complexity
int64 1
56
| n_identifiers
int64 1
114
| code
stringlengths 19
12.7k
| path
stringlengths 8
134
| n_ast_nodes
int64 12
2.35k
| ast_errors
stringlengths 0
4.01k
| repo
stringlengths 3
28
| documentation
dict | n_words
int64 2
866
| language
stringclasses 1
value | vocab_size
int64 2
323
| commit_id
stringlengths 40
40
| file_name
stringlengths 5
79
| id
int64 243
338k
| nloc
int64 1
228
| token_counts
int64 5
1.4k
| fun_name
stringlengths 1
77
| url
stringlengths 31
60
| commit_message
stringlengths 3
15.3k
| n_whitespaces
int64 1
3.23k
| n_ast_errors
int64 0
20
| d_id
int64 74
121k
| ast_levels
int64 4
29
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 18 | def test_relays_dyamic_sampling(client, call_endpoint, default_project, dyn_sampling_data):
default_project.update_option("sentry:dynamic_sampling", dyn_sampling_data())
with Feature(
{
"organizations:server-side-sampling": True,
"organizations:dynamic-sampling-deprecated": True,
}
):
result, status_code = call_endpoint(full_config=False)
assert status_code < 400
dynamic_sampling = safe.get_path(
result, "configs", str(default_project.id), "config", "dynamicSampling"
)
assert dynamic_sampling == dyn_sampling_data()
@pytest.mark.django_db | tests/sentry/api/endpoints/test_relay_projectconfigs.py | 142 | @pytest.mark.django_db | sentry | {
"docstring": "\n Tests that dynamic sampling configuration set in project details are retrieved in relay configs\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 14,
"vocab_size": 13
} | 38 | Python | 32 | c8bfd65f261769da2565ca4240f11da6e820a7e4 | test_relay_projectconfigs.py | 87,295 | 14 | 78 | test_relays_dyamic_sampling | https://github.com/getsentry/sentry.git | feat(dyn-sampling): Switch to new feature flag multiplexer in projectconfig (#40498)
This PR switch to new feature flag multiplexer
in projectconfig. | 131 | 1 | 18,274 | 13 |
1 | 2 | def below(self):
return self["below"]
| packages/python/plotly/plotly/graph_objs/_choroplethmapbox.py | 22 | plotly.py | {
"docstring": "\n Determines if the choropleth polygons will be inserted before\n the layer with the specified ID. By default, choroplethmapbox\n traces are placed above the water layers. If set to '', the\n layer will be inserted above every existing layer.\n\n The 'below' property is a string and must be specified as:\n - A string\n - A number that will be converted to a string\n\n Returns\n -------\n str\n ",
"language": "en",
"n_whitespaces": 147,
"n_words": 65,
"vocab_size": 46
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _choroplethmapbox.py | 226,503 | 2 | 11 | below | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 58,176 | 7 |
|
10 | 21 | def execute():
if not frappe.db.table_exists("Additional Salary"):
return
for doctype in ("Additional Salary", "Employee Incentive", "Salary Detail"):
frappe.reload_doc("Payroll", "doctype", doctype)
frappe.reload_doc("hr", "doctype", "Leave Encashment")
additional_salaries = frappe.get_all(
"Additional Salary",
fields=["name", "salary_slip", "type", "salary_component"],
filters={"salary_slip": ["!=", ""]},
group_by="salary_slip",
)
leave_encashments = frappe.get_all(
"Leave Encashment",
fields=["name", "additional_salary"],
filters={"additional_salary": ["!=", ""]},
)
employee_incentives = frappe.get_all(
"Employee Incentive",
fields=["name", "additional_salary"],
filters={"additional_salary": ["!=", ""]},
)
for incentive in employee_incentives:
frappe.db.sql(
,
(incentive["name"], incentive["additional_salary"]),
)
for leave_encashment in leave_encashments:
frappe.db.sql(
,
(leave_encashment["name"], leave_encashment["additional_salary"]),
)
salary_slips = [sal["salary_slip"] for sal in additional_salaries]
for salary in additional_salaries:
comp_type = "earnings" if salary["type"] == "Earning" else "deductions"
if salary["salary_slip"] and salary_slips.count(salary["salary_slip"]) == 1:
frappe.db.sql(
,
