complexity
int64
1
56
n_identifiers
int64
1
114
code
stringlengths
19
12.7k
path
stringlengths
8
134
n_ast_nodes
int64
12
2.35k
ast_errors
stringlengths
0
4.01k
repo
stringlengths
3
28
documentation
dict
n_words
int64
2
866
language
stringclasses
1 value
vocab_size
int64
2
323
commit_id
stringlengths
40
40
file_name
stringlengths
5
79
id
int64
243
338k
nloc
int64
1
228
token_counts
int64
5
1.4k
fun_name
stringlengths
1
77
url
stringlengths
31
60
commit_message
stringlengths
3
15.3k
n_whitespaces
int64
1
3.23k
n_ast_errors
int64
0
20
d_id
int64
74
121k
ast_levels
int64
4
29
2
9
def writelines(self, lines): self._checkClosed() for line in lines: self.write(line) io.IOBase.register(IOBase)
python3.10.4/Lib/_pyio.py
54
XX-Net
{ "docstring": "Write a list of lines to the stream.\n\n Line separators are not added, so it is usual for each of the lines\n provided to have a line separator at the end.\n ", "language": "en", "n_whitespaces": 52, "n_words": 31, "vocab_size": 25 }
10
Python
10
8198943edd73a363c266633e1aa5b2a9e9c9f526
_pyio.py
219,909
4
24
writelines
https://github.com/XX-net/XX-Net.git
add python 3.10.4 for windows
41
0
55,895
9
1
5
def _on_slider_update(self, value) -> None: self.scale_var.set(f"{value}%")
lib/training/preview_tk.py
37
faceswap
{ "docstring": " Callback for when the scale slider is adjusted. Adjusts the combo box display to the\n current slider value.\n\n Parameters\n ----------\n value: int\n The value that the slider has been set to\n ", "language": "en", "n_whitespaces": 79, "n_words": 31, "vocab_size": 25 }
6
Python
6
7da2cc3dd266aabebf41a31384cc2e0e7e5af6e5
preview_tk.py
101,558
10
19
_on_slider_update
https://github.com/deepfakes/faceswap.git
Training - Use custom preview pop-out
20
0
20,968
9
1
10
def unrank_binary(self, rank, superset): bits = bin(rank)[2:].rjust(len(superset), '0') return Subset.subset_from_bitlist(superset, bits)
sympy/combinatorics/subsets.py
63
sympy
{ "docstring": "\n Gets the binary ordered subset of the specified rank.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import Subset\n >>> Subset.unrank_binary(4, ['a', 'b', 'c', 'd']).subset\n ['b']\n\n See Also\n ========\n\n iterate_binary, rank_binary\n ", "language": "en", "n_whitespaces": 99, "n_words": 28, "vocab_size": 25 }
11
Python
11
498015021131af4dbb07eb110e5badaba8250c7b
subsets.py
196,204
3
39
unrank_binary
https://github.com/sympy/sympy.git
Updated import locations
32
0
47,704
11
16
5
def lcm_list(seq, *gens, **args): seq = sympify(seq)
sympy/polys/polytools.py
31
sympy
{ "docstring": "\n Compute LCM of a list of polynomials.\n\n Examples\n ========\n\n >>> from sympy import lcm_list\n >>> from sympy.abc import x\n\n >>> lcm_list([x**3 - 1, x**2 - 1, x**2 - 3*x + 2])\n x**5 - x**4 - 2*x**3 - x**2 + x + 2\n\n ", "language": "en", "n_whitespaces": 67, "n_words": 42, "vocab_size": 26 }
7
Python
7
29e153dd0a70a3fe97c2a9a5f752334e937023c5
polytools.py
197,244
35
254
lcm_list
https://github.com/sympy/sympy.git
update some type hints
13
0
48,406
8
2
8
def _calculate_mean_and_var(self, x, axes, keep_dims): if self.synchronized: return self._sync_calculate_mean_and_var(x, axes, keep_dims) else: return super()._calculate_mean_and_var(x, axes, keep_dims)
keras/layers/normalization/batch_normalization.py
65
keras
{ "docstring": "Override mean and var calculation when used with `synchronized`.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
16
Python
12
8c401c032b3021f89609eac79bd1c881b9bbc84f
batch_normalization.py
280,181
5
43
_calculate_mean_and_var
https://github.com/keras-team/keras.git
Merge `SyncBatchNormalization` into `BatchNormalization` with parameter `use_sync` PiperOrigin-RevId: 482921013
59
0
83,281
12
3
14
def format_block(self) -> str: if self.summary: block = self.summary else: block = '\n'.join(m.format() for m in self.messages) message = block.strip() # Hack to remove ANSI color reset code from SubprocessError messages. message = message.replace(display.clear, '') return message
test/lib/ansible_test/_internal/test.py
103
ansible
{ "docstring": "Format the test summary or messages as a block of text and return the result.", "language": "en", "n_whitespaces": 14, "n_words": 15, "vocab_size": 14 }
37
Python
31
3eb0485dd92c88cc92152d3656d94492db44b183
test.py
268,054
9
59
format_block
https://github.com/ansible/ansible.git
ansible-test - Use more native type hints. (#78435) * ansible-test - Use more native type hints. Simple search and replace to switch from comments to native type hints for return types of functions with no arguments. * ansible-test - Use more native type hints. Conversion of simple single-line function annotation type comments to native type hints. * ansible-test - Use more native type hints. Conversion of single-line function annotation type comments with default values to native type hints. * ansible-test - Use more native type hints. Manual conversion of type annotation comments for functions which have pylint directives.
108
0
79,328
13
1
2
def row(self): return self["row"]
packages/python/plotly/plotly/graph_objs/funnelarea/_domain.py
22
plotly.py
{ "docstring": "\n If there is a layout grid, use the domain for this row in the\n grid for this funnelarea trace .\n\n The 'row' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [0, 9223372036854775807]\n\n Returns\n -------\n int\n ", "language": "en", "n_whitespaces": 121, "n_words": 51, "vocab_size": 42 }
4
Python
4
43e3a4011080911901176aab919c0ecf5046ddd3
_domain.py
229,865
2
11
row
https://github.com/plotly/plotly.py.git
switch to black .22
18
0
61,538
7
1
7
def active(self) -> Optional[Scope]: ctx = current_context() return ctx.scope
synapse/logging/scopecontextmanager.py
35
synapse
{ "docstring": "\n Returns the currently active Scope which can be used to access the\n currently active Scope.span.\n If there is a non-null Scope, its wrapped Span\n becomes an implicit parent of any newly-created Span at\n Tracer.start_active_span() time.\n\n Return:\n The Scope that is active, or None if not available.\n ", "language": "en", "n_whitespaces": 107, "n_words": 46, "vocab_size": 40 }
9
Python
9
6ad012ef89c966cbb3616c1be63d964db48d49ca
scopecontextmanager.py
248,680
13
20
active
https://github.com/matrix-org/synapse.git
More type hints for `synapse.logging` (#13103) Completes type hints for synapse.logging.scopecontextmanager and (partially) for synapse.logging.opentracing.
30
0
72,415
8
1
9
def to_sql(cls, qc, **kwargs): # we first insert an empty DF in order to create the full table in the database # This also helps to validate the input against pandas # we would like to_sql() to complete only when all rows have been inserted into the database # since the mapping operation is non-blocking, each partition will return an empty DF # so at the end, the blocking operation will be this empty DF to_pandas empty_df = qc.getitem_row_array([0]).to_pandas().head(0) empty_df.to_sql(**kwargs) # so each partition will append its respective DF kwargs["if_exists"] = "append" columns = qc.columns
modin/core/execution/ray/implementations/pandas_on_ray/io/io.py
89
modin
{ "docstring": "\n Write records stored in the `qc` to a SQL database.\n\n Parameters\n ----------\n qc : BaseQueryCompiler\n The query compiler of the Modin dataframe that we want to run ``to_sql`` on.\n **kwargs : dict\n Parameters for ``pandas.to_sql(**kwargs)``.\n ", "language": "en", "n_whitespaces": 100, "n_words": 35, "vocab_size": 31 }
95
Python
65
0faf4675140415e17d4112f9d0d37cfe87770b9e
io.py
152,977
8
77
to_sql
https://github.com/modin-project/modin.git
REFACTOR-#3871: move related to pandas functionality into 'PandasOnRayIO' class (#3872) Signed-off-by: Anatoly Myachev <[email protected]>
172
0
35,219
13
11
21
def align_xlabels(self, axs=None): if axs is None: axs = self.axes axs = [ax for ax in np.ravel(axs) if ax.get_subplotspec() is not None] for ax in axs: _log.debug(' Working on: %s', ax.get_xlabel()) rowspan = ax.get_subplotspec().rowspan pos = ax.xaxis.get_label_position() # top or bottom # Search through other axes for label positions that are same as # this one and that share the appropriate row number. # Add to a grouper associated with each axes of siblings. # This list is inspected in `axis.draw` by # `axis._update_label_position`. for axc in axs: if axc.xaxis.get_label_position() == pos: rowspanc = axc.get_subplotspec().rowspan if (pos == 'top' and rowspan.start == rowspanc.start or pos == 'bottom' and rowspan.stop == rowspanc.stop): # grouper for groups of xlabels to align self._align_label_groups['x'].join(ax, axc)
lib/matplotlib/figure.py
240
matplotlib
{ "docstring": "\n Align the xlabels of subplots in the same subplot column if label\n alignment is being done automatically (i.e. the label position is\n not manually set).\n\n Alignment persists for draw events after this is called.\n\n If a label is on the bottom, it is aligned with labels on Axes that\n also have their label on the bottom and that have the same\n bottom-most subplot row. If the label is on the top,\n it is aligned with labels on Axes with the same top-most row.\n\n Parameters\n ----------\n axs : list of `~matplotlib.axes.Axes`\n Optional list of (or ndarray) `~matplotlib.axes.Axes`\n to align the xlabels.\n Default is to align all Axes on the figure.\n\n See Also\n --------\n matplotlib.figure.Figure.align_ylabels\n matplotlib.figure.Figure.align_labels\n\n Notes\n -----\n This assumes that ``axs`` are from the same `.GridSpec`, so that\n their `.SubplotSpec` positions correspond to figure positions.\n\n Examples\n --------\n Example with rotated xtick labels::\n\n fig, axs = plt.subplots(1, 2)\n for tick in axs[0].get_xticklabels():\n tick.set_rotation(55)\n axs[0].set_xlabel('XLabel 0')\n axs[1].set_xlabel('XLabel 1')\n fig.align_xlabels()\n ", "language": "en", "n_whitespaces": 422, "n_words": 156, "vocab_size": 99 }
121
Python
82
c73f4c455514cf5422d27bf38c93250de8316b21
figure.py
109,453
14
143
align_xlabels
https://github.com/matplotlib/matplotlib.git
Merge SubplotBase into AxesBase.
386
0
23,596
17
3
17
def _pad_spatial_dims(x, x_shape, padding, is_conv1d): # Add empty padding for batch and feature dimensions. no_pad = ((0, 0),) padding = tuple(padding) if is_conv1d: padding = no_pad + padding + no_pad # Add empty padding for dummy dimension, too. padding = no_pad + padding + no_pad + no_pad else: padding = no_pad + padding + no_pad x = tf.pad(x, padding) assert len(x.shape) == len(padding) x_shape = tuple(p0 + xs + p1 for xs, (p0, p1) in zip(x_shape, padding)) jax2tf._assert_matching_abstract_shape(x, x_shape) return x, x_shape
jax/experimental/jax2tf/impl_no_xla.py
178
jax
{ "docstring": "Pads `x` using `padding`, which specifies padding for the spatial dimensions.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
82
Python
47
b22121c0c1579dd5108825becac42d5db1b29276
impl_no_xla.py
121,203
13
115
_pad_spatial_dims
https://github.com/google/jax.git
[jax2tf] Fixes for handling of convolutions with shape_polymorphism and enable_xla=False Issue: #11402 Due to a typo we were running no tests for convolutions with shape polymorphism and enable_xla=False. Added a few more tests from #11402 (Thanks @sdenton4). The main issue was that in presence of shape polymorphism we cannot just use `x.shape` for a TF value `x` because it will contain `None` in the place of unknown dimensions. We must use instead the JAX abstract values. This does not fix all issues reported in #11402, there is still the computation of padding or padding="SAME". Commented out the corresponding test.
105
0
27,040
11
31
9
def _intervals(self, sym): from sympy.solvers.inequalities import _solve_inequality assert isinstance(self, Piecewise)
sympy/functions/elementary/piecewise.py
36
sympy
{ "docstring": "Return a list of unique tuples, (a, b, e, i), where a and b\n are the lower and upper bounds in which the expression e of\n argument i in self is defined and $a < b$ (when involving\n numbers) or $a \\le b$ when involving symbols.\n\n If there are any relationals not involving sym, or any\n relational cannot be solved for sym, NotImplementedError is\n raised. The calling routine should have removed such\n relationals before calling this routine.\n\n The evaluated conditions will be returned as ranges.\n Discontinuous ranges will be returned separately with\n identical expressions. The first condition that evaluates to\n True will be returned as the last tuple with a, b = -oo, oo.\n ", "language": "en", "n_whitespaces": 198, "n_words": 114, "vocab_size": 84 }
10
Python
10
498015021131af4dbb07eb110e5badaba8250c7b
piecewise.py
196,246
82
577
_intervals
https://github.com/sympy/sympy.git
Updated import locations
31
0
47,746
7
4
10
def subword_index(self, word, w): low = -1 high = -1 for i in range(len(word)-len(w)+1): if word.subword(i, i+len(w)) == w: low = i high = i+len(w) break if low == high == -1: return -1, -1 return low, high
sympy/combinatorics/pc_groups.py
133
sympy
{ "docstring": "\n Returns the start and ending index of a given\n subword in a word.\n\n Parameters\n ==========\n\n word : FreeGroupElement\n word defined on free group elements for a\n polycyclic group.\n w : FreeGroupElement\n subword of a given word, whose starting and\n ending index to be computed.\n\n Returns\n =======\n\n (i, j)\n A tuple containing starting and ending index of ``w``\n in the given word.\n\n Examples\n ========\n\n >>> from sympy.combinatorics.named_groups import SymmetricGroup\n >>> from sympy.combinatorics import free_group\n >>> G = SymmetricGroup(4)\n >>> PcGroup = G.polycyclic_group()\n >>> collector = PcGroup.collector\n >>> F, x1, x2 = free_group(\"x1, x2\")\n >>> word = x2**2*x1**7\n >>> w = x2**2*x1\n >>> collector.subword_index(word, w)\n (0, 3)\n >>> w = x1**7\n >>> collector.subword_index(word, w)\n (2, 9)\n\n ", "language": "en", "n_whitespaces": 356, "n_words": 114, "vocab_size": 69 }
38
Python
23
498015021131af4dbb07eb110e5badaba8250c7b
pc_groups.py
196,113
11
83
subword_index
https://github.com/sympy/sympy.git
Updated import locations
147
0
47,613
13
4
11
def _add_unique_metric_name(self, metric_name, metric_fn, output_index): # For multi-output models, prepend the output names to the metric name. if len(self.output_names) > 1: # If we're loading from an already-serialized model, we've already # prepended the output name, and we don't want to do it again. # # Alternatively, we may be receiving a stateless metric (e.g. the string # "accuracy") rather than a `Metric` object, in which case we want to # prepend the output name even if we are loading a serialized model. if not getattr(metric_fn, "_from_serialized", False): metric_name = "%s_%s" % ( self.output_names[output_index], metric_name, ) j = 1 base_metric_name = metric_name while metric_name in self.metrics_names: metric_name = "%s_%d" % (base_metric_name, j) j += 1 return metric_name
keras/engine/training_v1.py
127
keras
{ "docstring": "Makes the metric name unique.\n\n If there are multiple outputs for which the metrics are calculated, the\n metric names have to be made unique by appending an integer.\n\n Args:\n metric_name: Metric name that corresponds to the metric specified by the\n user. For example: 'acc'.\n metric_fn: The Metric object.\n output_index: The index of the model output for which the metric name is\n being added.\n\n Returns:\n string, name of the model's unique metric name\n ", "language": "en", "n_whitespaces": 171, "n_words": 72, "vocab_size": 48 }
117
Python
80
84afc5193d38057e2e2badf9c889ea87d80d8fbf
training_v1.py
271,980
13
75
_add_unique_metric_name
https://github.com/keras-team/keras.git
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
333
0
80,920
14
1
2
def close(self) -> None: return
plugins/convert/writer/opencv.py
18
faceswap
{ "docstring": " Does nothing as OpenCV writer does not need a close method ", "language": "en", "n_whitespaces": 12, "n_words": 11, "vocab_size": 11 }
5
Python
5
049314429f71a21e6595e9d27e9e36f6a3479c42
opencv.py
101,067
3
9
close
https://github.com/deepfakes/faceswap.git
Convert: Add option to output mask separately for draw-transparent
19
0
20,504
6
1
14
def get_tables(self) -> Response: return self.native_query( str(text(f).bindparams( bindparam('database', value=self.database, type_=String) ).compile(compile_kwargs={"literal_binds": True})) )
mindsdb/integrations/handlers/teradata_handler/teradata_handler.py
86
mindsdb
{ "docstring": "\n List all tables in Teradata in the current database\n \n SELECT DataBaseName,\n TableName,\n TableKind\n FROM DBC.TablesV\n WHERE DatabaseName = :database\n AND (TableKind = 'T'\n OR TableKind = 'O'\n OR TableKind = 'Q')\n ", "language": "en", "n_whitespaces": 168, "n_words": 31, "vocab_size": 24 }
13
Python
13
47c5e0ac2d89807f8ff7239d423a3d346bd39a1e
teradata_handler.py
116,755
18
51
get_tables
https://github.com/mindsdb/mindsdb.git
feat: add teradata integration
71
0
25,827
17
5
28
def get_project_name(doctype, txt, searchfield, start, page_len, filters): cond = "" if filters and filters.get("customer"): cond = % ( frappe.db.escape(filters.get("customer")) ) fields = get_fields("Project", ["name", "project_name"]) searchfields = frappe.get_meta("Project").get_search_fields() searchfields = " or ".join([field + " like %(txt)s" for field in searchfields]) return frappe.db.sql( .format( fields=", ".join(["`tabProject`.{0}".format(f) for f in fields]), cond=cond, scond=searchfields, match_cond=get_match_cond(doctype), start=start, page_len=page_len, ), {"txt": "%{0}%".format(txt), "_txt": txt.replace("%", "")}, ) @frappe.whitelist() @frappe.validate_and_sanitize_search_inputs
erpnext/controllers/queries.py
296
@frappe.whitelist() @frappe.validate_and_sanitize_search_inputs
erpnext
{ "docstring": "(`tabProject`.customer = %s or\n\t\t\tifnull(`tabProject`.customer,\"\")=\"\") andselect {fields} from `tabProject`\n\t\twhere\n\t\t\t`tabProject`.status not in (\"Completed\", \"Cancelled\")\n\t\t\tand {cond} {scond} {match_cond}\n\t\torder by\n\t\t\tif(locate(%(_txt)s, name), locate(%(_txt)s, name), 99999),\n\t\t\tidx desc,\n\t\t\t`tabProject`.name asc\n\t\tlimit {start}, {page_len}", "language": "en", "n_whitespaces": 23, "n_words": 33, "vocab_size": 32 }
