complexity
int64 1
56
| n_identifiers
int64 1
114
| code
stringlengths 19
12.7k
| path
stringlengths 8
134
| n_ast_nodes
int64 12
2.35k
| ast_errors
stringlengths 0
4.01k
| repo
stringlengths 3
28
| documentation
dict | n_words
int64 2
866
| language
stringclasses 1
value | vocab_size
int64 2
323
| commit_id
stringlengths 40
40
| file_name
stringlengths 5
79
| id
int64 243
338k
| nloc
int64 1
228
| token_counts
int64 5
1.4k
| fun_name
stringlengths 1
77
| url
stringlengths 31
60
| commit_message
stringlengths 3
15.3k
| n_whitespaces
int64 1
3.23k
| n_ast_errors
int64 0
20
| d_id
int64 74
121k
| ast_levels
int64 4
29
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | def itemdoubleclick(self):
return self["itemdoubleclick"]
| packages/python/plotly/plotly/graph_objs/layout/_legend.py | 22 | plotly.py | {
"docstring": "\n Determines the behavior on legend item double-click. \"toggle\"\n toggles the visibility of the item clicked on the graph.\n \"toggleothers\" makes the clicked item the sole visible item on\n the graph. False disables legend item double-click\n interactions.\n\n The 'itemdoubleclick' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n ['toggle', 'toggleothers', False]\n\n Returns\n -------\n Any\n ",
"language": "en",
"n_whitespaces": 155,
"n_words": 60,
"vocab_size": 42
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _legend.py | 231,584 | 2 | 11 | itemdoubleclick | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 63,028 | 7 |
|
1 | 24 | def _generate_legacy_events_context_id_query() -> Select:
# This can be removed once we no longer have event_ids in the states table
return (
select(
*EVENT_COLUMNS,
literal(value=None, type_=sqlalchemy.String).label("shared_data"),
States.state,
States.entity_id,
States.attributes,
StateAttributes.shared_attrs,
)
.outerjoin(States, (Events.event_id == States.event_id))
.where(States.last_updated == States.last_changed)
.where(_not_continuous_entity_matcher())
.outerjoin(
StateAttributes, (States.attributes_id == StateAttributes.attributes_id)
)
)
| homeassistant/components/logbook/__init__.py | 151 | core | {
"docstring": "Generate a legacy events context id query that also joins states.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 45 | Python | 41 | 26177bd080b4eb6d11cfd9fbdd158be36f4983d4 | __init__.py | 300,319 | 18 | 98 | _generate_legacy_events_context_id_query | https://github.com/home-assistant/core.git | Convert logbook to use lambda_stmt (#71624) | 183 | 0 | 99,183 | 22 |
|
14 | 20 | def get_mailbox_list(value):
mailbox_list = MailboxList()
while value and value[0] != ';':
try:
token, value = get_mailbox(value)
mailbox_list.append(token)
except errors.HeaderParseError:
leader = None
if value[0] in CFWS_LEADER:
leader, value = get_cfws(value)
if not value or value[0] in ',;':
mailbox_list.append(leader)
mailbox_list.defects.append(errors.ObsoleteHeaderDefect(
"empty element in mailbox-list"))
else:
token, value = get_invalid_mailbox(value, ',;')
if leader is not None:
token[:0] = [leader]
mailbox_list.append(token)
mailbox_list.defects.append(errors.InvalidHeaderDefect(
"invalid mailbox in mailbox-list"))
elif value[0] == ',':
mailbox_list.defects.append(errors.ObsoleteHeaderDefect(
"empty element in mailbox-list"))
else:
token, value = get_invalid_mailbox(value, ',;')
if leader is not None:
token[:0] = [leader]
mailbox_list.append(token)
mailbox_list.defects.append(errors.InvalidHeaderDefect(
"invalid mailbox in mailbox-list"))
if value and value[0] not in ',;':
# Crap after mailbox; treat it as an invalid mailbox.
# The mailbox info will still be available.
mailbox = mailbox_list[-1]
mailbox.token_type = 'invalid-mailbox'
token, value = get_invalid_mailbox(value, ',;')
mailbox.extend(token)
mailbox_list.defects.append(errors.InvalidHeaderDefect(
"invalid mailbox in mailbox-list"))
if value and value[0] == ',':
mailbox_list.append(ListSeparator)
value = value[1:]
return mailbox_list, value
| python3.10.4/Lib/email/_header_value_parser.py | 482 | XX-Net | {
"docstring": " mailbox-list = (mailbox *(\",\" mailbox)) / obs-mbox-list\n obs-mbox-list = *([CFWS] \",\") mailbox *(\",\" [mailbox / CFWS])\n\n For this routine we go outside the formal grammar in order to improve error\n handling. We recognize the end of the mailbox list only at the end of the\n value or at a ';' (the group terminator). This is so that we can turn\n invalid mailboxes into InvalidMailbox tokens and continue parsing any\n remaining valid mailboxes. We also allow all mailbox entries to be null,\n and this condition is handled appropriately at a higher level.\n\n ",
"language": "en",
"n_whitespaces": 123,
"n_words": 91,
"vocab_size": 70
} | 147 | Python | 69 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _header_value_parser.py | 223,548 | 42 | 283 | get_mailbox_list | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 727 | 0 | 56,965 | 20 |
|
1 | 13 | def _clone_config(self, config):
old_path = os.path.abspath(get_testdata(config))
new_path = os.path.join(self._temp_directory, config)
shutil.copy2(old_path,
new_path)
return new_path
| tests/functional/eks/test_kubeconfig.py | 72 | aws-cli | {
"docstring": "\n Copies the testdata named config into the temp directory,\n Returns the new path\n\n :param config: The name of the testdata to copy\n :type config: str\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 25,
"vocab_size": 20
} | 14 | Python | 12 | 1a6b498657ec5dd29ddf4f6b240c6fc0c5d88f7a | test_kubeconfig.py | 189,164 | 6 | 45 | _clone_config | https://github.com/aws/aws-cli.git | Deprecate Kubernetes client API version v1alpha1
Kubernetes has deprecated v1alpha1, v1beta1 has been available since Kubernetes
v1.11 (kubernetes/kubernetes#64482), and EKS currently supports Kubernetes
versions v1.16 through v1.21. This is a breaking change for clients running
versions v1.10 and older, which haven't been supported by EKS since September
2019.
"aws eks get-token" now respects the KUBERNETES_EXEC_INFO environment
variable and conservatively falls back to v1alpha1, which is supported
by Kubernetes versions 1.10 through 1.22 (released upstream August 2021, to be
released by EKS in Q4 2021). It also now supports "v1beta1" and "v1".
"aws eks update-kubeconfig" now writes "v1beta1" in the kubeconfig which
will be supported by Kubernetes until 1.29 (aproximately December 2023).
At or around that date, we can change the default version written to
kubeconfigs to "v1"
Signed-off-by: Micah Hausler <[email protected]> | 69 | 0 | 46,004 | 10 |
|
2 | 44 | def test_clear_task_instances_dr_state(self, state, last_scheduling, dag_maker):
with dag_maker(
'test_clear_task_instances',
start_date=DEFAULT_DATE,
end_date=DEFAULT_DATE + datetime.timedelta(days=10),
) as dag:
EmptyOperator(task_id='0')
EmptyOperator(task_id='1', retries=2)
dr = dag_maker.create_dagrun(
state=State.RUNNING,
run_type=DagRunType.SCHEDULED,
)
ti0, ti1 = sorted(dr.task_instances, key=lambda ti: ti.task_id)
dr.last_scheduling_decision = DEFAULT_DATE
ti0.state = TaskInstanceState.SUCCESS
ti1.state = TaskInstanceState.SUCCESS
session = dag_maker.session
session.flush()
# we use order_by(task_id) here because for the test DAG structure of ours
# this is equivalent to topological sort. It would not work in general case
# but it works for our case because we specifically constructed test DAGS
# in the way that those two sort methods are equivalent
qry = session.query(TI).filter(TI.dag_id == dag.dag_id).order_by(TI.task_id).all()
clear_task_instances(qry, session, dag_run_state=state, dag=dag)
session.flush()
session.refresh(dr)
assert dr.state == state
assert dr.start_date is None if state == State.QUEUED else dr.start_date
assert dr.last_scheduling_decision == last_scheduling
| tests/models/test_cleartasks.py | 326 | airflow | {
"docstring": "Test that DR state is set to None after clear.\n And that DR.last_scheduling_decision is handled OK.\n start_date is also set to None\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 22,
"vocab_size": 16
} | 124 | Python | 95 | 49e336ae0302b386a2f47269a6d13988382d975f | test_cleartasks.py | 47,548 | 25 | 204 | test_clear_task_instances_dr_state | https://github.com/apache/airflow.git | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | 355 | 0 | 9,154 | 15 |
|
3 | 14 | def downgrade():
conn = op.get_bind()
if conn.dialect.name == "sqlite":
# in sqlite TEXT and STRING column types are the same
return
if conn.dialect.name == "mysql":
op.alter_column(
'connection',
'description',
existing_type=sa.Text(5000),
type_=sa.String(length=5000),
existing_nullable=True,
)
else:
# postgres does not allow size modifier for text type
op.alter_column(
'connection',
'description',
existing_type=sa.Text(),
type_=sa.String(length=5000),
existing_nullable=True,
)
| airflow/migrations/versions/64a7d6477aae_fix_description_field_in_connection_to_.py | 165 | airflow | {
"docstring": "Unapply Fix description field in ``connection`` to be ``text``",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 50 | Python | 40 | 69f6f9e01b6df76c3c8fa266d460324163957887 | 64a7d6477aae_fix_description_field_in_connection_to_.py | 45,466 | 20 | 98 | downgrade | https://github.com/apache/airflow.git | Autogenerate migration reference doc (#21601)
* document airflow version in each alembic migration module and use this to autogen the doc
* update each migration module to have the same description used in migration ref (so it can be used in autogen) | 224 | 0 | 8,593 | 14 |
|
3 | 8 | def _canonicalize_dtype(x64_enabled, dtype):
try:
dtype = np.dtype(dtype)
except TypeError as e:
raise TypeError(f'dtype {dtype!r} not understood') from e
if x64_enabled:
return dtype
else:
return _dtype_to_32bit_dtype.get(dtype, dtype)
| jax/_src/dtypes.py | 83 | jax | {
"docstring": "Convert from a dtype to a canonical dtype based on config.x64_enabled.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 9
} | 26 | Python | 24 | 329de7c9cc1b77f9caacf2163a77a9d8496c379b | dtypes.py | 119,122 | 9 | 47 | _canonicalize_dtype | https://github.com/google/jax.git | Only use config.x64_enabled as the memo cache key for canonicalize_dtype, not any other fields.
This saves the time to repeatedly build a tuple as a cache key. Reduces the time for CustomLinearSolveTest.test_custom_linear_solve_pytree on my workstation from 110s to 85s.
PiperOrigin-RevId: 422632700 | 43 | 0 | 26,545 | 12 |
|
4 | 7 | def copyDataFiles():
for included_datafile in getIncludedDataFiles():
# TODO: directories should be resolved to files.
if (
not isinstance(included_datafile, (IncludedDataFile))
or included_datafile.needsCopy()
):
_handleDataFile(
included_datafile,
)
| nuitka/freezer/IncludedDataFiles.py | 62 | Nuitka | {
"docstring": "Copy the data files needed for standalone distribution.\n\n Notes:\n This is for data files only, not DLLs or even extension modules,\n those must be registered as entry points, and would not go through\n necessary handling if provided like this.\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 39,
"vocab_size": 35
} | 25 | Python | 25 | abfb99b0a05dd76d2ecc6ebc20732a271857c6c8 | IncludedDataFiles.py | 178,914 | 9 | 36 | copyDataFiles | https://github.com/Nuitka/Nuitka.git | Plugins: Massive cleanup of data file handling
* Move data file handling out of standalone only, allowing support
for other modes as well.
* Attach logger and tags to data file objects. | 111 | 0 | 42,859 | 13 |
|
7 | 19 | def _check_pyarrow_version():
global _VERSION_VALIDATED
if not _VERSION_VALIDATED:
if os.environ.get(RAY_DISABLE_PYARROW_VERSION_CHECK, "0") == "1":
_VERSION_VALIDATED = True
return
try:
import pyarrow
except ModuleNotFoundError:
# pyarrow not installed, short-circuit.
return
import pkg_resources
if not hasattr(pyarrow, "__version__"):
logger.warning(
"You are using the 'pyarrow' module, but the exact version is unknown "
"(possibly carried as an internal component by another module). Please "
f"make sure you are using pyarrow >= {MIN_PYARROW_VERSION}, < "
f"{MAX_PYARROW_VERSION} to ensure compatibility with Ray Datasets. "
"If you want to disable this pyarrow version check, set the "
f"environment variable {RAY_DISABLE_PYARROW_VERSION_CHECK}=1."
)
else:
version = pyarrow.__version__
if (
pkg_resources.packaging.version.parse(version)
< pkg_resources.packaging.version.parse(MIN_PYARROW_VERSION)
) or (
pkg_resources.packaging.version.parse(version)
>= pkg_resources.packaging.version.parse(MAX_PYARROW_VERSION)
):
raise ImportError(
f"Datasets requires pyarrow >= {MIN_PYARROW_VERSION}, < "
f"{MAX_PYARROW_VERSION}, but {version} is installed. Reinstall "
f'with `pip install -U "pyarrow<{MAX_PYARROW_VERSION}"`. '
"If you want to disable this pyarrow version check, set the "
f"environment variable {RAY_DISABLE_PYARROW_VERSION_CHECK}=1."
)
_VERSION_VALIDATED = True
| python/ray/data/_internal/util.py | 266 | ray | {
"docstring": "Check that pyarrow's version is within the supported bounds.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 149 | Python | 93 | ee0fbf9d43dfa05fdf90ad0515b2671cac16a92b | util.py | 134,777 | 37 | 134 | _check_pyarrow_version | https://github.com/ray-project/ray.git | [Datasets] Add upper bound to pyarrow version check. (#29674)
We previously weren't checking that the 7.0.0 pyarrow upper bound was being respected. This PR adds this upper bound check. | 603 | 0 | 30,413 | 17 |
|
1 | 12 | def cogview_attention(self, attention_scores, alpha=32):
scaled_attention_scores = attention_scores / alpha
max_value = scaled_attention_scores.amax(dim=(-1)).unsqueeze(-1)
new_attention_scores = (scaled_attention_scores - max_value) * alpha
return nn.Softmax(dim=-1)(new_attention_scores)
| src/transformers/models/layoutlmv3/modeling_layoutlmv3.py | 94 | transformers | {
"docstring": "\n https://arxiv.org/abs/2105.13290 Section 2.4 Stabilization of training: Precision Bottleneck Relaxation\n (PB-Relax). A replacement of the original nn.Softmax(dim=-1)(attention_scores). Seems the new attention_probs\n will result in a slower speed and a little bias. Can use torch.allclose(standard_attention_probs,\n cogview_attention_probs, atol=1e-08) for comparison. The smaller atol (e.g., 1e-08), the better.\n ",
"language": "en",
"n_whitespaces": 80,
"n_words": 44,
"vocab_size": 40
} | 21 | Python | 18 | 31ee80d55673f32c0f5d50936f371e661b74b21a | modeling_layoutlmv3.py | 38,773 | 5 | 58 | cogview_attention | https://github.com/huggingface/transformers.git | Add LayoutLMv3 (#17060)
* Make forward pass work
* More improvements
* Remove unused imports
* Remove timm dependency
* Improve loss calculation of token classifier
* Fix most tests
* Add docs
* Add model integration test
* Make all tests pass
* Add LayoutLMv3FeatureExtractor
* Improve integration test + make fixup
* Add example script
* Fix style
* Add LayoutLMv3Processor
* Fix style
* Add option to add visual labels
* Make more tokenizer tests pass
* Fix more tests
* Make more tests pass
* Fix bug and improve docs
* Fix import of processors
* Improve docstrings
* Fix toctree and improve docs
* Fix auto tokenizer
* Move tests to model folder
* Move tests to model folder
* change default behavior add_prefix_space
* add prefix space for fast
* add_prefix_spcae set to True for Fast
* no space before `unique_no_split` token
* add test to hightligh special treatment of added tokens
* fix `test_batch_encode_dynamic_overflowing` by building a long enough example
* fix `test_full_tokenizer` with add_prefix_token
* Fix tokenizer integration test
* Make the code more readable
* Add tests for LayoutLMv3Processor
* Fix style
* Add model to README and update init
* Apply suggestions from code review
* Replace asserts by value errors
* Add suggestion by @ducviet00
* Add model to doc tests
* Simplify script
* Improve README
* a step ahead to fix
* Update pair_input_test
* Make all tokenizer tests pass - phew
* Make style
* Add LayoutLMv3 to CI job
* Fix auto mapping
* Fix CI job name
* Make all processor tests pass
* Make tests of LayoutLMv2 and LayoutXLM consistent
* Add copied from statements to fast tokenizer
* Add copied from statements to slow tokenizer
* Remove add_visual_labels attribute
* Fix tests
* Add link to notebooks
* Improve docs of LayoutLMv3Processor
* Fix reference to section
Co-authored-by: SaulLu <[email protected]>
Co-authored-by: Niels Rogge <[email protected]> | 56 | 0 | 7,030 | 13 |
|
3 | 8 | def check_planarity(G, counterexample=False):
planarity_state = LRPlanarity(G)
embedding = planarity_state.lr_planarity()
if embedding is None:
# graph is not planar
if counterexample:
return False, get_counterexample(G)
else:
return False, None
else:
# graph is planar
return True, embedding
| networkx/algorithms/planarity.py | 86 | networkx | {
"docstring": "Check if a graph is planar and return a counterexample or an embedding.\n\n A graph is planar iff it can be drawn in a plane without\n any edge intersections.\n\n Parameters\n ----------\n G : NetworkX graph\n counterexample : bool\n A Kuratowski subgraph (to proof non planarity) is only returned if set\n to true.\n\n Returns\n -------\n (is_planar, certificate) : (bool, NetworkX graph) tuple\n is_planar is true if the graph is planar.\n If the graph is planar `certificate` is a PlanarEmbedding\n otherwise it is a Kuratowski subgraph.\n\n Examples\n --------\n >>> G = nx.Graph([(0, 1), (0, 2)])\n >>> is_planar, P = nx.check_planarity(G)\n >>> print(is_planar)\n True\n\n When `G` is planar, a `PlanarEmbedding` instance is returned:\n\n >>> P.get_data()\n {0: [1, 2], 1: [0], 2: [0]}\n\n Notes\n -----\n A (combinatorial) embedding consists of cyclic orderings of the incident\n edges at each vertex. Given such an embedding there are multiple approaches\n discussed in literature to drawing the graph (subject to various\n constraints, e.g. integer coordinates), see e.g. [2].\n\n The planarity check algorithm and extraction of the combinatorial embedding\n is based on the Left-Right Planarity Test [1].\n\n A counterexample is only generated if the corresponding parameter is set,\n because the complexity of the counterexample generation is higher.\n\n References\n ----------\n .. [1] Ulrik Brandes:\n The Left-Right Planarity Test\n 2009\n http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.217.9208\n .. [2] Takao Nishizeki, Md Saidur Rahman:\n Planar graph drawing\n Lecture Notes Series on Computing: Volume 12\n 2004\n ",
"language": "en",
"n_whitespaces": 404,
"n_words": 228,
"vocab_size": 154
} | 35 | Python | 22 | 1af7d49d70869081e5cb64d17165652f1b26c57b | planarity.py | 176,544 | 10 | 50 | check_planarity | https://github.com/networkx/networkx.git | Improve documentation of PlanarEmbedding class (#5523)
* Improve documentation of PlanarEmbedding
* Fix type
* Make suggested changes
* rst formatting nits.