(salary["name"], comp_type, salary["salary_slip"], salary["salary_component"]),
)
| erpnext/patches/v13_0/patch_to_fix_reverse_linking_in_additional_salary_encashment_and_incentive.py | 470 | erpnext | {
"docstring": " UPDATE `tabAdditional Salary`\n\t\t\tSET ref_doctype = 'Employee Incentive', ref_docname = %s\n\t\t\tWHERE name = %s\n\t\t UPDATE `tabAdditional Salary`\n\t\t\tSET ref_doctype = 'Leave Encashment', ref_docname = %s\n\t\t\tWHERE name = %s\n\t\t\n\t\t\t\tUPDATE `tabSalary Detail`\n\t\t\t\tSET additional_salary = %s\n\t\t\t\tWHERE parenttype = 'Salary Slip'\n\t\t\t\t\tand parentfield = %s\n\t\t\t\t\tand parent = %s\n\t\t\t\t\tand salary_component = %s\n\t\t\t",
"language": "en",
"n_whitespaces": 44,
"n_words": 54,
"vocab_size": 24
} | 110 | Python | 71 | 494bd9ef78313436f0424b918f200dab8fc7c20b | patch_to_fix_reverse_linking_in_additional_salary_encashment_and_incentive.py | 66,773 | 53 | 269 | execute | https://github.com/frappe/erpnext.git | style: format code with black | 70 | 0 | 14,329 | 14 |
|
1 | 15 | def test_get_permissions(self):
self.assertTrue(
win_dacl.set_permissions(
obj_name=self.obj_name,
principal="Backup Operators",
permissions="full_control",
access_mode="grant",
obj_type=self.obj_type,
reset_perms=False,
protected=None,
)
)
expected = {'Not Inherited': {'Backup Operators': {'grant': {'applies to': 'This key and subkeys', 'permissions': 'Full Control'}}}}
self.assertEqual(
win_dacl.get_permissions(
obj_name=self.obj_name,
principal="Backup Operators",
obj_type=self.obj_type,
),
expected,
)
| tests/unit/utils/test_win_dacl.py | 168 | salt | {
"docstring": "\n Test the get_permissions function\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 4,
"vocab_size": 4
} | 39 | Python | 33 | 55a7519dd5dab2bdfcac2e7e6e77a3d1358538f9 | test_win_dacl.py | 216,350 | 21 | 100 | test_get_permissions | https://github.com/saltstack/salt.git | fix tests | 286 | 0 | 54,555 | 15 |
|
5 | 42 | def run_api_experiment_separated_datasets(input_features, output_features, data_csv):
config = {
"input_features": input_features,
"output_features": output_features,
"combiner": {"type": "concat", "output_size": 14},
"training": {"epochs": 2},
}
model = LudwigModel(config)
# Training with dataframe
data_df = read_csv(data_csv)
train_df = data_df.sample(frac=0.8)
test_df = data_df.drop(train_df.index).sample(frac=0.5)
validation_df = data_df.drop(train_df.index).drop(test_df.index)
basename, ext = os.path.splitext(data_csv)
train_fname = basename + ".train" + ext
val_fname = basename + ".validation" + ext
test_fname = basename + ".test" + ext
output_dirs = []
try:
train_df.to_csv(train_fname)
validation_df.to_csv(val_fname)
test_df.to_csv(test_fname)
# Training with csv
_, _, output_dir = model.train(
training_set=train_fname,
skip_save_processed_input=True,
skip_save_progress=True,
skip_save_unprocessed_output=True,
)
output_dirs.append(output_dir)
_, _, output_dir = model.train(
training_set=train_fname,
validation_set=val_fname,
skip_save_processed_input=True,
skip_save_progress=True,
skip_save_unprocessed_output=True,
)
output_dirs.append(output_dir)
_, _, output_dir = model.train(
training_set=train_fname,
validation_set=val_fname,
test_set=test_fname,
skip_save_processed_input=True,
skip_save_progress=True,
skip_save_unprocessed_output=True,
)
output_dirs.append(output_dir)
_, output_dir = model.predict(dataset=test_fname)
output_dirs.append(output_dir)
finally:
# Remove results/intermediate data saved to disk
os.remove(train_fname)
os.remove(val_fname)
os.remove(test_fname)
for output_dir in output_dirs:
shutil.rmtree(output_dir, ignore_errors=True)
output_dirs = []
try:
_, _, output_dir = model.train(
training_set=train_df,
skip_save_processed_input=True,
skip_save_progress=True,
skip_save_unprocessed_output=True,
)
output_dirs.append(output_dir)
_, _, output_dir = model.train(
training_set=train_df,
validation_set=validation_df,