64
Python
54
494bd9ef78313436f0424b918f200dab8fc7c20b
queries.py
65,644
29
166
get_project_name
https://github.com/frappe/erpnext.git
style: format code with black
43
1
13,966
16
1
16
async def test_visit_collection_with_private_pydantic(self): input = PrivatePydantic(x=1) input._y = 2 input._z = 4 result = await visit_collection( input, visit_fn=visit_even_numbers, return_data=False ) assert result is None assert EVEN == {2, 4} result = await visit_collection( input, visit_fn=negative_even_numbers, return_data=True ) assert result == input assert result.__private_attributes__ == input.__private_attributes__ breakpoint() assert result._y == -2 assert result._z == -4
tests/utilities/test_collections.py
150
prefect
{ "docstring": "Check that we successfully capture private pydantic fields", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
54
Python
33
c33f87fc7e0b6fb4714a88b492e7545f4dbd821f
test_collections.py
56,293
17
95
test_visit_collection_with_private_pydantic
https://github.com/PrefectHQ/prefect.git
get private attrs working
181
0
11,499
10
12
64
def load_data(self, ds, basedir, variable_manager=None, loader=None): # import here to avoid a dependency loop from ansible.playbook import Playbook from ansible.playbook.play import Play # first, we use the original parent method to correctly load the object # via the load_data/preprocess_data system we normally use for other # playbook objects new_obj = super(PlaybookInclude, self).load_data(ds, variable_manager, loader) all_vars = self.vars.copy() if variable_manager: all_vars.update(variable_manager.get_vars()) templar = Templar(loader=loader, variables=all_vars) # then we use the object to load a Playbook pb = Playbook(loader=loader) file_name = templar.template(new_obj.import_playbook) # check for FQCN resource = _get_collection_playbook_path(file_name) if resource is not None: playbook = resource[1] playbook_collection = resource[2] else: # not FQCN try path playbook = file_name if not os.path.isabs(playbook): playbook = os.path.join(basedir, playbook) # might still be collection playbook playbook_collection = _get_collection_name_from_path(playbook) if playbook_collection: # it is a collection playbook, setup default collections AnsibleCollectionConfig.default_collection = playbook_collection else: # it is NOT a collection playbook, setup adjecent paths AnsibleCollectionConfig.playbook_paths.append(os.path.dirname(os.path.abspath(to_bytes(playbook, errors='surrogate_or_strict')))) pb._load_playbook_data(file_name=playbook, variable_manager=variable_manager, vars=self.vars.copy()) # finally, update each loaded playbook entry with any variables specified # on the included playbook and/or any tags which may have been set for entry in pb._entries: # conditional includes on a playbook need a marker to skip gathering if new_obj.when and isinstance(entry, Play): entry._included_conditional = new_obj.when[:] temp_vars = entry.vars.copy() temp_vars.update(new_obj.vars) param_tags = temp_vars.pop('tags', None) if param_tags is not None: entry.tags.extend(param_tags.split(',')) entry.vars = temp_vars entry.tags = list(set(entry.tags).union(new_obj.tags)) if entry._included_path is None: entry._included_path = os.path.dirname(playbook) # Check to see if we need to forward the conditionals on to the included # plays. If so, we can take a shortcut here and simply prepend them to # those attached to each block (if any) if new_obj.when: for task_block in (entry.pre_tasks + entry.roles + entry.tasks + entry.post_tasks): task_block._when = new_obj.when[:] + task_block.when[:] return pb
lib/ansible/playbook/playbook_include.py
620
ansible
{ "docstring": "\n Overrides the base load_data(), as we're actually going to return a new\n Playbook() object rather than a PlaybookInclude object\n ", "language": "en", "n_whitespaces": 41, "n_words": 19, "vocab_size": 17 }
285
Python
164
43153c58310d02223f2cb0964f4255ba1ac4ed53
playbook_include.py
267,584
40
384
load_data
https://github.com/ansible/ansible.git
`FieldAttribute`s as descriptors (#73908)
829
0
78,964
18
1
2
def arraydtick(self): return self["arraydtick"]
packages/python/plotly/plotly/graph_objs/carpet/_aaxis.py
22
plotly.py
{ "docstring": "\n The stride between grid lines along the axis\n\n The 'arraydtick' property is a integer and may be specified as:\n - An int (or float that will be cast to an int)\n in the interval [1, 9223372036854775807]\n\n Returns\n -------\n int\n ", "language": "en", "n_whitespaces": 102, "n_words": 39, "vocab_size": 35 }
4
Python
4
43e3a4011080911901176aab919c0ecf5046ddd3
_aaxis.py
229,084
2
11
arraydtick
https://github.com/plotly/plotly.py.git
switch to black .22
18
0
60,757
7
6
17
def to_dict(self) -> Dict[str, any]: input_features = [feat for feat in self.input_features.to_list() if feat["active"]] output_features = [feat for feat in self.output_features.to_list() if feat["active"]] config_dict = { "model_type": self.model_type, "input_features": input_features, "output_features": output_features, "trainer": self.trainer.to_dict(), "preprocessing": self.preprocessing.to_dict(), "hyperopt": self.hyperopt, "defaults": self.defaults.to_dict(), } if self.combiner is not None: config_dict["combiner"] = self.combiner.to_dict() return convert_submodules(config_dict)
ludwig/schema/model_config.py
219
ludwig
{ "docstring": "This method converts the current config object into an equivalent dictionary representation for the\n parts of the codebase that use the dictionary representation of the config.\n\n Returns:\n Config Dictionary\n ", "language": "en", "n_whitespaces": 61, "n_words": 29, "vocab_size": 22 }
51
Python
41
e2dbab9adf85a018bc6279c9538d995a2227f619
model_config.py
8,745
21
132
to_dict
https://github.com/ludwig-ai/ludwig.git
fix: Restrict allowed top-level config keys (#2826) * fix * add ludwig_version * prints * remove extra
188
0
1,495
11
2
18
def local_rank() -> int:
python/ray/train/train_loop_utils.py
57
"""Get the local rank of thisrank of the worker on its..block::
ray
{ "docstring": "Get the local rank of this worker (rank of the worker on its node).\n\n .. code-block:: python\n\n import time\n from ray import train\n", "language": "en", "n_whitespaces": 39, "n_words": 23, "vocab_size": 19 }
4
Python
4
0e8eb8aedb3e158da8c3e7378e818ce87ca7813e
train_loop_utils.py
128,345
28
47
local_rank
https://github.com/ray-project/ray.git
[AIR] More Train and Tune session deprecations (#28856) Signed-off-by: Amog Kamsetty [email protected] Finish marking train. and tune. session APIs as deprecated
7
4
28,679
10
13
46
def _build_test_case(self, task_data, host_data): name = '[%s] %s: %s' % (host_data.name, task_data.play, task_data.name) duration = host_data.finish - task_data.start if self._task_relative_path and task_data.path: junit_classname = os.path.relpath(task_data.path, self._task_relative_path) else: junit_classname = task_data.path if self._replace_out_of_tree_path is not None and junit_classname.startswith('../'): junit_classname = self._replace_out_of_tree_path + os.path.basename(junit_classname) if self._task_class == 'true': junit_classname = re.sub(r'\.yml:[0-9]+$', '', junit_classname) if host_data.status == 'included': return TestCase(name=name, classname=junit_classname, time=duration, system_out=str(host_data.result)) res = host_data.result._result rc = res.get('rc', 0) dump = self._dump_results(res, indent=0) dump = self._cleanse_string(dump) if host_data.status == 'ok': return TestCase(name=name, classname=junit_classname, time=duration, system_out=dump) test_case = TestCase(name=name, classname=junit_classname, time=duration) if host_data.status == 'failed': if 'exception' in res: message = res['exception'].strip().split('\n')[-1] output = res['exception'] test_case.errors.append(TestError(message=message, output=output)) elif 'msg' in res: message = res['msg'] test_case.failures.append(TestFailure(message=message, output=dump)) else: test_case.failures.append(TestFailure(message='rc=%s' % rc, output=dump)) elif host_data.status == 'skipped': if 'skip_reason' in res: message = res['skip_reason'] else: message = 'skipped' test_case.skipped = message return test_case
lib/ansible/plugins/callback/junit.py
589
ansible
{ "docstring": " build a TestCase from the given TaskData and HostData ", "language": "en", "n_whitespaces": 10, "n_words": 9, "vocab_size": 9 }
138
Python
81
fbb5d56bd274c44b193cb95f0230b9352f62aab2
junit.py
266,525
37
360
_build_test_case
https://github.com/ansible/ansible.git
ansible-test - Use relative paths in junit output. (#76871) * ansible-test - Use relative paths in junit output. Also fix a traceback in the junit callback during automatic fact gathering. * ansible-test - Handle out-of-tree JUnit paths.
509
0
78,457
17
23
114
def model_fn(features, labels, mode, params, config): del config hparams = params length = features.length spec = features.spec is_training = mode == tf_estimator.ModeKeys.TRAIN if is_training: onset_labels = labels.onsets offset_labels = labels.offsets velocity_labels = labels.velocities frame_labels = labels.labels frame_label_weights = labels.label_weights if hparams.stop_activation_gradient and not hparams.activation_loss: raise ValueError( 'If stop_activation_gradient is true, activation_loss must be true.') losses = {} with slim.arg_scope([slim.batch_norm, slim.dropout], is_training=is_training): with tf.variable_scope('onsets'): onset_outputs = acoustic_model( spec, hparams, lstm_units=hparams.onset_lstm_units, lengths=length) onset_probs = slim.fully_connected( onset_outputs, constants.MIDI_PITCHES, activation_fn=tf.sigmoid, scope='onset_probs') # onset_probs_flat is used during inference. onset_probs_flat = flatten_maybe_padded_sequences(onset_probs, length) if is_training: onset_labels_flat = flatten_maybe_padded_sequences(onset_labels, length) onset_losses = tf_utils.log_loss(onset_labels_flat, onset_probs_flat) tf.losses.add_loss(tf.reduce_mean(onset_losses)) losses['onset'] = onset_losses with tf.variable_scope('offsets'): offset_outputs = acoustic_model( spec, hparams, lstm_units=hparams.offset_lstm_units, lengths=length) offset_probs = slim.fully_connected( offset_outputs, constants.MIDI_PITCHES, activation_fn=tf.sigmoid, scope='offset_probs') # offset_probs_flat is used during inference. offset_probs_flat = flatten_maybe_padded_sequences(offset_probs, length) if is_training: offset_labels_flat = flatten_maybe_padded_sequences( offset_labels, length) offset_losses = tf_utils.log_loss(offset_labels_flat, offset_probs_flat) tf.losses.add_loss(tf.reduce_mean(offset_losses)) losses['offset'] = offset_losses with tf.variable_scope('velocity'): velocity_outputs = acoustic_model( spec, hparams, lstm_units=hparams.velocity_lstm_units, lengths=length) velocity_values = slim.fully_connected( velocity_outputs, constants.MIDI_PITCHES, activation_fn=None, scope='onset_velocities') velocity_values_flat = flatten_maybe_padded_sequences( velocity_values, length) if is_training: velocity_labels_flat = flatten_maybe_padded_sequences( velocity_labels, length) velocity_loss = tf.reduce_sum( onset_labels_flat * tf.square(velocity_labels_flat - velocity_values_flat), axis=1) tf.losses.add_loss(tf.reduce_mean(velocity_loss)) losses['velocity'] = velocity_loss with tf.variable_scope('frame'): if not hparams.share_conv_features: # TODO(eriche): this is broken when hparams.frame_lstm_units > 0 activation_outputs = acoustic_model( spec, hparams, lstm_units=hparams.frame_lstm_units, lengths=length) activation_probs = slim.fully_connected( activation_outputs, constants.MIDI_PITCHES, activation_fn=tf.sigmoid, scope='activation_probs') else: activation_probs = slim.fully_connected( onset_outputs, constants.MIDI_PITCHES, activation_fn=tf.sigmoid, scope='activation_probs') probs = [] if hparams.stop_onset_gradient: probs.append(tf.stop_gradient(onset_probs)) else: probs.append(onset_probs) if hparams.stop_activation_gradient: probs.append(tf.stop_gradient(activation_probs)) else: probs.append(activation_probs) if hparams.stop_offset_gradient: probs.append(tf.stop_gradient(offset_probs)) else: probs.append(offset_probs) combined_probs = tf.concat(probs, 2) if hparams.combined_lstm_units > 0: outputs = lstm_layer( combined_probs, hparams.combined_lstm_units, lengths=length if hparams.use_lengths else None, stack_size=hparams.combined_rnn_stack_size, use_cudnn=hparams.use_cudnn, bidirectional=hparams.bidirectional) else: outputs = combined_probs frame_probs = slim.fully_connected( outputs, constants.MIDI_PITCHES, activation_fn=tf.sigmoid, scope='frame_probs') frame_probs_flat = flatten_maybe_padded_sequences(frame_probs, length) if is_training: frame_labels_flat = flatten_maybe_padded_sequences(frame_labels, length) frame_label_weights_flat = flatten_maybe_padded_sequences( frame_label_weights, length) if hparams.weight_frame_and_activation_loss: frame_loss_weights = frame_label_weights_flat else: frame_loss_weights = None frame_losses = tf_utils.log_loss( frame_labels_flat, frame_probs_flat, weights=frame_loss_weights) tf.losses.add_loss(tf.reduce_mean(frame_losses)) losses['frame'] = frame_losses if hparams.activation_loss: if hparams.weight_frame_and_activation_loss: activation_loss_weights = frame_label_weights else: activation_loss_weights = None activation_losses = tf_utils.log_loss( frame_labels_flat, flatten_maybe_padded_sequences(activation_probs, length), weights=activation_loss_weights) tf.losses.add_loss(tf.reduce_mean(activation_losses)) losses['activation'] = activation_losses frame_predictions = frame_probs_flat > hparams.predict_frame_threshold onset_predictions = onset_probs_flat > hparams.predict_onset_threshold offset_predictions = offset_probs_flat > hparams.predict_offset_threshold frame_predictions = tf.expand_dims(frame_predictions, axis=0) onset_predictions = tf.expand_dims(onset_predictions, axis=0) offset_predictions = tf.expand_dims(offset_predictions, axis=0) velocity_values = tf.expand_dims(velocity_values_flat, axis=0) metrics_values = metrics.define_metrics( frame_probs=frame_probs, onset_probs=onset_probs, frame_predictions=frame_predictions, onset_predictions=onset_predictions, offset_predictions=offset_predictions, velocity_values=velocity_values, length=features.length, sequence_label=labels.note_sequence, frame_labels=labels.labels, sequence_id=features.sequence_id, hparams=hparams) for label, loss_collection in losses.items(): loss_label = 'losses/' + label metrics_values[loss_label] = loss_collection def predict_sequence():
magenta/models/onsets_frames_transcription/model.py
1,442
magenta
{ "docstring": "Builds the acoustic model.Convert frame predictions into a sequence (TF).", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
385
Python
217
f73ff0c91f0159a925fb6547612199bb7c915248
model.py
173,538
228
1,401
model_fn
https://github.com/magenta/magenta.git
Explicitly import estimator from tensorflow as a separate import instead of accessing it via tf.estimator and depend on the tensorflow estimator target. PiperOrigin-RevId: 436568278
1,488
0
40,851
18
1
12
async def test_reload_entry_with_new_config(hass, tmp_path): config_old = [{"name": "test_old1", "command_topic": "test-topic_old"}] config_yaml_new = { "mqtt": { "light": [{"name": "test_new_modern", "command_topic": "test-topic_new"}] }, # Test deprecated YAML configuration under the platform key # Scheduled to be removed in HA core 2022.12 "light": [ { "platform": "mqtt", "name": "test_new_legacy", "command_topic": "test-topic_new", } ], } await help_test_setup_manual_entity_from_yaml(hass, "light", config_old) assert hass.states.get("light.test_old1") is not None await help_test_entry_reload_with_new_config(hass, tmp_path, config_yaml_new) assert hass.states.get("light.test_old1") is None assert hass.states.get("light.test_new_modern") is not None assert hass.states.get("light.test_new_legacy") is not None @patch("homeassistant.components.mqtt.PLATFORMS", [Platform.LIGHT])
tests/components/mqtt/test_init.py
254
@patch("homeassistant.components.mqtt.PLATFORMS", [Platform.LIGHT])
core
{ "docstring": "Test reloading the config entry with a new yaml config.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
80
Python
58
b3a48389789549b3cb1aabd042310137baccc9b9
test_init.py
287,034
20
127
test_reload_entry_with_new_config
https://github.com/home-assistant/core.git
Refactor MQTT tests to use modern platform schema part 1 (#77387) * Tests alarm_control_panel * Tests binary_sensor * Tests button * Tests camera * Tests Climate + corrections default config * Tests cover * Tests device_tracker * Tests fan * Tests humidifier * Fix test_supported_features test fan * Tests init * Tests legacy vacuum * Derive DEFAULT_CONFIG_LEGACY from DEFAULT_CONFIG * Commit suggestion comment changes
229
1
86,227
14
2
7
def suspend(self): if POSIX: self._send_signal(signal.SIGSTOP) else: # pragma: no cover self._proc.suspend()
psutil/__init__.py
48
psutil
{ "docstring": "Suspend process execution with SIGSTOP pre-emptively checking\n whether PID has been reused.\n On Windows this has the effect of suspending all process threads.\n ", "language": "en", "n_whitespaces": 44, "n_words": 23, "vocab_size": 21 }
11
Python
11
471b19d2aa799cd73bded23379e864dd35bec2b6
__init__.py
188,993
5
26
suspend
https://github.com/giampaolo/psutil.git
Fix typos
55
0
45,957
11
2
17
def _simulate_installation_of(to_install, package_set): # type: (List[InstallRequirement], PackageSet) -> Set[NormalizedName] # Keep track of packages that were installed installed = set() # Modify it as installing requirement_set would (assuming no errors) for inst_req in to_install: abstract_dist = make_distribution_for_install_requirement(inst_req) dist = abstract_dist.get_pkg_resources_distribution() assert dist is not None name = canonicalize_name(dist.key) package_set[name] = PackageDetails(dist.version, dist.requires()) installed.add(name) return installed
.venv/lib/python3.8/site-packages/pip/_internal/operations/check.py
115
transferlearning