* Update networkx/algorithms/planarity.py
Co-authored-by: Dan Schult <[email protected]>
* Run black for formatting
Co-authored-by: Ross Barnowski <[email protected]>
Co-authored-by: Dan Schult <[email protected]> | 107 | 0 | 41,953 | 12 |
|
11 | 9 | def draw(self, renderer):
if not self.get_visible():
return
self._recompute_transform()
width = self.convert_xunits(self.width)
height = self.convert_yunits(self.height)
# If the width and height of ellipse are not equal, take into account
# stretching when calculating angles to draw between | lib/matplotlib/patches.py | 74 | matplotlib | {
"docstring": "\n Draw the arc to the given *renderer*.\n\n Notes\n -----\n Ellipses are normally drawn using an approximation that uses\n eight cubic Bezier splines. The error of this approximation\n is 1.89818e-6, according to this unverified source:\n\n Lancaster, Don. *Approximating a Circle or an Ellipse Using\n Four Bezier Cubic Splines.*\n\n https://www.tinaja.com/glib/ellipse4.pdf\n\n There is a use case where very large ellipses must be drawn\n with very high accuracy, and it is too expensive to render the\n entire ellipse with enough segments (either splines or line\n segments). Therefore, in the case where either radius of the\n ellipse is large enough that the error of the spline\n approximation will be visible (greater than one pixel offset\n from the ideal), a different technique is used.\n\n In that case, only the visible parts of the ellipse are drawn,\n with each visible arc using a fixed number of spline segments\n (8). The algorithm proceeds as follows:\n\n 1. The points where the ellipse intersects the axes (or figure)\n bounding box are located. (This is done by performing an inverse\n transformation on the bbox such that it is relative to the unit\n circle -- this makes the intersection calculation much easier than\n doing rotated ellipse intersection directly.)\n\n This uses the \"line intersecting a circle\" algorithm from:\n\n Vince, John. *Geometry for Computer Graphics: Formulae,\n Examples & Proofs.* London: Springer-Verlag, 2005.\n\n 2. The angles of each of the intersection points are calculated.\n\n 3. Proceeding counterclockwise starting in the positive\n x-direction, each of the visible arc-segments between the\n pairs of vertices are drawn using the Bezier arc\n approximation technique implemented in `.Path.arc`.\n ",
"language": "en",
"n_whitespaces": 541,
"n_words": 258,
"vocab_size": 160
} | 36 | Python | 31 | cf995d1304bfa7f660e7158b5121a46e54f869f2 | patches.py | 108,776 | 50 | 404 | draw | https://github.com/matplotlib/matplotlib.git | Remove ineffective exclusion of Arcs without parent Axes.
The `if not hasattr(self, 'axes'): raise RuntimeError(...)` check was
ineffectual, as artists now always have an Axes attribute, which can
just be None for some artists. In fact, small Arcs are drawn just fine
without a parent Axes; e.g.
```
from pylab import *
from matplotlib.patches import *
fig = figure()
fig.add_artist(Ellipse((.2, .2), .1, .3, angle=45)) # for comparison
fig.add_artist(Arc((.2, .2), .1, .3, angle=45, theta1=0, theta2=45))
```
works just fine. Remove the check, and adjust the docs accordingly.
On the other hand, large arcs *did* previously fail,
but that occurred a bit further down, when computing
`transforms.BboxTransformTo(self.axes.bbox)` (`self.axes` is None -->
AttributeError). Fix that by using the figure bbox in that case (as the
point is to limit the drawing to the unclipped area, which is the whole
figure for Arcs without a parent Axes). | 96 | 0 | 23,337 | 9 |
|
2 | 10 | def _async_setup_scanner_watchdog(self) -> None:
self._start_time = self._last_detection = MONOTONIC_TIME()
if not self._cancel_watchdog:
self._cancel_watchdog = async_track_time_interval(
self.hass, self._async_scanner_watchdog, SCANNER_WATCHDOG_INTERVAL
)
| homeassistant/components/bluetooth/base_scanner.py | 67 | core | {
"docstring": "If something has restarted or updated, we need to restart the scanner.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | 19 | Python | 17 | 0e2ebfe5c45716250280186234123f170e3bd08c | base_scanner.py | 297,460 | 7 | 41 | _async_setup_scanner_watchdog | https://github.com/home-assistant/core.git | Move bluetooth watchdog into the scanner base class (#83888) | 77 | 0 | 96,429 | 11 |
|
1 | 3 | def test_image_crafter_index(encoder_doc_array, tmpdir):
| tests/unit/helloworld/multimodal/test_executors.py | 15 | jina | {
"docstring": "In this test, we input one ``DocumentArray`` with one ``Document``,\n and the `craft` method in the ``ImageCrafter`` returns chunks.\n In the ``ImageCrafter``, we filtered out all the modalities and only kept `image/jpeg`.\n So the 2 chunks should left only 1 chunk.\n And the blob value of the ``Document`` is not empty once we finished crafting since\n we converted image uri/datauri to blob.\n ",
"language": "en",
"n_whitespaces": 80,
"n_words": 62,
"vocab_size": 49
} | 3 | Python | 3 | 933415bfa1f9eb89f935037014dfed816eb9815d | test_executors.py | 10,208 | 5 | 49 | test_image_crafter_index | https://github.com/jina-ai/jina.git | feat: star routing (#3900)
* feat(proto): adjust proto for star routing (#3844)
* feat(proto): adjust proto for star routing
* feat(proto): generate proto files
* feat(grpc): refactor grpclet interface (#3846)
* feat: refactor connection pool for star routing (#3872)
* feat(k8s): add more labels to k8s deployments
* feat(network): refactor connection pool
* feat(network): refactor k8s pool
* feat: star routing graph gateway (#3877)
* feat: star routing - refactor grpc data runtime (#3887)
* feat(runtimes): refactor grpc dataruntime
* fix(tests): adapt worker runtime tests
* fix(import): fix import
* feat(proto): enable sending multiple lists (#3891)
* feat: star routing gateway (#3893)
* feat: star routing gateway all protocols (#3897)
* test: add streaming and prefetch tests (#3901)
* feat(head): new head runtime for star routing (#3899)
* feat(head): new head runtime
* feat(head): new head runtime
* style: fix overload and cli autocomplete
* feat(network): improve proto comments
Co-authored-by: Jina Dev Bot <[email protected]>
* feat(worker): merge docs in worker runtime (#3905)
* feat(worker): merge docs in worker runtime
* feat(tests): assert after clean up
* feat(tests): star routing runtime integration tests (#3908)
* fix(tests): fix integration tests
* test: test runtimes fast slow request (#3910)
* feat(zmq): purge zmq, zed, routing_table (#3915)
* feat(zmq): purge zmq, zed, routing_table
* style: fix overload and cli autocomplete
* feat(zmq): adapt comment in dependency list
* style: fix overload and cli autocomplete
* fix(tests): fix type tests
Co-authored-by: Jina Dev Bot <[email protected]>
* test: add test gateway to worker connection (#3921)
* feat(pea): adapt peas for star routing (#3918)
* feat(pea): adapt peas for star routing
* style: fix overload and cli autocomplete
* feat(pea): add tests
* feat(tests): add failing head pea test
Co-authored-by: Jina Dev Bot <[email protected]>
* feat(tests): integration tests for peas (#3923)
* feat(tests): integration tests for peas
* feat(pea): remove _inner_pea function
* feat: star routing container pea (#3922)
* test: rescue tests (#3942)
* fix: fix streaming tests (#3945)
* refactor: move docker run to run (#3948)
* feat: star routing pods (#3940)
* feat(pod): adapt pods for star routing
* feat(pods): adapt basepod to star routing
* feat(pod): merge pod and compound pod
* feat(tests): fix tests
* style: fix overload and cli autocomplete
* feat(test): add container pea int test
* feat(ci): remove more unnecessary tests
* fix(tests): remove jinad runtime
* feat(ci): remove latency tracking
* fix(ci): fix ci def
* fix(runtime): enable runtime to be exited
* fix(tests): wrap runtime test in process
* fix(runtimes): remove unused runtimes
* feat(runtimes): improve cancel wait
* fix(ci): build test pip again in ci
* fix(tests): fix a test
* fix(test): run async in its own process
* feat(pod): include shard in activate msg
* fix(pea): dont join
* feat(pod): more debug out
* feat(grpc): manage channels properly
* feat(pods): remove exitfifo
* feat(network): add simple send retry mechanism
* fix(network): await pool close
* fix(test): always close grpc server in worker
* fix(tests): remove container pea from tests
* fix(tests): reorder tests
* fix(ci): split tests
* fix(ci): allow alias setting
* fix(test): skip a test
* feat(pods): address comments
Co-authored-by: Jina Dev Bot <[email protected]>
* test: unblock skipped test (#3957)
* feat: jinad pea (#3949)
* feat: jinad pea
* feat: jinad pea
* test: remote peas
* test: toplogy tests with jinad
* ci: parallel jobs
* feat(tests): add pod integration tests (#3958)
* feat(tests): add pod integration tests
* fix(tests): make tests less flaky
* fix(test): fix test
* test(pea): remote pea topologies (#3961)
* test(pea): remote pea simple topology
* test: remote pea topologies
* refactor: refactor streamer result handling (#3960)
* feat(k8s): adapt K8s Pod for StarRouting (#3964)
* test: optimize k8s test
* test: increase timeout and use different namespace
* test: optimize k8s test
* test: build and load image when needed
* test: refactor k8s test
* test: fix image name error
* test: fix k8s image load
* test: fix typoe port expose
* test: update tests in connection pool and handling
* test: remove unused fixture
* test: parameterize docker images
* test: parameterize docker images
* test: parameterize docker images
* feat(k8s): adapt k8s pod for star routing
* fix(k8s): dont overwrite add/remove function in pool
* fix(k8s): some fixes
* fix(k8s): some more fixes
* fix(k8s): linting
* fix(tests): fix tests
* fix(tests): fix k8s unit tests
* feat(k8s): complete k8s integration test
* feat(k8s): finish k8s tests
* feat(k8s): fix test
* fix(tests): fix test with no name
* feat(k8s): unify create/replace interface
* feat(k8s): extract k8s port constants
* fix(tests): fix tests
* fix(tests): wait for runtime being ready in tests
* feat(k8s): address comments
Co-authored-by: bwanglzu <[email protected]>
* feat(flow): adapt Flow for StarRouting (#3986)
* feat(flow): add routes
* feat(flow): adapt flow to star routing
* style: fix overload and cli autocomplete
* feat(flow): handle empty topologies
* feat(k8s): allow k8s pool disabling
* style: fix overload and cli autocomplete
* fix(test): fix test with mock
* fix(tests): fix more tests
* feat(flow): clean up tests
* style: fix overload and cli autocomplete
* fix(tests): fix more tests
* feat: add plot function (#3994)
* fix(tests): avoid hanging tests
* feat(flow): add type hinting
* fix(test): fix duplicate exec name in test
* fix(tests): fix more tests
* fix(tests): enable jinad test again
* fix(tests): random port fixture
* fix(style): replace quotes
Co-authored-by: Jina Dev Bot <[email protected]>
Co-authored-by: Joan Fontanals <[email protected]>
* feat(ci): bring back ci (#3997)
* feat(ci): enable ci again
* style: fix overload and cli autocomplete
* feat(ci): add latency tracking
* feat(ci): bring back some tests
* fix(tests): remove invalid port test
* feat(ci): disable daemon and distributed tests
* fix(tests): fix entrypoint in hub test
* fix(tests): wait for gateway to be ready
* fix(test): fix more tests
* feat(flow): do rolling update and scale sequentially
* fix(tests): fix more tests
* style: fix overload and cli autocomplete
* feat: star routing hanging pods (#4011)
* fix: try to handle hanging pods better
* test: hanging pods test work
* fix: fix topology graph problem
* test: add unit test to graph
* fix(tests): fix k8s tests
* fix(test): fix k8s test
* fix(test): fix k8s pool test
* fix(test): fix k8s test
* fix(test): fix k8s connection pool setting
* fix(tests): make runtime test more reliable
* fix(test): fix routes test
* fix(tests): make rolling update test less flaky
* feat(network): gurantee unique ports
* feat(network): do round robin for shards
* fix(ci): increase pytest timeout to 10 min
Co-authored-by: Jina Dev Bot <[email protected]>
Co-authored-by: Joan Fontanals <[email protected]>
* fix(ci): fix ci file
* feat(daemon): jinad pod for star routing
* Revert "feat(daemon): jinad pod for star routing"
This reverts commit ed9b37ac862af2e2e8d52df1ee51c0c331d76f92.
