 12 | 498015021131af4dbb07eb110e5badaba8250c7b | polygon.py | 196,288 | 5 | 58 | is_right | https://github.com/sympy/sympy.git | Updated import locations | 59 | 0 | 47,788 | 10 |
|
2 | 6 | def killable(self):
return not (self.error and self.error.msg == Error.KILLED_MESSAGE)
| mitmproxy/flow.py | 39 | mitmproxy | {
"docstring": "*Read-only:* `True` if this flow can be killed, `False` otherwise.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 9 | Python | 9 | fd43ca19c4a34915bdbfb9c127716fb5a63156e1 | flow.py | 250,578 | 2 | 23 | killable | https://github.com/mitmproxy/mitmproxy.git | Flow.kill: don't depend on reply status.
In principle, a flow is killable as long as the connection handler is still
checking the error status of the flow.
This is patch 2/4 of the reply-ectomy. | 23 | 0 | 73,510 | 11 |
|
4 | 13 | def _check_valid_data(self) -> bool:
logger.debug("Validating data. %s",
{key: len(val) for key, val in self._display_data.stats.items()})
if any(len(val) == 0 # pylint:disable=len-as-condition
for val in self._display_data.stats.values()):
return False
return True
| lib/gui/popup_session.py | 105 | faceswap | {
"docstring": " Check that the selections holds valid data to display\n NB: len-as-condition is used as data could be a list or a numpy array\n\n Returns\n -------\n bool\n ``True` if there is data to be displayed, otherwise ``False``\n ",
"language": "en",
"n_whitespaces": 87,
"n_words": 36,
"vocab_size": 30
} | 28 | Python | 24 | afec52309326304f4323029039e49bfcf928ef43 | popup_session.py | 100,727 | 15 | 64 | _check_valid_data | https://github.com/deepfakes/faceswap.git | Bugfixes:
- Stats graph - Handle NaNs in data
- logger - de-elevate matplotlib font messages | 102 | 0 | 20,182 | 13 |
|
5 | 9 | def promote_types(a, b):
# Note: we deliberately avoid `if a in _weak_types` here because we want to check
# object identity, not object equality, due to the behavior of np.dtype.__eq__
a = a if any(a is t for t in _weak_types) else np.dtype(a)
b = b if any(b is t for t in _weak_types) else np.dtype(b)
return np.dtype(_least_upper_bound(a, b))
| jax/_src/dtypes.py | 97 | jax | {
"docstring": "Returns the type to which a binary operation should cast its arguments.\n\n For details of JAX's type promotion semantics, see :ref:`type-promotion`.\n\n Args:\n a: a :class:`numpy.dtype` or a dtype specifier.\n b: a :class:`numpy.dtype` or a dtype specifier.\n\n Returns:\n A :class:`numpy.dtype` object.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 40,
"vocab_size": 30
} | 59 | Python | 41 | 2588c98586400a9a457670eabeba67085528e95f | dtypes.py | 120,237 | 4 | 62 | promote_types | https://github.com/google/jax.git | Add comment explaining implementation in promote_types | 65 | 0 | 26,803 | 10 |
|
7 | 19 | def _get_mask_channels(self) -> List[int]:
eye_multiplier = self._config["eye_multiplier"]
mouth_multiplier = self._config["mouth_multiplier"]
if not self._config["penalized_mask_loss"] and (eye_multiplier > 1 or
mouth_multiplier > 1):
logger.warning("You have selected eye/mouth loss multipliers greater than 1x, but "
"Penalized Mask Loss is disabled. Disabling all multipliers.")