skip_save_processed_input=True,
skip_save_progress=True,
skip_save_unprocessed_output=True,
)
output_dirs.append(output_dir)
_, _, output_dir = model.train(
training_set=train_df,
validation_set=validation_df,
test_set=test_df,
skip_save_processed_input=True,
skip_save_progress=True,
skip_save_unprocessed_output=True,
)
output_dirs.append(output_dir)
_, output_dir = model.predict(dataset=data_df)
output_dirs.append(output_dir)
finally:
for output_dir in output_dirs:
shutil.rmtree(output_dir, ignore_errors=True)
| tests/integration_tests/test_api.py | 732 | ludwig | {
"docstring": "Helper method to avoid code repetition in running an experiment.\n\n :param input_features: input schema\n :param output_features: output schema\n :param data_csv: path to data\n :return: None\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 25,
"vocab_size": 21
} | 185 | Python | 82 | 69604268c2ddc06a4ee0b3dce0e05a8fb73b5d16 | test_api.py | 5,907 | 84 | 475 | run_api_experiment_separated_datasets | https://github.com/ludwig-ai/ludwig.git | Rename fc_size to output_size (#1641)
* Rename fc_size to output_size
* Responding to comments | 846 | 0 | 890 | 13 |
|
3 | 11 | def is_same_object(instance, webhook_data, request_id):
return (
ContentType.objects.get_for_model(instance) == webhook_data['content_type'] and
instance.pk == webhook_data['object_id'] and
request_id == webhook_data['request_id']
)
@receiver((post_save, m2m_changed)) | netbox/extras/signals.py | 84 | @receiver((post_save, m2m_changed)) | netbox | {
"docstring": "\n Compare the given instance to the most recent queued webhook object, returning True\n if they match. This check is used to avoid creating duplicate webhook entries.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 26,
"vocab_size": 23
} | 20 | Python | 17 | 4a95cfd1c4435e6eda01745fe06d902c25d2493e | signals.py | 266,093 | 6 | 42 | is_same_object | https://github.com/netbox-community/netbox.git | Permanently connect change logging & webhook receivers | 49 | 1 | 78,288 | 12 |
1 | 4 | def with_loss(self) -> bool:
return self.loss_panoptic is not None
| mmdet/models/seg_heads/panoptic_fusion_heads/base_panoptic_fusion_head.py | 26 | mmdetection | {
"docstring": "bool: whether the panoptic head contains loss function.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 9 | Python | 9 | c08b81510fbfc1199eab6ccc7af07fc3d3f89d12 | base_panoptic_fusion_head.py | 244,992 | 3 | 15 | with_loss | https://github.com/open-mmlab/mmdetection.git | Two stage segmentor + Panpotic FPN | 23 | 0 | 70,624 | 7 |
|
5 | 26 | def l1_min_c(X, y, *, loss="squared_hinge", fit_intercept=True, intercept_scaling=1.0):
if loss not in ("squared_hinge", "log"):
raise ValueError('loss type not in ("squared_hinge", "log")')
X = check_array(X, accept_sparse="csc")
check_consistent_length(X, y)
Y = LabelBinarizer(neg_label=-1).fit_transform(y).T
# maximum absolute value over classes and features
den = np.max(np.abs(safe_sparse_dot(Y, X)))
if fit_intercept:
bias = np.full(
(np.size(y), 1), intercept_scaling, dtype=np.array(intercept_scaling).dtype
)
den = max(den, abs(np.dot(Y, bias)).max())
if den == 0.0:
raise ValueError(
"Ill-posed l1_min_c calculation: l1 will always "
"select zero coefficients for this data"
)
if loss == "squared_hinge":
return 0.5 / den
else: # loss == 'log':
return 2.0 / den
| sklearn/svm/_bounds.py | 276 | scikit-learn | {