* feat(daemon): remote jinad pod support (#4042)
* feat(daemon): add pod tests for star routing
* feat(daemon): add remote pod test
* test(daemon): add remote pod arguments test
* test(daemon): add async scale test
* test(daemon): add rolling update test
* test(daemon): fix host
* feat(proto): remove message proto (#4051)
* feat(proto): remove message proto
* fix(tests): fix tests
* fix(tests): fix some more tests
* fix(tests): fix more tests
* fix(tests): fix more tests
* fix(tests): fix more tests
* fix(tests): fix more tests
* feat(proto): put docs back in data
* fix(proto): clean up
* feat(proto): clean up
* fix(tests): skip latency tracking
* fix(test): fix hub test
* fix(tests): fix k8s test
* fix(test): some test clean up
* fix(style): clean up style issues
* feat(proto): adjust for rebase
* fix(tests): bring back latency tracking
* fix(tests): fix merge accident
* feat(proto): skip request serialization (#4074)
* feat: add reduce to star routing (#4070)
* feat: add reduce on shards to head runtime
* test: add reduce integration tests with fixed order
* feat: add reduce on needs
* chore: get_docs_matrix_from_request becomes public
* style: fix overload and cli autocomplete
* docs: remove undeterministic results warning
* fix: fix uses_after
* test: assert correct num docs after reducing in test_external_pod
* test: correct asserts after reduce in test_rolling_update
* fix: no reduce if uses_after_address is set
* fix: get_docs_from_request only if needed
* fix: fix tests after merge
* refactor: move reduce from data_request_handler to head
* style: fix overload and cli autocomplete
* chore: apply suggestions
* fix: fix asserts
* chore: minor test fix
* chore: apply suggestions
* test: remove flow tests with external executor (pea)
* fix: fix test_expected_messages_routing
* fix: fix test_func_joiner
* test: adapt k8s test
Co-authored-by: Jina Dev Bot <[email protected]>
* fix(k8s): fix static pool config
* fix: use custom protoc doc generator image (#4088)
* fix: use custom protoc doc generator image
* fix(docs): minor doc improvement
* fix(docs): use custom image
* fix(docs): copy docarray
* fix: doc building local only
* fix: timeout doc building
* fix: use updated args when building ContainerPea
* test: add container PeaFactory test
* fix: force pea close on windows (#4098)
* fix: dont reduce if uses exist (#4099)
* fix: dont use reduce if uses exist
* fix: adjust reduce tests
* fix: adjust more reduce tests
* fix: fix more tests
* fix: adjust more tests
* fix: ignore non jina resources (#4101)
* feat(executor): enable async executors (#4102)
* feat(daemon): daemon flow on star routing (#4096)
* test(daemon): add remote flow test
* feat(daemon): call scale in daemon
* feat(daemon): remove tail args and identity
* test(daemon): rename scalable executor
* test(daemon): add a small delay in async test
* feat(daemon): scale partial flow only
* feat(daemon): call scale directly in partial flow store
* test(daemon): use asyncio sleep
* feat(daemon): enable flow level distributed tests
* test(daemon): fix jinad env workspace config
* test(daemon): fix pod test use new port rolling update
* feat(daemon): enable distribuetd tests
* test(daemon): remove duplicate tests and zed runtime test
* test(daemon): fix stores unit test
* feat(daemon): enable part of distributed tests
* feat(daemon): enable part of distributed tests
* test: correct test paths
* test(daemon): add client test for remote flows
* test(daemon): send a request with jina client
* test(daemon): assert async generator
* test(daemon): small interval between tests
* test(daemon): add flow test for container runtime
* test(daemon): add flow test for container runtime
* test(daemon): fix executor name
* test(daemon): fix executor name
* test(daemon): use async client fetch result
* test(daemon): finish container flow test
* test(daemon): enable distributed in ci
* test(daemon): enable distributed in ci
* test(daemon): decare flows and pods
* test(daemon): debug ci if else
* test(daemon): debug ci if else
* test(daemon): decare flows and pods
* test(daemon): correct test paths
* test(daemon): add small delay for async tests
* fix: star routing fixes (#4100)
* docs: update docs
* fix: fix Request.__repr__
* docs: update flow remarks
* docs: fix typo
* test: add non_empty_fields test
* chore: remove non_empty_fields test
* feat: polling per endpoint (#4111)
* feat(polling): polling per endpoint configurable
* fix: adjust tests
* feat(polling): extend documentation
* style: fix overload and cli autocomplete
* fix: clean up
* fix: adjust more tests
* fix: remove repeat from flaky test
* fix: k8s test
* feat(polling): address pr feedback
* feat: improve docs
Co-authored-by: Jina Dev Bot <[email protected]>
* feat(grpc): support connect grpc server via ssl tunnel (#4092)
* feat(grpc): support ssl grpc connect if port is 443
* fix(grpc): use https option instead of detect port automatically
* chore: fix typo
* fix: update jina/peapods/networking.py
Co-authored-by: Joan Fontanals <[email protected]>
* fix: update jina/peapods/networking.py
Co-authored-by: Joan Fontanals <[email protected]>
* fix: update jina/peapods/networking.py
Co-authored-by: Joan Fontanals <[email protected]>
* test(networking): add test for peapods networking
* fix: address comments
Co-authored-by: Joan Fontanals <[email protected]>
* feat(polling): unify polling args (#4113)
* fix: several issues for jinad pods (#4119)
* fix: activate for jinad pods
* fix: dont expose worker pod in partial daemon
* fix: workspace setting
* fix: containerized flows
* fix: hub test
* feat(daemon): remote peas on star routing (#4112)
* test(daemon): fix request in peas
* test(daemon): fix request in peas
* test(daemon): fix sync async client test
* test(daemon): enable remote peas test
* test(daemon): replace send message to send request
* test(daemon): declare pea tests in ci
* test(daemon): use pea args fixture
* test(daemon): head pea use default host
* test(daemon): fix peas topologies
* test(daemon): fix pseudo naming
* test(daemon): use default host as host
* test(daemon): fix executor path
* test(daemon): add remote worker back
* test(daemon): skip local remote remote topology
* fix: jinad pea test setup
* fix: jinad pea tests
* fix: remove invalid assertion
Co-authored-by: jacobowitz <[email protected]>
* feat: enable daemon tests again (#4132)
* feat: enable daemon tests again
* fix: remove bogy empty script file
* fix: more jinad test fixes
* style: fix overload and cli autocomplete
* fix: scale and ru in jinad
* fix: fix more jinad tests
Co-authored-by: Jina Dev Bot <[email protected]>
* fix: fix flow test
* fix: improve pea tests reliability (#4136)
Co-authored-by: Joan Fontanals <[email protected]>
Co-authored-by: Jina Dev Bot <[email protected]>
Co-authored-by: Deepankar Mahapatro <[email protected]>
Co-authored-by: bwanglzu <[email protected]>
Co-authored-by: AlaeddineAbdessalem <[email protected]>
Co-authored-by: Zhaofeng Miao <[email protected]> | 6 | 0 | 1,818 | 6 |
|
2 | 2 | def get_rename_function(mapper):
| pandas/core/common.py | 13 | pandas | {
"docstring": "\n Returns a function that will map names/labels, dependent if mapper\n is a dict, Series or just a function.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 18,
"vocab_size": 16
} | 2 | Python | 2 | 830130a543619fe945365fdea5e6e5877fe81c6f | common.py | 167,165 | 3 | 25 | get_rename_function | https://github.com/pandas-dev/pandas.git | TYP: Series.quantile (#47304)
* TYP: Series.quantile
* common.py | 5 | 0 | 39,944 | 6 |
|
3 | 24 | def _call_boxer(self, candc_out, verbose=False):
f = None
try:
fd, temp_filename = tempfile.mkstemp(
prefix="boxer-", suffix=".in", text=True
)
f = os.fdopen(fd, "w")
f.write(candc_out.decode("utf-8"))
finally:
if f:
f.close()
args = [
"--box",
"false",
"--semantics",
"drs",
#'--flat', 'false', # removed from boxer
"--resolve",
["false", "true"][self._resolve],
"--elimeq",
["false", "true"][self._elimeq],
"--format",
"prolog",
"--instantiate",
"true",
"--input",
temp_filename,
]
stdout = self._call(None, self._boxer_bin, args, verbose)
os.remove(temp_filename)
return stdout
| nltk/sem/boxer.py | 242 | nltk | {
"docstring": "\n Call the ``boxer`` binary with the given input.\n\n :param candc_out: str output from C&C parser\n :return: stdout\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 17,
"vocab_size": 16
} | 60 | Python | 53 | c6d9e0529eecce2c0742ca47135b28e5316611e0 | boxer.py | 42,474 | 30 | 142 | _call_boxer | https://github.com/nltk/nltk.git | Update boxer.py
Used to have this py2 to py3 error
TypeError: write() argument must be str, not bytes | 373 | 0 | 7,559 | 12 |
|
1 | 7 | def unique_id() -> str:
return binascii.hexlify(os.urandom(16)).decode("utf-8")
| certbot-apache/certbot_apache/_internal/apache_util.py | 44 | certbot | {
"docstring": " Returns an unique id to be used as a VirtualHost identifier",
"language": "en",
"n_whitespaces": 11,
"n_words": 11,
"vocab_size": 11
} | 6 | Python | 6 | 7d9e9a49005de7961e84d2a7c608db57dbab3046 | apache_util.py | 186,613 | 3 | 24 | unique_id | https://github.com/certbot/certbot.git | Add typing to certbot.apache (#9071)
* Add typing to certbot.apache
Co-authored-by: Adrien Ferrand <[email protected]> | 12 | 0 | 45,525 | 11 |
|
3 | 9 | def add_auto_adjustable_area(self, use_axes, pad=0.1, adjust_dirs=None):
if adjust_dirs is None:
adjust_dirs = ["left", "right", "bottom", "top"]
for d in adjust_dirs:
self.append_size(d, Size._AxesDecorationsSize(use_axes, d) + pad)
| lib/mpl_toolkits/axes_grid1/axes_divider.py | 87 | matplotlib | {
"docstring": "\n Add auto-adjustable padding around *use_axes* to take their decorations\n (title, labels, ticks, ticklabels) into account during layout.\n\n Parameters\n ----------\n use_axes : `~.axes.Axes` or list of `~.axes.Axes`\n The Axes whose decorations are taken into account.\n pad : float, optional\n Additional padding in inches.\n adjust_dirs : list of {\"left\", \"right\", \"bottom\", \"top\"}, optional\n The sides where padding is added; defaults to all four sides.\n ",
"language": "en",
"n_whitespaces": 152,
"n_words": 62,
"vocab_size": 50
} | 24 | Python | 23 | eb12b029ffe2f110540a4338684d1a729d1ddfc5 | axes_divider.py | 107,683 | 5 | 56 | add_auto_adjustable_area | https://github.com/matplotlib/matplotlib.git | Document, test, and simplify impl. of auto_adjustable_area.
Document behavior of auto_adjustable_area, and slightly modernize the
example.
Simplify its implementation: `Padded` is just size addition and
`GetExtentHelper` and `SizeFromFunc` can reasonably be fused into a
single class; none of them are used anywhere else, so just deprecate
them as public APIs.
Add a test. | 67 | 0 | 22,866 | 12 |
|
1 | 12 | def test_failure_subschema(self, obj):
with pytest.raises(validate.ValidationError) as cm:
validate.validate(validate.attr({"foo": str}), obj)
assert_validationerror(cm.value, )
| tests/test_api_validate.py | 75 | streamlink | {
"docstring": "\n ValidationError(AttrSchema):\n Could not validate attribute 'foo'\n Context(type):\n Type of 1 should be str, but is int\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 16,
"vocab_size": 16
} | 12 | Python | 12 | d09112ab1f6db6aa605650fe1ff6a3028344f90d | test_api_validate.py | 187,182 | 9 | 44 | test_failure_subschema | https://github.com/streamlink/streamlink.git | plugin.api.validate: rewrite tests
Completely rewrite tests using pytest, with full coverage | 36 | 0 | 45,728 | 14 |
|
1 | 3 | def clear_checkbox_id(self, name):
return name + "_id"
| django/forms/widgets.py | 23 | django | {
"docstring": "\n Given the name of the clear checkbox input, return the HTML id for it.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 12
} | 7 | Python | 7 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | widgets.py | 206,026 | 2 | 12 | clear_checkbox_id | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 21 | 0 | 51,329 | 7 |
|
1 | 7 | def done(self):
with self._condition:
return self._state in [CANCELLED, CANCELLED_AND_NOTIFIED, FINISHED]
| python3.10.4/Lib/concurrent/futures/_base.py | 39 | XX-Net | {
"docstring": "Return True of the future was cancelled or finished executing.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 10 | Python | 10 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _base.py | 221,588 | 3 | 23 | done | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 35 | 0 | 56,443 | 9 |
|
7 | 26 | def get_data(filters):
data = []
conditions = get_conditions(filters)
salary_slips = frappe.db.sql(
% (conditions),
as_dict=1,
)
component_type_dict = frappe._dict(
frappe.db.sql(
)
)
if not len(component_type_dict):
return []
entry = frappe.db.sql(
% (conditions, ", ".join(["%s"] * len(component_type_dict))),
tuple(component_type_dict.keys()),
as_dict=1,
)
data_list = prepare_data(entry, component_type_dict)
for d in salary_slips:
total = 0
if data_list.get(d.name):
employee = {
"employee": data_list.get(d.name).get("employee"),
"employee_name": data_list.get(d.name).get("employee_name"),
"pf_account": data_list.get(d.name).get("pf_account"),
}
if data_list.get(d.name).get("Provident Fund"):
employee["pf_amount"] = data_list.get(d.name).get("Provident Fund")
total += data_list.get(d.name).get("Provident Fund")
if data_list.get(d.name).get("Additional Provident Fund"):
employee["additional_pf"] = data_list.get(d.name).get("Additional Provident Fund")
total += data_list.get(d.name).get("Additional Provident Fund")
if data_list.get(d.name).get("Provident Fund Loan"):
employee["pf_loan"] = data_list.get(d.name).get("Provident Fund Loan")
total += data_list.get(d.name).get("Provident Fund Loan")
employee["total"] = total
data.append(employee)
return data
@frappe.whitelist() | erpnext/regional/report/provident_fund_deductions/provident_fund_deductions.py | 586 | @frappe.whitelist() | erpnext | {
"docstring": " select sal.name from `tabSalary Slip` sal\n\t\twhere docstatus = 1 %s\n\t\t select name, component_type from `tabSalary Component`\n\t\twhere component_type in ('Provident Fund', 'Additional Provident Fund', 'Provident Fund Loan') select sal.name, sal.employee, sal.employee_name, ded.salary_component, ded.amount\n\t\tfrom `tabSalary Slip` sal, `tabSalary Detail` ded\n\t\twhere sal.name = ded.parent\n\t\tand ded.parentfield = 'deductions'\n\t\tand ded.parenttype = 'Salary Slip'\n\t\tand sal.docstatus = 1 %s\n\t\tand ded.salary_component in (%s)\n\t",
"language": "en",
"n_whitespaces": 55,
"n_words": 63,
"vocab_size": 40
} | 107 | Python | 60 | 494bd9ef78313436f0424b918f200dab8fc7c20b | provident_fund_deductions.py | 67,253 | 52 | 337 | get_data | https://github.com/frappe/erpnext.git | style: format code with black | 67 | 1 | 14,456 | 17 |
2 | 18 | def dag_list_import_errors(args):
dagbag = DagBag(process_subdir(args.subdir))
data = []
for filename, errors in dagbag.import_errors.items():
data.append({"filepath": filename, "error": errors})
AirflowConsole().print_as(
data=data,
output=args.output,
)
@cli_utils.action_cli
@suppress_logs_and_warning | airflow/cli/commands/dag_command.py | 119 | @cli_utils.action_cli
@suppress_logs_and_warning | airflow | {
"docstring": "Displays dags with import errors on the command line",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 23 | Python | 21 | e1134590973355549272b1f3a213dbfa29698df7 | dag_command.py | 45,966 | 9 | 65 | dag_list_import_errors | https://github.com/apache/airflow.git | Add `list-import-errors` to `airflow dags` command (#22084)
This will help users to see the dags with import error and enable scripts
process the output | 60 | 1 | 8,751 | 12 |
2 | 7 | def mktime_tz(data):
if data[9] is None:
# No zone info, so localtime is better assumption than GMT
return time.mktime(data[:8] + (-1,))
else:
t = calendar.timegm(data)
return t - data[9]
| python3.10.4/Lib/email/_parseaddr.py | 79 | XX-Net | {
"docstring": "Turn a 10-tuple as returned by parsedate_tz() into a POSIX timestamp.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | 29 | Python | 25 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _parseaddr.py | 223,623 | 6 | 48 | mktime_tz | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 66 | 0 | 57,013 | 12 |
|
3 | 9 | def identbodychars(cls):
return "".join(
sorted(
set(
cls.identchars
+ "0123456789"
+ "".join(
[c for c in cls._chars_for_ranges if ("_" + c).isidentifier()]
)
)
)
)
| pipenv/patched/notpip/_vendor/pyparsing/unicode.py | 86 | pipenv | {
"docstring": "\n all characters in this range that are valid identifier body characters,\n plus the digits 0-9\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 15,
"vocab_size": 15
} | 24 | Python | 18 | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | unicode.py | 20,660 | 12 | 48 | identbodychars | https://github.com/pypa/pipenv.git | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 196 | 0 | 3,469 | 21 |
|
1 | 5 | def require_tf(test_case):
return unittest.skipUnless(is_tf_available(), "test requires TensorFlow")(test_case)
| src/transformers/testing_utils.py | 37 | transformers | {
"docstring": "\n Decorator marking a test that requires TensorFlow. These tests are skipped when TensorFlow isn't installed.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 15,
"vocab_size": 15
} | 7 | Python | 7 | 57e6464ac9a31156f1c93e59107323e6ec01309e | testing_utils.py | 37,498 | 2 | 20 | require_tf | https://github.com/huggingface/transformers.git | Update all require decorators to use skipUnless when possible (#16999) | 13 | 0 | 6,803 | 10 |
|
2 | 18 | def test_constrained_layout23():
for i in range(2):
fig = plt.figure(layout="constrained", clear=True, num="123")
gs = fig.add_gridspec(1, 2)
sub = gs[0].subgridspec(2, 2)
fig.suptitle("Suptitle{}".format(i))
@image_comparison(['test_colorbar_location.png'],
remove_text=True, style='mpl20') | lib/matplotlib/tests/test_constrainedlayout.py | 134 | @image_comparison(['test_colorbar_location.png'],
remove_text=True, style='mpl20') | matplotlib | {
"docstring": "\n Comment in #11035: suptitle used to cause an exception when\n reusing a figure w/ CL with ``clear=True``.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 17,
"vocab_size": 17
} | 23 | Python | 20 | ec4dfbc3c83866f487ff0bc9c87b0d43a1c02b22 | test_constrainedlayout.py | 107,180 | 6 | 65 | test_constrained_layout23 | https://github.com/matplotlib/matplotlib.git | ENH: implement and use base layout_engine for more flexible layout. | 73 | 1 | 22,632 | 12 |
1 | 4 | def test_positive_integer_or_none_3():
assert_raises(Exception, positive_integer_or_none, 'foobar')
| tests/driver_tests.py | 25 | tpot | {
"docstring": "Assert that the TPOT CLI interface's positive_integer_or_none parsing throws an exception when n is not an integer and not None.",
"language": "en",
"n_whitespaces": 19,
"n_words": 20,
"vocab_size": 18
} | 5 | Python | 5 | 388616b6247ca4ea8de4e2f340d6206aee523541 | driver_tests.py | 181,603 | 2 | 13 | test_positive_integer_or_none_3 | https://github.com/EpistasisLab/tpot.git | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 11 | 0 | 43,392 | 8 |
|
2 | 5 | def get_list_display_add_buttons(self, request):
return self.list_display_add_buttons or self.get_list_display(request)[0]
| wagtail/contrib/modeladmin/options.py | 36 | wagtail | {
"docstring": "\n Return the name of the field/method from list_display where action\n buttons should be added. Defaults to the first item from\n get_list_display()\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 21,
"vocab_size": 18
} | 7 | Python | 7 | d10f15e55806c6944827d801cd9c2d53f5da4186 | options.py | 73,182 | 2 | 22 | get_list_display_add_buttons | https://github.com/wagtail/wagtail.git | Reformat with black | 21 | 0 | 15,977 | 9 |
|
1 | 12 | def _update_size_variant(self) -> None:
width, height = self.size
position_data = {
"width": width,
"height": height,
}
self.update(Panel(Align.center(Pretty(position_data)), title="Placeholder"))
| src/textual/widgets/_placeholder.py | 83 | textual | {
"docstring": "Update the placeholder with the \"size\" variant.\n\n This variant shows the the size of the widget.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 16,
"vocab_size": 12
} | 18 | Python | 16 | 67947d5806bb3181eba349f0da3fd35e0542d1be | _placeholder.py | 185,867 | 11 | 48 | _update_size_variant | https://github.com/Textualize/textual.git | Fix documentation about the variant 'size'. | 75 | 0 | 45,216 | 13 |
|
1 | 3 | def mass_matrix_full_implicit(self):
return self._mass_matrix_full(False)
| sympy/physics/mechanics/kane.py | 24 | sympy | {
"docstring": "The mass matrix of the system, augmented by the kinematic\n differential equations in implicit form.",
"language": "en",
"n_whitespaces": 21,
"n_words": 15,
"vocab_size": 14
} | 4 | Python | 4 | 1e522ee112f19216f367b457b6804fd58b94f28b | kane.py | 200,100 | 2 | 13 | mass_matrix_full_implicit | https://github.com/sympy/sympy.git | redo of #22626 based on feedback | 18 | 0 | 49,526 | 7 |
|
1 | 9 | def test_import_error(self):
self.write_settings_with_import_error("settings.py")
args = ["check", "admin_scripts"]
out, err = self.run_manage(args)
self.assertNoOutput(out)
self.assertOutput(err, "No module named")
self.assertOutput(err, "foo42bar")
| tests/admin_scripts/tests.py | 93 | django | {
"docstring": "\n import error: manage.py builtin commands shows useful diagnostic info\n when settings with import errors is provided (#14130).\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 16
} | 18 | Python | 16 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 207,402 | 7 | 51 | test_import_error | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 67 | 0 | 51,952 | 8 |
|
1 | 12 | def test_displacy_parse_spans_with_kb_id_options(en_vocab):
doc = Doc(en_vocab, words=["Welcome", "to", "the", "Bank", "of", "China"])
doc.spans["sc"] = [
Span(doc, 3, 6, "ORG", kb_id="Q790068"),
Span(doc, 5, 6, "GPE", kb_id="Q148"),
]
spans = displacy.parse_spans(
doc, {"kb_url_template": "https://wikidata.org/wiki/{}"}
)
assert isinstance(spans, dict)
assert spans["text"] == "Welcome to the Bank of China "
assert spans["spans"] == [
{
"start": 15,
"end": 28,
"start_token": 3,
"end_token": 6,
"label": "ORG",
"kb_id": "Q790068",
"kb_url": "https://wikidata.org/wiki/Q790068",
},
{
"start": 23,
"end": 28,
"start_token": 5,
"end_token": 6,
"label": "GPE",
"kb_id": "Q148",
"kb_url": "https://wikidata.org/wiki/Q148",
},
]
| spacy/tests/test_displacy.py | 294 | spaCy | {
"docstring": "Test that spans with kb_id on a Doc are converted into displaCy's format",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | 82 | Python | 57 | a79cd3542b3dd667d8a97293462e22ed26a04ee5 | test_displacy.py | 111,253 | 31 | 165 | test_displacy_parse_spans_with_kb_id_options | https://github.com/explosion/spaCy.git | Add displacy support for overlapping Spans (#10332)
* Fix docstring for EntityRenderer
* Add warning in displacy if doc.spans are empty
* Implement parse_spans converter
One notable change here is that the default spans_key is sc, and
it's set by the user through the options.