eye_multiplier = 1
mouth_multiplier = 1
uses_masks = (self._config["penalized_mask_loss"],
eye_multiplier > 1,
mouth_multiplier > 1)
mask_channels = [-1 for _ in range(len(uses_masks))]
current_channel = 3
for idx, mask_required in enumerate(uses_masks):
if mask_required:
mask_channels[idx] = current_channel
current_channel += 1
logger.debug("uses_masks: %s, mask_channels: %s", uses_masks, mask_channels)
return mask_channels
| plugins/train/model/_base/settings.py | 215 | faceswap | {
"docstring": " Obtain the channels from the face targets that the masks reside in from the training\n data generator.\n\n Returns\n -------\n list:\n A list of channel indices that contain the mask for the corresponding config item\n ",
"language": "en",
"n_whitespaces": 81,
"n_words": 34,
"vocab_size": 27
} | 86 | Python | 62 | ff6b0209dd5ad57b81b0aca570df7f39a7119bfb | settings.py | 100,848 | 28 | 130 | _get_mask_channels | https://github.com/deepfakes/faceswap.git | Refactoring and TravisCI to Github Actions (#1239)
* refactor training
* travis to actions | 353 | 0 | 20,299 | 12 |
|
1 | 4 | def testDynamicScalingForegroundLauncher(self):
self.helperDynamicScaling(foreground_node_launcher=True)
| python/ray/tests/test_autoscaler.py | 26 | ray | {
"docstring": "Test autoscaling with node launcher in the foreground.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 3 | Python | 3 | c51b0c9a5664e5c6df3d92f9093b56e61b48f514 | test_autoscaler.py | 136,563 | 2 | 14 | testDynamicScalingForegroundLauncher | https://github.com/ray-project/ray.git | [autoscaler][kuberay] Batching node provider (#29933)
Implements the abstract subclass of NodeProvider proposed in
https://docs.google.com/document/d/1JyQINBFirZw7YenA_14zize0R3hIII1_fnfQytIXTPo/
The goal is to simplify the autoscaler's interactions with external cluster managers like the KubeRay operator.
A follow-up PR will implement KuberayNodeProvider as a subclass of the BatchingNodeProvider added here.
Signed-off-by: Dmitri Gekhtman <[email protected]> | 17 | 0 | 30,943 | 8 |
|
1 | 14 | async def test_switch_change_lock_state(hass, utcnow):
helper = await setup_test_component(hass, create_lock_service)
await hass.services.async_call(
"lock", "lock", {"entity_id": "lock.testdevice"}, blocking=True
)
helper.async_assert_service_values(
ServicesTypes.LOCK_MECHANISM,
{
CharacteristicsTypes.LOCK_MECHANISM_TARGET_STATE: 1,
},
)
await hass.services.async_call(
"lock", "unlock", {"entity_id": "lock.testdevice"}, blocking=True
)
helper.async_assert_service_values(
ServicesTypes.LOCK_MECHANISM,
{
CharacteristicsTypes.LOCK_MECHANISM_TARGET_STATE: 0,
},
)
| tests/components/homekit_controller/test_lock.py | 158 | core | {
"docstring": "Test that we can turn a HomeKit lock on and off again.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | 39 | Python | 23 | 58b8c30221a6f6e5acbbe98b7e3298b03fb741f5 | test_lock.py | 311,520 | 20 | 95 | test_switch_change_lock_state | https://github.com/home-assistant/core.git | Improve homekit_controller tests (#65266) | 147 | 0 | 110,185 | 11 |
|
2 | 22 | def test_edit_get_locked_by_self(self):
cases = [
(["change", "unlock"]),
(["change"]), # Can unlock even without unlock permission
]
for permissions in cases:
with self.subTest(
"User can edit and unlock an object they have locked",
permissions=permissions,
):
# Lock the snippet
self.lock_snippet(self.user)
# Use the specified permissions
self.set_permissions(permissions)
# Get the edit page
response = self.client.get(self.get_url("edit"))
html = response.content.decode()
unlock_url = self.get_url("unlock")
# Should show lock message
self.assertContains(
response,
"<b>'I'm a lockable snippet!' was locked</b> by <b>you</b> on",
)
# Should show Save action menu item
self.assertContains(
response,
f"<em>{self.save_button_label}</em>",
html=True,
)
# Should not show Locked action menu item
self.assertTagInHTML(
'<button type="submit" disabled>Locked</button>',
html,
count=0,
allow_extra_attrs=True,
)
# Should show lock information in the side panel
self.assertContains(
response,
(
f"You can edit this {self.model_name}, but others may not. "
"Unlock it to allow others to edit."