"docstring": "Return the lowest bound for C.\n\n The lower bound for C is computed such that for C in (l1_min_C, infinity)\n the model is guaranteed not to be empty. This applies to l1 penalized\n classifiers, such as LinearSVC with penalty='l1' and\n linear_model.LogisticRegression with penalty='l1'.\n\n This value is valid if class_weight parameter in fit() is not set.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training vector, where `n_samples` is the number of samples and\n `n_features` is the number of features.\n\n y : array-like of shape (n_samples,)\n Target vector relative to X.\n\n loss : {'squared_hinge', 'log'}, default='squared_hinge'\n Specifies the loss function.\n With 'squared_hinge' it is the squared hinge loss (a.k.a. L2 loss).\n With 'log' it is the loss of logistic regression models.\n\n fit_intercept : bool, default=True\n Specifies if the intercept should be fitted by the model.\n It must match the fit() method parameter.\n\n intercept_scaling : float, default=1.0\n When fit_intercept is True, instance vector x becomes\n [x, intercept_scaling],\n i.e. a \"synthetic\" feature with constant value equals to\n intercept_scaling is appended to the instance vector.\n It must match the fit() method parameter.\n\n Returns\n -------\n l1_min_c : float\n Minimum value for C.\n ",
"language": "en",
"n_whitespaces": 336,
"n_words": 190,
"vocab_size": 121
} | 93 | Python | 70 | 6d16698dd8ba4407e5c3c588d7b5e6a5257eddc9 | _bounds.py | 260,816 | 21 | 176 | l1_min_c | https://github.com/scikit-learn/scikit-learn.git | DOC Ensures that l1_min_c passes numpydoc validation (#24134) | 216 | 0 | 76,515 | 16 |
|
2 | 6 | def screen(self) -> Screen:
try:
return self._screen_stack[-1]
except IndexError:
raise ScreenStackError("No screens on stack") from None
| src/textual/app.py | 49 | textual | {
"docstring": "Get the current screen.\n\n Raises:\n ScreenStackError: If there are no screens on the stack.\n\n Returns:\n Screen: The currently active screen.\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 20,
"vocab_size": 18
} | 16 | Python | 16 | b22436933acc0d7440ec300f971a249bd6105a5b | app.py | 184,614 | 13 | 28 | screen | https://github.com/Textualize/textual.git | lots of docstrings | 59 | 0 | 44,714 | 11 |
|
1 | 4 | async def test_timeout_stops_execution_in_sync_subflows(self, tmp_path):
canary_file = tmp_path / "canary"
| tests/test_flows.py | 26 | prefect | {
"docstring": "\n Sync flow runs can be cancelled after a timeout once a task is called\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 14,
"vocab_size": 13
} | 9 | Python | 9 | 336eca7839fccbcbdb77179f352f926da8b1fa15 | test_flows.py | 56,927 | 14 | 72 | test_timeout_stops_execution_in_sync_subflows | https://github.com/PrefectHQ/prefect.git | Ensure flows are called in an interruptible thread (PrefectHQ/orion#2174)
* Ensure flows are called in an interruptible thread
* Set higher runtime limit in `test_timeout_stops_execution_in_sync_subflows` | 23 | 0 | 11,587 | 8 |
|
3 | 32 | def test_mark_checked_if_not_deleted(self, mock_patch_already_checked, mock_delete_pod, should_fail):
dag = DAG('hello2', start_date=pendulum.now())
k = KubernetesPodOperator(
namespace="default",
image="ubuntu:16.04",
name="test",
task_id="task",
is_delete_operator_pod=False,
dag=dag,
)
remote_pod_mock = MagicMock()
remote_pod_mock.status.phase = 'Failed' if should_fail else 'Succeeded'
self.await_pod_mock.return_value = remote_pod_mock
context = create_context(k, persist_to_db=True)
if should_fail:
with pytest.raises(AirflowException):
k.execute(context=context)
else:
k.execute(context=context)
mock_patch_already_checked.assert_called_once()
mock_delete_pod.assert_not_called()
| tests/providers/cncf/kubernetes/operators/test_kubernetes_pod.py | 213 | airflow | {
"docstring": "If we aren't deleting pods mark \"checked\" if the task completes (successful or otherwise)",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 14
} | 45 | Python | 37 | c3d883a971a8e4e65ccc774891928daaaa0f4442 | test_kubernetes_pod.py | 47,753 | 21 | 127 | test_mark_checked_if_not_deleted | https://github.com/apache/airflow.git | KubernetesPodOperator should patch "already checked" always (#22734)
When not configured to delete pods, at end of task execution the current behavior is to patch the pod as "already checked", but only if pod not successful. We should also patch when successful so it isn't "reattached" to after a task clear. | 232 | 0 | 9,244 | 12 |