* Implement SpanRenderer
Here, I implemented a SpanRenderer that looks similar to the
EntityRenderer except for some templates. The spans_key, by default, is
set to sc, but can be configured in the options (see parse_spans). The
way I rendered these spans is per-token, i.e., I first check if each
token (1) belongs to a given span type and (2) a starting token of a
given span type. Once I have this information, I render them into the
markup.
* Fix mypy issues on typing
* Add tests for displacy spans support
* Update colors from RGB to hex
Co-authored-by: Ines Montani <[email protected]>
* Remove unnecessary CSS properties
* Add documentation for website
* Remove unnecesasry scripts
* Update wording on the documentation
Co-authored-by: Sofie Van Landeghem <[email protected]>
* Put typing dependency on top of file
* Put back z-index so that spans overlap properly
* Make warning more explicit for spans_key
Co-authored-by: Ines Montani <[email protected]>
Co-authored-by: Sofie Van Landeghem <[email protected]> | 315 | 0 | 24,366 | 11 |
|
3 | 7 | def __getitem__(self, key):
if key is None:
key = self._key()
value = self._get_recursive(key)
if value is None:
value = self[key] = self.default_factory()
return value
| keras/backend.py | 78 | keras | {
"docstring": "Gets the value at key (or current context), or sets default value.\n\n Args:\n key: May be `None` or `Graph`object. When `None`, the key is set to\n the current context.\n\n Returns:\n Either the cached or default value.\n ",
"language": "en",
"n_whitespaces": 86,
"n_words": 36,
"vocab_size": 27
} | 24 | Python | 14 | 3613c3defc39c236fb1592c4f7ba1a9cc887343a | backend.py | 278,622 | 7 | 47 | __getitem__ | https://github.com/keras-team/keras.git | Remove pylint comments.
PiperOrigin-RevId: 452353044 | 81 | 0 | 82,635 | 11 |
|
6 | 19 | def resume_end(self) -> None:
assert self.trainer.state.fn is not None
if self.resume_checkpoint_path:
if self.trainer.state.fn == TrainerFn.FITTING:
rank_zero_info(f"Restored all states from the checkpoint file at {self.resume_checkpoint_path}")
elif self.trainer.state.fn in (TrainerFn.VALIDATING, TrainerFn.TESTING, TrainerFn.PREDICTING):
rank_zero_info(f"Loaded model weights from checkpoint at {self.resume_checkpoint_path}")
# TODO: remove resume_from_checkpoint_fit_path in v2.0
if (
self.trainer.state.fn == TrainerFn.FITTING
and self.resume_checkpoint_path == self.resume_from_checkpoint_fit_path
):
self.resume_from_checkpoint_fit_path = None
self.resume_checkpoint_path = None
self._loaded_checkpoint = {}
# clear cache after restore
torch.cuda.empty_cache()
# wait for all to catch up
self.trainer.strategy.barrier("CheckpointConnector.resume_end")
| pytorch_lightning/trainer/connectors/checkpoint_connector.py | 219 | lightning | {
"docstring": "Signal the connector that all states have resumed and memory for the checkpoint object can be\n released.",
"language": "en",
"n_whitespaces": 23,
"n_words": 17,
"vocab_size": 16
} | 76 | Python | 55 | 5693a94c320297cf007f3bfd13ce4d7deeb1954a | checkpoint_connector.py | 241,668 | 18 | 126 | resume_end | https://github.com/Lightning-AI/lightning.git | Extend the deprecation of `Trainer(resume_from_checkpoint)` (#11334) | 245 | 0 | 69,643 | 15 |
|
1 | 3 | def unfrack_path(pathsep=False, follow=True):
| lib/ansible/cli/arguments/option_helpers.py | 21 | ansible | {
"docstring": "Turn an Option's data into a single path in Ansible locations",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 3 | Python | 3 | b1ff0f4ebc7e964f8f67ffc344815a0d23577f45 | option_helpers.py | 268,472 | 3 | 16 | unfrack_path | https://github.com/ansible/ansible.git | vault secrets file, keep context when symlink (#78734)
* vault secrets file, keep context when symlink
fixes #18319
Co-authored-by: Sloane Hertel <[email protected]> | 6 | 0 | 79,515 | 6 |
|
12 | 20 | def get_freq(self) -> str | None:
if not self.is_monotonic or not self.index._is_unique:
return None
delta = self.deltas[0]
ppd = periods_per_day(self._reso)
if delta and _is_multiple(delta, ppd):
return self._infer_daily_rule()
# Business hourly, maybe. 17: one day / 65: one weekend
if self.hour_deltas in ([1, 17], [1, 65], [1, 17, 65]):
return "BH"
# Possibly intraday frequency. Here we use the
# original .asi8 values as the modified values
# will not work around DST transitions. See #8772
if not self.is_unique_asi8:
return None
delta = self.deltas_asi8[0]
pph = ppd // 24
ppm = pph // 60
pps = ppm // 60
if _is_multiple(delta, pph):
# Hours
return _maybe_add_count("H", delta / pph)
elif _is_multiple(delta, ppm):
# Minutes
return _maybe_add_count("T", delta / ppm)
elif _is_multiple(delta, pps):
# Seconds
return _maybe_add_count("S", delta / pps)
elif _is_multiple(delta, (pps // 1000)):
# Milliseconds
return _maybe_add_count("L", delta / (pps // 1000))
elif _is_multiple(delta, (pps // 1_000_000)):
# Microseconds
return _maybe_add_count("U", delta / (pps // 1_000_000))
else:
# Nanoseconds
return _maybe_add_count("N", delta)
| pandas/tseries/frequencies.py | 367 | pandas | {
"docstring": "\n Find the appropriate frequency string to describe the inferred\n frequency of self.i8values\n\n Returns\n -------\n str or None\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 17,
"vocab_size": 15
} | 162 | Python | 94 | e9350a4affbb424aaecad279f638a0dd1584df68 | frequencies.py | 166,591 | 35 | 210 | get_freq | https://github.com/pandas-dev/pandas.git | infer_freq handle non-nano (#47126)
* infer_freq handle non-nano
* remove unused import | 487 | 0 | 39,834 | 13 |
|
2 | 5 | def require_tensorflow(test_case):
if not is_tensorflow_available():
return unittest.skip("test requires TensorFlow")(test_case)
else:
return test_case
| src/accelerate/test_utils/testing.py | 49 | accelerate | {
"docstring": "\n Decorator marking a test that requires TensorFlow installed. These tests are skipped when TensorFlow isn't\n installed\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 16,
"vocab_size": 15
} | 12 | Python | 11 | 5668270de74a09e5bff15891054f73ddbb1176ac | testing.py | 337,338 | 5 | 26 | require_tensorflow | https://github.com/huggingface/accelerate.git | Add logging capabilities (#293)
Co-authored-by: Sylvain Gugger <[email protected]>
- Added experiment tracking API, and support for Weights and Biases, TensorBoard, and CometML + Tests
- Added `tensorflow` to a new dependency list to be used during tests
- Added three new functions in `Accelerator` to interact with the API | 35 | 0 | 121,034 | 11 |
|
4 | 12 | def _errt(self):
# Count (UI, OI) pairs for truncation points until we find the segment where (ui, oi) crosses the truncation line
self.coords = self._get_truncation_coordinates()
if (0.0, 0.0) in self.coords:
# Truncation line goes through origo, so ERRT cannot be counted
if (self.ui, self.oi) != (0.0, 0.0):
return float("inf")
else:
return float("nan")
if (self.ui, self.oi) == (0.0, 0.0):
# (ui, oi) is origo; define errt as 0.0
return 0.0
# Count the intersection point
# Note that (self.ui, self.oi) cannot be (0.0, 0.0) and self.coords has different coordinates
# so we have actual line segments instead of a line segment and a point
intersection = _count_intersection(
((0, 0), (self.ui, self.oi)), self.coords[-2:]
)
# Count OP (length of the line from origo to (ui, oi))
op = sqrt(self.ui**2 + self.oi**2)
# Count OT (length of the line from origo to truncation line that goes through (ui, oi))
ot = sqrt(intersection[0] ** 2 + intersection[1] ** 2)
# OP / OT tells how well the stemming algorithm works compared to just truncating words
return op / ot
| nltk/metrics/paice.py | 230 | nltk | {
"docstring": "Count Error-Rate Relative to Truncation (ERRT).\n\n :return: ERRT, length of the line from origo to (UI, OI) divided by\n the length of the line from origo to the point defined by the same\n line when extended until the truncation line.\n :rtype: float\n ",
"language": "en",
"n_whitespaces": 77,
"n_words": 42,
"vocab_size": 28
} | 175 | Python | 100 | 0fac0c0f8e4618c2bdd3d2137d5fb8a80f581246 | paice.py | 42,464 | 15 | 157 | _errt | https://github.com/nltk/nltk.git | Update black to 22.3.0
The most recent release of Click (8.1.0) was breaking Black. See psf/black#2964 | 383 | 0 | 7,553 | 13 |
|
2 | 8 | def get_tf_version():
global _TF_VERS # pylint:disable=global-statement
if _TF_VERS is None:
import tensorflow as tf # pylint:disable=import-outside-toplevel
_TF_VERS = float(".".join(tf.__version__.split(".")[:2])) # pylint:disable=no-member
return _TF_VERS
| lib/utils.py | 75 | faceswap | {
"docstring": " Obtain the major.minor version of currently installed Tensorflow.\n\n Returns\n -------\n float\n The currently installed tensorflow version\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 16,
"vocab_size": 13
} | 23 | Python | 18 | c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | utils.py | 100,370 | 6 | 40 | get_tf_version | https://github.com/deepfakes/faceswap.git | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | 52 | 0 | 19,859 | 16 |
|
2 | 15 | def _compile_output(self) -> Union[List[str], List[Tuple[str, int]]]:
action = self._job.replace("-", "_")
processor = getattr(self, f"_get_{action}")
logger.debug("Processor: %s", processor)
return [item for item in processor()] # pylint:disable=unnecessary-comprehension
| tools/alignments/jobs.py | 106 | faceswap | {
"docstring": " Compile list of frames that meet criteria\n\n Returns\n -------\n list\n List of filenames or filenames and face indices for the selected criteria\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 22,
"vocab_size": 18
} | 25 | Python | 24 | e2a77e7c6e84e81f642cb22f528e25e3f2d2dbc1 | jobs.py | 101,714 | 12 | 63 | _compile_output | https://github.com/deepfakes/faceswap.git | Alignments Tool - Typing, Documentation + Re-org | 61 | 0 | 21,118 | 10 |
|
6 | 12 | def find_submodule_and_param_name(model, long_key, start_prefix):
if len(start_prefix) > 0 and long_key.startswith(start_prefix):
long_key = ".".join(long_key.split(".")[1:])
split_key = long_key.split(".")
submodule = model
while len(split_key) > 1:
if hasattr(submodule, split_key[0]):
submodule = getattr(submodule, split_key[0])
del split_key[0]
else:
submodule = None
break
if submodule == model:
submodule = None
return submodule, split_key[0]
| src/transformers/modeling_utils.py | 178 | transformers | {
"docstring": "\n A helper util to find the last sub-module and the param/buffer name. If `start_prefix` is supplied it'll be removed\n from the start of the key\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 25,
"vocab_size": 22
} | 47 | Python | 33 | 5da33f872913255d64717efe745a053975bbc28e | modeling_utils.py | 37,157 | 15 | 109 | find_submodule_and_param_name | https://github.com/huggingface/transformers.git | [modeling utils] revamp `from_pretrained(..., low_cpu_mem_usage=True)` + tests (#16657)
* add low_cpu_mem_usage tests
* wip: revamping
* wip
* install /usr/bin/time
* wip
* cleanup
* cleanup
* cleanup
* cleanup
* cleanup
* fix assert
* put the wrapper back
* cleanup; switch to bert-base-cased
* Trigger CI
* Trigger CI | 140 | 0 | 6,748 | 14 |
|
1 | 4 | def test_task_group_context_mix():
from airflow.decorators import task
| tests/utils/test_task_group.py | 21 | airflow | {
"docstring": "Test cases to check nested TaskGroup context manager with taskgroup decorator",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 6 | Python | 6 | 49e336ae0302b386a2f47269a6d13988382d975f | test_task_group.py | 47,694 | 50 | 269 | test_task_group_context_mix | https://github.com/apache/airflow.git | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | 12 | 0 | 9,216 | 6 |
|
2 | 20 | def add_noise_to_input(self, sample, sigma, generator=None):
if self.s_min <= sigma <= self.s_max:
gamma = min(self.s_churn / self.num_inference_steps, 2**0.5 - 1)
else:
gamma = 0
# sample eps ~ N(0, S_noise^2 * I)
eps = self.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device)
sigma_hat = sigma + gamma * sigma
sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
| src/diffusers/schedulers/scheduling_karras_ve.py | 159 | diffusers | {
"docstring": "\n Explicit Langevin-like \"churn\" step of adding noise to the sample according to\n a factor gamma_i ≥ 0 to reach a higher noise level sigma_hat = sigma_i + gamma_i*sigma_i.\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 28,
"vocab_size": 24
} | 58 | Python | 41 | dd10da76a78e9566d12ddf1eb5aac90021b7e51d | scheduling_karras_ve.py | 336,293 | 9 | 107 | add_noise_to_input | https://github.com/huggingface/diffusers.git | Add an alternative Karras et al. stochastic scheduler for VE models (#160)
* karras + VE, not flexible yet
* Fix inputs incompatibility with the original unet
* Roll back sigma scaling
* Apply suggestions from code review
* Old comment
* Fix doc | 136 | 0 | 120,864 | 13 |
|
5 | 19 | def _getPythonForSconsExePath():
python_exe = Options.getPythonPathForScons()
if python_exe is not None:
return python_exe
scons_supported_pythons = ("3.5", "3.6", "3.7", "3.8", "3.9", "3.10")
if not Utils.isWin32Windows():
scons_supported_pythons += ("2.7", "2.6")