),
)
# Should show unlock buttons, one in the message and one in the side panel
self.assertTagInHTML(
f'<button type="button" data-url="{unlock_url}" data-action-lock-unlock>Unlock</button>',
html,
count=2,
allow_extra_attrs=True,
)
| wagtail/snippets/tests/test_locking.py | 287 | wagtail | {
"docstring": "A user can edit and unlock a snippet that is locked by themselves.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | 159 | Python | 103 | 10dbbddaf35607e4257f50dd960520a1268dd225 | test_locking.py | 80,225 | 43 | 159 | test_edit_get_locked_by_self | https://github.com/wagtail/wagtail.git | Add tests for locking snippets | 957 | 0 | 17,034 | 16 |
|
11 | 39 | def linear_eq_to_matrix(equations, *symbols):
r
if not symbols:
raise ValueError(filldedent())
if hasattr(symbols[0], '__iter__'):
symbols = symbols[0]
if has_dups(symbols):
raise ValueError('Symbols must be unique')
equations = sympify(equations)
if isinstance(equations, MatrixBase):
equations = list(equations)
elif isinstance(equations, (Expr, Eq)):
equations = [equations]
elif not is_sequence(equations):
raise ValueError(filldedent())
# construct the dictionaries
try:
eq, c = _linear_eq_to_dict(equations, symbols)
except PolyNonlinearError as err:
raise NonlinearError(str(err))
# prepare output matrices
n, m = shape = len(eq), len(symbols)
ix = dict(zip(symbols, range(m)))
dat = {(row, ix[k]): d[k] for row, d in enumerate(eq) for k in d}
rhs = [-i for i in c]
del c
A = SparseMatrix(*shape, dat)
b = SparseMatrix(n, 1, rhs)
return A, b
| sympy/solvers/solveset.py | 353 | sympy | {
"docstring": "\n Converts a given System of Equations into Matrix form.\n Here `equations` must be a linear system of equations in\n `symbols`. Element ``M[i, j]`` corresponds to the coefficient\n of the jth symbol in the ith equation.\n\n The Matrix form corresponds to the augmented matrix form.\n For example:\n\n .. math:: 4x + 2y + 3z = 1\n .. math:: 3x + y + z = -6\n .. math:: 2x + 4y + 9z = 2\n\n This system will return $A$ and $b$ as:\n\n $$ A = \\left[\\begin{array}{ccc}\n 4 & 2 & 3 \\\\\n 3 & 1 & 1 \\\\\n 2 & 4 & 9\n \\end{array}\\right] \\ \\ b = \\left[\\begin{array}{c}\n 1 \\\\ -6 \\\\ 2\n \\end{array}\\right] $$\n\n The only simplification performed is to convert\n ``Eq(a, b)`` $\\Rightarrow a - b$.\n\n Raises\n ======\n\n NonlinearError\n The equations contain a nonlinear term.\n ValueError\n The symbols are not given or are not unique.\n\n Examples\n ========\n\n >>> from sympy import linear_eq_to_matrix, symbols\n >>> c, x, y, z = symbols('c, x, y, z')\n\n The coefficients (numerical or symbolic) of the symbols will\n be returned as matrices:\n\n >>> eqns = [c*x + z - 1 - c, y + z, x - y]\n >>> A, b = linear_eq_to_matrix(eqns, [x, y, z])\n >>> A\n Matrix([\n [c, 0, 1],\n [0, 1, 1],\n [1, -1, 0]])\n >>> b\n Matrix([\n [c + 1],\n [ 0],\n [ 0]])\n\n This routine does not simplify expressions and will raise an error\n if nonlinearity is encountered:\n\n >>> eqns = [\n ... (x**2 - 3*x)/(x - 3) - 3,\n ... y**2 - 3*y - y*(y - 4) + x - 4]\n >>> linear_eq_to_matrix(eqns, [x, y])\n Traceback (most recent call last):\n ...\n NonlinearError:\n symbol-dependent term can be ignored using `strict=False`\n\n Simplifying these equations will discard the removable singularity\n in the first and reveal the linear structure of the second:\n\n >>> [e.simplify() for e in eqns]\n [x - 3, x + y - 4]\n\n Any such simplification needed to eliminate nonlinear terms must\n be done *before* calling this routine.\n \n Symbols must be given, for which coefficients\n are to be found.\n \n Equation(s) must be given as a sequence, Expr,\n Eq or Matrix.\n ",