{ "docstring": "Computes the version of packages after installing to_install.\n ", "language": "en", "n_whitespaces": 11, "n_words": 8, "vocab_size": 8 }
55
Python
46
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
check.py
60,923
10
69
_simulate_installation_of
https://github.com/jindongwang/transferlearning.git
upd; format
118
0
12,346
12
1
27
def test_title_column(self): root_page = Page.objects.filter(depth=2).first() blog = Site.objects.create( hostname="blog.example.com", site_name="My blog", root_page=root_page ) gallery = Site.objects.create( hostname="gallery.example.com", site_name="My gallery", root_page=root_page ) data = [blog, gallery] table = Table( [ TitleColumn( "hostname", url_name="wagtailsites:edit", link_classname="choose-site", link_attrs={"data-chooser": "yes"}, ), Column("site_name", label="Site name"), ], data, ) html = self.render_component(table) self.assertHTMLEqual( html, % (blog.pk, gallery.pk), )
wagtail/admin/tests/ui/test_tables.py
223
wagtail
{ "docstring": "\n <table class=\"listing\">\n <thead>\n <tr><th>Hostname</th><th>Site name</th></tr>\n </thead>\n <tbody>\n <tr>\n <td class=\"title\">\n <div class=\"title-wrapper\">\n <a href=\"/admin/sites/%d/\" class=\"choose-site\" data-chooser=\"yes\">blog.example.com</a>\n </div>\n </td>\n <td>My blog</td>\n </tr>\n <tr>\n <td class=\"title\">\n <div class=\"title-wrapper\">\n <a href=\"/admin/sites/%d/\" class=\"choose-site\" data-chooser=\"yes\">gallery.example.com</a>\n </div>\n </td>\n <td>My gallery</td>\n </tr>\n </tbody>\n </table>\n ", "language": "en", "n_whitespaces": 530, "n_words": 37, "vocab_size": 25 }
51
Python
40
5994cc43dfc5cc1ed891ab78eff3a3bcf56f6830
test_tables.py
77,580
51
136
test_title_column
https://github.com/wagtail/wagtail.git
Allow passing arbitrary link attributes to TitleColumn
337
0
16,677
15
1
2
def silence_transformers_logs(from_pretrained_func):
haystack/modeling/model/language_model.py
13
haystack
{ "docstring": "\n Wrapper that raises the log level of Transformers to\n ERROR to hide some unnecessary warnings\n ", "language": "en", "n_whitespaces": 25, "n_words": 15, "vocab_size": 14 }
2
Python
2
a59bca366174d9c692fa19750c24d65f47660ef7
language_model.py
256,238
4
15
silence_transformers_logs
https://github.com/deepset-ai/haystack.git
Apply black formatting (#2115) * Testing black on ui/ * Applying black on docstores * Add latest docstring and tutorial changes * Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too * Remove comments * Relax constraints on pydoc-markdown * Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade * Fix a couple of bugs * Add a type: ignore that was missing somehow * Give path to black * Apply Black * Apply Black * Relocate a couple of type: ignore * Update documentation * Make Linux CI run after applying Black * Triggering Black * Apply Black * Remove dependency, does not work well * Remove manually double trailing commas * Update documentation Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
5
0
74,819
6
1
3
def num_columns(self): return self.table.num_columns
src/datasets/table.py
22
datasets
{ "docstring": "\n Number of columns in this table.\n\n Returns:\n int:\n ", "language": "en", "n_whitespaces": 41, "n_words": 8, "vocab_size": 8 }
4
Python
4
e35be138148333078284b942ccc9ed7b1d826f97
table.py
104,392
2
12
num_columns
https://github.com/huggingface/datasets.git
Update docs to new frontend/UI (#3690) * WIP: update docs to new UI * make style * Rm unused * inject_arrow_table_documentation __annotations__ * hasattr(arrow_table_method, "__annotations__") * Update task_template.rst * Codeblock PT-TF-SPLIT * Convert loading scripts * Convert docs to mdx * Fix mdx * Add <Tip> * Convert mdx tables * Fix codeblock * Rm unneded hashlinks * Update index.mdx * Redo dev change * Rm circle ci `build_doc` & `deploy_doc` * Rm unneeded files * Update docs reamde * Standardize to `Example::` * mdx logging levels doc * Table properties inject_arrow_table_documentation * ``` to ```py mdx * Add Tips mdx * important,None -> <Tip warning={true}> * More misc * Center imgs * Update instllation page * `setup.py` docs section * Rm imgs since they are in hf.co * Update docs/source/access.mdx Co-authored-by: Steven Liu <[email protected]> * Update index mdx * Update docs/source/access.mdx Co-authored-by: Steven Liu <[email protected]> * just `Dataset` obj * Addedversion just italics * Update ReadInstruction doc example syntax * Change docstring for `prepare_for_task` * Chore * Remove `code` syntax from headings * Rm `code` syntax from headings * Hashlink backward compatability * S3FileSystem doc * S3FileSystem doc updates * index.mdx updates * Add darkmode gifs * Index logo img css classes * Index mdx dataset logo img size * Docs for DownloadMode class * Doc DownloadMode table * format docstrings * style * Add doc builder scripts (#3790) * add doc builder scripts * fix docker image * Docs new UI actions no self hosted (#3793) * No self hosted * replace doc injection by actual docstrings * Docstring formatted Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Mishig Davaadorj <[email protected]> Co-authored-by: Lysandre Debut <[email protected]> Co-authored-by: Mishig Davaadorj <[email protected]> * Rm notebooks from docs actions since they dont exi * Update tsting branch * More docstring * Chore * bump up node version * bump up node * ``` -> ```py for audio_process.mdx * Update .github/workflows/build_documentation.yml Co-authored-by: Quentin Lhoest <[email protected]> * Uodate dev doc build * remove run on PR * fix action * Fix gh doc workflow * forgot this change when merging master * Update build doc Co-authored-by: Steven Liu <[email protected]> Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Lysandre Debut <[email protected]>
18
0
21,829
7
2
15
def compute(self) -> Tensor: # self.total maps to the number of observations in preds/target computed during update() if self.total <= 1: logger.warning( ) return torch.tensor(float("nan")) return _r2_score_compute( self.sum_squared_error, self.sum_error, self.residual, self.total, self.adjusted, self.multioutput )
ludwig/modules/metric_modules.py
94
ludwig
{ "docstring": "Computes r2 score over the metric states.R-squared (r2) is not defined for one sample. It needs at least two samples. Returning NaN.", "language": "en", "n_whitespaces": 21, "n_words": 22, "vocab_size": 22 }
34
Python
31
dfdc98caa35f38665dbe045ccff431715e976841
metric_modules.py
7,263
10
58
compute
https://github.com/ludwig-ai/ludwig.git
Update R2 score to handle single sample computation (#2235) * Update R2 scores to handle single sample computation
129
0
1,171
12
4
23
def convert_to_legacy_optimizer(optimizer): if not isinstance(optimizer, base_optimizer.Optimizer): raise ValueError( "`convert_to_legacy_optimizer` should only be called " "on instances of `tf.keras.optimizers.Optimizer`, but " f"received {optimizer} of type {type(optimizer)}." ) optimizer_name = optimizer.__class__.__name__.lower() config = optimizer.get_config() # Remove fields that only exist in experimental optimizer. keys_to_remove = [ "weight_decay", "use_ema", "ema_momentum", "ema_overwrite_frequency", "jit_compile", "is_legacy_optimizer", ] for key in keys_to_remove: config.pop(key, None) # Learning rate can be a custom LearningRateSchedule, which is stored as # a dict in config, and cannot be deserialized. if isinstance( optimizer._learning_rate, learning_rate_schedule.LearningRateSchedule ): config["learning_rate"] = optimizer._learning_rate legacy_optimizer_config = { "class_name": optimizer_name, "config": config, } return deserialize(legacy_optimizer_config, use_legacy_optimizer=True) @keras_export("keras.optimizers.get")
keras/optimizers/__init__.py
220
@keras_export("keras.optimizers.get")
keras
{ "docstring": "Convert experimental optimizer to legacy optimizer.\n\n This function takes in a `tf.keras.optimizers.experimental.Optimizer`\n instance and converts it to the corresponding\n `tf.keras.optimizers.legacy.Optimizer` instance.\n For example, `tf.keras.optimizers.experimental.Adam(...)` to\n `tf.keras.optimizers.legacy.Adam(...)`.\n\n Args:\n optimizer: An instance of `tf.keras.optimizers.experimental.Optimizer`.\n ", "language": "en", "n_whitespaces": 60, "n_words": 32, "vocab_size": 29 }
98
Python
82
5a105aadbdc6fde2c2529280c4789864adbb81c7
__init__.py
280,501
28
113
convert_to_legacy_optimizer
https://github.com/keras-team/keras.git
Move new optimizer out of optimizer_experimental/ directory. PiperOrigin-RevId: 488998585
266
1
83,358
14
1
13
def test_non_existing_file_download(self) -> None: hamlet = self.example_user("hamlet") self.login_user(hamlet) response = self.client_get( f"http://{hamlet.realm.host}/user_uploads/{hamlet.realm_id}/ff/gg/abc.py" ) self.assertEqual(response.status_code, 404) self.assert_in_response("File not found.", response)
zerver/tests/test_upload.py
102
zulip
{ "docstring": "\n Trying to download a file that was never uploaded will return a json_error\n ", "language": "en", "n_whitespaces": 28, "n_words": 13, "vocab_size": 12 }
19
Python
18
5ff4754090259dea52c0554d82eeaf601490f383
test_upload.py
84,031
11
49
test_non_existing_file_download
https://github.com/zulip/zulip.git
test_upload: Fix some URLs to uploaded files. Using http://localhost:9991 is incorrect - e.g. messages sent with file urls constructed trigger do_claim_attachments to be called with empty list in potential_path_ids. realm.host should be used in all these places, like in the other tests in the file.
79
0
17,766
12
1
2
def readable(self): # type: () -> bool return True
.venv/lib/python3.8/site-packages/pip/_internal/network/lazy_wheel.py
17
transferlearning
{ "docstring": "Return whether the file is readable, which is True.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 8 }
9
Python
9
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
lazy_wheel.py
60,897
2
8
readable
https://github.com/jindongwang/transferlearning.git
upd; format
30
0
12,329
6
3
28
def _generate_pynsist_config(repo_path, build_path): print('Generate pynsist configuration') installer_cfg_path = os.path.join(build_path, 'installer.cfg') certbot_pkg_path = os.path.join(repo_path, 'certbot') certbot_version = subprocess.check_output([sys.executable, '-c', 'import certbot; print(certbot.__version__)'], universal_newlines=True, cwd=certbot_pkg_path).strip() # If we change the installer name from `certbot-beta-installer-win_amd64.exe`, it should # also be changed in tools/create_github_release.py with open(installer_cfg_path, 'w') as file_h: file_h.write(.format(certbot_version=certbot_version, installer_suffix='win_amd64' if PYTHON_BITNESS == 64 else 'win32', python_bitness=PYTHON_BITNESS, python_version='.'.join(str(item) for item in PYTHON_VERSION))) return installer_cfg_path
windows-installer/windows_installer/construct.py
202
certbot
{ "docstring": "\\\n[Application]\nname=Certbot\nversion={certbot_version}\nicon=certbot.ico\npublisher=Electronic Frontier Foundation\ntarget=$INSTDIR\\\\run.bat\n\n[Build]\ndirectory=nsis\nnsi_template=template.nsi\ninstaller_name=certbot-beta-installer-{installer_suffix}.exe\n\n[Python]\nversion={python_version}\nbitness={python_bitness}\n\n[Include]\nlocal_wheels=wheels\\\\*.whl\nfiles=run.bat\n renew-up.ps1\n renew-down.ps1\n\n[Command certbot]\nentry_point=certbot.main:main\nextra_preamble=preamble.py\n", "language": "en", "n_whitespaces": 15, "n_words": 25, "vocab_size": 25 }
61
Python
56
f251a13f322e10c530897be31aa07a1199061f10
construct.py
186,741
38
118
_generate_pynsist_config
https://github.com/certbot/certbot.git
Remove Windows 2016 environment, generate 64 bit installer (#9202) * Remove Windows 2016 environment, generate 64 bit installer * Add note to changelog * Use win_amd64 as installer suffix * Bump PYTHON_BITNESS to 64 * Require 64 bit Windows for the installer_build job * Update certbot install path * update windows test name * Base installer suffix on PYTHON_BITNESS again * Update changelog to request users uninstall old version
170
0
45,615
16
5
9
def get_worker_host(pod_args, pod_is_container, head_is_container): # Check if the current pod and head are both containerized on the same host # If so __docker_host__ needs to be advertised as the worker's address to the head worker_host = ( __docker_host__ if (pod_is_container and (head_is_container or in_docker())) and host_is_local(pod_args.host) else pod_args.host ) return worker_host
jina/orchestrate/deployments/__init__.py
65
jina
{ "docstring": "\n Check if the current pod and head are both containerized on the same host\n If so __docker_host__ needs to be advertised as the worker's address to the head\n\n :param pod_args: arguments of the worker pod\n :param pod_is_container: boolean specifying if pod is to be run in container\n :param head_is_container: boolean specifying if head pod is to be run in container\n :return: host to pass in connection list of the head\n ", "language": "en", "n_whitespaces": 120, "n_words": 70, "vocab_size": 40 }
51
Python
40
ef662b529b2a2eecea7bb99759a9f7b9d86d3062
__init__.py
12,497
8
40
get_worker_host
https://github.com/jina-ai/jina.git
feat: add grpc health checking (#4779)
137
0
2,318
15
6
36
def step(self, action_dict): self.resetted = False self.steps += 1 logger.debug( "====> [SUMOTestMultiAgentEnv:step] Episode: %d - Step: %d <====", self.episodes, self.steps, ) dones = {} dones["__all__"] = False shuffled_agents = sorted( action_dict.keys() ) # it may seem not smar to sort something that # may need to be shuffled afterwards, but it # is a matter of consistency instead of using # whatever insertion order was used in the dict if self._config["scenario_config"]["agent_rnd_order"]: # randomize the agent order to minimize SUMO's # insertion queues impact logger.debug("Shuffling the order of the agents.") self.rndgen.shuffle(shuffled_agents) # in-place shuffle # Take action for agent in shuffled_agents: self.agents[agent].step(action_dict[agent], self.simulation) logger.debug("Before SUMO") ongoing_simulation = self.simulation.step( until_end=False, agents=set(action_dict.keys()) ) logger.debug("After SUMO") # end of the episode if not ongoing_simulation: logger.info("Reached the end of the SUMO simulation.") dones["__all__"] = True obs, rewards, infos = {}, {}, {} for agent in action_dict: # check for collisions if self.simulation.collisions[agent] > 0: # punish the agent and remove it from the simulation dones[agent] = True obs[agent] = [0, 0] rewards[agent] = -self.agents[agent].config["max_speed"] # infos[agent] = "Collision" self.simulation.traci_handler.remove(agent, reason=tc.REMOVE_VAPORIZED) else: dones[agent] = agent not in self.simulation.veh_subscriptions obs[agent] = self.get_observation(agent) rewards[agent] = self.get_reward(agent) # infos[agent] = "" logger.debug("Observations: %s", pformat(obs)) logger.debug("Rewards: %s", pformat(rewards)) logger.debug("Dones: %s", pformat(dones)) logger.debug("Info: %s", pformat(infos)) logger.debug("========================================================") return obs, rewards, dones, dones, infos ########################################################################### # ACTIONS & OBSERATIONS SPACE
rllib/examples/simulators/sumo/marlenvironment.py
549
ray
{ "docstring": "\n Returns observations from ready agents.\n\n The returns are dicts mapping from agent_id strings to values. The\n number of agents in the env can vary over time.\n\n Returns\n -------\n obs: New observations for each ready agent.\n rewards: Reward values for each ready agent. If the\n episode is just started, the value will be None.\n dones: Done values for each ready agent. The special key\n \"__all__\" (required) is used to indicate env termination.\n infos: Optional info values for each agent id.\n ", "language": "en", "n_whitespaces": 196, "n_words": 79, "vocab_size": 56 }
217
Python
136
8e680c483ce326cefc62e44f68ab1a6948b1c3d2
marlenvironment.py
137,963
43
329
step
https://github.com/ray-project/ray.git
[RLlib] gymnasium support (new `Env.reset()/step()/seed()/render()` APIs). (#28369)
743
0
31,259
15
8
20
def _peeloff_pi(arg): r pi_coeff = S.Zero rest_terms = [] for a in Add.make_args(arg): K = a.coeff(S.Pi) if K and K.is_rational: pi_coeff += K else: rest_terms.append(a) if pi_coeff is S.Zero: return arg, S.Zero m1 = (pi_coeff % S.Half) m2 = pi_coeff - m1 if m2.is_integer or ((2*m2).is_integer and m2.is_even is False): return Add(*(rest_terms + [m1*pi])), m2 return arg, S.Zero
sympy/functions/elementary/trigonometric.py
197
sympy
{ "docstring": "\n Split ARG into two parts, a \"rest\" and a multiple of $\\pi$.\n This assumes ARG to be an Add.\n The multiple of $\\pi$ returned in the second position is always a Rational.\n\n Examples\n ========\n\n >>> from sympy.functions.elementary.trigonometric import _peeloff_pi as peel\n >>> from sympy import pi\n >>> from sympy.abc import x, y\n >>> peel(x + pi/2)\n (x, 1/2)\n >>> peel(x + 2*pi/3 + pi*y)\n (x + pi*y + pi/6, 1/2)\n\n ", "language": "en", "n_whitespaces": 110, "n_words": 70, "vocab_size": 51 }
58
Python
38
cda8dfe6f45dc5ed394c2f5cda706cd6c729f713
trigonometric.py
195,866
33
124
_peeloff_pi
https://github.com/sympy/sympy.git
Improved documentation formatting
141
0
47,453
15
4
9
def _randint(seed=None): if seed is None: return randint elif isinstance(seed, int): rng.seed(seed) return randint elif is_sequence(seed): seed = list(seed) # make a copy seed.reverse()
sympy/core/random.py
82
sympy
{ "docstring": "Return a randint generator.\n\n ``seed`` can be\n\n * None - return randomly seeded generator\n * int - return a generator seeded with the int\n * list - the values to be returned will be taken from the list\n in the order given; the provided list is not modified.\n\n Examples\n ========\n\n >>> from sympy.core.random import _randint\n >>> ri = _randint()\n >>> ri(1, 1000) # doctest: +SKIP\n 999\n >>> ri = _randint(3)\n >>> ri(1, 1000) # doctest: +SKIP\n 238\n >>> ri = _randint([0, 5, 1, 2, 4])\n >>> ri(1, 3), ri(1, 3)\n (1, 2)\n ", "language": "en", "n_whitespaces": 148, "n_words": 92, "vocab_size": 57 }
24
Python
20
092c0c6ea1e6f435a2cddb6e6fe723088b73bd81
random.py
197,150
13
59
_randint