# Our inline copy needs no other module, just the right version of Python is needed.
python_for_scons = findInstalledPython(
python_versions=scons_supported_pythons, module_name=None, module_version=None
)
if python_for_scons is None:
if Utils.isWin32Windows():
scons_python_requirement = "Python 3.5 or higher"
else:
scons_python_requirement = "Python 2.6, 2.7 or Python >= 3.5"
Tracing.scons_logger.sysexit(
% scons_python_requirement
)
return python_for_scons.getPythonExe()
@contextlib.contextmanager | nuitka/build/SconsInterface.py | 192 | @contextlib.contextmanager | Nuitka | {
"docstring": "Find a way to call any Python that works for Scons.\n\n Scons needs it as it doesn't support all Python versions.\n \\\nError, while Nuitka works with older Python, Scons does not, and therefore\nNuitka needs to find a %s executable, so please install\nit.\n\nYou may provide it using option \"--python-for-scons=path_to_python.exe\"\nin case it is not visible in registry, e.g. due to using uninstalled\nAnaconda Python.\n",
"language": "en",
"n_whitespaces": 66,
"n_words": 67,
"vocab_size": 54
} | 79 | Python | 56 | c4ce69f97f7fefbcf637e9e59b6df056ad03eb16 | SconsInterface.py | 178,460 | 28 | 102 | _getPythonForSconsExePath | https://github.com/Nuitka/Nuitka.git | Scons: Refactor Python scan for major cleanup
* This is in preparation of making it reusable for onefile
compression which also has a simular need. | 202 | 1 | 42,705 | 12 |
1 | 7 | def test_func(self, qapp):
pytest.importorskip("qutebrowser.qt.opengl")
version.opengl_info()
| tests/unit/utils/test_version.py | 36 | qutebrowser | {
"docstring": "Simply call version.opengl_info() and see if it doesn't crash.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 5 | Python | 5 | d387b1a1084b9649009e5cffb9d71facc80bb41f | test_version.py | 321,555 | 3 | 19 | test_func | https://github.com/qutebrowser/qutebrowser.git | tests: Adjust most imports | 26 | 0 | 117,800 | 8 |
|
1 | 11 | def classifiers(self):
url = self.repository+'?:action=list_classifiers'
response = urllib.request.urlopen(url)
log.info(self._read_pypi_response(response))
| python3.10.4/Lib/distutils/command/register.py | 60 | XX-Net | {
"docstring": " Fetch the list of classifiers from the server.\n ",
"language": "en",
"n_whitespaces": 16,
"n_words": 8,
"vocab_size": 7
} | 9 | Python | 8 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | register.py | 222,796 | 4 | 34 | classifiers | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 37 | 0 | 56,745 | 9 |
|
1 | 2 | def yanchor(self):
return self["yanchor"]
| packages/python/plotly/plotly/graph_objs/bar/marker/_colorbar.py | 22 | plotly.py | {
"docstring": "\n Sets this color bar's vertical position anchor This anchor\n binds the `y` position to the \"top\", \"middle\" or \"bottom\" of\n the color bar. Defaults to \"middle\" when `orientation` is \"v\"\n and \"bottom\" when `orientation` is \"h\".\n\n The 'yanchor' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n ['top', 'middle', 'bottom']\n\n Returns\n -------\n Any\n ",
"language": "en",
"n_whitespaces": 148,
"n_words": 60,
"vocab_size": 45
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _colorbar.py | 228,764 | 2 | 11 | yanchor | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 60,437 | 7 |
|
4 | 5 | def _debugger_window_is_open():
if _Debugger.debugger is None:
return False
debugger = _Debugger.debugger
if debugger.popout_window or debugger.watcher_window:
return True
return False
| PySimpleGUI.py | 54 | PySimpleGUI | {
"docstring": "\n Determines if one of the debugger window is currently open\n :return: returns True if the popout window or the main debug window is open\n :rtype: (bool)\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 26,
"vocab_size": 19
} | 19 | Python | 14 | 37c3afc8ca0dc0057a23ab512ee8b879074dd119 | PySimpleGUI.py | 212,794 | 7 | 32 | _debugger_window_is_open | https://github.com/PySimpleGUI/PySimpleGUI.git | ButtonMenu.Click aliased added. Debugger - automatically adds a timeout to read calls if a debug window is open. Still need to handle user-level multi-window support. | 48 | 0 | 53,407 | 7 |
|
1 | 4 | def detected_faces(self) -> List["DetectedFace"]:
return self._detected_faces
| plugins/extract/pipeline.py | 28 | faceswap | {
"docstring": "list: A list of :class:`~lib.align.DetectedFace` objects in the :attr:`image`. ",
"language": "en",
"n_whitespaces": 9,
"n_words": 9,
"vocab_size": 9
} | 6 | Python | 6 | 1022651eb8a7741014f5d2ec7cbfe882120dfa5f | pipeline.py | 101,353 | 3 | 15 | detected_faces | https://github.com/deepfakes/faceswap.git | Bugfix: convert - Gif Writer
- Fix non-launch error on Gif Writer
- convert plugins - linting
- convert/fs_media/preview/queue_manager - typing
- Change convert items from dict to Dataclass | 20 | 0 | 20,768 | 6 |
|
4 | 18 | def _check_input_folder(self) -> bool:
if not os.path.exists(self._args.input_dir):
logger.error("Input location %s not found.", self._args.input_dir)
sys.exit(1)
if (os.path.isfile(self._args.input_dir) and
os.path.splitext(self._args.input_dir)[1].lower() in _video_extensions):
logger.info("Input Video: %s", self._args.input_dir)
retval = True
else:
logger.info("Input Directory: %s", self._args.input_dir)
retval = False
return retval
| scripts/fsmedia.py | 186 | faceswap | {
"docstring": " Check whether the input is a folder or video.\n\n Returns\n -------\n bool\n ``True`` if the input is a video otherwise ``False``\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 21,
"vocab_size": 17
} | 37 | Python | 28 | 1022651eb8a7741014f5d2ec7cbfe882120dfa5f | fsmedia.py | 101,393 | 19 | 113 | _check_input_folder | https://github.com/deepfakes/faceswap.git | Bugfix: convert - Gif Writer
- Fix non-launch error on Gif Writer
- convert plugins - linting
- convert/fs_media/preview/queue_manager - typing
- Change convert items from dict to Dataclass | 153 | 0 | 20,808 | 15 |
|
3 | 58 | def _background_extract(self, output_folder, progress_queue):
_io = dict(saver=ImagesSaver(get_folder(output_folder), as_bytes=True),
loader=ImagesLoader(self._input_location, count=self._alignments.frames_count))
for frame_idx, (filename, image) in enumerate(_io["loader"].load()):
logger.trace("Outputting frame: %s: %s", frame_idx, filename)
src_filename = os.path.basename(filename)
frame_name = os.path.splitext(src_filename)[0]
progress_queue.put(1)
for face_idx, face in enumerate(self._frame_faces[frame_idx]):
output = f"{frame_name}_{face_idx}.png"
aligned = AlignedFace(face.landmarks_xy,
image=image,
centering="head",
size=512) # TODO user selectable size
meta = dict(alignments=face.to_png_meta(),
source=dict(alignments_version=self._alignments.version,
original_filename=output,
face_index=face_idx,
source_filename=src_filename,
source_is_video=self._globals.is_video,
source_frame_dims=image.shape[:2]))
b_image = encode_image(aligned.face, ".png", metadata=meta)
_io["saver"].save(output, b_image)
_io["saver"].close()
| tools/manual/detected_faces.py | 366 | faceswap | {
"docstring": " Perform the background extraction in a thread so GUI doesn't become unresponsive.\n\n Parameters\n ----------\n output_folder: str\n The location to save the output faces to\n progress_queue: :class:`queue.Queue`\n The queue to place incremental counts to for updating the GUI's progress bar\n ",
"language": "en",
"n_whitespaces": 97,
"n_words": 39,
"vocab_size": 33
} | 65 | Python | 56 | 5e73437be47f2410439a3c6716de96354e6a0c94 | detected_faces.py | 101,259 | 24 | 232 | _background_extract | https://github.com/deepfakes/faceswap.git | lib.align updates:
- alignments.py
- Add typed dicts for imported alignments
- Explicitly check for presence of thumb value in alignments dict
- linting
- detected_face.py
- Typing
- Linting
- Legacy support for pre-aligned face
- Update dependencies to new property names | 575 | 0 | 20,679 | 18 |
|
1 | 1 | def test_default_kwargs():
| tests/unit/test_isolation.py | 12 | pyinstaller | {
"docstring": "\n Verify that default keyword-only arguments are properly passed to the isolated function call.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 13,
"vocab_size": 13
} | 2 | Python | 2 | 3ba0aaf983f5223000a713c9275ea66e21f78b11 | test_isolation.py | 262,759 | 8 | 67 | test_default_kwargs | https://github.com/pyinstaller/pyinstaller.git | tests: add a test for calling isolated function with default (kw)args
Add tests that show that current implementation does not transfer
default arguments (function.__defaults__) nor default keyword-only
arguments (function.__kwdefaults__) to the child process, resulting
in a missing-positional-argument error unless all optional arguments
are explicitly provided. | 5 | 0 | 77,348 | 6 |
|
3 | 12 | def _tune_legacy_checkpoint_score_attr(self) -> Optional[str]:
if self.checkpoint_score_attribute is None:
return self.checkpoint_score_attribute
prefix = ""
if self.checkpoint_score_order == MIN:
prefix = "min-"
return f"{prefix}{self.checkpoint_score_attribute}"
# Alias for backwards compatibility
deprecation_message = (
"`CheckpointStrategy` is deprecated and will be removed in "
"the future. Please use `ray.air.config.CheckpointStrategy` "
"instead."
)
@Deprecated(message=deprecation_message)
@dataclass | python/ray/util/ml_utils/checkpoint_manager.py | 111 | @Deprecated(message=deprecation_message)
@dataclass | ray | {
"docstring": "Same as ``checkpoint_score_attr`` in ``tune.run``.\n\n Only used for Legacy API compatibility.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 11,
"vocab_size": 11
} | 49 | Python | 41 | dc7ed086a5038775e378b32cb31fb4a79f418dd9 | checkpoint_manager.py | 123,916 | 11 | 38 | _tune_legacy_checkpoint_score_attr | https://github.com/ray-project/ray.git | [AIR] More checkpoint configurability, `Result` extension (#25943)
This PR:
* Allows the user to set `keep_checkpoints_num` and `checkpoint_score_attr` in `RunConfig` using the `CheckpointStrategy` dataclass
* Adds two new fields to the `Result` object - `best_checkpoints` - a list of saved best checkpoints as determined by `CheckpointingConfig`. | 110 | 1 | 27,474 | 9 |
1 | 13 | def test_receive_data_before_server_connected(tctx):
assert (
Playbook(tcp.TCPLayer(tctx), hooks=False)
<< OpenConnection(tctx.server)
>> DataReceived(tctx.client, b"hello!")
>> reply(None, to=-2)
<< SendData(tctx.server, b"hello!")
)
| test/mitmproxy/proxy/layers/test_tcp.py | 93 | mitmproxy | {
"docstring": "\n assert that data received before a server connection is established\n will still be forwarded.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 14,
"vocab_size": 14
} | 18 | Python | 15 | b3587b52b25077f68116b9852b041d33e7fc6601 | test_tcp.py | 251,916 | 8 | 63 | test_receive_data_before_server_connected | https://github.com/mitmproxy/mitmproxy.git | make it black! | 62 | 0 | 73,888 | 14 |
|
2 | 25 | def demo_tp(rank, args):
print(f"Running basic Megatron style TP example on rank {rank}.")
setup(rank, args.world_size)
# create a sharding plan based on the given world_size.
module_sharding_plan = _get_toy_module_sharding_plan(
args.world_size
)
# create model and move it to GPU with id rank
model = ToyModel().cuda(rank)
# Shard the module based on created plan.
shard_module(model, module_sharding_plan)
# Create a optimizer for the sharded module.
optimizer = _get_toy_module_optim(model, 0.002)
# Perform a num of iterations of forward/backward
# and optimizations for the sharded module.
for _ in range(args.iter_nums):
inp = torch.rand(20, 10).cuda(rank)
output = model(inp)
output.sum().backward()
optimizer.step()
cleanup()
| distributed/sharded_tensor/tensor_parallel.py | 176 | examples | {
"docstring": "\n Main body of the demo of a basic version of tensor parallel by using\n PyTorch native sharded tensor APIs.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 19,
"vocab_size": 16
} | 94 | Python | 67 | 9ba53df5a19131e6926027b2e73aaa77cec17272 | tensor_parallel.py | 82,841 | 15 | 103 | demo_tp | https://github.com/pytorch/examples.git | Gh/fduwjj/2/base (#1007)
* test ghstack
[ghstack-poisoned]
* Update base for Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned]
* Update base for Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned]
* Update base for Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned]
* Update base for Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned]
* [PT-D] Add an example for Megatron-LM style example (#1006)
* [PT-D] Add an example for Megatron-LM style example
[ghstack-poisoned]
* Update on "[PT-D] Add an example for Megatron-LM style example"
[ghstack-poisoned] | 177 | 0 | 17,550 | 12 |
|
6 | 21 | def makelink(self, tarinfo, targetpath):
try:
# For systems that support symbolic and hard links.
if tarinfo.issym():
os.symlink(tarinfo.linkname, targetpath)
else:
# See extract().
if os.path.exists(tarinfo._link_target):
os.link(tarinfo._link_target, targetpath)
else:
self._extract_member(self._find_link_target(tarinfo),
targetpath)
except symlink_exception:
if tarinfo.issym():
linkpath = os.path.join(os.path.dirname(tarinfo.name),
tarinfo.linkname)
else:
linkpath = tarinfo.linkname
else:
try:
self._extract_member(self._find_link_target(tarinfo),
targetpath)
except KeyError:
raise ExtractError("unable to resolve link inside archive")
| pipenv/patched/notpip/_vendor/distlib/_backport/tarfile.py | 219 | pipenv | {
"docstring": "Make a (symbolic) link called targetpath. If it cannot be created\n (platform limitation), we try to make a copy of the referenced file\n instead of a link.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 27,
"vocab_size": 24
} | 54 | Python | 39 | c69d55f7c82d5ae2cce542bcfb98d043ca4836a0 | tarfile.py | 21,391 | 22 | 133 | makelink | https://github.com/pypa/pipenv.git | Vendor in pip 22.1.2 | 432 | 0 | 3,804 | 17 |
|
1 | 3 | def get_rules(self) -> RulesMap:
| src/textual/css/styles.py | 16 | textual | {
"docstring": "Get the rules in a mapping.\n\n Returns:\n RulesMap: A TypedDict of the rules.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 13,
"vocab_size": 12
} | 4 | Python | 4 | 116f3735b68e8dd293dba4b3a183f98afbd0b167 | styles.py | 182,279 | 6 | 8 | get_rules | https://github.com/Textualize/textual.git | docstrings | 11 | 0 | 43,780 | 6 |
|
1 | 8 | def test_fillna_frame(self):
super().test_fillna_frame()
unhashable = pytest.mark.xfail(reason="Unhashable")
| pandas/tests/extension/json/test_json.py | 47 | pandas | {
"docstring": "We treat dictionaries as a mapping in fillna, not a scalar.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | 6 | Python | 6 | 24652cf178c12562585639cba39c46d62b95f107 | test_json.py | 165,750 | 2 | 13 | test_fillna_frame | https://github.com/pandas-dev/pandas.git | TST: Convert skip -> xfail (#46427) | 19 | 0 | 39,706 | 9 |
|
2 | 10 | def push(self, exit):
# We use an unbound method rather than a bound method to follow
# the standard lookup behaviour for special methods.
_cb_type = type(exit)
try:
exit_method = _cb_type.__exit__
except AttributeError:
# Not a context manager, so assume it's a callable.
self._push_exit_callback(exit)
else:
self._push_cm_exit(exit, exit_method)
return exit # Allow use as a decorator.
| python3.10.4/Lib/contextlib.py | 75 | XX-Net | {
"docstring": "Registers a callback with the standard __exit__ method signature.\n\n Can suppress exceptions the same way __exit__ method can.\n Also accepts any object with an __exit__ method (registering a call\n to the method instead of the object itself).\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 37,
"vocab_size": 26
} | 55 | Python | 46 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | contextlib.py | 221,712 | 9 | 42 | push | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 156 | 0 | 56,482 | 10 |
|
1 | 17 | async def test_filter_non_existent_column(state_api_manager):
data_source_client = state_api_manager.data_source_client
id = b"1234"
data_source_client.get_all_worker_info.return_value = GetAllWorkerInfoReply(
worker_table_data=[
generate_worker_data(id, pid=1),
generate_worker_data(b"12345", pid=2),
],
total=2,
)
result = await state_api_manager.list_workers(
option=create_api_options(filters=[("exit_type", "=", "INTENDED_SYSTEM_EXIT")])
)
assert len(result.result) == 0
| python/ray/tests/test_state_api.py | 138 | ray | {
"docstring": "Test when the non existent column is given, it handles that properly.\n\n Related: https://github.com/ray-project/ray/issues/26811\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 14,
"vocab_size": 14
} | 32 | Python | 28 | 37f4692aa805eba230e2879c098320111788a64c | test_state_api.py | 125,623 | 14 | 85 | test_filter_non_existent_column | https://github.com/ray-project/ray.git | [State Observability] Fix "No result for get crashing the formatting" and "Filtering not handled properly when key missing in the datum" #26881
Fix two issues
No result for get crashing the formatting
Filtering not handled properly when key missing in the datum | 106 | 0 | 27,927 | 16 |
|
11 | 24 | def _url(self, hashed_name_func, name, force=False, hashed_files=None):
if settings.DEBUG and not force:
hashed_name, fragment = name, ""
else:
clean_name, fragment = urldefrag(name)
if urlsplit(clean_name).path.endswith("/"): # don't hash paths
hashed_name = name
else:
args = (clean_name,)
if hashed_files is not None:
args += (hashed_files,)
hashed_name = hashed_name_func(*args)
final_url = super().url(hashed_name)
# Special casing for a @font-face hack, like url(myfont.eot?#iefix")
# http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
query_fragment = "?#" in name # [sic!]
if fragment or query_fragment:
urlparts = list(urlsplit(final_url))
if fragment and not urlparts[4]:
urlparts[4] = fragment
if query_fragment and not urlparts[3]:
urlparts[2] += "?"