"language": "en",
"n_whitespaces": 798,
"n_words": 351,
"vocab_size": 197
} | 109 | Python | 79 | e0aaa724190c49f2725bb7880eddd13ce4fef4b7 | solveset.py | 199,158 | 109 | 221 | linear_eq_to_matrix | https://github.com/sympy/sympy.git | more efficient coefficient extraction | 224 | 0 | 49,172 | 13 |
|
4 | 25 | def _make_attention_mask(self) -> None:
# Make masks for shift case
if any(self.shift_size):
# calculate attention mask for SW-MSA
H, W = self.feat_size
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
cnt = 0
for h in (
slice(0, -self.window_size[0]),
slice(-self.window_size[0], -self.shift_size[0]),
slice(-self.shift_size[0], None)):
for w in (
slice(0, -self.window_size[1]),
slice(-self.window_size[1], -self.shift_size[1]),
slice(-self.shift_size[1], None)):
img_mask[:, h, w, :] = cnt
cnt += 1
mask_windows = window_partition(img_mask, self.window_size) # num_windows, window_size, window_size, 1
mask_windows = mask_windows.view(-1, self.window_area)
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask, persistent=False)
| timm/models/swin_transformer_v2_cr.py | 365 | pytorch-image-models | {
"docstring": "Method generates the attention mask used in shift case.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 99 | Python | 69 | c6e4b7895a7dbcd9b98396cbef383dd1c72b0ad3 | swin_transformer_v2_cr.py | 331,786 | 23 | 244 | _make_attention_mask | https://github.com/huggingface/pytorch-image-models.git | Swin V2 CR impl refactor.
* reformat and change some naming so closer to existing timm vision transformers
* remove typing that wasn't adding clarity (or causing torchscript issues)
* support non-square windows
* auto window size adjust from image size
* post-norm + main-branch no | 425 | 0 | 119,924 | 15 |
|
1 | 8 | def _map_multiprocess(func, iterable, chunksize=1):
# type: (Callable[[S], T], Iterable[S], int) -> Iterator[T]
with closing(ProcessPool()) as pool:
return pool.imap_unordered(func, iterable, chunksize)
| .venv/lib/python3.8/site-packages/pip/_internal/utils/parallel.py | 56 | transferlearning | {
"docstring": "Chop iterable into chunks and submit them to a process pool.\n\n For very long iterables using a large value for chunksize can make\n the job complete much faster than using the default value of 1.\n\n Return an unordered iterator of the results.\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 42,
"vocab_size": 36
} | 20 | Python | 19 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | parallel.py | 61,287 | 3 | 33 | _map_multiprocess | https://github.com/jindongwang/transferlearning.git | upd; format | 36 | 0 | 12,489 | 12 |
|
7 | 26 | def serialize(items):
data = QByteArray()
stream = QDataStream(data, QIODevice.OpenModeFlag.ReadWrite)
user_data: List[Mapping[str, Any]] = []
current_idx = None
for i, item in enumerate(items):
if item.active:
if current_idx is not None:
raise ValueError("Multiple active items ({} and {}) "
"found!".format(current_idx, i))
current_idx = i
if items:
if current_idx is None:
raise ValueError("No active item found!")