https://github.com/sympy/sympy.git
Add sympy.core.random to Sphinx
72
0
48,353
11
8
30
def _get_curr_status(self) -> Tuple[DeploymentStatusInfo, bool]: # TODO(edoakes): we could make this more efficient in steady-state by # having a "healthy" flag that gets flipped if an update or replica # failure happens. target_version = self._target_version target_replica_count = self._target_replicas all_running_replica_cnt = self._replicas.count(states=[ReplicaState.RUNNING]) running_at_target_version_replica_cnt = self._replicas.count( states=[ReplicaState.RUNNING], version=target_version ) failed_to_start_count = self._replica_constructor_retry_counter failed_to_start_threshold = min( MAX_DEPLOYMENT_CONSTRUCTOR_RETRY_COUNT, target_replica_count * 3 ) # Got to make a call to complete current deploy() goal after # start failure threshold reached, while we might still have # pending replicas in current goal. if ( failed_to_start_count >= failed_to_start_threshold and failed_to_start_threshold != 0 ): if running_at_target_version_replica_cnt > 0: # At least one RUNNING replica at target state, partial # success; We can stop tracking constructor failures and # leave it to the controller to fully scale to target # number of replicas and only return as completed once # reached target replica count self._replica_constructor_retry_counter = -1 else: return ( DeploymentStatusInfo( status=DeploymentStatus.FAILED, message=( "The Deployment constructor failed " f"{failed_to_start_count} times in a row. See " "logs for details." ), ), False, ) # If we have pending ops, the current goal is *not* ready. if ( self._replicas.count( states=[ ReplicaState.STARTING, ReplicaState.UPDATING, ReplicaState.RECOVERING, ReplicaState.STOPPING, ] ) == 0 ): # Check for deleting. if target_replica_count == 0 and all_running_replica_cnt == 0: return DeploymentStatusInfo(status=DeploymentStatus.UPDATING), True # Check for a non-zero number of deployments. elif target_replica_count == running_at_target_version_replica_cnt: return DeploymentStatusInfo(status=DeploymentStatus.RUNNING), False return ( DeploymentStatusInfo( status=DeploymentStatus.UPDATING, message=( f"Running replicas of target version: " f"{running_at_target_version_replica_cnt}, target " "replicas: {target_replica_count}" ), ), False, )
python/ray/serve/deployment_state.py
356
ray
{ "docstring": "Get the current deployment status.\n\n Checks the difference between the target vs. running replica count for\n the target version.\n\n TODO(edoakes): we should report the status as FAILED if replicas are\n repeatedly failing health checks. Need a reasonable heuristic here.\n\n Returns:\n (DeploymentStatusInfo, was_deleted)\n ", "language": "en", "n_whitespaces": 95, "n_words": 42, "vocab_size": 37 }
248
Python
151
48adb6f7bb335b28fb0fb0d1190bd6c5dfc8ddfa
deployment_state.py
144,666
66
216
_get_curr_status
https://github.com/ray-project/ray.git
[serve] Introduce DeploymentStatus, poll for statuses instead of using async goals (#22121)
1,143
0
33,279
18
5
13
def _batch_format_to_use(cls) -> BatchFormat: has_pandas_implemented = cls._predict_pandas != Predictor._predict_pandas has_numpy_implemented = cls._predict_numpy != Predictor._predict_numpy if has_pandas_implemented and has_numpy_implemented: return cls.preferred_batch_format() elif has_pandas_implemented: return BatchFormat.PANDAS elif has_numpy_implemented: return BatchFormat.NUMPY else: raise NotImplementedError( f"Predictor {cls.__name__} must implement at least one of " "`_predict_pandas` and `_predict_numpy`." )
python/ray/train/predictor.py
109
ray
{ "docstring": "Determine the batch format to use for the predictor.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 8 }
44
Python
36
326d84f1149319809191e7887155df7f04f6f46a
predictor.py
136,394
15
60
_batch_format_to_use
https://github.com/ray-project/ray.git
[AIR][Predictor] Enable numpy based predictor (#28917) Co-authored-by: Clark Zinzow <[email protected]> Co-authored-by: Amog Kamsetty <[email protected]>
178
0
30,905
14
3
9
async def read(self) -> discord.Message: msg = await self.queue.get() if msg is None and self.expired: raise ChannelExpiredException() return msg
bot/channel_handlers.py
61
Open-Assistant
{ "docstring": "Call this method to read the next message from the user in the handler method.", "language": "en", "n_whitespaces": 14, "n_words": 15, "vocab_size": 13 }
19
Python
17
3205491166e190512608bf01754815cadae47a92
channel_handlers.py
216,680
6
35
read
https://github.com/LAION-AI/Open-Assistant.git
add channel handler async msg routing
58
0
54,675
10
2
11
def yamlcheck(python): result = json.loads(raw_command([python.path, os.path.join(ANSIBLE_TEST_TARGET_TOOLS_ROOT, 'yamlcheck.py')], capture=True)[0]) if not result['yaml']: return None return result['cloader']
test/lib/ansible_test/_internal/util_common.py
88
ansible
{ "docstring": "Return True if PyYAML has libyaml support, False if it does not and None if it was not found.", "language": "en", "n_whitespaces": 18, "n_words": 19, "vocab_size": 15 }
15
Python
14
d19b506ce8c5ee43865b1cead2246fc07cc8902b
util_common.py
266,508
5
53
yamlcheck
https://github.com/ansible/ansible.git
ansible-test - Clean up future boilerplate. (#76874) * ansible-test - Clarify need for empty __init__.py * ansible-test - Update code-smell boilerplate. * Update code-smell boilerplate for core. * Update future boilerplate test for ansible-test. All ansible-test code (except for targets) and core-specific sanity tests now use the same boilerplate. The test also checks for unwanted `__future__` and `metaclass` boilerplate. * Relocate target tools to the correct directory. Several tools used on target Python versions were incorrectly placed in the controller directory.
34
0
78,447
15
1
2
def imag(self): return self["imag"]
packages/python/plotly/plotly/graph_objs/_scattersmith.py
22
plotly.py
{ "docstring": "\n Sets the imaginary component of the data, in units of\n normalized impedance such that real=1, imag=0 is the center of\n the chart.\n\n The 'imag' property is an array that may be specified as a tuple,\n list, numpy array, or pandas Series\n\n Returns\n -------\n numpy.ndarray\n ", "language": "en", "n_whitespaces": 108, "n_words": 44, "vocab_size": 37 }
4
Python
4
43e3a4011080911901176aab919c0ecf5046ddd3
_scattersmith.py
228,102
2
11
imag
https://github.com/plotly/plotly.py.git
switch to black .22
18
0
59,775
7
1
13
def test_get_conn_uri_non_existent_key(self): conn_id = "test_mysql" secret_id = 'airflow/connections/test_postgres' create_param = { 'Name': secret_id, } param = { 'SecretId': secret_id, 'SecretString': 'postgresql://airflow:airflow@host:5432/airflow', } secrets_manager_backend = SecretsManagerBackend() secrets_manager_backend.client.create_secret(**create_param) secrets_manager_backend.client.put_secret_value(**param) assert secrets_manager_backend.get_conn_uri(conn_id=conn_id) is None assert secrets_manager_backend.get_connection(conn_id=conn_id) is None
tests/providers/amazon/aws/secrets/test_secrets_manager.py
137
airflow
{ "docstring": "\n Test that if the key with connection ID is not present,\n SecretsManagerBackend.get_connection should return None\n ", "language": "en", "n_whitespaces": 37, "n_words": 15, "vocab_size": 15 }
35
Python
25
79a2f79ff85a740d6b3680215dc2c9a143ddafbb
test_secrets_manager.py
48,448
15
77
test_get_conn_uri_non_existent_key
https://github.com/apache/airflow.git
cleanup usage of `get_connections()`` from test suite (#23757) The function is deprecated and raises warnings https://github.com/apache/airflow/pull/10192 Replacing the usage with `get_connection()`
152
0
9,496
9
1
11
def _create_trial_info(self, expr_dir): meta = self._build_trial_meta(expr_dir) self.logger.debug("Create trial for %s" % meta) trial_record = TrialRecord.from_json(meta) trial_record.save()
python/ray/tune/automlboard/backend/collector.py
68
ray
{ "docstring": "Create information for given trial.\n\n Meta file will be loaded if exists, and the trial information\n will be saved in db backend.\n\n Args:\n expr_dir: Directory path of the experiment.\n ", "language": "en", "n_whitespaces": 68, "n_words": 29, "vocab_size": 25 }
16
Python
15
d2f0c3b2f64b41f6541f6521e98cf3a37577c016
collector.py
140,346
5
39
_create_trial_info
https://github.com/ray-project/ray.git
Clean up docstyle in data, ml, and tune packages (#25188)
51
0
31,930
9
1
8
def image_svg(viz, env): svgstr = viz.svg( svgstr=svgstr, opts=dict(title='Example of SVG Rendering') )
example/components/image.py
46
visdom
{ "docstring": "\n <svg height=\"300\" width=\"300\">\n <ellipse cx=\"80\" cy=\"80\" rx=\"50\" ry=\"30\"\n style=\"fill:red;stroke:purple;stroke-width:2\" />\n Sorry, your browser does not support inline SVG.\n </svg>\n ", "language": "en", "n_whitespaces": 45, "n_words": 19, "vocab_size": 19 }
12
Python
12
b4115c0337b1bacc876bef1ece97e8fa8b3e2834
image.py
106,603
12
27
image_svg
https://github.com/fossasia/visdom.git
test: split demo.py into seperate files and functions
35
0
22,423
12
1
3
def escape_eid(eid): return eid.replace('/', '_')
py/visdom/utils/server_utils.py
30
visdom
{ "docstring": "Replace slashes with underscores, to avoid recognizing them\n as directories.\n ", "language": "en", "n_whitespaces": 16, "n_words": 10, "vocab_size": 10 }
5
Python
5
60c90e313e106c0af62339d29eeda0e62823c648
server_utils.py
106,776
2
15
escape_eid
https://github.com/fossasia/visdom.git
Refactoring server.py into more intentional files
11
0
22,436
8
1
7
def size(self) -> int | np.signedinteger: return np.prod(self.shape)
dask/array/core.py
36
dask
{ "docstring": "\n The total number of blocks in the array.\n ", "language": "en", "n_whitespaces": 23, "n_words": 8, "vocab_size": 8 }
8
Python
8
1a760229fc18c0c7df41669a13a329a287215819
core.py
156,682
5
21
size
https://github.com/dask/dask.git
Only import IPython if type checking (#9230)
22
0
36,713
8
1
2
def icicle(self): return self["icicle"]
packages/python/plotly/plotly/graph_objs/layout/template/_data.py
22
plotly.py
{ "docstring": "\n The 'icicle' property is a tuple of instances of\n Icicle that may be specified as:\n - A list or tuple of instances of plotly.graph_objs.layout.template.data.Icicle\n - A list or tuple of dicts of string/value properties that\n will be passed to the Icicle constructor\n\n Supported dict properties:\n\n Returns\n -------\n tuple[plotly.graph_objs.layout.template.data.Icicle]\n ", "language": "en", "n_whitespaces": 131, "n_words": 48, "vocab_size": 33 }
4
Python
4
43e3a4011080911901176aab919c0ecf5046ddd3
_data.py
232,553
2
11
icicle
https://github.com/plotly/plotly.py.git
switch to black .22
18
0
63,997
7
4
17
def _async_update_rssi(self) -> None: for ( unique_id, ibeacon_advertisement, ) in self._last_ibeacon_advertisement_by_unique_id.items(): address = unique_id.split("_")[-1] if ( service_info := bluetooth.async_last_service_info( self.hass, address, connectable=False ) ) and service_info.rssi != ibeacon_advertisement.rssi: ibeacon_advertisement.update_rssi(service_info.rssi) async_dispatcher_send( self.hass, signal_seen(unique_id), ibeacon_advertisement, )
homeassistant/components/ibeacon/coordinator.py
134
core
{ "docstring": "Check to see if the rssi has changed and update any devices.\n\n We don't callback on RSSI changes so we need to check them\n here and send them over the dispatcher periodically to\n ensure the distance calculation is update.\n ", "language": "en", "n_whitespaces": 67, "n_words": 39, "vocab_size": 33 }
34
Python
28
02731efc4cb3f7ee94b0c08aecc10e3a5209dbf4
coordinator.py
287,742
23
86
_async_update_rssi
https://github.com/home-assistant/core.git
Handle iBeacons that broadcast multiple different uuids (#79011) * Handle iBeacons that broadcast multiple different uuids * fix flip-flopping between uuids * naming
261
0
86,930
13
1
2
def session(): return Session()
.venv/lib/python3.8/site-packages/pip/_vendor/requests/sessions.py
19
transferlearning
{ "docstring": "\n Returns a :class:`Session` for context-management.\n\n .. deprecated:: 1.0.0\n\n This method has been deprecated since version 1.0.0 and is only kept for\n backwards compatibility. New code should use :class:`~requests.sessions.Session`\n to create a session. This may be removed at a future date.\n\n :rtype: Session\n ", "language": "en", "n_whitespaces": 76, "n_words": 42, "vocab_size": 37 }
4
Python
4
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
sessions.py
63,591
2
9
session
https://github.com/jindongwang/transferlearning.git
upd; format
10
0
13,405
7
6
38
async def async_update(self, log_errors=True): if not self._async_client: self._async_client = get_async_client( self._hass, verify_ssl=self._verify_ssl ) rendered_headers = template.render_complex(self._headers, parse_result=False) rendered_params = template.render_complex(self._params) _LOGGER.debug("Updating from %s", self._resource) try: response = await self._async_client.request( self._method, self._resource, headers=rendered_headers, params=rendered_params, auth=self._auth, content=self._request_data, timeout=self._timeout, follow_redirects=True, ) self.data = response.text self.headers = response.headers except httpx.TimeoutException as ex: if log_errors: _LOGGER.error("Timeout while fetching data: %s", self._resource) self.last_exception = ex self.data = None self.headers = None except httpx.RequestError as ex: if log_errors: _LOGGER.error( "Error fetching data: %s failed with %s", self._resource, ex ) self.last_exception = ex self.data = None self.headers = None
homeassistant/components/rest/data.py
317
core
{ "docstring": "Get the latest data from REST service with provided method.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
91
Python
56
599d61a4da096227ce4d5ba1dc0eaabceea56f49
data.py
289,315
35
202
async_update
https://github.com/home-assistant/core.git
Fix payload in rest (#80544)
500
0
88,457
13
1
12
async def test_auth(hass, aioclient_mock): expiration_time = time.time() + 86400 create_config_entry(expiration_time).add_to_hass(hass) # Prepare to capture credentials in API request. Empty payloads just mean # no devices or structures are loaded. aioclient_mock.get(f"{API_URL}/enterprises/{PROJECT_ID}/structures", json={}) aioclient_mock.get(f"{API_URL}/enterprises/{PROJECT_ID}/devices", json={}) # Prepare to capture credentials for Subscriber captured_creds = None
tests/components/nest/test_api.py
108
core
{ "docstring": "Exercise authentication library creates valid credentials.", "language": "en", "n_whitespaces": 5, "n_words": 6, "vocab_size": 6 }
43
Python
35
c576a68d336bc91fd82c299d9b3e5dfdc1c14960
test_api.py
291,721
30
208
test_auth
https://github.com/home-assistant/core.git
Upgrade pytest-aiohttp (#82475) * Upgrade pytest-aiohttp * Make sure executors, tasks and timers are closed Some test will trigger warnings on garbage collect, these warnings spills over into next test. Some test trigger tasks that raise errors on shutdown, these spill over into next test. This is to mimic older pytest-aiohttp and it's behaviour on test cleanup. Discussions on similar changes for pytest-aiohttp are here: https://github.com/pytest-dev/pytest-asyncio/pull/309 * Replace loop with event_loop * Make sure time is frozen for tests * Make sure the ConditionType is not async /home-assistant/homeassistant/helpers/template.py:2082: RuntimeWarning: coroutine 'AsyncMockMixin._execute_mock_call' was never awaited def wrapper(*args, **kwargs): Enable tracemalloc to get traceback where the object was allocated. See https://docs.pytest.org/en/stable/how-to/capture-warnings.html#resource-warnings for more info. * Increase litejet press tests with a factor 10 The times are simulated anyway, and we can't stop the normal event from occuring. * Use async handlers for aiohttp tests/components/motioneye/test_camera.py::test_get_still_image_from_camera tests/components/motioneye/test_camera.py::test_get_still_image_from_camera tests/components/motioneye/test_camera.py::test_get_stream_from_camera tests/components/motioneye/test_camera.py::test_get_stream_from_camera tests/components/motioneye/test_camera.py::test_camera_option_stream_url_template tests/components/motioneye/test_camera.py::test_camera_option_stream_url_template /Users/joakim/src/hass/home-assistant/venv/lib/python3.9/site-packages/aiohttp/web_urldispatcher.py:189: DeprecationWarning: Bare functions are deprecated, use async ones warnings.warn( * Switch to freezegun in modbus tests The tests allowed clock to tick in between steps * Make sure skybell object are fully mocked Old tests would trigger attempts to post to could services: ``` DEBUG:aioskybell:HTTP post https://cloud.myskybell.com/api/v3/login/ Request with headers: {'content-type': 'application/json', 'accept': '*/*', 'x-skybell-app-id': 'd2b542c7-a7e4-4e1e-b77d-2b76911c7c46', 'x-skybell-client-id': '1f36a3c0-6dee-4997-a6db-4e1c67338e57'} ``` * Fix sorting that broke after rebase
71
0
90,825
9
7
24
def authenticate(request=None, **credentials): username = credentials.get('username') for backend, backend_path in _get_backends(return_tuples=True): # 预先检查,不浪费认证时间 if not backend.username_can_authenticate(username): continue # 原生 backend_signature = inspect.signature(backend.authenticate) try: backend_signature.bind(request, **credentials) except TypeError: # This backend doesn't accept these credentials as arguments. Try the next one. continue try: user = backend.authenticate(request, **credentials) except PermissionDenied: # This backend says to stop in our tracks - this user should not be allowed in at all. break if user is None: continue # 再次检查遇检查中遗漏的用户 if not backend.user_can_authenticate(user): continue # Annotate the user object with the path of the backend. user.backend = backend_path return user # The credentials supplied are invalid to all backends, fire signal user_login_failed.send(sender=__name__, credentials=_clean_credentials(credentials), request=request) auth.authenticate = authenticate
apps/authentication/mixins.py
220
jumpserver
{ "docstring": "\n If the given credentials are valid, return a User object.\n 之所以 hack 这个 auticate\n ", "language": "en", "n_whitespaces": 24, "n_words": 14, "vocab_size": 14 }