|
31 | 23 | def check_dependency(self, operation, dependency):
# Created model
if dependency[2] is None and dependency[3] is True:
return (
isinstance(operation, operations.CreateModel)
and operation.name_lower == dependency[1].lower()
)
# Created field
elif dependency[2] is not None and dependency[3] is True:
return (
isinstance(operation, operations.CreateModel)
and operation.name_lower == dependency[1].lower()
and any(dependency[2] == x for x, y in operation.fields)
) or (
isinstance(operation, operations.AddField)
and operation.model_name_lower == dependency[1].lower()
and operation.name_lower == dependency[2].lower()
)
# Removed field
elif dependency[2] is not None and dependency[3] is False:
return (
isinstance(operation, operations.RemoveField)
and operation.model_name_lower == dependency[1].lower()
and operation.name_lower == dependency[2].lower()
)
# Removed model
elif dependency[2] is None and dependency[3] is False:
return (
isinstance(operation, operations.DeleteModel)
and operation.name_lower == dependency[1].lower()
)
# Field being altered
elif dependency[2] is not None and dependency[3] == "alter":
return (
isinstance(operation, operations.AlterField)
and operation.model_name_lower == dependency[1].lower()
and operation.name_lower == dependency[2].lower()
)
# order_with_respect_to being unset for a field
elif dependency[2] is not None and dependency[3] == "order_wrt_unset":
return (
isinstance(operation, operations.AlterOrderWithRespectTo)
and operation.name_lower == dependency[1].lower()
and (operation.order_with_respect_to or "").lower()
!= dependency[2].lower()
)
# Field is removed and part of an index/unique_together
elif dependency[2] is not None and dependency[3] == "foo_together_change":
return (
isinstance(
operation,
(operations.AlterUniqueTogether, operations.AlterIndexTogether),
)
and operation.name_lower == dependency[1].lower()
)
# Unknown dependency. Raise an error.
else:
raise ValueError("Can't handle dependency %r" % (dependency,))
| django/db/migrations/autodetector.py | 629 | django | {
"docstring": "\n Return True if the given operation depends on the given dependency,\n False otherwise.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 13,
"vocab_size": 11
} | 213 | Python | 74 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | autodetector.py | 205,277 | 50 | 409 | check_dependency | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 891 | 0 | 51,060 | 16 |
|
2 | 19 | def load_version_info_from_text_file(filename):
# Read and parse the version file. It may have a byte order marker or encoding cookie - respect it if it does.
import PyInstaller.utils.misc as miscutils
with open(filename, 'rb') as fp:
text = miscutils.decode(fp.read())
# Deserialize via eval()
try:
info = eval(text)
except Exception as e:
raise ValueError("Failed to deserialize VSVersionInfo from text-based representation!") from e
# Sanity check
assert isinstance(info, VSVersionInfo), \
f"Loaded incompatible structure type! Expected VSVersionInfo, got: {type(info)!r}"
return info
| PyInstaller/utils/win32/versioninfo.py | 129 | pyinstaller | {
"docstring": "\n Load the `VSVersionInfo` structure from its string-based (`VSVersionInfo.__str__`) serialization by reading the\n text from the file and running it through `eval()`.\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 21,
"vocab_size": 18
} | 76 | Python | 68 | f57e15ae14d2370cba7a14cfae97d2c29b5c8154 | versioninfo.py | 264,108 | 11 | 69 | load_version_info_from_text_file | https://github.com/pyinstaller/pyinstaller.git | building: EXE: load version info structure before comparing guts
Load the version information structure in `EXE` constructor, so that
the comparison against cached state is done with the structure instead
of the filen name. This way, changing the contents of the version
information file triggers rebuild of the EXE.