else:
current_idx = 0
_serialize_items(items, current_idx, stream)
user_data += [item.user_data for item in items]
stream.device().reset()
qtutils.check_qdatastream(stream)
return stream, data, user_data
| qutebrowser/browser/webkit/tabhistory.py | 219 | qutebrowser | {
"docstring": "Serialize a list of TabHistoryItems to a data stream.\n\n Args:\n items: An iterable of TabHistoryItems.\n\n Return:\n A (stream, data, user_data) tuple.\n stream: The reset QDataStream.\n data: The QByteArray with the raw data.\n user_data: A list with each item's user data.\n\n Warning:\n If 'data' goes out of scope, reading from 'stream' will result in a\n segfault!\n ",
"language": "en",
"n_whitespaces": 128,
"n_words": 55,
"vocab_size": 46
} | 73 | Python | 52 | 0877fb0d78635692e481c8bde224fac5ad0dd430 | tabhistory.py | 321,174 | 21 | 135 | serialize | https://github.com/qutebrowser/qutebrowser.git | Run scripts/dev/rewrite_enums.py | 213 | 0 | 117,577 | 17 |
|
1 | 17 | def test_copy_with_expression(self):
expression = "col1, col2"
op = DatabricksCopyIntoOperator(
file_location=COPY_FILE_LOCATION,
file_format='CSV',
table_name='test',
task_id=TASK_ID,
pattern='folder1/file_[a-g].csv',
expression_list=expression,
format_options={'header': 'true'},
force_copy=True,
)
assert (
op._create_sql_query()
== f.strip()
)
| tests/providers/databricks/operators/test_databricks_sql.py | 114 | airflow | {
"docstring": "COPY INTO test\nFROM (SELECT {expression} FROM '{COPY_FILE_LOCATION}')\nFILEFORMAT = CSV\nPATTERN = 'folder1/file_[a-g].csv'\nFORMAT_OPTIONS ('header' = 'true')\nCOPY_OPTIONS ('force' = 'true')\n",
"language": "en",
"n_whitespaces": 16,
"n_words": 22,
"vocab_size": 17
} | 25 | Python | 23 | 27d19e7626ef80687997a6799762fa00162c1328 | test_databricks_sql.py | 45,337 | 22 | 64 | test_copy_with_expression | https://github.com/apache/airflow.git | Databricks SQL operators (#21363) | 169 | 0 | 8,547 | 12 |
|
1 | 9 | def _register_serializers(self):
import ray.serialization_addons
from ray.util.serialization import StandaloneSerializationContext
ctx = StandaloneSerializationContext()
ray.serialization_addons.apply(ctx)
| python/ray/util/client/__init__.py | 52 | ray | {
"docstring": "Register the custom serializer addons at the client side.\n\n The server side should have already registered the serializers via\n regular worker's serialization_context mechanism.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 23,
"vocab_size": 21
} | 12 | Python | 11 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | __init__.py | 132,908 | 5 | 31 | _register_serializers | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 47 | 0 | 29,864 | 8 |
|
2 | 18 | def _postprocess_tf(self, policy, sample_batch, tf_sess):
if self.framework == "tf":
obs_embeds = tf_sess.run(
self._obs_embeds,
feed_dict={self._obs_ph: sample_batch[SampleBatch.OBS]},
)
else:
obs_embeds = tf.stop_gradient(
self._encoder_net({SampleBatch.OBS: sample_batch[SampleBatch.OBS]})[0]
).numpy()
sample_batch[SampleBatch.OBS_EMBEDS] = obs_embeds
return sample_batch
| rllib/utils/exploration/random_encoder.py | 137 | ray | {
"docstring": "Calculate states' embeddings and add it to SampleBatch.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 28 | Python | 24 | b32c784c7fbeab39f77ec47e66c18e987efb582d | random_encoder.py | 125,607 | 12 | 88 | _postprocess_tf | https://github.com/ray-project/ray.git | [RLLib] RE3 exploration algorithm TF2 framework support (#25221) | 152 | 0 | 27,923 | 20 |
|
3 | 23 | async def test_backfill_state_name(db, flow):
connection_url = PREFECT_ORION_DATABASE_CONNECTION_URL.value()
dialect = get_dialect(connection_url)
# get the proper migration revisions
if dialect.name == "postgresql":
revisions = ("605ebb4e9155", "14dc68cc5853")
else:
revisions = ("7f5f335cace3", "db6bde582447")
flow_run_id = uuid4()
null_state_flow_run_id = uuid4()