112
Python
78
edfca5eb2486c2f006257723ffeda6f56b170170
mixins.py
188,426
21
125
authenticate
https://github.com/jumpserver/jumpserver.git
Fix rbac (#7699) * perf: 优化 suggesstion * perf: 修改 migrations * feat: 添加OIDC认证逻辑 * perf: 修改 backend * perf: 优化认证backends * perf: 优化认证backends * perf: 优化CAS认证, 用户多域名进行访问时回调到各自域名 Co-authored-by: ibuler <[email protected]>
323
0
45,914
13
2
11
def config_test(self) -> None: try: util.run_script([self.conf('ctl'), "-c", self.nginx_conf, "-t"]) except errors.SubprocessError as err: raise errors.MisconfigurationError(str(err))
certbot-nginx/certbot_nginx/_internal/configurator.py
84
certbot
{ "docstring": "Check the configuration of Nginx for errors.\n\n :raises .errors.MisconfigurationError: If config_test fails\n\n ", "language": "en", "n_whitespaces": 26, "n_words": 12, "vocab_size": 12 }
15
Python
15
16aad35d31a887dab157f9d4f5e0fe9218d06064
configurator.py
186,582
10
48
config_test
https://github.com/certbot/certbot.git
Fully type certbot-nginx module (#9124) * Work in progress * Fix type * Work in progress * Work in progress * Work in progress * Work in progress * Work in progress * Oups. * Fix typing in UnspacedList * Fix logic * Finish typing * List certbot-nginx as fully typed in tox * Fix lint * Fix checks * Organize imports * Fix typing for Python 3.6 * Fix checks * Fix lint * Update certbot-nginx/certbot_nginx/_internal/configurator.py Co-authored-by: alexzorin <[email protected]> * Update certbot-nginx/certbot_nginx/_internal/configurator.py Co-authored-by: alexzorin <[email protected]> * Fix signature of deploy_cert regarding the installer interface * Update certbot-nginx/certbot_nginx/_internal/obj.py Co-authored-by: alexzorin <[email protected]> * Fix types * Update certbot-nginx/certbot_nginx/_internal/parser.py Co-authored-by: alexzorin <[email protected]> * Precise type * Precise _coerce possible inputs/outputs * Fix type * Update certbot-nginx/certbot_nginx/_internal/http_01.py Co-authored-by: ohemorange <[email protected]> * Fix type * Remove an undesirable implementation. * Fix type Co-authored-by: alexzorin <[email protected]> Co-authored-by: ohemorange <[email protected]>
58
0
45,498
13
1
6
def print_stack(self, *, limit=None, file=None): return base_tasks._task_print_stack(self, limit, file)
python3.10.4/Lib/asyncio/tasks.py
41
XX-Net
{ "docstring": "Print the stack or traceback for this task's coroutine.\n\n This produces output similar to that of the traceback module,\n for the frames retrieved by get_stack(). The limit argument\n is passed to get_stack(). The file argument is an I/O stream\n to which the output is written; by default output is written\n to sys.stderr.\n ", "language": "en", "n_whitespaces": 96, "n_words": 52, "vocab_size": 35 }
9
Python
9
8198943edd73a363c266633e1aa5b2a9e9c9f526
tasks.py
220,797
2
27
print_stack
https://github.com/XX-net/XX-Net.git
add python 3.10.4 for windows
23
0
56,120
7
2
11
def _rename_tmp_file(self) -> None: os.rename(self._video_tmp_file, self._output_filename) logger.debug("Removing temp file") if os.path.isfile(self._video_tmp_file): os.remove(self._video_tmp_file)
plugins/convert/writer/ffmpeg.py
78
faceswap
{ "docstring": " Rename the temporary video file if not muxing audio. ", "language": "en", "n_whitespaces": 10, "n_words": 9, "vocab_size": 9 }
12
Python
12
60291d49c4da1cd260fbc0b04aa6a312eedfefbb
ffmpeg.py
100,615
6
46
_rename_tmp_file
https://github.com/deepfakes/faceswap.git
ffmpeg writer: Create new filename if output pre-exists
51
0
20,077
10
4
14
def get_tightbbox(self, renderer=None): bbox = self.get_window_extent(renderer) if self.get_clip_on(): clip_box = self.get_clip_box() if clip_box is not None: bbox = Bbox.intersection(bbox, clip_box) clip_path = self.get_clip_path() if clip_path is not None: clip_path = clip_path.get_fully_transformed_path() bbox = Bbox.intersection(bbox, clip_path.get_extents()) return bbox
lib/matplotlib/artist.py
137
matplotlib
{ "docstring": "\n Like `.Artist.get_window_extent`, but includes any clipping.\n\n Parameters\n ----------\n renderer : `.RendererBase` subclass\n renderer that will be used to draw the figures (i.e.\n ``fig.canvas.get_renderer()``)\n\n Returns\n -------\n `.Bbox`\n The enclosing bounding box (in figure pixel coordinates).\n ", "language": "en", "n_whitespaces": 124, "n_words": 34, "vocab_size": 33 }
37
Python
20
24b16804731d3a724e4ec0984da140b1a6b05c66
artist.py
108,560
11
84
get_tightbbox
https://github.com/matplotlib/matplotlib.git
MNT: make renderer always optional
154
0
23,258
14
1
17
async def logout(): confirm_logged_in() profiles = prefect.settings.load_profiles() profiles.update_active_profile() update_profile(PREFECT_API_URL=None, PREFECT_API_KEY=None) profile = prefect.context.get_settings_context() exit_with_success(f"Successfully logged out in profile {profile.name!r}") @workspace_app.command()
src/prefect/cli/cloud.py
101
@workspace_app.command()
prefect
{ "docstring": "\n Log out of Prefect Cloud.\n Removes PREFECT_API_URL and PREFECT_API_KEY from profile.\n ", "language": "en", "n_whitespaces": 21, "n_words": 11, "vocab_size": 11 }
20
Python
18
b0af6cf8b1eaea33ee6809efc770fc041908b7ca
cloud.py
55,096
7
46
logout
https://github.com/PrefectHQ/prefect.git
Refactor settings context
40
1
11,209
10
1
18
def test_post_save_change_redirect(self): Person.objects.create(name="John Doe") self.assertEqual(Person.objects.count(), 1) person = Person.objects.all()[0] post_url = reverse( "admin_custom_urls:admin_custom_urls_person_change", args=[person.pk] ) response = self.client.post(post_url, {"name": "Jack Doe"}) self.assertRedirects( response, reverse( "admin_custom_urls:admin_custom_urls_person_delete", args=[person.pk] ), )
tests/admin_custom_urls/tests.py
154
django
{ "docstring": "\n ModelAdmin.response_post_save_change() controls the redirection after\n the 'Save' button has been pressed when editing an existing object.\n ", "language": "en", "n_whitespaces": 38, "n_words": 16, "vocab_size": 15 }
28
Python
23
9c19aff7c7561e3a82978a272ecdaad40dda5c00
tests.py
207,062
14
92
test_post_save_change_redirect
https://github.com/django/django.git
Refs #33476 -- Reformatted code with Black.
150
0
51,854
12
1
2
def prefixsrc(self): return self["prefixsrc"]
packages/python/plotly/plotly/graph_objs/table/_cells.py
22
plotly.py
{ "docstring": "\n Sets the source reference on Chart Studio Cloud for `prefix`.\n\n The 'prefixsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n ", "language": "en", "n_whitespaces": 77, "n_words": 27, "vocab_size": 25 }
4
Python
4
43e3a4011080911901176aab919c0ecf5046ddd3
_cells.py
235,481
2
11
prefixsrc
https://github.com/plotly/plotly.py.git
switch to black .22
18
0
66,925
7
6
16
def get_conditions(filters): filters = frappe._dict(filters) if filters else frappe._dict({}) conditions = frappe._dict({}) conditions.company = filters.company or frappe.defaults.get_user_default("company") conditions.end_date = filters.period_end_date or frappe.utils.today() conditions.start_date = filters.period_start_date or frappe.utils.add_months( conditions.end_date, -1 ) conditions.sales_order = filters.sales_order or [] return conditions
erpnext/selling/report/payment_terms_status_for_sales_order/payment_terms_status_for_sales_order.py
158
erpnext
{ "docstring": "\n\tConvert filter options to conditions used in query\n\t", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
37
Python
26
1bac7930834d6f688950e836c45305a62e7ecb3f
payment_terms_status_for_sales_order.py
63,938
10
97
get_conditions
https://github.com/frappe/erpnext.git
feat: Payment Terms Status report - calculate status at runtime for payment terms based on invoices - invoices are used in FIFO method
27
0
13,537
10
22
19
def call(self, src_files, dest_files): # :var src_done: True if there are no more files from the source left. src_done = False # :var dest_done: True if there are no more files form the dest left. dest_done = False # :var src_take: Take the next source file from the generated files if # true src_take = True # :var dest_take: Take the next dest file from the generated files if # true dest_take = True while True: try: if (not src_done) and src_take: src_file = advance_iterator(src_files) except StopIteration: src_file = None src_done = True try: if (not dest_done) and dest_take: dest_file = advance_iterator(dest_files) except StopIteration: dest_file = None dest_done = True if (not src_done) and (not dest_done): src_take = True dest_take = True compare_keys = self.compare_comp_key(src_file, dest_file) if compare_keys == 'equal': should_sync = self._sync_strategy.determine_should_sync( src_file, dest_file ) if should_sync: yield src_file elif compare_keys == 'less_than': src_take = True dest_take = False should_sync = self._not_at_dest_sync_strategy.determine_should_sync(src_file, None) if should_sync: yield src_file elif compare_keys == 'greater_than': src_take = False dest_take = True should_sync = self._not_at_src_sync_strategy.determine_should_sync(None, dest_file) if should_sync: yield dest_file elif (not src_done) and dest_done: src_take = True should_sync = self._not_at_dest_sync_strategy.determine_should_sync(src_file, None) if should_sync: yield src_file elif src_done and (not dest_done): dest_take = True should_sync = self._not_at_src_sync_strategy.determine_should_sync(None, dest_file) if should_sync: yield dest_file else: break
awscli/customizations/s3/comparator.py
402
aws-cli
{ "docstring": "\n This function preforms the actual comparisons. The parameters it takes\n are the generated files for both the source and the destination. The\n key concept in this function is that no matter the type of where the\n files are coming from, they are listed in the same order, least to\n greatest in collation order. This allows for easy comparisons to\n determine if file needs to be added or deleted. Comparison keys are\n used to determine if two files are the same and each file has a\n unique comparison key. If they are the same compare the size and\n last modified times to see if a file needs to be updated. Ultimately,\n it will yield a sequence of file info objectsthat will be sent to\n the ``S3Handler``.\n\n :param src_files: The generated FileInfo objects from the source.\n :param dest_files: The generated FileInfo objects from the dest.\n\n :returns: Yields the FilInfo objects of the files that need to be\n operated on\n\n Algorithm:\n Try to take next from both files. If it is empty signal\n corresponding done flag. If both generated lists are not done\n compare compare_keys. If equal, compare size and time to see if\n it needs to be updated. If source compare_key is less than dest\n compare_key, the file needs to be added to the destination. Take\n the next source file but not not destination file. If the source\n compare_key is greater than dest compare_key, that destination file\n needs to be deleted from the destination. Take the next dest file\n but not the source file. If the source list is empty delete the\n rest of the files in the dest list from the destination. If the\n dest list is empty add the rest of the file in source list to\n the destination.\n ", "language": "en", "n_whitespaces": 560, "n_words": 289, "vocab_size": 121 }
210
Python
68
8a16d7d8ce5e3f97fb100af7a960224f7f80137d
comparator.py
189,212
52
239
call
https://github.com/aws/aws-cli.git
Delete extra whitespace A correction that does not affect the operation.
1,052
0
46,019
16
4
13
def _bool_arith_fallback(op_str, a, b): if _has_bool_dtype(a) and _has_bool_dtype(b): if op_str in _BOOL_OP_UNSUPPORTED: warnings.warn( f"evaluating in Python space because the {repr(op_str)} " "operator is not supported by numexpr for the bool dtype, " f"use {repr(_BOOL_OP_UNSUPPORTED[op_str])} instead.", stacklevel=find_stack_level(inspect.currentframe()), ) return True return False
pandas/core/computation/expressions.py
108
pandas
{ "docstring": "\n Check if we should fallback to the python `_evaluate_standard` in case\n of an unsupported operation by numexpr, which is the case for some\n boolean ops.\n ", "language": "en", "n_whitespaces": 38, "n_words": 25, "vocab_size": 23 }
41
Python
36
e94faa23e24c0abf9db74d79cfebe06676577867
expressions.py
168,434
11
52
_bool_arith_fallback
https://github.com/pandas-dev/pandas.git
WARN,TST check stacklevel for all warnings (#47998) * use find_stack_level everywhere * fixup * pyx fixups * fixup test_optional_dependency * fixup api * set check_stacklevel=False for some tests * use lru_cache for currentframe * fixup import in __init__ * add missing imports to pyx files * add missing import * fixup import in conversion * revert some __init__ changes * start n=1 * temporarily dont check stacklevel in _check_plot_works * catch some more warnings * dont check stacklevel in check_plot_works * fixup * ignore stacklevel in check_plot_works
150
0
40,296
17
2
5
def get_file_breaks(self, filename): filename = self.canonic(filename) if filename in self.breaks: return self.breaks[filename] else: return []
python3.10.4/Lib/bdb.py
58
XX-Net
{ "docstring": "Return all lines with breakpoints for filename.\n\n If no breakpoints are set, return an empty list.\n ", "language": "en", "n_whitespaces": 30, "n_words": 16, "vocab_size": 15 }
15
Python
13
8198943edd73a363c266633e1aa5b2a9e9c9f526
bdb.py
221,103
6
35
get_file_breaks
https://github.com/XX-net/XX-Net.git
add python 3.10.4 for windows
65
0
56,206
9
5
11
def radius(G, e=None, usebounds=False, weight=None): if usebounds is True and e is None and not G.is_directed(): return _extrema_bounding(G, compute="radius", weight=weight) if e is None: e = eccentricity(G, weight=weight) return min(e.values())
networkx/algorithms/distance_measures.py
112
networkx
{ "docstring": "Returns the radius of the graph G.\n\n The radius is the minimum eccentricity.\n\n Parameters\n ----------\n G : NetworkX graph\n A graph\n\n e : eccentricity dictionary, optional\n A precomputed dictionary of eccentricities.\n\n weight : string, function, or None\n If this is a string, then edge weights will be accessed via the\n edge attribute with this key (that is, the weight of the edge\n joining `u` to `v` will be ``G.edges[u, v][weight]``). If no\n such edge attribute exists, the weight of the edge is assumed to\n be one.\n\n If this is a function, the weight of an edge is the value\n returned by the function. The function must accept exactly three\n positional arguments: the two endpoints of an edge and the\n dictionary of edge attributes for that edge. The function must\n return a number.\n\n If this is None, every edge has weight/distance/cost 1.\n\n Weights stored as floating point values can lead to small round-off\n errors in distances. Use integer weights to avoid this.\n\n Weights should be positive, since they are distances.\n\n Returns\n -------\n r : integer\n Radius of graph\n\n Examples\n --------\n >>> G = nx.Graph([(1, 2), (1, 3), (1, 4), (3, 4), (3, 5), (4, 5)])\n >>> nx.radius(G)\n 2\n\n ", "language": "en", "n_whitespaces": 357, "n_words": 197, "vocab_size": 120 }
30
Python
22
28f78cfa9a386620ee1179582fda1db5ffc59f84
distance_measures.py
177,078
6
71
radius
https://github.com/networkx/networkx.git
Add weight distance metrics (#5305) Adds the weight keyword argument to allow users to compute weighted distance metrics e.g. diameter, eccentricity, periphery, etc. The kwarg works in the same fashion as the weight param for shortest paths - i.e. if a string, look up with edge attr by key, if callable, compute the weight via the function. Default is None, meaning return unweighted result which is the current behavior. Co-authored-by: Dan Schult <[email protected]> Co-authored-by: Ross Barnowski <[email protected]>
56
0
42,265
11
8
24
def write(self, args, path): # type: (CommonConfig, str) -> None # NOTE: Switching the inventory generation to write JSON would be nice, but is currently not possible due to the use of hard-coded inventory filenames. # The name `inventory` works for the POSIX integration tests, but `inventory.winrm` and `inventory.networking` will only parse in INI format. # If tests are updated to use the `INVENTORY_PATH` environment variable, then this could be changed. # Also, some tests detect the test type by inspecting the suffix on the inventory filename, which would break if it were changed. inventory_text = '' for group, hosts in self.host_groups.items(): inventory_text += f'[{group}]\n' for host, variables in hosts.items(): kvp = ' '.join(f'{key}="{value}"' for key, value in variables.items()) inventory_text += f'{host} {kvp}\n' inventory_text += '\n' for group, children in (self.extra_groups or {}).items(): inventory_text += f'[{group}]\n' for child in children: inventory_text += f'{child}\n' inventory_text += '\n' inventory_text = inventory_text.strip() if not args.explain: write_text_file(path, inventory_text + '\n') display.info(f'>>> Inventory\n{inventory_text}', verbosity=3)
test/lib/ansible_test/_internal/host_profiles.py
268
ansible
{ "docstring": "Write the given inventory to the specified path on disk.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 9 }
159
Python
109
fe349a1ccd658d86cfcf10eecdce9d48ece6176c
host_profiles.py
267,273
17
133
write
https://github.com/ansible/ansible.git
ansible-test - Enhance the shell command. (#77734) * ansible-test - Add shell --export option. * ansible-test - Support cmd args for shell command. Also allow shell to be used without a valid layout if no delegation is required. * ansible-test - Improve stderr/stdout consistency. By default all output goes to stdout only, with the exception of a fatal error. When using any of the following, all output defaults to stderr instead: * sanity with the `--lint` option -- sanity messages to stdout * coverage analyze -- output to stdout if the output file is `/dev/stdout` * shell -- shell output to stdout This fixes issues two main issues: * Unpredictable output order when using both info and error/warning messages. * Mixing of lint/command/shell output with bootstrapping messages on stdout. * ansible-test - Add changelog fragment.