final_url = urlunsplit(urlparts)
return unquote(final_url)
| django/contrib/staticfiles/storage.py | 261 | django | {
"docstring": "\n Return the non-hashed URL in DEBUG mode.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | 94 | Python | 60 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | storage.py | 204,364 | 22 | 156 | _url | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 356 | 0 | 50,711 | 15 |
|
1 | 6 | def set_raw_scale(self, in_, scale):
self.__check_input(in_)
self.raw_scale[in_] = scale
| code/deep/BJMMD/caffe/python/caffe/io.py | 39 | transferlearning | {
"docstring": "\n Set the scale of raw features s.t. the input blob = input * scale.\n While Python represents images in [0, 1], certain Caffe models\n like CaffeNet and AlexNet represent images in [0, 255] so the raw_scale\n of these models must be 255.\n\n Parameters\n ----------\n in_ : which input to assign this scale factor\n scale : scale coefficient\n ",
"language": "en",
"n_whitespaces": 121,
"n_words": 57,
"vocab_size": 44
} | 8 | Python | 8 | cc4d0564756ca067516f71718a3d135996525909 | io.py | 60,255 | 3 | 24 | set_raw_scale | https://github.com/jindongwang/transferlearning.git | Balanced joint maximum mean discrepancy for deep transfer learning | 29 | 0 | 12,047 | 8 |
|
4 | 12 | def list_distinfo_files(self):
base = os.path.dirname(self.path)
for path, checksum, size in self._get_records():
# XXX add separator or use real relpath algo
if not os.path.isabs(path):
path = os.path.join(base, path)
if path.startswith(self.path):
yield path
| .venv/lib/python3.8/site-packages/pip/_vendor/distlib/database.py | 108 | transferlearning | {
"docstring": "\n Iterates over the ``RECORD`` entries and returns paths for each line if\n the path is pointing to a file located in the ``.dist-info`` directory\n or one of its subdirectories.\n\n :returns: iterator of paths\n ",
"language": "en",
"n_whitespaces": 69,
"n_words": 33,
"vocab_size": 29
} | 31 | Python | 28 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | database.py | 61,929 | 7 | 66 | list_distinfo_files | https://github.com/jindongwang/transferlearning.git | upd; format | 115 | 0 | 12,754 | 13 |
|
2 | 8 | def validate(self):
if not self._check_schedule_interval_matches_timetable():
raise AirflowDagInconsistent(
f"inconsistent schedule: timetable {self.timetable.summary!r} "
f"does not match schedule_interval {self.schedule_interval!r}",
)
self.params.validate()
self.timetable.validate()
| airflow/models/dag.py | 85 | airflow | {
"docstring": "Validate the DAG has a coherent setup.\n\n This is called by the DAG bag before bagging the DAG.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 18,
"vocab_size": 15
} | 20 | Python | 19 | a1a9a8f9a3adc63e783cf3fd699066f35e488d4f | dag.py | 43,013 | 8 | 37 | validate | https://github.com/apache/airflow.git | Check bag DAG schedule_interval match tiemtable (#23113)
This guards against the DAG's timetable or schedule_interval from being
changed after it's created. Validation is done by creating a timetable
and check its summary matches schedule_interval. The logic is not
bullet-proof, especially if a custom timetable does not provide a useful
summary. But this is the best we can do. | 100 | 0 | 7,791 | 14 |
|
1 | 6 | def get_tokenizer(*args, **kwargs):
return AlbertTokenizer.from_pretrained(pretrained_model_name_or_path='albert-base-v1', *args, **kwargs)
| modules/text/language_model/albert-base-v1/module.py | 43 | PaddleHub | {
"docstring": "\n Gets the tokenizer that is customized for this module.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | 7 | Python | 7 | 26e56d098d7cebdc910e84ce1d0d1a909c1988c3 | module.py | 48,752 | 2 | 25 | get_tokenizer | https://github.com/PaddlePaddle/PaddleHub.git | add albert-base-v1 | 21 | 0 | 9,591 | 9 |
|
1 | 10 | def exit_with_error(message, code=1, **kwargs):
kwargs.setdefault("style", "red")
app.console.print(message, **kwargs)
raise typer.Exit(code)
| src/prefect/cli/base.py | 66 | prefect | {
"docstring": "\n Utility to print a stylized error message and exit with a non-zero code\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 13,
"vocab_size": 12
} | 10 | Python | 10 | c0cb1fee460c1bded9e3eb741ad7979402844bf8 | base.py | 55,137 | 4 | 39 | exit_with_error | https://github.com/PrefectHQ/prefect.git | Update `set` command; allow CLI `console` object to be patched | 22 | 0 | 11,226 | 8 |
|
12 | 67 | async def contracts_command(ctx, ticker="", past_transaction_days="", raw=""):
try:
# Debug user input
if cfg.DEBUG:
logger.debug(
"!stocks.gov.contracts %s %s %s", ticker, past_transaction_days, raw
)
if past_transaction_days == "":
past_transaction_days = 10
else:
if not past_transaction_days.lstrip("-").isnumeric():
raise Exception("Number has to be an integer")
past_transaction_days = int(past_transaction_days)
if raw in ["false", "False", "FALSE", ""]:
raw = False
if raw in ["true", "True", "TRUE"]:
raw = True
if raw not in [True, False]:
raise Exception("raw argument has to be true or false")
if ticker == "":
raise Exception("A ticker is required")
# Retrieve Data
df_contracts = quiverquant_model.get_government_trading("contracts", ticker)
if df_contracts.empty:
raise Exception("No government contracts found")
# Output Data
df_contracts["Date"] = pd.to_datetime(df_contracts["Date"]).dt.date
df_contracts = df_contracts[
df_contracts["Date"].isin(
df_contracts["Date"].unique()[:past_transaction_days]
)
]
df_contracts.drop_duplicates(inplace=True)
fig, ax = plt.subplots(figsize=plot_autoscale(), dpi=PLOT_DPI)
df_contracts.groupby("Date").sum().div(1000).plot(kind="bar", rot=0, ax=ax)
ax.set_ylabel("Amount ($1k)")
ax.set_title(f"Sum of latest government contracts to {ticker}")
fig.tight_layout()
plt.savefig("gov_contracts.png")
uploaded_image = gst_imgur.upload_image("gov_contracts.png", title="something")
image_link = uploaded_image.link
if cfg.DEBUG:
logger.debug("Image URL: %s", image_link)
title = f"Stocks: [quiverquant.com] Contracts by {ticker}"
if raw:
description = df_contracts.to_string()
embed = discord.Embed(
title=title, description=description, colour=cfg.COLOR
)
else:
embed = discord.Embed(title=title, colour=cfg.COLOR)
embed.set_author(
name=cfg.AUTHOR_NAME,
icon_url=cfg.AUTHOR_ICON_URL,
)
embed.set_image(url=image_link)
os.remove("gov_contracts.png")
await ctx.send(embed=embed)
except Exception as e:
embed = discord.Embed(
title=f"ERROR Stocks: [quiverquant.com] Contracts by {ticker}",
colour=cfg.COLOR,
description=e,
)
embed.set_author(
name=cfg.AUTHOR_NAME,
icon_url=cfg.AUTHOR_ICON_URL,
)
await ctx.send(embed=embed)
| discordbot/stocks/government/contracts.py | 766 | OpenBBTerminal | {
"docstring": "Displays contracts associated with tickers [quiverquant.com]",
"language": "en",
"n_whitespaces": 5,
"n_words": 6,
"vocab_size": 6
} | 200 | Python | 131 | f40ba0d256a78ab2b8461f0df3a9a52ca7dc5704 | contracts.py | 281,178 | 66 | 444 | contracts_command | https://github.com/OpenBB-finance/OpenBBTerminal.git | Bot logging fix (#1105)
* Write bot logs to stdout instead of a file
Heroku's logging uses the stdout and has problems with files
* Send "you snooze you lose" only if debug flag is enabled
* Replace print statements with logger entries in the economy menu
* Add logging to bot menu command calls
* Silence bandit warnings about the REPLACE_ME token
* Organize imports and update logging in economy menu
* Organize imports and update logging in dps menu
* Organize imports and update logging in dd menu
* Organize imports and update logging in gov menu
* Organize imports and update logging in options menu
* Organize imports and update logging in screener menu
* Organize imports and update logging in ta menu
* Revert automatic import sorting
* Add logging to the options reaction helper | 799 | 0 | 83,584 | 16 |
|
1 | 14 | async def test_storage_is_updated_on_add(hass, hass_storage, utcnow):
await setup_test_component(hass, create_lightbulb_service)
entity_map: EntityMapStorage = hass.data[ENTITY_MAP]
hkid = "00:00:00:00:00:00"
# Is in memory store updated?
assert hkid in entity_map.storage_data
# Is saved out to store?
await flush_store(entity_map.store)
assert hkid in hass_storage[ENTITY_MAP]["data"]["pairings"]
| tests/components/homekit_controller/test_storage.py | 96 | core | {
"docstring": "Test entity map storage is cleaned up on adding an accessory.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 37 | Python | 28 | b9c8d65940ec47a82332b8b1a67301da018ccadf | test_storage.py | 317,256 | 7 | 56 | test_storage_is_updated_on_add | https://github.com/home-assistant/core.git | Restore accessory state into pairing using new HKC methods (#75276) | 64 | 0 | 115,831 | 9 |
|
1 | 2 | def disable_run_logger():
with disable_logger("prefect.flow_run"), disable_logger("prefect.task_run"):
yield
| src/prefect/logging/loggers.py | 39 | prefect | {
"docstring": "\n Gets both `prefect.flow_run` and `prefect.task_run` and disables them\n within the context manager. Upon exiting the context manager, both loggers\n are returned to its original state.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 25,
"vocab_size": 21
} | 6 | Python | 6 | 895a5203623c205ede2ee0c31f99be72822d5351 | loggers.py | 59,074 | 3 | 17 | disable_run_logger | https://github.com/PrefectHQ/prefect.git | Add docstring | 19 | 0 | 11,863 | 10 |
|
1 | 10 | def add_to_apply_calls(self, func, *args, length=None, width=None, **kwargs):
return PandasOnDaskDataframePartition(
self._data,
call_queue=self.call_queue + [[func, args, kwargs]],
length=length,
width=width,
)
| modin/core/execution/dask/implementations/pandas_on_dask/partitioning/partition.py | 76 | modin | {
"docstring": "\n Add a function to the call queue.\n\n Parameters\n ----------\n func : callable\n Function to be added to the call queue.\n *args : iterable\n Additional positional arguments to be passed in `func`.\n length : distributed.Future or int, optional\n Length, or reference to length, of wrapped ``pandas.DataFrame``.\n width : distributed.Future or int, optional\n Width, or reference to width, of wrapped ``pandas.DataFrame``.\n **kwargs : dict\n Additional keyword arguments to be passed in `func`.\n\n Returns\n -------\n PandasOnDaskDataframePartition\n A new ``PandasOnDaskDataframePartition`` object.\n\n Notes\n -----\n The keyword arguments are sent as a dictionary.\n ",
"language": "en",
"n_whitespaces": 259,
"n_words": 87,
"vocab_size": 54
} | 18 | Python | 18 | 39b36eb2a2e3bf3d612933e1c78545a8bb28cde4 | partition.py | 154,339 | 7 | 54 | add_to_apply_calls | https://github.com/modin-project/modin.git | PERF-#4794: Compute caches in `_propagate_index_objs` (#4888)
Co-authored-by: Mahesh Vashishtha <[email protected]>
Signed-off-by: Myachev <[email protected]> | 83 | 0 | 35,932 | 11 |
|
1 | 10 | def use_numexpr_cb(key) -> None:
from pandas.core.computation import expressions
expressions.set_use_numexpr(cf.get_option(key))
use_numba_doc =
| pandas/core/config_init.py | 48 | pandas | {
"docstring": "\n: bool\n Use the numba engine option for select operations if it is installed,\n the default is False\n Valid values: False,True\n",
"language": "en",
"n_whitespaces": 29,
"n_words": 21,
"vocab_size": 19
} | 11 | Python | 11 | 9612375ca28ade056f15d4338f1bfde5d045c9fc | config_init.py | 167,699 | 3 | 26 | use_numexpr_cb | https://github.com/pandas-dev/pandas.git | TYP: return values in core/*.py (#47587)
* TYP: return values in core/*.py
* fix test
* to_html
* to_html part 2
* DataFrame.query
* more overloads
* fix query?
* increase stacklevel by one
* fix rename_axis
* and an overload for DataFrame.eval
* address comments
* fix typevar | 16 | 0 | 40,082 | 9 |
|
1 | 11 | def test_unavailable_models(self):
state = migrations.state.ProjectState()
# Unavailable contenttypes.ContentType
with self.assertNumQueries(0):
create_permissions(self.app_config, verbosity=0, apps=state.apps)
# Unavailable auth.Permission
state = migrations.state.ProjectState(real_apps={"contenttypes"})
with self.assertNumQueries(0):
create_permissions(self.app_config, verbosity=0, apps=state.apps)
| tests/auth_tests/test_management.py | 130 | django | {
"docstring": "\n #24075 - Permissions shouldn't be created or deleted if the ContentType\n or Permission models aren't available.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 15
} | 24 | Python | 15 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | test_management.py | 201,336 | 7 | 77 | test_unavailable_models | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 95 | 0 | 49,920 | 11 |
|
1 | 3 | def info(self):
return self.headers
| python3.10.4/Lib/http/client.py | 19 | XX-Net | {
"docstring": "Returns an instance of the class mimetools.Message containing\n meta-information associated with the URL.\n\n When the method is HTTP, these headers are those returned by\n the server at the head of the retrieved HTML page (including\n Content-Length and Content-Type).\n\n When the method is FTP, a Content-Length header will be\n present if (as is now usual) the server passed back a file\n length in response to the FTP retrieval request. A\n Content-Type header will be present if the MIME type can be\n guessed.\n\n When the method is local-file, returned headers will include\n a Date representing the file's last-modified time, a\n Content-Length giving file size, and a Content-Type\n containing a guess at the file's type. See also the\n description of the mimetools module.\n\n ",
"language": "en",
"n_whitespaces": 225,
"n_words": 120,
"vocab_size": 74
} | 4 | Python | 4 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | client.py | 217,717 | 2 | 10 | info | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 18 | 0 | 54,898 | 6 |
|
3 | 23 | def get_timestamped_export_dir(export_dir_base):
attempts = 0
while attempts < MAX_DIRECTORY_CREATION_ATTEMPTS:
timestamp = int(time.time())
result_dir = tf.io.gfile.join(
tf.compat.as_bytes(export_dir_base),
tf.compat.as_bytes(str(timestamp)),
)
if not tf.compat.v1.gfile.Exists(result_dir):
# Collisions are still possible (though extremely unlikely): this
# directory is not actually created yet, but it will be almost
# instantly on return from this function.
return result_dir
time.sleep(1)
attempts += 1
logging.warning(
"Directory {} already exists; retrying (attempt {}/{})".format(
tf.compat.as_str(result_dir),
attempts,
MAX_DIRECTORY_CREATION_ATTEMPTS,
)
)
raise RuntimeError(
"Failed to obtain a unique export directory name after "
f"{MAX_DIRECTORY_CREATION_ATTEMPTS} attempts."
)
| keras/saving/utils_v1/export_utils.py | 191 | keras | {
"docstring": "Builds a path to a new subdirectory within the base directory.\n\n Each export is written into a new subdirectory named using the\n current time. This guarantees monotonically increasing version\n numbers even across multiple runs of the pipeline.\n The timestamp used is the number of seconds since epoch UTC.\n\n Args:\n export_dir_base: A string containing a directory to write the exported\n graph and checkpoints.\n Returns:\n The full path of the new subdirectory (which is not actually created yet).\n\n Raises:\n RuntimeError: if repeated attempts fail to obtain a unique timestamped\n directory name.\n ",
"language": "en",
"n_whitespaces": 145,
"n_words": 89,
"vocab_size": 67
} | 83 | Python | 69 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | export_utils.py | 276,300 | 23 | 112 | get_timestamped_export_dir | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 301 | 0 | 81,622 | 14 |
|
1 | 7 | def compare(self, a, b):
a = _convert_other(a, raiseit=True)
return a.compare(b, context=self)
| python3.10.4/Lib/_pydecimal.py | 48 | XX-Net | {
"docstring": "Compares values numerically.\n\n If the signs of the operands differ, a value representing each operand\n ('-1' if the operand is less than zero, '0' if the operand is zero or\n negative zero, or '1' if the operand is greater than zero) is used in\n place of that operand for the comparison instead of the actual\n operand.\n\n The comparison is then effected by subtracting the second operand from\n the first and then returning a value according to the result of the\n subtraction: '-1' if the result is less than zero, '0' if the result is\n zero or negative zero, or '1' if the result is greater than zero.\n\n >>> ExtendedContext.compare(Decimal('2.1'), Decimal('3'))\n Decimal('-1')\n >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.1'))\n Decimal('0')\n >>> ExtendedContext.compare(Decimal('2.1'), Decimal('2.10'))\n Decimal('0')\n >>> ExtendedContext.compare(Decimal('3'), Decimal('2.1'))\n Decimal('1')\n >>> ExtendedContext.compare(Decimal('2.1'), Decimal('-3'))\n Decimal('1')\n >>> ExtendedContext.compare(Decimal('-3'), Decimal('2.1'))\n Decimal('-1')\n >>> ExtendedContext.compare(1, 2)\n Decimal('-1')\n >>> ExtendedContext.compare(Decimal(1), 2)\n Decimal('-1')\n >>> ExtendedContext.compare(1, Decimal(2))\n Decimal('-1')\n ",
"language": "en",
"n_whitespaces": 339,
"n_words": 143,
"vocab_size": 67
} | 11 | Python | 11 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _pydecimal.py | 219,736 | 3 | 31 | compare | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 32 | 0 | 55,755 | 9 |
|
1 | 5 | async def count_daily_user_type(self) -> Dict[str, int]:
| synapse/storage/databases/main/registration.py | 23 | synapse | {
"docstring": "\n Counts 1) native non guest users\n 2) native guests users\n 3) bridged users\n who registered on the homeserver in the past 24 hours\n ",
"language": "en",
"n_whitespaces": 73,
"n_words": 23,
"vocab_size": 19
} | 6 | Python | 6 | 1783156dbcf4164692e66275d1c29857c434995b | registration.py | 248,015 | 11 | 27 | count_daily_user_type | https://github.com/matrix-org/synapse.git | Add some type hints to datastore (#12423)
* Add some type hints to datastore
* newsfile
* change `Collection` to `List`
* refactor return type of `select_users_txn`
* correct type hint in `stream.py`
* Remove `Optional` in `select_users_txn`
* remove not needed return type in `__init__`
* Revert change in `get_stream_id_for_event_txn`
* Remove import from `Literal` | 13 | 0 | 72,046 | 6 |
|
3 | 23 | def __iter__(self) -> Iterator[tuple[Hashable, NDFrameT]]:
keys = self.keys
if isinstance(keys, list) and len(keys) == 1:
warnings.warn(
(
"In a future version of pandas, a length 1 "
"tuple will be returned when iterating over a "
"a groupby with a grouper equal to a list of "
"length 1. Don't supply a list with a single grouper "
"to avoid this warning."
),
FutureWarning,
stacklevel=find_stack_level(),
)
return self.grouper.get_iterator(self._selected_obj, axis=self.axis)
# To track operations that expand dimensions, like ohlc
OutputFrameOrSeries = TypeVar("OutputFrameOrSeries", bound=NDFrame)
| pandas/core/groupby/groupby.py | 140 | pandas | {
"docstring": "\n Groupby iterator.\n\n Returns\n -------\n Generator yielding sequence of (name, subsetted object)\n for each group\n ",
"language": "en",
"n_whitespaces": 57,
"n_words": 14,
"vocab_size": 14
} | 82 | Python | 68 | 14de3fd9ca4178bfce5dd681fa5d0925e057c04d | groupby.py | 168,124 | 23 | 74 | __iter__ | https://github.com/pandas-dev/pandas.git | DEPR: returning tuple when grouping by a list containing single element (#47761)
* DOC #45443 edited the documentation of where/mask functions
* DOC #45443 edited the documentation of where/mask functions
* Update generic.py
* ENH: add suffixes argument to DataFrame.compare #44354
* Edited the tests
* space fixing
* Update shared_docs.py
* Update series.py
* Update series.py
* invalid argument tests
* issue reference
* syntax editing
* grammar fixing
* edit doc
* editting doc
* Update 02_read_write.rst
* Update 02_read_write.rst
* Update v1.5.0.rst
* Update v1.5.0.rst
* np
* 1.5.0 rst
* created tests for invalid input
* space
* space
* space
* editing test
* deprecated
* syntax
* editting existed examples
* syntax
* edit past tests
* editting pivot
* ex
* editing internal use
* pivot
* warning expected
* warning
* ignore doc warning
* doc
* tests
* ignore warning
* test
* plotting
* test
* doc
* doc
* white space
* doc
* doc
* doc
* doc
* stacklevel
* pivot
* pivot
* cookbook
* flake8
* flake8
* what's new
* syntax
* itr
* car names
* test edit
* fixing tests
* fixing tests
* flake8
* rst edit
* __iter__ edit
* flake8
* flake8
* space
* test
* merge
* ignore the type
* mypy
* type
* self.keys
* tests
* .