flow_run_state_1_id = uuid4()
flow_run_state_2_id = uuid4()
task_run_id = uuid4()
null_state_task_run_id = uuid4()
task_run_state_1_id = uuid4()
task_run_state_2_id = uuid4()
try:
# downgrade to the previous revision
await run_sync_in_worker_thread(alembic_downgrade, revision=revisions[0])
session = await db.session() | tests/orion/database/test_migrations.py | 191 | async def test_backfill_state_name(db, flow):
"""
Tests state_name is backfilled correctly for the flow_run
and task_run tables by a specific migration
"""
connection_url = PREFECT_ORION_DATABASE_CONNECTION_URL.value()
dialect = get_dialect(connection_url)
# get the proper migration revisions
if dialect.name == "postgresql":
revisions = ("605ebb4e9155", "14dc68cc5853")
else:
revisions = ("7f5f335cace3", "db6bde582447")
flow_run_id = uuid4()
null_state_flow_run_id = uuid4()
flow_run_state_1_id = uuid4()
flow_run_state_2_id = uuid4()
task_run_id = uuid4()
null_state_task_run_id = uuid4()
task_run_state_1_id = uuid4()
task_run_state_2_id = uuid4()
try:
# downgrade to the previous revision
await run_sync_in_worker_thread(alembic_downgrade, revision=revisions[0])
session = await db.session() | prefect | {
"docstring": "\n Tests state_name is backfilled correctly for the flow_run\n and task_run tables by a specific migration\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 15,
"vocab_size": 15
} | 67 | Python | 43 | fc9f253912945e088e48cc723af383e6a9f46faf | test_migrations.py | 54,795 | 99 | 385 | test_backfill_state_name | https://github.com/PrefectHQ/prefect.git | Add run.state_name columns | 147 | 1 | 11,146 | 10 |
1 | 13 | def test_legacy_check_event_allowed(self) -> None:
channel = self.make_request(
"PUT",
"/_matrix/client/r0/rooms/%s/send/m.room.message/1" % self.room_id,
{
"msgtype": "m.text",
"body": "Original body",
},
access_token=self.tok,
)
self.assertEqual(channel.result["code"], b"200", channel.result)
event_id = channel.json_body["event_id"]
channel = self.make_request(
"GET",
"/_matrix/client/r0/rooms/%s/event/%s" % (self.room_id, event_id),
access_token=self.tok,
)
self.assertEqual(channel.result["code"], b"200", channel.result)
self.assertIn("foo", channel.json_body["content"].keys())
self.assertEqual(channel.json_body["content"]["foo"], "bar")
| tests/rest/client/test_third_party_rules.py | 240 | synapse | {
"docstring": "Tests that the wrapper for legacy check_event_allowed callbacks works\n correctly.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 10,
"vocab_size": 10
} | 43 | Python | 33 | 2ffaf30803f93273a4d8a65c9e6c3110c8433488 | test_third_party_rules.py | 247,323 | 23 | 142 | test_legacy_check_event_allowed | https://github.com/matrix-org/synapse.git | Add type hints to `tests/rest/client` (#12108)
* Add type hints to `tests/rest/client`
* newsfile
* fix imports
* add `test_account.py`
* Remove one type hint in `test_report_event.py`
* change `on_create_room` to `async`
* update new functions in `test_third_party_rules.py`
* Add `test_filter.py`
* add `test_rooms.py`
* change to `assertEquals` to `assertEqual`
* lint | 231 | 0 | 71,589 | 11 |
|
2 | 8 | def bulk_to_python(self, values):
objects = self.target_model.objects.in_bulk(values)
return [
objects.get(id) for id in values
] # Keeps the ordering the same as in values.
| wagtail/core/blocks/field_block.py | 54 | wagtail | {
"docstring": "Return the model instances for the given list of primary keys.\n\n The instances must be returned in the same order as the values and keep None values.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 27,
"vocab_size": 23
} | 23 | Python | 21 | d10f15e55806c6944827d801cd9c2d53f5da4186 | field_block.py | 73,658 | 5 | 33 | bulk_to_python | https://github.com/wagtail/wagtail.git | Reformat with black | 63 | 0 | 16,083 | 10 |
|
7 | 9 | def supported_python_versions(self): # type: () -> t.Optional[t.Tuple[str, ...]]