377
0
78,828
15
1
4
def ambient_dimension(self): return len(self.args[0])
sympy/geometry/curve.py
28
sympy
{ "docstring": "The dimension of the curve.\n\n Returns\n =======\n\n int :\n the dimension of curve.\n\n Examples\n ========\n\n >>> from sympy.abc import t\n >>> from sympy import Curve\n >>> C = Curve((t, t**2), (t, 0, 2))\n >>> C.ambient_dimension\n 2\n\n ", "language": "en", "n_whitespaces": 124, "n_words": 36, "vocab_size": 27 }
4
Python
4
498015021131af4dbb07eb110e5badaba8250c7b
curve.py
196,266
2
16
ambient_dimension
https://github.com/sympy/sympy.git
Updated import locations
18
0
47,766
9
1
6
def from_pandas(cls, *args, **kwargs): return cls(pa.Table.from_pandas(*args, **kwargs))
src/datasets/table.py
46
datasets
{ "docstring": "\n Convert pandas.DataFrame to an Arrow Table.\n\n The column types in the resulting Arrow Table are inferred from the\n dtypes of the pandas.Series in the DataFrame. In the case of non-object\n Series, the NumPy dtype is translated to its Arrow equivalent. In the\n case of `object`, we need to guess the datatype by looking at the\n Python objects in this Series.\n\n Be aware that Series of the `object` dtype don't carry enough\n information to always lead to a meaningful Arrow type. In the case that\n we cannot infer a type, e.g. because the DataFrame is of length 0 or\n the Series only contains None/nan objects, the type is set to\n null. This behavior can be avoided by constructing an explicit schema\n and passing it to this function.\n\n Args:\n df (:obj:`pandas.DataFrame`):\n schema (:obj:`pyarrow.Schema`, optional):\n The expected schema of the Arrow Table. This can be used to\n indicate the type of columns if we cannot infer it automatically.\n If passed, the output will have exactly this schema. Columns\n specified in the schema that are not found in the DataFrame columns\n or its index will raise an error. Additional columns or index\n levels in the DataFrame which are not specified in the schema will\n be ignored.\n preserve_index (:obj:`bool`, optional):\n Whether to store the index as an additional column in the resulting\n ``Table``. The default of None will store the index as a column,\n except for RangeIndex which is stored as metadata only. Use\n ``preserve_index=True`` to force it to be stored as a column.\n nthreads (:obj:`int`, defaults to :obj:`None` (may use up to system CPU count threads))\n If greater than 1, convert columns to Arrow in parallel using\n indicated number of threads\n columns (:obj:`List[str]`, optional):\n List of column to be converted. If None, use all columns.\n safe (:obj:`bool`, defaults to :obj:`True`):\n Check for overflows or other unsafe conversions\n\n Returns:\n :class:`datasets.table.Table`:\n\n Examples:\n ```python\n >>> import pandas as pd\n >>> import pyarrow as pa\n >>> df = pd.DataFrame({\n ... 'int': [1, 2],\n ... 'str': ['a', 'b']\n ... })\n >>> pa.Table.from_pandas(df)\n <pyarrow.lib.Table object at 0x7f05d1fb1b40>\n ```\n ", "language": "en", "n_whitespaces": 841, "n_words": 338, "vocab_size": 191 }
7
Python
7
e35be138148333078284b942ccc9ed7b1d826f97
table.py
104,411
2
28
from_pandas
https://github.com/huggingface/datasets.git
Update docs to new frontend/UI (#3690) * WIP: update docs to new UI * make style * Rm unused * inject_arrow_table_documentation __annotations__ * hasattr(arrow_table_method, "__annotations__") * Update task_template.rst * Codeblock PT-TF-SPLIT * Convert loading scripts * Convert docs to mdx * Fix mdx * Add <Tip> * Convert mdx tables * Fix codeblock * Rm unneded hashlinks * Update index.mdx * Redo dev change * Rm circle ci `build_doc` & `deploy_doc` * Rm unneeded files * Update docs reamde * Standardize to `Example::` * mdx logging levels doc * Table properties inject_arrow_table_documentation * ``` to ```py mdx * Add Tips mdx * important,None -> <Tip warning={true}> * More misc * Center imgs * Update instllation page * `setup.py` docs section * Rm imgs since they are in hf.co * Update docs/source/access.mdx Co-authored-by: Steven Liu <[email protected]> * Update index mdx * Update docs/source/access.mdx Co-authored-by: Steven Liu <[email protected]> * just `Dataset` obj * Addedversion just italics * Update ReadInstruction doc example syntax * Change docstring for `prepare_for_task` * Chore * Remove `code` syntax from headings * Rm `code` syntax from headings * Hashlink backward compatability * S3FileSystem doc * S3FileSystem doc updates * index.mdx updates * Add darkmode gifs * Index logo img css classes * Index mdx dataset logo img size * Docs for DownloadMode class * Doc DownloadMode table * format docstrings * style * Add doc builder scripts (#3790) * add doc builder scripts * fix docker image * Docs new UI actions no self hosted (#3793) * No self hosted * replace doc injection by actual docstrings * Docstring formatted Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Mishig Davaadorj <[email protected]> Co-authored-by: Lysandre Debut <[email protected]> Co-authored-by: Mishig Davaadorj <[email protected]> * Rm notebooks from docs actions since they dont exi * Update tsting branch * More docstring * Chore * bump up node version * bump up node * ``` -> ```py for audio_process.mdx * Update .github/workflows/build_documentation.yml Co-authored-by: Quentin Lhoest <[email protected]> * Uodate dev doc build * remove run on PR * fix action * Fix gh doc workflow * forgot this change when merging master * Update build doc Co-authored-by: Steven Liu <[email protected]> Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Quentin Lhoest <[email protected]> Co-authored-by: Lysandre Debut <[email protected]>
21
0
21,847
10
1
6
def divides(p, n): sympy_deprecation_warning( , deprecated_since_version="1.11", active_deprecations_target='deprecated-carmichael-static-methods', ) return n % p == 0
sympy/functions/combinatorial/numbers.py
44
sympy
{ "docstring": "\n divides can be replaced by directly testing n % p == 0.\n ", "language": "en", "n_whitespaces": 27, "n_words": 12, "vocab_size": 12 }
14
Python
14
b27e2b44626d138bd6ea235fbf114644baa5b144
numbers.py
197,219
9
26
divides
https://github.com/sympy/sympy.git
Deprecate redundant static methods
55
0
48,392
9
1
8
def is_decompressed(self) -> bool: return type(self._pb_body) in [ jina_pb2.DataRequestProto, jina_pb2.DataRequestProtoWoData, ]
jina/types/request/data.py
42
jina
{ "docstring": "\n Checks if the underlying proto object was already deserialized into a :class:`jina.proto.jina_pb2.DataRequestProto` or\n :class:`jina.proto.jina_pb2.DataRequestProtoWoData`. This does not necessarily mean that the data (docs) inside the request is also decompressed.\n :return: True if the proto was deserialized before\n ", "language": "en", "n_whitespaces": 69, "n_words": 37, "vocab_size": 30 }
11
Python
11
c3849c6fee4a65a77a82b2cfda9670d727ff0f53
data.py
12,701
10
26
is_decompressed
https://github.com/jina-ai/jina.git
feat: allow to access parameters of data request wo loading data (#4991)
54
0
2,387
9
1
4
def model_file_path_key(self): return f"{self.tag_to_agent()[self.value]}_response_model_path"
projects/bb3/agents/module.py
36
ParlAI
{ "docstring": "\n Opt key for model file path for this agent.\n ", "language": "en", "n_whitespaces": 24, "n_words": 9, "vocab_size": 8 }
4
Python
4
b1acb681207559da56a787ba96e16f0e23697d92
module.py
195,191
2
9
model_file_path_key
https://github.com/facebookresearch/ParlAI.git
Patch 8322 (#4709) * add dafetymix teacher * safety_mix teacher * safety_mix teacher pos and neg teachers * add tests for teacher * add license info * improvement * add task list * add task list and lint * add init.py * adding some patch to director * seeker changes * th * 3 * jing * changes * z and r * remove .opts * fix docs * add contrractions * lint Co-authored-by: Dexter Ju <[email protected]> Co-authored-by: Jing Xu <[email protected]>
18
0
47,220
10
1
9
def swish(x): return tf.nn.silu(x) @keras_export("keras.activations.relu") @tf.__internal__.dispatch.add_dispatch_support
keras/activations.py
50
@keras_export("keras.activations.relu") @tf.__internal__.dispatch.add_dispatch_support
keras
{ "docstring": "Swish activation function, `swish(x) = x * sigmoid(x)`.\n\n Swish activation function which returns `x*sigmoid(x)`.\n It is a smooth, non-monotonic function that consistently matches\n or outperforms ReLU on deep networks, it is unbounded above and\n bounded below.\n\n\n Example Usage:\n\n >>> a = tf.constant([-20, -1.0, 0.0, 1.0, 20], dtype = tf.float32)\n >>> b = tf.keras.activations.swish(a)\n >>> b.numpy()\n array([-4.1223075e-08, -2.6894143e-01, 0.0000000e+00, 7.3105860e-01,\n 2.0000000e+01], dtype=float32)\n\n Args:\n x: Input tensor.\n\n Returns:\n The swish activation applied to `x` (see reference paper for details).\n\n Reference:\n - [Ramachandran et al., 2017](https://arxiv.org/abs/1710.05941)\n ", "language": "en", "n_whitespaces": 156, "n_words": 83, "vocab_size": 72 }
6
Python
6
84afc5193d38057e2e2badf9c889ea87d80d8fbf
activations.py
269,309
2
15
swish
https://github.com/keras-team/keras.git
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
10
1
80,023
8
2
15
def item_details(doctype, txt, searchfield, start, page_len, filters): from erpnext.controllers.queries import get_match_cond return frappe.db.sql( % ("%s", searchfield, "%s", get_match_cond(doctype), "%s", "%s"), ((filters or {}).get("delivery_note"), "%%%s%%" % txt, page_len, start), )
erpnext/stock/doctype/packing_slip/packing_slip.py
110
erpnext
{ "docstring": "select name, item_name, description from `tabItem`\n\t\t\t\twhere name in ( select item_code FROM `tabDelivery Note Item`\n\t \t\t\t\t\t\twhere parent= %s)\n\t \t\t\tand %s like \"%s\" %s\n\t \t\t\tlimit %s offset %s ", "language": "en", "n_whitespaces": 28, "n_words": 28, "vocab_size": 23 }
29
Python
24
00ef499739959630cd7cf97419fbb6ca59be05f2
packing_slip.py
68,812
11
72
item_details
https://github.com/frappe/erpnext.git
refactor: use db independent offset syntax (#31345) * chore: use db independent offset syntax * fix: typo * style: reformat code to black spec Co-authored-by: Ankush Menat <[email protected]>
23
0
14,893
13
3
14
def export_probs(self) -> dict[str, Any]: result = {} for module in self.nas_modules: try: result.update(module.export_probs(memo=result)) except NotImplementedError: warnings.warn( 'Some super-modules you have used did not implement export_probs. You might find some logs are missing.', UserWarning ) return result
nni/nas/oneshot/pytorch/base_lightning.py
86
nni
{ "docstring": "\n Export the probability of every choice in the search space got chosen.\n\n .. note:: If such method of some modules is not implemented, they will be simply ignored.\n\n Returns\n -------\n dict\n In most cases, keys are names of ``nas_modules`` suffixed with ``/`` and choice name.\n Values are the probability / logits depending on the implementation.\n ", "language": "en", "n_whitespaces": 120, "n_words": 55, "vocab_size": 47 }
37
Python
36
f77db747d07d5c90a3a9f70bb17f71d4573f329e
base_lightning.py
113,318
22
52
export_probs
https://github.com/microsoft/nni.git
Enhancement of one-shot NAS (v2.9) (#5049)
170
0
24,885
14
4
7
def clear(self): self._block_partition_refs = [None for _ in self._block_partition_refs] self._block_partition_meta_refs = [ None for _ in self._block_partition_meta_refs ] self._cached_metadata = [None for _ in self._cached_metadata] self._stats_actor = None
python/ray/data/_internal/lazy_block_list.py
78
ray
{ "docstring": "Clears all object references (block partitions and base block partitions)\n from this lazy block list.\n ", "language": "en", "n_whitespaces": 29, "n_words": 15, "vocab_size": 14 }
28
Python
16
b1cad0a1121c06cae55aaed32f2b901b2b725521
lazy_block_list.py
127,026
7
50
clear
https://github.com/ray-project/ray.git
[Datasets] Use detached lifetime for stats actor (#25271) The actor handle held at Ray client will become dangling if the Ray cluster is shutdown, and in such case if the user tries to get the actor again it will result in crash. This happened in a real user and blocked them from making progress. This change makes the stats actor detached, and instead of keeping a handle, we access it via its name. This way we can make sure re-create this actor if the cluster gets restarted. Co-authored-by: Ubuntu <[email protected]>
81
0
28,336
9
4
13
def _read_all_pages(self, endpoint): internal_data = [] while True: resp = self._session.get(endpoint) if resp.status_code == 200: internal_data += resp.json() if "next" in resp.links: endpoint = resp.links["next"]["url"] else: logger.debug("Exiting pagination loop") break else: logger.warning(f"Request to {endpoint} return HTTP {resp.status_code}") break return internal_data
.github/scripts/github.py
149
paperless-ngx
{ "docstring": "\n Helper function to read all pages of an endpoint, utilizing the\n next.url until exhausted. Assumes the endpoint returns a list\n ", "language": "en", "n_whitespaces": 43, "n_words": 20, "vocab_size": 19 }
40
Python
32
0b8eff9643c12aa7c766538d8a3e4194934cf44c
github.py
319,987
15
78
_read_all_pages
https://github.com/paperless-ngx/paperless-ngx.git
Extends the cleanup of image versions to the library images and all the registry cache images as well
233
0
117,041
15
1
3
def lazy(func, *resultclasses):
django/utils/functional.py
17
django
{ "docstring": "\n Turn any callable into a lazy evaluated callable. result classes or types\n is required -- at least one is needed so that the automatic forcing of\n the lazy evaluation code is triggered. Results are not memoized; the\n function is evaluated on every access.\n ", "language": "en", "n_whitespaces": 59, "n_words": 43, "vocab_size": 36 }
3
Python
3
9c19aff7c7561e3a82978a272ecdaad40dda5c00
functional.py
206,667
31
68
lazy
https://github.com/django/django.git
Refs #33476 -- Reformatted code with Black.