* .
* adding keys
* order
* attribute
* ignores
* Update hist.py
* ignore
* .
* .
* .
* .
* .
* Update doc/source/whatsnew/v1.5.0.rst
Co-authored-by: Richard Shadrach <[email protected]>
Co-authored-by: Richard Shadrach <[email protected]> | 285 | 0 | 40,213 | 12 |
|
1 | 17 | def _transform_url(url, transform_netloc):
# type: (str, Callable[[str], Tuple[Any, ...]]) -> Tuple[str, NetlocTuple]
purl = urllib.parse.urlsplit(url)
netloc_tuple = transform_netloc(purl.netloc)
# stripped url
url_pieces = (purl.scheme, netloc_tuple[0], purl.path, purl.query, purl.fragment)
surl = urllib.parse.urlunsplit(url_pieces)
return surl, cast("NetlocTuple", netloc_tuple)
| .venv/lib/python3.8/site-packages/pip/_internal/utils/misc.py | 109 | transferlearning | {
"docstring": "Transform and replace netloc in a url.\n\n transform_netloc is a function taking the netloc and returning a\n tuple. The first element of this tuple is the new netloc. The\n entire tuple is returned.\n\n Returns a tuple containing the transformed url as item 0 and the\n original tuple returned by transform_netloc as item 1.\n ",
"language": "en",
"n_whitespaces": 71,
"n_words": 53,
"vocab_size": 35
} | 35 | Python | 31 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | misc.py | 61,234 | 6 | 69 | _transform_url | https://github.com/jindongwang/transferlearning.git | upd; format | 59 | 0 | 12,455 | 9 |
|
1 | 31 | def test_update_notice_user_name_when_changed(self) -> None:
server_notice_request_content = {
"user_id": self.other_user,
"content": {"msgtype": "m.text", "body": "test msg one"},
}
self.make_request(
"POST",
self.url,
access_token=self.admin_user_tok,
content=server_notice_request_content,
)
# simulate a change in server config after a server restart.
new_display_name = "new display name"
self.server_notices_manager._config.servernotices.server_notices_mxid_display_name = (
new_display_name
)
self.server_notices_manager.get_or_create_notice_room_for_user.cache.invalidate_all()
self.make_request(
"POST",
self.url,
access_token=self.admin_user_tok,
content=server_notice_request_content,
)
invited_rooms = self._check_invite_and_join_status(self.other_user, 1, 0)
notice_room_id = invited_rooms[0].room_id
self.helper.join(
room=notice_room_id, user=self.other_user, tok=self.other_user_token
)
notice_user_state_in_room = self.helper.get_state(
notice_room_id,
"m.room.member",
self.other_user_token,
state_key="@notices:test",
)
self.assertEqual(notice_user_state_in_room["displayname"], new_display_name)
| tests/rest/admin/test_server_notice.py | 282 | synapse | {
"docstring": "\n Tests that existing server notices user name in room is updated after\n server notice config changes.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 15
} | 74 | Python | 57 | 2e2d8cc2f9b9af5f8b48d75e22c474e08feca236 | test_server_notice.py | 247,957 | 38 | 175 | test_update_notice_user_name_when_changed | https://github.com/matrix-org/synapse.git | Update the server notices user profile in room if changed. (#12115) | 383 | 0 | 72,024 | 11 |
|
13 | 39 | def assign_wrt_overlaps(self, overlaps, gt_labels=None):
num_gts, num_bboxes = overlaps.size(0), overlaps.size(1)
# 1. assign -1 by default
assigned_gt_inds = overlaps.new_full((num_bboxes, ),
-1,
dtype=torch.long)
if num_gts == 0 or num_bboxes == 0:
# No ground truth or boxes, return empty assignment
max_overlaps = overlaps.new_zeros((num_bboxes, ))
if num_gts == 0:
# No truth, assign everything to background
assigned_gt_inds[:] = 0
if gt_labels is None:
assigned_labels = None
else:
assigned_labels = overlaps.new_full((num_bboxes, ),
-1,
dtype=torch.long)
return AssignResult(
num_gts,
assigned_gt_inds,
max_overlaps,
labels=assigned_labels)
# for each anchor, which gt best overlaps with it
# for each anchor, the max iou of all gts
max_overlaps, argmax_overlaps = overlaps.max(dim=0)
# for each gt, which anchor best overlaps with it
# for each gt, the max iou of all proposals
gt_max_overlaps, gt_argmax_overlaps = overlaps.max(dim=1)
# 2. assign negative: below
# the negative inds are set to be 0
if isinstance(self.neg_iou_thr, float):
assigned_gt_inds[(max_overlaps >= 0)
& (max_overlaps < self.neg_iou_thr)] = 0
elif isinstance(self.neg_iou_thr, tuple):
assert len(self.neg_iou_thr) == 2
assigned_gt_inds[(max_overlaps >= self.neg_iou_thr[0])
& (max_overlaps < self.neg_iou_thr[1])] = 0
# 3. assign positive: above positive IoU threshold
pos_inds = max_overlaps >= self.pos_iou_thr
assigned_gt_inds[pos_inds] = argmax_overlaps[pos_inds] + 1
if self.match_low_quality:
# Low-quality matching will overwrite the assigned_gt_inds assigned
# in Step 3. Thus, the assigned gt might not be the best one for
# prediction.
# For example, if bbox A has 0.9 and 0.8 iou with GT bbox 1 & 2,
# bbox 1 will be assigned as the best target for bbox A in step 3.
# However, if GT bbox 2's gt_argmax_overlaps = A, bbox A's
# assigned_gt_inds will be overwritten to be bbox 2.
# This might be the reason that it is not used in ROI Heads.
for i in range(num_gts):
if gt_max_overlaps[i] >= self.min_pos_iou:
if self.gt_max_assign_all:
max_iou_inds = overlaps[i, :] == gt_max_overlaps[i]
assigned_gt_inds[max_iou_inds] = i + 1
else:
assigned_gt_inds[gt_argmax_overlaps[i]] = i + 1
if gt_labels is not None:
assigned_labels = assigned_gt_inds.new_full((num_bboxes, ), -1)
pos_inds = torch.nonzero(
assigned_gt_inds > 0, as_tuple=False).squeeze()
if pos_inds.numel() > 0:
assigned_labels[pos_inds] = gt_labels[
assigned_gt_inds[pos_inds] - 1]
else:
assigned_labels = None
return AssignResult(
num_gts, assigned_gt_inds, max_overlaps, labels=assigned_labels)
| mmdet/core/bbox/assigners/max_iou_assigner.py | 593 | mmdetection | {
"docstring": "Assign w.r.t. the overlaps of bboxes with gts.\n\n Args:\n overlaps (Tensor): Overlaps between k gt_bboxes and n bboxes,\n shape(k, n).\n gt_labels (Tensor, optional): Labels of k gt_bboxes, shape (k, ).\n\n Returns:\n :obj:`AssignResult`: The assign result.\n ",
"language": "en",
"n_whitespaces": 104,
"n_words": 35,
"vocab_size": 32
} | 342 | Python | 168 | 9bf37f509ddf6aea1be3a4ad19036f96b9fc3902 | max_iou_assigner.py | 243,941 | 50 | 379 | assign_wrt_overlaps | https://github.com/open-mmlab/mmdetection.git | fix typos in comment (#7124)
bbox A's assigned_gt_inds will be overwritten to be bbox 2 instead of bbox B (In the previous content, bbox B was not mentioned). | 1,286 | 0 | 70,154 | 17 |
|
7 | 7 | def _rewrite_warnings(cls, record):
if record.levelno == 30 and record.funcName == "warn" and record.module == "ag_logging":
# TF 2.3 in Conda is imported with the wrong gast(0.4 when 0.3.3 should be used). This
# causes warnings in autograph. They don't appear to impact performance so de-elevate
# warning to debug
record.levelno = 10
record.levelname = "DEBUG"
if record.levelno == 30 and (record.funcName == "_tfmw_add_deprecation_warning" or
record.module in ("deprecation", "deprecation_wrapper")):
# Keras Deprecations.
record.levelno = 10
record.levelname = "DEBUG"
return record
| lib/logger.py | 134 | faceswap | {
"docstring": " Change certain warning messages from WARNING to DEBUG to avoid passing non-important\n information to output.\n\n Parameters\n ----------\n record: :class:`logging.LogRecord`\n The log record to check for rewriting\n\n Returns\n -------\n :class:`logging.LogRecord`\n The log rewritten or untouched record\n\n ",
"language": "en",
"n_whitespaces": 114,
"n_words": 35,
"vocab_size": 28
} | 79 | Python | 55 | afec52309326304f4323029039e49bfcf928ef43 | logger.py | 100,733 | 9 | 74 | _rewrite_warnings | https://github.com/deepfakes/faceswap.git | Bugfixes:
- Stats graph - Handle NaNs in data
- logger - de-elevate matplotlib font messages | 231 | 0 | 20,188 | 11 |
|
12 | 21 | def _find_alignments(self) -> str:
fname = self._args.alignments_file
frames = self._args.frames_dir
if fname and os.path.isfile(fname) and os.path.splitext(fname)[-1].lower() == ".fsa":
return fname
if fname:
logger.error("Not a valid alignments file: '%s'", fname)
sys.exit(1)
if not frames or not os.path.exists(frames):
logger.error("Not a valid frames folder: '%s'. Can't scan for alignments.", frames)
sys.exit(1)
fname = "alignments.fsa"
if os.path.isdir(frames) and os.path.exists(os.path.join(frames, fname)):
return fname
if os.path.isdir(frames) or os.path.splitext(frames)[-1] not in _video_extensions:
logger.error("Can't find a valid alignments file in location: %s", frames)
sys.exit(1)
fname = f"{os.path.splitext(frames)[0]}_{fname}"
if not os.path.exists(fname):
logger.error("Can't find a valid alignments file for video: %s", frames)
sys.exit(1)
return fname
| tools/alignments/alignments.py | 360 | faceswap | {
"docstring": " If an alignments folder is required and hasn't been provided, scan for a file based on\n the video folder.\n\n Exits if an alignments file cannot be located\n\n Returns\n -------\n str\n The full path to an alignments file\n ",
"language": "en",
"n_whitespaces": 91,
"n_words": 37,
"vocab_size": 31
} | 95 | Python | 50 | 2d312a9db228c025d0bd2ea7a4f747a2c644b5d8 | alignments.py | 101,635 | 32 | 204 | _find_alignments | https://github.com/deepfakes/faceswap.git | Minor updates and fixups
- Mask Tool - Typing + BiSeNet mask update fix
- Alignments Tool - Auto search for alignments file | 289 | 0 | 21,043 | 13 |
|
21 | 46 | def build(self, input_shape):
if self._is_graph_network:
super().build(input_shape)
return
if input_shape is None:
raise ValueError(
"Input shape must be defined when calling `build()` on "
"a `Model` subclass."
)
valid_types = (tuple, list, tf.TensorShape, dict)
if not isinstance(input_shape, valid_types):
raise ValueError(
"Specified input shape is not one of the valid types. "
"Please specify a batch input shape of type tuple or "
"list of input shapes. User provided "
"input type: {}.".format(type(input_shape))
)
if input_shape and not self.inputs:
# We create placeholders for the `None`s in the shape and build the model
# in a Graph. Since tf.Variable is compatible with both eager execution
# and graph building, the variables created after building the model in
# a Graph are still valid when executing eagerly.
if tf.executing_eagerly():
graph = tf.__internal__.FuncGraph("build_graph")
else:
graph = backend.get_graph()
with graph.as_default():
if isinstance(input_shape, list) and all(
d is None or isinstance(d, int) for d in input_shape
):
input_shape = tuple(input_shape)
if isinstance(input_shape, list):
x = [
base_layer_utils.generate_placeholders_from_shape(shape)
for shape in input_shape
]
elif isinstance(input_shape, dict):
x = {
k: base_layer_utils.generate_placeholders_from_shape(
shape
)
for k, shape in input_shape.items()
}
else:
x = base_layer_utils.generate_placeholders_from_shape(
input_shape
)
kwargs = {}
call_signature = self._call_spec.full_argspec
call_args = call_signature.args
# Exclude `self`, `inputs`, and any argument with a default value.
if len(call_args) > 2:
if call_signature.defaults:
call_args = call_args[2 : -len(call_signature.defaults)]
else:
call_args = call_args[2:]
for arg in call_args:
if arg == "training":
# Case where `training` is a positional arg with no default.
kwargs["training"] = False
else:
# Has invalid call signature with unknown positional arguments.
raise ValueError(
"Currently, you cannot build your model if it has "
"positional or keyword arguments that are not "
"inputs to the model, but are required for its "
"`call()` method. Instead, in order to instantiate "
"and build your model, `call()` your model on real "
"tensor data with all expected call arguments. The argument "
"for `call()` can be a single list/tuple that contains "
"multiple inputs."
)
elif len(call_args) < 2:
# Signature without `inputs`.
raise ValueError(
"You can only call `build()` on a model if its `call()` "
"method accepts an `inputs` argument."
)
try:
self.call(x, **kwargs)
except (tf.errors.InvalidArgumentError, TypeError) as e:
raise ValueError(
"You cannot build your model by calling `build` "
"if your layers do not support float type inputs. "
"Instead, in order to instantiate and build your "
"model, call your model on real tensor data (of "
"the correct dtype).\n\nThe actual error from "
f"`call` is: {e}."
)
super().build(input_shape)
| keras/engine/training.py | 609 | keras | {
"docstring": "Builds the model based on input shapes received.\n\n This is to be used for subclassed models, which do not know at instantiation\n time what their inputs look like.\n\n This method only exists for users who want to call `model.build()` in a\n standalone way (as a substitute for calling the model on real data to\n build it). It will never be called by the framework (and thus it will\n never throw unexpected errors in an unrelated workflow).\n\n Args:\n input_shape: Single tuple, `TensorShape` instance, or list/dict of shapes,\n where shapes are tuples, integers, or `TensorShape` instances.\n\n Raises:\n ValueError:\n 1. In case of invalid user-provided data (not of type tuple,\n list, `TensorShape`, or dict).\n 2. If the model requires call arguments that are agnostic\n to the input shapes (positional or keyword arg in call signature).\n 3. If not all layers were properly built.\n 4. If float type inputs are not supported within the layers.\n\n In each of these cases, the user should build their model by calling it\n on real tensor data.\n ",
"language": "en",
"n_whitespaces": 349,
"n_words": 169,
"vocab_size": 117
} | 414 | Python | 227 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | training.py | 271,605 | 82 | 345 | build | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 2,068 | 0 | 80,825 | 20 |
|
1 | 7 | def check(self) -> bool:
modified = self._get_modified()
changed = modified != self._modified
self._modified = modified
return changed
| src/textual/file_monitor.py | 50 | textual | {
"docstring": "Check the monitored file. Return True if it was changed.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 17 | Python | 11 | 7df1c123e9fbc8641052a30ba74282f9d9ec1870 | file_monitor.py | 184,610 | 6 | 29 | check | https://github.com/Textualize/textual.git | docstrings | 52 | 0 | 44,712 | 8 |
|
1 | 3 | def _new_training(self):
self.should_training_stop = False
| paddlenlp/trainer/trainer_callback.py | 21 | PaddleNLP | {
"docstring": "Internal method that resets the variable for a new training.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 5 | Python | 5 | 44a290e94d1becd1f09fddc3d873f9e19c9d6919 | trainer_callback.py | 323,160 | 2 | 11 | _new_training | https://github.com/PaddlePaddle/PaddleNLP.git | [Trainer] Add init version of paddlenlp trainer and apply finetune for ernie-1.0 pretraining. (#1761)
* add some datasets for finetune.
* support fine tune for all tastks.
* add trainer prototype.
* init verison for paddlenlp trainer.
* refine trainer.
* update for some details.
* support multi-cards training evaluation.
* support load from ckpt.
* support for export inference model.
* first version of trainer.
* seq cls support clue.
* trainer support for token classification and question answersing tasks.
* fix as reviews.