versions = super().supported_python_versions
if self.minimum_python_version:
versions = tuple(version for version in versions if str_to_version(version) >= str_to_version(self.minimum_python_version))
if self.maximum_python_version:
versions = tuple(version for version in versions if str_to_version(version) <= str_to_version(self.maximum_python_version))
return versions
| test/lib/ansible_test/_internal/commands/sanity/__init__.py | 113 | ansible | {
"docstring": "A tuple of supported Python versions or None if the test does not depend on specific Python versions.",
"language": "en",
"n_whitespaces": 17,
"n_words": 18,
"vocab_size": 17
} | 39 | Python | 24 | dfde4be444ee66a1a0e44751b80bcf1afd6661d7 | __init__.py | 267,309 | 7 | 69 | supported_python_versions | https://github.com/ansible/ansible.git | Add Python 3.11 support.
ci_complete
ci_coverage | 97 | 0 | 78,848 | 15 |
|
8 | 37 | def sync_status_outbound(self, external_issue, is_resolved, project_id, **kwargs):
client = self.get_client()
jira_issue = client.get_issue(external_issue.key)
jira_project = jira_issue["fields"]["project"]
try:
external_project = IntegrationExternalProject.objects.get(
external_id=jira_project["id"],
organization_integration_id__in=OrganizationIntegration.objects.filter(
organization_id=external_issue.organization_id,
integration_id=external_issue.integration_id,
),
)
except IntegrationExternalProject.DoesNotExist:
return
jira_status = (
external_project.resolved_status if is_resolved else external_project.unresolved_status
)
# don't bother updating if it's already the status we'd change it to
if jira_issue["fields"]["status"]["id"] == jira_status:
return
try:
transitions = client.get_transitions(external_issue.key)
except ApiHostError:
raise IntegrationError("Could not reach host to get transitions.")
try:
transition = [t for t in transitions if t.get("to", {}).get("id") == jira_status][0]
except IndexError:
# TODO(jess): Email for failure
logger.warning(
"jira.status-sync-fail",
extra={
"organization_id": external_issue.organization_id,
"integration_id": external_issue.integration_id,
"issue_key": external_issue.key,
},
)
return
client.transition_issue(external_issue.key, transition["id"])
| src/sentry/integrations/jira_server/integration.py | 352 | sentry | {
"docstring": "\n Propagate a sentry issue's status to a linked issue's status.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 8
} | 103 | Python | 81 | 2fbf550ec05c8501cbc9eca62e73526e717dcbdf | integration.py | 93,732 | 36 | 213 | sync_status_outbound | https://github.com/getsentry/sentry.git | ref(Jira): Split Jira Cloud and Jira Server (#37034)
* Split Jira Cloud and Jira Server | 525 | 0 | 19,015 | 17 |
|
1 | 12 | def test_return_expanded(self):
self.assertEqual(StateFilter.all().return_expanded(), StateFilter.all())
self.assertEqual(StateFilter.none().return_expanded(), StateFilter.none())
# Concrete-only state filters stay the same
# (Case: mixed filter)
self.assertEqual(
StateFilter.freeze(
{
EventTypes.Member: {"@wombat:test", "@alicia:test"},
"some.other.state.type": {""},
},
include_others=False,
).return_expanded(),
StateFilter.freeze(
{
EventTypes.Member: {"@wombat:test", "@alicia:test"},
"some.other.state.type": {""},
},
include_others=False,
),
)
# Concrete-only state filters stay the same
# (Case: non-member-only filter)
self.assertEqual(
StateFilter.freeze(
{"some.other.state.type": {""}}, include_others=False
).return_expanded(),
StateFilter.freeze({"some.other.state.type": {""}}, include_others=False),
)
# Concrete-only state filters stay the same
# (Case: member-only filter)
self.assertEqual(
StateFilter.freeze(
{
EventTypes.Member: {"@wombat:test", "@alicia:test"},
},
include_others=False,
).return_expanded(),
StateFilter.freeze(
{
EventTypes.Member: {"@wombat:test", "@alicia:test"},
},
include_others=False,
),
)
# Wildcard member-only state filters stay the same
self.assertEqual(
StateFilter.freeze(
{EventTypes.Member: None},
include_others=False,
).return_expanded(),
StateFilter.freeze(
{EventTypes.Member: None},
include_others=False,
),
)