6
0
51,617
6
3
22
def chromatic_polynomial(G): r import sympy x = sympy.Symbol("x") stack = deque() stack.append(nx.MultiGraph(G, contraction_idx=0)) polynomial = 0 while stack: G = stack.pop() edges = list(G.edges) if not edges: polynomial += (-1) ** G.graph["contraction_idx"] * x ** len(G) else: e = edges[0] C = nx.contracted_edge(G, e, self_loops=True) C.graph["contraction_idx"] = G.graph["contraction_idx"] + 1 C.remove_edge(e[0], e[0]) G.remove_edge(*e) stack.append(G) stack.append(C) return polynomial
networkx/algorithms/polynomials.py
253
networkx
{ "docstring": "Returns the chromatic polynomial of `G`\n\n This function computes the chromatic polynomial via an iterative version of\n the deletion-contraction algorithm.\n\n The chromatic polynomial `X_G(x)` is a fundamental graph polynomial\n invariant in one variable. Evaluating `X_G(k)` for an natural number `k`\n enumerates the proper k-colorings of `G`.\n\n There are several equivalent definitions; here are three:\n\n Def 1 (explicit formula):\n For `G` an undirected graph, `c(G)` the number of connected components of\n `G`, `E` the edge set of `G`, and `G(S)` the spanning subgraph of `G` with\n edge set `S` [1]_:\n\n .. math::\n\n X_G(x) = \\sum_{S \\subseteq E} (-1)^{|S|} x^{c(G(S))}\n\n\n Def 2 (interpolating polynomial):\n For `G` an undirected graph, `n(G)` the number of vertices of `G`, `k_0 = 0`,\n and `k_i` the number of distinct ways to color the vertices of `G` with `i`\n unique colors (for `i` a natural number at most `n(G)`), `X_G(x)` is the\n unique Lagrange interpolating polynomial of degree `n(G)` through the points\n `(0, k_0), (1, k_1), \\dots, (n(G), k_{n(G)})` [2]_.\n\n\n Def 3 (chromatic recurrence):\n For `G` an undirected graph, `G-e` the graph obtained from `G` by deleting\n edge `e`, `G/e` the graph obtained from `G` by contracting edge `e`, `n(G)`\n the number of vertices of `G`, and `e(G)` the number of edges of `G` [3]_:\n\n .. math::\n X_G(x) = \\begin{cases}\n \t x^{n(G)}, & \\text{if $e(G)=0$} \\\\\n X_{G-e}(x) - X_{G/e}(x), & \\text{otherwise, for an arbitrary edge $e$}\n \\end{cases}\n\n This formulation is also known as the Fundamental Reduction Theorem [4]_.\n\n\n Parameters\n ----------\n G : NetworkX graph\n\n Returns\n -------\n instance of `sympy.core.add.Add`\n A Sympy expression representing the chromatic polynomial for `G`.\n\n Examples\n --------\n >>> C = nx.cycle_graph(5)\n >>> nx.chromatic_polynomial(C)\n x**5 - 5*x**4 + 10*x**3 - 10*x**2 + 4*x\n\n >>> G = nx.complete_graph(4)\n >>> nx.chromatic_polynomial(G)\n x**4 - 6*x**3 + 11*x**2 - 6*x\n\n Notes\n -----\n Interpretation of the coefficients is discussed in [5]_. Several special\n cases are listed in [2]_.\n\n The chromatic polynomial is a specialization of the Tutte polynomial; in\n particular, `X_G(x) = `T_G(x, 0)` [6]_.\n\n The chromatic polynomial may take negative arguments, though evaluations\n may not have chromatic interpretations. For instance, `X_G(-1)` enumerates\n the acyclic orientations of `G` [7]_.\n\n References\n ----------\n .. [1] D. B. West,\n \"Introduction to Graph Theory,\" p. 222\n .. [2] E. W. Weisstein\n \"Chromatic Polynomial\"\n MathWorld--A Wolfram Web Resource\n https://mathworld.wolfram.com/ChromaticPolynomial.html\n .. [3] D. B. West,\n \"Introduction to Graph Theory,\" p. 221\n .. [4] J. Zhang, J. Goodall,\n \"An Introduction to Chromatic Polynomials\"\n https://math.mit.edu/~apost/courses/18.204_2018/Julie_Zhang_paper.pdf\n .. [5] R. C. Read,\n \"An Introduction to Chromatic Polynomials\"\n Journal of Combinatorial Theory, 1968\n https://math.berkeley.edu/~mrklug/ReadChromatic.pdf\n .. [6] W. T. Tutte,\n \"Graph-polynomials\"\n Advances in Applied Mathematics, 2004\n https://www.sciencedirect.com/science/article/pii/S0196885803000411\n .. [7] R. P. Stanley,\n \"Acyclic orientations of graphs\"\n Discrete Mathematics, 2006\n https://math.mit.edu/~rstan/pubs/pubfiles/18.pdf\n ", "language": "en", "n_whitespaces": 745, "n_words": 437, "vocab_size": 259 }
57
Python
45
a3a383f7a90e478df40bc9d746c925f2c94a5a2b
polynomials.py
176,832
120
154
chromatic_polynomial
https://github.com/networkx/networkx.git
Chromatic polynomial (#5675) Adds chromatic_polynomial function to the graph polynomials package.
196
0
42,128
14
4
25
def reidemeister_presentation(fp_grp, H, C=None, homomorphism=False): if not C: C = coset_enumeration_r(fp_grp, H) C.compress(); C.standardize() define_schreier_generators(C, homomorphism=homomorphism) reidemeister_relators(C) gens, rels = C._schreier_generators, C._reidemeister_relators gens, rels = simplify_presentation(gens, rels, change_gens=True) C.schreier_generators = tuple(gens) C.reidemeister_relators = tuple(rels) if homomorphism: _gens = [] for gen in gens: _gens.append(C._schreier_gen_elem[str(gen)]) return C.schreier_generators, C.reidemeister_relators, _gens return C.schreier_generators, C.reidemeister_relators FpGroupElement = FreeGroupElement
sympy/combinatorics/fp_groups.py
217
sympy
{ "docstring": "\n Parameters\n ==========\n\n fp_group: A finitely presented group, an instance of FpGroup\n H: A subgroup whose presentation is to be found, given as a list\n of words in generators of `fp_grp`\n homomorphism: When set to True, return a homomorphism from the subgroup\n to the parent group\n\n Examples\n ========\n\n >>> from sympy.combinatorics import free_group\n >>> from sympy.combinatorics.fp_groups import FpGroup, reidemeister_presentation\n >>> F, x, y = free_group(\"x, y\")\n\n Example 5.6 Pg. 177 from [1]\n >>> f = FpGroup(F, [x**3, y**5, (x*y)**2])\n >>> H = [x*y, x**-1*y**-1*x*y*x]\n >>> reidemeister_presentation(f, H)\n ((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1))\n\n Example 5.8 Pg. 183 from [1]\n >>> f = FpGroup(F, [x**3, y**3, (x*y)**3])\n >>> H = [x*y, x*y**-1]\n >>> reidemeister_presentation(f, H)\n ((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0))\n\n Exercises Q2. Pg 187 from [1]\n >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3])\n >>> H = [x]\n >>> reidemeister_presentation(f, H)\n ((x_0,), (x_0**4,))\n\n Example 5.9 Pg. 183 from [1]\n >>> f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2])\n >>> H = [x]\n >>> reidemeister_presentation(f, H)\n ((x_0,), (x_0**6,))\n\n ", "language": "en", "n_whitespaces": 276, "n_words": 160, "vocab_size": 96 }
54
Python
41
498015021131af4dbb07eb110e5badaba8250c7b
fp_groups.py
196,052
16
136
reidemeister_presentation
https://github.com/sympy/sympy.git
Updated import locations
125
0
47,552
14
1
8
def test_preserve_username_case(self): user = User.objects.create_user("forms_test2", "[email protected]", "test") self.assertEqual(user.email, "[email protected]") user = User.objects.create_user("forms_test3", "tesT", "test") self.assertEqual(user.email, "tesT")
tests/auth_tests/test_forms.py
99
django
{ "docstring": "\n Preserve the case of the user name (before the @ in the email address)\n when creating a user (#5605).\n ", "language": "en", "n_whitespaces": 41, "n_words": 19, "vocab_size": 15 }
16
Python
12
9c19aff7c7561e3a82978a272ecdaad40dda5c00
test_forms.py
201,228
5
54
test_preserve_username_case
https://github.com/django/django.git
Refs #33476 -- Reformatted code with Black.
51
0
49,906
9
1
4
def clean_up_synthetic_data(): shutil.rmtree("audio_files", ignore_errors=True) shutil.rmtree("image_files", ignore_errors=True)
ludwig/utils/triton_utils.py
46
ludwig
{ "docstring": "Clean up synthetic example generated data for audio and image features.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
6
Python
5
ed8d9cf20843744f18593b22fb6a30eaf5f325eb
triton_utils.py
7,519
3
25
clean_up_synthetic_data
https://github.com/ludwig-ai/ludwig.git
Triton ensemble export (#2251)
15
0
1,227
8
6
24
def load_weights_only(model, filepath): temp_dir = None archive = None if filepath.endswith(".weights.h5"): # TODO: download file if h5 filepath is remote weights_store = H5IOStore(filepath, mode="r") elif filepath.endswith(".keras"): archive = zipfile.ZipFile(filepath, "r") weights_store = H5IOStore( _VARS_FNAME + ".h5", archive=archive, mode="r" ) _load_state( model, weights_handler=weights_store, assets_handler=None, inner_path="", visited_trackables=set(), ) weights_store.close() if temp_dir and tf.io.gfile.exists(temp_dir): tf.io.gfile.rmtree(temp_dir) if archive: archive.close()
keras/saving/experimental/saving_lib.py
212
keras
{ "docstring": "Load the weights of a model from a filepath (.keras or .weights.h5).\n\n Note: only supports h5 for now.\n ", "language": "en", "n_whitespaces": 24, "n_words": 18, "vocab_size": 17 }
55
Python
43
e6f739a31247c43a86c37c33b0b8b2ba6be6a5f6
saving_lib.py
280,201
22
126
load_weights_only
https://github.com/keras-team/keras.git
- Add standalone weights file saving/loading functionality. - Switch to in-memory, single write / single read archive saving for better performance. - Remove ability to pick between zipping or not zipping a Keras saved artifact: it's always a zip archive now. PiperOrigin-RevId: 483705728
180
0
83,286
13
1
11
def cg(A, b, x0=None, *, tol=1e-5, atol=0.0, maxiter=None, M=None): return _isolve(_cg_solve, A=A, b=b, x0=x0, tol=tol, atol=atol, maxiter=maxiter, M=M, check_symmetric=True)
jax/_src/scipy/sparse/linalg.py
91
jax
{ "docstring": "Use Conjugate Gradient iteration to solve ``Ax = b``.\n\n The numerics of JAX's ``cg`` should exact match SciPy's ``cg`` (up to\n numerical precision), but note that the interface is slightly different: you\n need to supply the linear operator ``A`` as a function instead of a sparse\n matrix or ``LinearOperator``.\n\n Derivatives of ``cg`` are implemented via implicit differentiation with\n another ``cg`` solve, rather than by differentiating *through* the solver.\n They will be accurate only if both solves converge.\n\n Parameters\n ----------\n A: ndarray or function\n 2D array or function that calculates the linear map (matrix-vector\n product) ``Ax`` when called like ``A(x)``. ``A`` must represent a\n hermitian, positive definite matrix, and must return array(s) with the\n same structure and shape as its argument.\n b : array or tree of arrays\n Right hand side of the linear system representing a single vector. Can be\n stored as an array or Python container of array(s) with any shape.\n\n Returns\n -------\n x : array or tree of arrays\n The converged solution. Has the same structure as ``b``.\n info : None\n Placeholder for convergence information. In the future, JAX will report\n the number of iterations when convergence is not achieved, like SciPy.\n\n Other Parameters\n ----------------\n x0 : array or tree of arrays\n Starting guess for the solution. Must have the same structure as ``b``.\n tol, atol : float, optional\n Tolerances for convergence, ``norm(residual) <= max(tol*norm(b), atol)``.\n We do not implement SciPy's \"legacy\" behavior, so JAX's tolerance will\n differ from SciPy unless you explicitly pass ``atol`` to SciPy's ``cg``.\n maxiter : integer\n Maximum number of iterations. Iteration will stop after maxiter\n steps even if the specified tolerance has not been achieved.\n M : ndarray or function\n Preconditioner for A. The preconditioner should approximate the\n inverse of A. Effective preconditioning dramatically improves the\n rate of convergence, which implies that fewer iterations are needed\n to reach a given error tolerance.\n\n See also\n --------\n scipy.sparse.linalg.cg\n jax.lax.custom_linear_solve\n ", "language": "en", "n_whitespaces": 438, "n_words": 314, "vocab_size": 205 }
19
Python
19
998d60dd07d2c33438f606307de0276bcf110428
linalg.py
119,883
4
71
cg
https://github.com/google/jax.git
DOC: clarify parameter types in cg/bicgstab
53
0
26,708
8
2
6
def _get_database_display_str(self, verbosity, database_name): return "'%s'%s" % ( self.connection.alias, (" ('%s')" % database_name) if verbosity >= 2 else "", )
django/db/backends/base/creation.py
55
django
{ "docstring": "\n Return display string for a database for use in various actions.\n ", "language": "en", "n_whitespaces": 26, "n_words": 11, "vocab_size": 10 }
20
Python
19
9c19aff7c7561e3a82978a272ecdaad40dda5c00
creation.py
204,841
5
33
_get_database_display_str
https://github.com/django/django.git
Refs #33476 -- Reformatted code with Black.
63
0
50,920
11
1
11
def pre_run_hook(self, instance, private_data_dir): instance.log_lifecycle("pre_run") # Before task is started, ensure that job_event partitions exist create_partition(instance.event_class._meta.db_table, start=instance.created)
awx/main/tasks/jobs.py
54
awx
{ "docstring": "\n Hook for any steps to run before the job/task starts\n ", "language": "en", "n_whitespaces": 25, "n_words": 10, "vocab_size": 10 }
17
Python
17
e87fabe6bb84691472ab67e5da737c9fe515cf3f
jobs.py
81,641
3
32
pre_run_hook
https://github.com/ansible/awx.git
Submit job to dispatcher as part of transaction (#12573) Make it so that submitting a task to the dispatcher happens as part of the transaction. this applies to dispatcher task "publishers" which NOTIFY the pg_notify queue if the transaction is not successful, it will not be sent, as per postgres docs This keeps current behavior for pg_notify listeners practically, this only applies for the awx-manage run_dispatcher service this requires creating a separate connection and keeping it long-lived arbitrary code will occasionally close the main connection, which would stop listening Stop sending the waiting status websocket message this is required because the ordering cannot be maintained with other changes here the instance group data is moved to the running websocket message payload Move call to create_partition from task manager to pre_run_hook mock this in relevant unit tests
45
0
17,240
10
3
30
def make_dataset(X, y, sample_weight, random_state=None): rng = check_random_state(random_state) # seed should never be 0 in SequentialDataset64 seed = rng.randint(1, np.iinfo(np.int32).max) if X.dtype == np.float32: CSRData = CSRDataset32 ArrayData = ArrayDataset32 else: CSRData = CSRDataset64 ArrayData = ArrayDataset64 if sp.issparse(X): dataset = CSRData(X.data, X.indptr, X.indices, y, sample_weight, seed=seed) intercept_decay = SPARSE_INTERCEPT_DECAY else: X = np.ascontiguousarray(X) dataset = ArrayData(X, y, sample_weight, seed=seed) intercept_decay = 1.0 return dataset, intercept_decay
sklearn/linear_model/_base.py
197
scikit-learn
{ "docstring": "Create ``Dataset`` abstraction for sparse and dense inputs.\n\n This also returns the ``intercept_decay`` which is different\n for sparse datasets.\n\n Parameters\n ----------\n X : array-like, shape (n_samples, n_features)\n Training data\n\n y : array-like, shape (n_samples, )\n Target values.\n\n sample_weight : numpy array of shape (n_samples,)\n The weight of each sample\n\n random_state : int, RandomState instance or None (default)\n Determines random number generation for dataset random sampling. It is not\n used for dataset shuffling.\n Pass an int for reproducible output across multiple function calls.\n See :term:`Glossary <random_state>`.\n\n Returns\n -------\n dataset\n The ``Dataset`` abstraction\n intercept_decay\n The intercept decay\n ", "language": "en", "n_whitespaces": 197, "n_words": 95, "vocab_size": 74 }
66
Python
43
b4da3b406379b241bf5e81d0f60bbcddd424625b
_base.py
259,567
17
130
make_dataset
https://github.com/scikit-learn/scikit-learn.git
MNT ensure creation of dataset is deterministic in SGD (#19716) Co-authored-by: Guillaume Lemaitre <[email protected]> Co-authored-by: Olivier Grisel <[email protected]> Co-authored-by: Jérémie du Boisberranger <[email protected]>
156
0
75,821
12
2
28
def test_big_ndept() -> None: # for multiplier in [1, 10, 100, 1000]: for multiplier in [10]: ndim = 1_000_000 rows = 1 cols = 7 num_entites = 1000 upper = highest() lower = lowest() reference_data = np.random.randint( lower, upper, size=(multiplier * ndim, rows, cols), dtype=np.int32 ) big_ndept = NDEPT( child=reference_data, entities=[ishan() * num_entites], max_vals=make_bounds(reference_data, upper), min_vals=make_bounds(reference_data, lower), ) ndept_metrics = time_and_size_serde(big_ndept) print(multiplier, ndept_metrics) # break assert False
packages/syft/tests/syft/core/tensor/tensor_serde_test.py
185
PySyft
{ "docstring": "Create big NDEPTs\n failed capnp deserialize capnp/serialize.c++:197:\n failed: expected totalWords <= options.traversalLimitInWords;\n Message is too large. To increase the limit on the receiving end,\n see capnp::ReaderOptions.\n ", "language": "en", "n_whitespaces": 42, "n_words": 26, "vocab_size": 25 }
67
Python
53
b2768484a1b5720be74c78335502cd996e0b1895
tensor_serde_test.py
735
27
118
test_big_ndept
https://github.com/OpenMined/PySyft.git
WIP: Having issue with 10M NDEPT serde - options.traversalLimitInWords; Message is too large.