Co-authored-by: Zeyu Chen <[email protected]> | 19 | 0 | 118,391 | 7 |
|
1 | 4 | def set_state(self, state):
raise NotImplementedError()
| mitmproxy/coretypes/serializable.py | 22 | mitmproxy | {
"docstring": "\n Set object state to the given state. Consumes the passed state.\n May return a `dataclasses.FrozenInstanceError` if the object is immutable.\n ",
"language": "en",
"n_whitespaces": 42,
"n_words": 20,
"vocab_size": 16
} | 5 | Python | 5 | 07a40208a32cb2d48a1f2a24d2569894b5a378a0 | serializable.py | 253,285 | 2 | 12 | set_state | https://github.com/mitmproxy/mitmproxy.git | `rm -rf stateobject` | 19 | 0 | 74,053 | 7 |
|
1 | 5 | def get_next_event_id(self, event, snuba_filter):
raise NotImplementedError
| src/sentry/eventstore/base.py | 20 | sentry | {
"docstring": "\n Gets the next event given a current event and some conditions/filters.\n Returns a tuple of (project_id, event_id)\n\n Arguments:\n event (Event): Event object\n snuba_filter (Filter): Filter\n ",
"language": "en",
"n_whitespaces": 68,
"n_words": 25,
"vocab_size": 22
} | 6 | Python | 6 | 94c896a4a3663abbd31775957f1aa5448fde5491 | base.py | 98,544 | 2 | 12 | get_next_event_id | https://github.com/getsentry/sentry.git | ref: clean up sentry flake8 plugin (#33847)
* fix: Remove unused `# noqa` lint disable comments
* ref: clean up sentry flake8 plugin
- remove S005: pyupgrade handles this for us
- remove `pycodestyle` handling: flake8 does this natively
- clean up the ignore list and use extend-ignore | 20 | 0 | 19,582 | 6 |
|
7 | 26 | def center(self, frequency=1000):
equal_energy_fr = self.__class__(name='equal_energy', frequency=self.frequency.copy(), raw=self.raw.copy())
equal_energy_fr.interpolate()
interpolator = InterpolatedUnivariateSpline(np.log10(equal_energy_fr.frequency), equal_energy_fr.raw, k=1)
if type(frequency) in [list, np.ndarray] and len(frequency) > 1:
# Use the average of the gain values between the given frequencies as the difference to be subtracted
diff = np.mean(equal_energy_fr.raw[np.logical_and(
equal_energy_fr.frequency >= frequency[0],
equal_energy_fr.frequency <= frequency[1]
)])
else:
if type(frequency) in [list, np.ndarray]:
# List or array with only one element
frequency = frequency[0]
# Use the gain value at the given frequency as the difference to be subtracted
diff = interpolator(np.log10(frequency))
self.raw -= diff
if len(self.smoothed):
self.smoothed -= diff
if len(self.error):
self.error += diff
if len(self.error_smoothed):
self.error_smoothed += diff
# Everything but raw, smoothed, errors and target is affected by centering, reset them
self.reset(raw=False, smoothed=False, error=False, error_smoothed=False, target=False)
return -diff
| research/neo_peq/legacy_frequency_response.py | 353 | AutoEq | {
"docstring": "Removed bias from frequency response.\n\n Args:\n frequency: Frequency which is set to 0 dB. If this is a list with two values then an average between the two\n frequencies is set to 0 dB.\n\n Returns:\n Gain shifted\n ",
"language": "en",
"n_whitespaces": 102,
"n_words": 37,
"vocab_size": 30
} | 125 | Python | 87 | 9120cdffe618c6c2ff16fe6a311b6a1367efdbc8 | legacy_frequency_response.py | 162,744 | 22 | 225 | center | https://github.com/jaakkopasanen/AutoEq.git | Added PEQ configs to CLI and function interfaces. Improved default value handling for PEQ parameters and added more predefined configs. Removed legacy PEQ optimization. Fixed readme write. Improved shelf filter initialization. Added plot method to PEQ. Notebook for comparing old and new optimizers. Bug fixes. | 375 | 0 | 39,282 | 15 |
|
3 | 6 | def additional_resources_per_worker(self):
return {
k: v
for k, v in self._resources_per_worker_not_none.items()
if k not in ["CPU", "GPU"]
}
| python/ray/air/config.py | 56 | ray | {
"docstring": "Resources per worker, not including CPU or GPU resources.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 18 | Python | 16 | b3878e26d765e28dd7c69abadbd856181037db97 | config.py | 124,636 | 6 | 33 | additional_resources_per_worker | https://github.com/ray-project/ray.git | [AIR] Fix `ResourceChangingScheduler` not working with AIR (#26307)
This PR ensures that the new trial resources set by `ResourceChangingScheduler` are respected by the train loop logic by modifying the scaling config to match. Previously, even though trials had their resources updated, the scaling config was not modified which lead to eg. new workers not being spawned in the `DataParallelTrainer` even though resources were available.
In order to accomplish this, `ScalingConfigDataClass` is updated to allow equality comparisons with other `ScalingConfigDataClass`es (using the underlying PGF) and to create a `ScalingConfigDataClass` from a PGF.
Please note that this is an internal only change intended to actually make `ResourceChangingScheduler` work. In the future, `ResourceChangingScheduler` should be updated to operate on `ScalingConfigDataClass`es instead of PGFs as it is now. That will require a deprecation cycle. | 72 | 0 | 27,641 | 10 |
|
3 | 12 | def match(self, image):
if self.lut is None:
msg = "No operator loaded"
raise Exception(msg)
if image.mode != "L":
msg = "Image mode must be L"
raise ValueError(msg)
return _imagingmorph.match(bytes(self.lut), image.im.id)
| src/PIL/ImageMorph.py | 96 | Pillow | {
"docstring": "Get a list of coordinates matching the morphological operation on\n an image.\n\n Returns a list of tuples of (x,y) coordinates\n of all matching pixels. See :ref:`coordinate-system`.",
"language": "en",
"n_whitespaces": 46,
"n_words": 26,
"vocab_size": 19
} | 30 | Python | 26 | 2ae55ccbdad9c842929fb238ea1eb81d1f999024 | ImageMorph.py | 243,769 | 8 | 56 | match | https://github.com/python-pillow/Pillow.git | Improve exception traceback readability | 102 | 0 | 70,119 | 10 |
|
4 | 10 | def get_files(d, pattern, sort=True):
files = glob(osp.join(d, pattern))
files = [f for f in files if osp.isfile(f)]
if sort:
| ludwig/utils/checkpoint_utils.py | 69 | ludwig | {
"docstring": "Return a list of files in a given directory.\n\n Args:\n d (str): The path to the directory.\n pattern (str): The wildcard to filter files with.\n sort (bool): Whether to sort the returned list. Assumes filenames contain a number value to sort by (tmp-001).\n ",
"language": "en",
"n_whitespaces": 64,
"n_words": 43,
"vocab_size": 31
} | 19 | Python | 15 | cbff12a584ac253b6953551fecd8a66afc320de7 | checkpoint_utils.py | 6,465 | 7 | 80 | get_files | https://github.com/ludwig-ai/ludwig.git | Fixes FileExistsError thrown after training on windows completes (#1845)
* Catch exception when os.rename throws when renaming checkpoint.
* Filter out -tmp prefix (or any other) when sorting files in get_files.
* Use os.replace instead of os.rename, this works on windows
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Add comment to sort.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
Co-authored-by: Daniel Treiman <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> | 31 | 0 | 1,000 | 10 |
|
1 | 4 | def free_symbols(self, reference_frame):
return self.to_matrix(reference_frame).free_symbols
| sympy/physics/vector/vector.py | 29 | sympy | {
"docstring": "Returns the free symbols in the measure numbers of the vector\n expressed in the given reference frame.\n\n Parameters\n ==========\n reference_frame : ReferenceFrame\n The frame with respect to which the free symbols of the given\n vector is to be determined.\n\n Returns\n =======\n set of Symbol\n set of symbols present in the measure numbers of\n ``reference_frame``.\n\n See Also\n ========\n\n - :meth:`~sympy.core.basic.Basic.free_symbols`\n\n ",
"language": "en",
"n_whitespaces": 180,
"n_words": 59,
"vocab_size": 37
} | 5 | Python | 5 | c03c0eb2136e693b8431c19dd3294d832b4a394c | vector.py | 197,247 | 2 | 17 | free_symbols | https://github.com/sympy/sympy.git | Add .free_dynamicsymbols to physics vectors. | 19 | 0 | 48,408 | 8 |
|
10 | 15 | def should_strip_auth(self, old_url, new_url):
old_parsed = urlparse(old_url)
new_parsed = urlparse(new_url)
if old_parsed.hostname != new_parsed.hostname:
return True
# Special case: allow http -> https redirect when using the standard
# ports. This isn't specified by RFC 7235, but is kept to avoid
# breaking backwards compatibility with older versions of requests
# that allowed any redirects on the same host.
if (
old_parsed.scheme == "http"
and old_parsed.port in (80, None)
and new_parsed.scheme == "https"
and new_parsed.port in (443, None)
):
return False
# Handle default port usage corresponding to scheme.
changed_port = old_parsed.port != new_parsed.port
changed_scheme = old_parsed.scheme != new_parsed.scheme
default_port = (DEFAULT_PORTS.get(old_parsed.scheme, None), None)
if (
not changed_scheme
and old_parsed.port in default_port
and new_parsed.port in default_port
):
return False
# Standard case: root URI must match
return changed_port or changed_scheme
| pipenv/patched/pip/_vendor/requests/sessions.py | 206 | pipenv | {
"docstring": "Decide whether Authorization header should be removed when redirecting",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 130 | Python | 87 | cd5a9683be69c86c8f3adcd13385a9bc5db198ec | sessions.py | 22,123 | 22 | 128 | should_strip_auth | https://github.com/pypa/pipenv.git | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | 366 | 0 | 4,199 | 11 |
|
2 | 8 | def units(self):
max_position = self.u_height + decimal.Decimal(0.5)
if self.desc_units:
drange(0.5, max_position, 0.5)
return drange(max_position, 0.5, -0.5)
| netbox/dcim/models/racks.py | 65 | netbox | {
"docstring": "\n Return a list of unit numbers, top to bottom.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | 16 | Python | 16 | 84f056171286d18c1c14a2fc9d28155a7dcf169a | racks.py | 265,088 | 5 | 51 | units | https://github.com/netbox-community/netbox.git | Initial work on half-height RUs | 55 | 0 | 77,978 | 9 |
|
2 | 41 | def test_visualization_compare_classifiers_from_pred_csv_output_saved(csv_filename):
input_features = [category_feature(vocab_size=10)]
output_features = [category_feature(vocab_size=2, reduce_input="sum")]
# Generate test data
rel_path = generate_data(input_features, output_features, csv_filename)
exp_dir_name = run_experiment_with_visualization(input_features, output_features, dataset=rel_path)
vis_output_pattern_pdf = os.path.join(exp_dir_name, "*.pdf")
vis_output_pattern_png = os.path.join(exp_dir_name, "*.png")
output_feature_name = get_output_feature_name(exp_dir_name)
prediction = os.path.join(exp_dir_name, PREDICTIONS_PARQUET_FILE_NAME)
experiment_source_data_name = csv_filename.split(".")[0]
ground_truth = experiment_source_data_name + ".csv"
split_file = experiment_source_data_name + ".split.csv"
ground_truth_metadata = experiment_source_data_name + ".meta.json"
test_cmd_pdf = [
"python",
"-m",
"ludwig.visualize",
"--visualization",
"compare_classifiers_performance_from_pred",
"--ground_truth_metadata",
ground_truth_metadata,
"--ground_truth",
ground_truth,
"--output_feature_name",
output_feature_name,
"--split_file",
split_file,
"--predictions",
prediction,
prediction,
"--model_names",
"Model1",
"Model2",
"-od",
exp_dir_name,
]
test_cmd_png = test_cmd_pdf.copy() + ["-ff", "png"]
commands = [test_cmd_pdf, test_cmd_png]
vis_patterns = [vis_output_pattern_pdf, vis_output_pattern_png]
for command, viz_pattern in zip(commands, vis_patterns):
result = subprocess.run(command)
figure_cnt = glob.glob(viz_pattern)
assert 0 == result.returncode
assert 1 == len(figure_cnt)
| tests/integration_tests/test_visualization.py | 385 | ludwig | {
"docstring": "Ensure pdf and png figures from the experiments can be saved.\n\n Predictions are loaded from csv file.\n :param csv_filename: csv fixture from tests.fixtures.filenames.csv_filename\n :return: None\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 25,
"vocab_size": 22
} | 115 | Python | 86 | 4fb8f63181f5153b4f6778c6ef8dad61022c4f3f | test_visualization.py | 5,869 | 44 | 234 | test_visualization_compare_classifiers_from_pred_csv_output_saved | https://github.com/ludwig-ai/ludwig.git | Use tempfile to automatically garbage collect data and modeling artifacts in ludwig integration tests. (#1642)
* Use tmpdir to automatically garbage collect data and modeling artifacts in ludwig integration tests. | 350 | 0 | 864 | 11 |
|
6 | 36 | def real_root(arg, n=None, evaluate=None):
r
from sympy.functions.elementary.complexes import Abs, im, sign
from sympy.functions.elementary.piecewise import Piecewise
if n is not None:
return Piecewise(
(root(arg, n, evaluate=evaluate), Or(Eq(n, S.One), Eq(n, S.NegativeOne))),
(Mul(sign(arg), root(Abs(arg), n, evaluate=evaluate), evaluate=evaluate),
And(Eq(im(arg), S.Zero), Eq(Mod(n, 2), S.One))),
(root(arg, n, evaluate=evaluate), True))
rv = sympify(arg)
n1pow = Transform(lambda x: -(-x.base)**x.exp,
lambda x:
x.is_Pow and
x.base.is_negative and
x.exp.is_Rational and
x.exp.p == 1 and x.exp.q % 2)
return rv.xreplace(n1pow)
###############################################################################
############################# MINIMUM and MAXIMUM #############################
###############################################################################
| sympy/functions/elementary/miscellaneous.py | 322 | sympy | {
"docstring": "Return the real *n*'th-root of *arg* if possible.\n\n Parameters\n ==========\n\n n : int or None, optional\n If *n* is ``None``, then all instances of\n $(-n)^{1/\\text{odd}}$ will be changed to $-n^{1/\\text{odd}}$.\n This will only create a real root of a principal root.\n The presence of other factors may cause the result to not be\n real.\n\n evaluate : bool, optional\n The parameter determines if the expression should be evaluated.\n If ``None``, its value is taken from\n ``global_parameters.evaluate``.\n\n Examples\n ========\n\n >>> from sympy import root, real_root\n\n >>> real_root(-8, 3)\n -2\n >>> root(-8, 3)\n 2*(-1)**(1/3)\n >>> real_root(_)\n -2\n\n If one creates a non-principal root and applies real_root, the\n result will not be real (so use with caution):\n\n >>> root(-8, 3, 2)\n -2*(-1)**(2/3)\n >>> real_root(_)\n -2*(-1)**(2/3)\n\n See Also\n ========\n\n sympy.polys.rootoftools.rootof\n sympy.core.power.integer_nthroot\n root, sqrt\n ",
"language": "en",
"n_whitespaces": 259,
"n_words": 128,
"vocab_size": 88
} | 75 | Python | 58 | cda8dfe6f45dc5ed394c2f5cda706cd6c729f713 | miscellaneous.py | 195,861 | 61 | 221 | real_root | https://github.com/sympy/sympy.git | Improved documentation formatting | 248 | 0 | 47,448 | 16 |
|
2 | 12 | def get_dashboard_url():
if ray_constants.RAY_OVERRIDE_DASHBOARD_URL in os.environ:
return _remove_protocol_from_url(
os.environ.get(ray_constants.RAY_OVERRIDE_DASHBOARD_URL)
)
else:
worker = global_worker
worker.check_connected()
return _global_node.webui_url
| python/ray/_private/worker.py | 72 | ray | {
"docstring": "Get the URL to access the Ray dashboard.\n\n Note that the URL does not specify which node the dashboard is on.\n\n Returns:\n The URL of the dashboard as a string.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 30,
"vocab_size": 23
} | 17 | Python | 16 | 4692e8d8023e789120d3f22b41ffb136b50f70ea | worker.py | 127,153 | 9 | 42 | get_dashboard_url | https://github.com/ray-project/ray.git | [core] Don't override external dashboard URL in internal KV store (#27901)
Fix 2.0.0 release blocker bug where Ray State API and Jobs not accessible if the override URL doesn't support adding additional subpaths. This PR keeps the localhost dashboard URL in the internal KV store and only overrides in values printed or returned to the user.
images.githubusercontent.com/6900234/184809934-8d150874-90fe-4b45-a13d-bce1807047de.png"> | 72 | 0 | 28,373 | 12 |
|
1 | 26 | def test_install_non_rpm_using_dnf_gen_error():
info_fake_error =
dnf_call = MagicMock(
return_value={"retcode": 1, "stdout": "", "stderr": info_fake_error}
)
list_pkgs_mock = MagicMock(side_effect=[{"info": "6.6-2"}, {"info": "6.6-2"}])
with patch("pathlib.Path.is_file", return_value=True):
with patch.dict(
aixpkg.__salt__,
{"cmd.run_all": dnf_call, "config.get": MagicMock(return_value=False)},
), patch.object(aixpkg, "list_pkgs", list_pkgs_mock):
expected = {
"changes": {},
"errors": [info_fake_error],
}
with pytest.raises(CommandExecutionError) as exc_info:
aixpkg.install("info_fake.rpm")
assert exc_info.value.info == expected, exc_info.value.info
assert dnf_call.call_count == 1
libpath_env = {"LIBPATH": "/opt/freeware/lib:/usr/lib"}
dnf_call.assert_any_call(
"/opt/freeware/bin/dnf install --allowerasing --assumeyes info_fake.rpm",
env=libpath_env,
ignore_retcode=True,
python_shell=False,
)
| tests/pytests/unit/modules/test_aixpkg.py | 303 | salt | {
"docstring": "\n Test install of non rpm using dnf which should generate an error\n Last metadata expiration check: 1 day, 23:40:22 ago on Mon Dec 6 19:26:36 EST 2021.\nNo match for argument: info_fake\nError: Unable to find a match: info_fake\n",
"language": "en",
"n_whitespaces": 44,
"n_words": 39,
"vocab_size": 38
} | 70 | Python | 60 | f1c37893caf90738288e789c3233ab934630254f | test_aixpkg.py | 215,096 | 29 | 172 | test_install_non_rpm_using_dnf_gen_error | https://github.com/saltstack/salt.git | Working tests for install | 326 | 0 | 53,813 | 16 |
|
3 | 13 | def get_install_candidate(self, link_evaluator, link):
# type: (LinkEvaluator, Link) -> Optional[InstallationCandidate]
is_candidate, result = link_evaluator.evaluate_link(link)
if not is_candidate:
if result:
self._log_skipped_link(link, reason=result)
return None
return InstallationCandidate(
name=link_evaluator.project_name,
link=link,
version=result,
)
| .venv/lib/python3.8/site-packages/pip/_internal/index/package_finder.py | 89 | transferlearning | {
"docstring": "\n If the link is a candidate for install, convert it to an\n InstallationCandidate and return it. Otherwise, return None.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 18
} | 29 | Python | 27 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | package_finder.py | 60,741 | 11 | 57 | get_install_candidate | https://github.com/jindongwang/transferlearning.git | upd; format | 141 | 0 | 12,270 | 12 |