# If there is a wildcard in the non-member portion of the filter,
# it's expanded to include ALL non-member events.
# (Case: mixed filter)
self.assertEqual(
StateFilter.freeze(
{
EventTypes.Member: {"@wombat:test", "@alicia:test"},
"some.other.state.type": None,
},
include_others=False,
).return_expanded(),
StateFilter.freeze(
{EventTypes.Member: {"@wombat:test", "@alicia:test"}},
include_others=True,
),
)
# If there is a wildcard in the non-member portion of the filter,
# it's expanded to include ALL non-member events.
# (Case: non-member-only filter)
self.assertEqual(
StateFilter.freeze(
{
"some.other.state.type": None,
},
include_others=False,
).return_expanded(),
StateFilter.freeze({EventTypes.Member: set()}, include_others=True),
)
self.assertEqual(
StateFilter.freeze(
{
"some.other.state.type": None,
"yet.another.state.type": {"wombat"},
},
include_others=False,
).return_expanded(),
StateFilter.freeze({EventTypes.Member: set()}, include_others=True),
)
| tests/storage/test_state.py | 668 | synapse | {
"docstring": "\n Tests the behaviour of the return_expanded() function that expands\n StateFilters to include more state types (for the sake of cache hit rate).\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 22,
"vocab_size": 19
} | 203 | Python | 63 | eb609c65d0794dd49efcd924bdc8743fd4253a93 | test_state.py | 246,360 | 81 | 410 | test_return_expanded | https://github.com/matrix-org/synapse.git | Fix bug in `StateFilter.return_expanded()` and add some tests. (#12016) | 1,317 | 0 | 71,177 | 15 |
|
2 | 6 | def parent(self) -> DOMNode:
if self._parent is None:
raise NoParent(f"{self} has no parent")
assert isinstance(self._parent, DOMNode)
return self._parent
| src/textual/dom.py | 60 | textual | {
"docstring": "Get the parent node.\n\n Raises:\n NoParent: If this is the root node.\n\n Returns:\n DOMNode: The node which is the direct parent of this node.\n ",
"language": "en",
"n_whitespaces": 67,
"n_words": 24,
"vocab_size": 17
} | 18 | Python | 17 | 2635f58e7c3d10b161ee69a15ebfe6499ac26daa | dom.py | 181,946 | 13 | 34 | parent | https://github.com/Textualize/textual.git | docstrings and tidy | 57 | 0 | 43,685 | 11 |
|
5 | 10 | def _maybe_add_default_serving_output(export_outputs):
if len(export_outputs) == 1:
((key, value),) = export_outputs.items()
if key != tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
export_outputs[
tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
] = value
if len(export_outputs) > 1:
if (
tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY
not in export_outputs
):
raise ValueError(
"Multiple `export_outputs` were provided, but none of them are "
"specified as the default. Use"
"`tf.saved_model.DEFAULT_SERVING_SIGNATURE_DEF_KEY` to "
"specify a default."
)
return export_outputs
# LINT.ThenChange(//tensorflow/python/saved_model/model_utils/export_utils.py)
| keras/saving/utils_v1/export_utils.py | 131 | keras | {
"docstring": "Add a default serving output to the export_outputs if not present.\n\n Args:\n export_outputs: Describes the output signatures to be exported to\n `SavedModel` and used during serving. Should be a dict.\n\n Returns:\n export_outputs dict with default serving signature added if necessary\n\n Raises:\n ValueError: if multiple export_outputs were provided without a default\n serving key.\n ",
"language": "en",
"n_whitespaces": 93,
"n_words": 52,
"vocab_size": 37
} | 58 | Python | 49 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | export_utils.py | 276,301 | 19 | 77 | _maybe_add_default_serving_output | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 238 | 0 | 81,623 | 13 |