229
0
107
15
2
6
def popitem(self): for key in self.sections(): value = self[key] del self[key] return key, value raise KeyError
python3.10.4/Lib/configparser.py
52
XX-Net
{ "docstring": "Remove a section from the parser and return it as\n a (section_name, section_proxy) tuple. If no section is present, raise\n KeyError.\n\n The section DEFAULT is never returned because it cannot be removed.\n ", "language": "en", "n_whitespaces": 60, "n_words": 32, "vocab_size": 27 }
16
Python
14
8198943edd73a363c266633e1aa5b2a9e9c9f526
configparser.py
221,679
6
32
popitem
https://github.com/XX-net/XX-Net.git
add python 3.10.4 for windows
70
0
56,473
9
2
9
def cleanup_cache_files(self) -> Dict[str, int]: self._check_values_type() return {k: dataset.cleanup_cache_files() for k, dataset in self.items()}
src/datasets/dataset_dict.py
62
datasets
{ "docstring": "Clean up all cache files in the dataset cache directory, excepted the currently used cache file if there is one.\n Be careful when running this command that no other process is currently using other cache files.\n\n Return:\n Dict with the number of removed files for each split\n\n Example:\n\n ```py\n >>> from datasets import load_dataset\n >>> ds = load_dataset(\"rotten_tomatoes\")\n >>> ds.cleanup_cache_files()\n {'test': 0, 'train': 0, 'validation': 0}\n ```\n ", "language": "en", "n_whitespaces": 148, "n_words": 67, "vocab_size": 55 }
14
Python
14
1904d0c0a3a96330d9b870cdca3e9a3a137f2977
dataset_dict.py
104,788
18
38
cleanup_cache_files
https://github.com/huggingface/datasets.git
Add code examples for DatasetDict (#4245) * 📝 add code examples for DatasetDict * 🖍 apply quentin review
35
0
21,970
9
2
14
def test_recursion_to_deep(large_import_chain): if is_win: pytest.xfail("Worker is known to crash on Windows.") path, script = large_import_chain mg = modulegraph.ModuleGraph(path) # Increase recursion limit to 5 times of the default. Given the module import chain created above # this still should fail. with pytest.raises(RecursionError): mg.add_script(str(script))
tests/unit/test_recursion_limit.py
83
pyinstaller
{ "docstring": "\n modulegraph is recursive and triggers RecursionError if nesting of imported modules is to deep.\n This can be worked around by increasing recursion limit.\n\n With the default recursion limit (1000), the recursion error occurs at about 115 modules, with limit 2000\n (as tested below) at about 240 modules, and with limit 5000 at about 660 modules.\n ", "language": "en", "n_whitespaces": 71, "n_words": 55, "vocab_size": 42 }
43
Python
39
080d95d83bb7f60ce2ec25b0c81c207d303ec46c
test_recursion_limit.py
262,741
7
45
test_recursion_to_deep
https://github.com/pyinstaller/pyinstaller.git
Drop Python 3.6 support.
78
0
77,340
11
4
12
def field_as_sql(self, field, val): if field is None: # A field value of None means the value is raw. sql, params = val, [] elif hasattr(val, "as_sql"): # This is an expression, let's compile it. sql, params = self.compile(val) elif hasattr(field, "get_placeholder"): # Some fields (e.g. geo fields) need special munging before # they can be inserted. sql, params = field.get_placeholder(val, self, self.connection), [val] else: # Return the common case for the placeholder sql, params = "%s", [val] # The following hook is only used by Oracle Spatial, which sometimes # needs to yield 'NULL' and [] as its placeholder and params instead # of '%s' and [None]. The 'NULL' placeholder is produced earlier by # OracleOperations.get_geom_placeholder(). The following line removes # the corresponding None parameter. See ticket #10888. params = self.connection.ops.modify_insert_params(sql, params) return sql, params
django/db/models/sql/compiler.py
168
django
{ "docstring": "\n Take a field and a value intended to be saved on that field, and\n return placeholder SQL and accompanying params. Check for raw values,\n expressions, and fields with get_placeholder() defined in that order.\n\n When field is None, consider the value raw and use it as the\n placeholder, with no corresponding parameters returned.\n ", "language": "en", "n_whitespaces": 95, "n_words": 52, "vocab_size": 41 }
136
Python
90
9c19aff7c7561e3a82978a272ecdaad40dda5c00
compiler.py
205,824
11
98
field_as_sql
https://github.com/django/django.git
Refs #33476 -- Reformatted code with Black.
319
0
51,226
13
1
16
def psi_n(n, x, m, omega): # sympify arguments n, x, m, omega = map(S, [n, x, m, omega]) nu = m * omega / hbar # normalization coefficient C = (nu/pi)**Rational(1, 4) * sqrt(1/(2**n*factorial(n))) return C * exp(-nu* x**2 /2) * hermite(n, sqrt(nu)*x)
sympy/physics/qho_1d.py
146
sympy
{ "docstring": "\n Returns the wavefunction psi_{n} for the One-dimensional harmonic oscillator.\n\n Parameters\n ==========\n\n n :\n the \"nodal\" quantum number. Corresponds to the number of nodes in the\n wavefunction. ``n >= 0``\n x :\n x coordinate.\n m :\n Mass of the particle.\n omega :\n Angular frequency of the oscillator.\n\n Examples\n ========\n\n >>> from sympy.physics.qho_1d import psi_n\n >>> from sympy.abc import m, x, omega\n >>> psi_n(0, x, m, omega)\n (m*omega)**(1/4)*exp(-m*omega*x**2/(2*hbar))/(hbar**(1/4)*pi**(1/4))\n\n ", "language": "en", "n_whitespaces": 146, "n_words": 66, "vocab_size": 46 }
43
Python
31
a0989bcfd26470833cf03737941bfd80f511c745
qho_1d.py
199,984
5
97
psi_n
https://github.com/sympy/sympy.git
applied backtick correction to the remainder of the project
64
0
49,473
14
2
6
async def async_get_hev_cycle(self) -> None: if lifx_features(self.device)["hev"]: await async_execute_lifx(self.device.get_hev_cycle)
homeassistant/components/lifx/coordinator.py
51
core
{ "docstring": "Update the HEV cycle status from a LIFX Clean bulb.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
9
Python
9
dde763418a1c4ee0ecff17de76b6d670670a3bb7
coordinator.py
289,881
4
28
async_get_hev_cycle
https://github.com/home-assistant/core.git
Add an RSSI sensor to the LIFX integration (#80993)
34
0
89,009
12
6
10
def subsets(seq, k=None, repetition=False): r if k is None: if not repetition: return chain.from_iterable((combinations(seq, k) for k in range(len(seq) + 1))) else: return chain.from_iterable((combinations_with_replacement(seq, k) for k in range(len(seq) + 1))) else: if not repetition: return combinations(seq, k) else: return combinations_with_replacement(seq, k)
sympy/utilities/iterables.py
155
sympy
{ "docstring": "Generates all `k`-subsets (combinations) from an `n`-element set, ``seq``.\n\n A `k`-subset of an `n`-element set is any subset of length exactly `k`. The\n number of `k`-subsets of an `n`-element set is given by ``binomial(n, k)``,\n whereas there are `2^n` subsets all together. If `k` is ``None`` then all\n `2^n` subsets will be returned from shortest to longest.\n\n Examples\n ========\n\n >>> from sympy.utilities.iterables import subsets\n\n ``subsets(seq, k)`` will return the `\\frac{n!}{k!(n - k)!}` `k`-subsets (combinations)\n without repetition, i.e. once an item has been removed, it can no\n longer be \"taken\":\n\n >>> list(subsets([1, 2], 2))\n [(1, 2)]\n >>> list(subsets([1, 2]))\n [(), (1,), (2,), (1, 2)]\n >>> list(subsets([1, 2, 3], 2))\n [(1, 2), (1, 3), (2, 3)]\n\n\n ``subsets(seq, k, repetition=True)`` will return the `\\frac{(n - 1 + k)!}{k!(n - 1)!}`\n combinations *with* repetition:\n\n >>> list(subsets([1, 2], 2, repetition=True))\n [(1, 1), (1, 2), (2, 2)]\n\n If you ask for more items than are in the set you get the empty set unless\n you allow repetitions:\n\n >>> list(subsets([0, 1], 3, repetition=False))\n []\n >>> list(subsets([0, 1], 3, repetition=True))\n [(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)]\n\n ", "language": "en", "n_whitespaces": 313, "n_words": 184, "vocab_size": 117 }
42
Python
23
a25ba231f9c3fd6518f9ae81d1df0323898b9e44
iterables.py
197,085
52
100
subsets
https://github.com/sympy/sympy.git
Optimization of subsets() to use return rather than yield from By avoiding the use of yield in the body of iterables.subsets, Python sees it as just a regular function rather than a generator. Hence it can call generators and return the resulting generator objects, avoiding some overhead from a layer of yield from handling.
200
0
48,328
19
1
33
async def test_doorbell_update_via_pubnub(hass): doorbell_one = await _mock_doorbell_from_fixture(hass, "get_doorbell.json") pubnub = AugustPubNub() await _create_august_with_devices(hass, [doorbell_one], pubnub=pubnub) assert doorbell_one.pubsub_channel == "7c7a6672-59c8-3333-ffff-dcd98705cccc" binary_sensor_k98gidt45gul_name_motion = hass.states.get( "binary_sensor.k98gidt45gul_name_motion" ) assert binary_sensor_k98gidt45gul_name_motion.state == STATE_OFF binary_sensor_k98gidt45gul_name_ding = hass.states.get( "binary_sensor.k98gidt45gul_name_ding" ) assert binary_sensor_k98gidt45gul_name_ding.state == STATE_OFF pubnub.message( pubnub, Mock( channel=doorbell_one.pubsub_channel, timetoken=_timetoken(), message={ "status": "imagecapture", "data": { "result": { "created_at": "2021-03-16T01:07:08.817Z", "secure_url": "https://dyu7azbnaoi74.cloudfront.net/zip/images/zip.jpeg", }, }, }, ), ) await hass.async_block_till_done() binary_sensor_k98gidt45gul_name_image_capture = hass.states.get( "binary_sensor.k98gidt45gul_name_image_capture" ) assert binary_sensor_k98gidt45gul_name_image_capture.state == STATE_ON pubnub.message( pubnub, Mock( channel=doorbell_one.pubsub_channel, timetoken=_timetoken(), message={ "status": "doorbell_motion_detected", "data": { "event": "doorbell_motion_detected", "image": { "height": 640, "width": 480, "format": "jpg", "created_at": "2021-03-16T02:36:26.886Z", "bytes": 14061, "secure_url": "https://dyu7azbnaoi74.cloudfront.net/images/1f8.jpeg", "url": "https://dyu7azbnaoi74.cloudfront.net/images/1f8.jpeg", "etag": "09e839331c4ea59eef28081f2caa0e90", }, "doorbellName": "Front Door", "callID": None, "origin": "mars-api", "mutableContent": True, }, }, ), ) await hass.async_block_till_done() binary_sensor_k98gidt45gul_name_motion = hass.states.get( "binary_sensor.k98gidt45gul_name_motion" ) assert binary_sensor_k98gidt45gul_name_motion.state == STATE_ON binary_sensor_k98gidt45gul_name_ding = hass.states.get( "binary_sensor.k98gidt45gul_name_ding" ) assert binary_sensor_k98gidt45gul_name_ding.state == STATE_OFF new_time = dt_util.utcnow() + datetime.timedelta(seconds=40) native_time = datetime.datetime.now() + datetime.timedelta(seconds=40) with patch( "homeassistant.components.august.binary_sensor._native_datetime", return_value=native_time, ): async_fire_time_changed(hass, new_time) await hass.async_block_till_done() binary_sensor_k98gidt45gul_name_image_capture = hass.states.get( "binary_sensor.k98gidt45gul_name_image_capture" ) assert binary_sensor_k98gidt45gul_name_image_capture.state == STATE_OFF pubnub.message( pubnub, Mock( channel=doorbell_one.pubsub_channel, timetoken=_timetoken(), message={ "status": "buttonpush", }, ), ) await hass.async_block_till_done() binary_sensor_k98gidt45gul_name_ding = hass.states.get( "binary_sensor.k98gidt45gul_name_ding" ) assert binary_sensor_k98gidt45gul_name_ding.state == STATE_ON new_time = dt_util.utcnow() + datetime.timedelta(seconds=40) native_time = datetime.datetime.now() + datetime.timedelta(seconds=40) with patch( "homeassistant.components.august.binary_sensor._native_datetime", return_value=native_time, ): async_fire_time_changed(hass, new_time) await hass.async_block_till_done() binary_sensor_k98gidt45gul_name_ding = hass.states.get( "binary_sensor.k98gidt45gul_name_ding" ) assert binary_sensor_k98gidt45gul_name_ding.state == STATE_OFF
tests/components/august/test_binary_sensor.py
819
core
{ "docstring": "Test creation of a doorbell that can be updated via pubnub.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
211
Python
87
ea5b18c1ef16b64cd7916f2540692ab5de2d2edf
test_binary_sensor.py
309,149
109
475
test_doorbell_update_via_pubnub
https://github.com/home-assistant/core.git
Split august motion and image capture binary sensors (#62154)
1,162
0
107,857
17
4
8
def get_span_dict(span_list): strip_prefix = "python.ray.tests." span_names = {} for span in span_list: span_name = span["name"] if span_name.startswith(strip_prefix): span_name = span_name[len(strip_prefix) :] if span_name in span_names: span_names[span_name] += 1 else: span_names[span_name] = 1 return span_names
python/ray/tests/test_tracing.py
107
ray
{ "docstring": "Given a list of span names, return dictionary of span names.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 9 }
34
Python
23
2cdb76789e6d0d59928891a4b520f588b7844edf
test_tracing.py
124,698
12
63
get_span_dict
https://github.com/ray-project/ray.git
Bump pytest from 5.4.3 to 7.0.1 (#26334) See #23676 for context. This is another attempt at that as I figured out what's going wrong in `bazel test`. Supersedes #24828. Now that there are Python 3.10 wheels for Ray 1.13 and this is no longer a blocker for supporting Python 3.10, I still want to make `bazel test //python/ray/tests/...` work for developing in a 3.10 env, and make it easier to add Python 3.10 tests to CI in future. The change contains three commits with rather descriptive commit message, which I repeat here: Pass deps to py_test in py_test_module_list Bazel macro py_test_module_list takes a `deps` argument, but completely ignores it instead of passes it to `native.py_test`. Fixing that as we are going to use deps of py_test_module_list in BUILD in later changes. cpp/BUILD.bazel depends on the broken behaviour: it deps-on a cc_library from a py_test, which isn't working, see upstream issue: https://github.com/bazelbuild/bazel/issues/701. This is fixed by simply removing the (non-working) deps. Depend on conftest and data files in Python tests BUILD files Bazel requires that all the files used in a test run should be represented in the transitive dependencies specified for the test target. For py_test, it means srcs, deps and data. Bazel enforces this constraint by creating a "runfiles" directory, symbolic links files in the dependency closure and run the test in the "runfiles" directory, so that the test shouldn't see files not in the dependency graph. Unfortunately, the constraint does not apply for a large number of Python tests, due to pytest (>=3.9.0, <6.0) resolving these symbolic links during test collection and effectively "breaks out" of the runfiles tree. pytest >= 6.0 introduces a breaking change and removed the symbolic link resolving behaviour, see pytest pull request https://github.com/pytest-dev/pytest/pull/6523 for more context. Currently, we are underspecifying dependencies in a lot of BUILD files and thus blocking us from updating to newer pytest (for Python 3.10 support). This change hopefully fixes all of them, and at least those in CI, by adding data or source dependencies (mostly for conftest.py-s) where needed. Bump pytest version from 5.4.3 to 7.0.1 We want at least pytest 6.2.5 for Python 3.10 support, but not past 7.1.0 since it drops Python 3.6 support (which Ray still supports), thus the version constraint is set to <7.1. Updating pytest, combined with earlier BUILD fixes, changed the ground truth of a few error message based unit test, these tests are updated to reflect the change. There are also two small drive-by changes for making test_traceback and test_cli pass under Python 3.10. These are discovered while debugging CI failures (on earlier Python) with a Python 3.10 install locally. Expect more such issues when adding Python 3.10 to CI.
110
0
27,661
14
3
23
async def dry_run(self, empty, context) -> jina_pb2.StatusProto: from docarray import DocumentArray from jina.clients.request import request_generator from jina.enums import DataInputType from jina.serve.executors import __dry_run_endpoint__ da = DocumentArray() try: req_iterator = request_generator( exec_endpoint=__dry_run_endpoint__, data=da, data_type=DataInputType.DOCUMENT, )
jina/serve/runtimes/gateway/grpc/__init__.py
100
async def dry_run(self, empty, context) -> jina_pb2.StatusProto: """ Process the the call requested by having a dry run call to every Executor in the graph :param empty: The service expects an empty protobuf message :param context: grpc context :returns: the response request """ from docarray import DocumentArray from jina.clients.request import request_generator from jina.enums import DataInputType from jina.serve.executors import __dry_run_endpoint__ da = DocumentArray() try: req_iterator = request_generator( exec_endpoint=__dry_run_endpoint__, data=da, data_type=DataInputType.DOCUMENT, )
jina
{ "docstring": "\n Process the the call requested by having a dry run call to every Executor in the graph\n\n :param empty: The service expects an empty protobuf message\n :param context: grpc context\n :returns: the response request\n ", "language": "en", "n_whitespaces": 70, "n_words": 34, "vocab_size": 29 }
34
Python
27
ef662b529b2a2eecea7bb99759a9f7b9d86d3062
__init__.py
12,508
28
121
dry_run
https://github.com/jina-ai/jina.git
feat: add grpc health checking (#4779)
150
1
2,326
10
1
7
def test_parsing_of_open_actions(self): from kitty.open_actions import actions_for_url, KeyAction spec =
kitty_tests/open_actions.py
28
kitty
{ "docstring": "\nprotocol file\nmime text/*\nfragment_matches .\nAcTion launch $EDITOR $FILE_PATH $FRAGMENT\naction\n\nprotocol file\nmime text/*\naction ignored\n\next py,txt\naction one\naction two\n", "language": "en", "n_whitespaces": 13, "n_words": 24, "vocab_size": 17 }
9
Python
9
1454af2d416f0eb738c2268ee3297cacb0215dd0
open_actions.py
102,829
22
68
test_parsing_of_open_actions
https://github.com/kovidgoyal/kitty.git
macOS: Allow customizing the launch actions
23
0
21,573
7