Split and clean-up related functions in the `utils.win32.versioninfo`
module as well as in `pyi-grab_version` and `pyi-set_version`
utility scripts. | 134 | 0 | 77,609 | 12 |
|
1 | 3 | def rttopo_version(self):
return self._get_spatialite_func("rttopo_version()")
| django/contrib/gis/db/backends/spatialite/operations.py | 26 | django | {
"docstring": "Return the version of RTTOPO library used by SpatiaLite.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 4 | Python | 4 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | operations.py | 203,873 | 2 | 13 | rttopo_version | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 18 | 0 | 50,568 | 8 |
|
12 | 13 | def filter(example, uniques, args):
if not check_uniques(example, uniques):
return False
elif example["autogenerated"]:
return False
elif example["line_max"] > args.line_max:
return False
elif example["line_mean"] > args.line_mean:
return False
elif example["alpha_frac"] < args.alpha_frac:
return False
elif example["ratio"] < args.min_token_ratio:
return False
elif example["config_or_test"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_no_keywords"] and np.random.rand() <= args.filter_proba:
return False
elif example["has_few_assignments"]:
return False
else:
return True
| examples/research_projects/codeparrot/scripts/preprocessing.py | 215 | transformers | {
"docstring": "Filter dataset with heuristics. Config, test and has_no_keywords files are removed with a given probability.",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 14
} | 61 | Python | 31 | e730e1256732b5dfeae2bdd427beacc3fbc20e2a | preprocessing.py | 38,436 | 21 | 129 | filter | https://github.com/huggingface/transformers.git | Update codeparrot data preprocessing (#16944)
* add new preprocessing arguments
* add new filters
* add new filters to readme
* fix config and test count, update function names and docstrings
* reformat code
* update readme
* Update readme
* rename config_test filter
Co-authored-by: Leandro von Werra <[email protected]>
* rename few_assignments filter
Co-authored-by: Leandro von Werra <[email protected]>
* rename tokenizer in arguments
Co-authored-by: Leandro von Werra <[email protected]>
* rename functions and add limit_line argument for config_test filter
* update threshold for config_test filter
Co-authored-by: Leandro von Werra <[email protected]>
Co-authored-by: Loubna ben allal <[email protected]> | 164 | 0 | 6,974 | 11 |
|
3 | 42 | def test_stream_concurrency(tctx):
playbook, cff = start_h2_client(tctx)
flow1 = Placeholder(HTTPFlow)
flow2 = Placeholder(HTTPFlow)
reqheadershook1 = http.HttpRequestHeadersHook(flow1)
reqheadershook2 = http.HttpRequestHeadersHook(flow2)
reqhook1 = http.HttpRequestHook(flow1)
reqhook2 = http.HttpRequestHook(flow2)
server = Placeholder(Server)
data_req1 = Placeholder(bytes)
data_req2 = Placeholder(bytes)
assert (
playbook
>> DataReceived(
tctx.client,
cff.build_headers_frame(
example_request_headers, flags=["END_STREAM"], stream_id=1
).serialize()
+ cff.build_headers_frame(
example_request_headers, flags=["END_STREAM"], stream_id=3
).serialize(),
)
<< reqheadershook1
<< reqheadershook2
>> reply(to=reqheadershook1)
<< reqhook1
>> reply(to=reqheadershook2)
<< reqhook2
# req 2 overtakes 1 and we already have a reply:
>> reply(to=reqhook2)
<< OpenConnection(server)
>> reply(None, side_effect=make_h2)
<< SendData(server, data_req2)
>> reply(to=reqhook1)
<< SendData(server, data_req1)
)
frames = decode_frames(data_req2())
assert [type(x) for x in frames] == [
hyperframe.frame.SettingsFrame,
hyperframe.frame.HeadersFrame,
]
frames = decode_frames(data_req1())
assert [type(x) for x in frames] == [
hyperframe.frame.HeadersFrame,
]
| test/mitmproxy/proxy/layers/http/test_http2.py | 403 | mitmproxy | {
"docstring": "Test that we can send an intercepted request with a lower stream id than one that has already been sent.",
"language": "en",
"n_whitespaces": 19,
"n_words": 20,
"vocab_size": 19
} | 117 | Python | 72 | b3587b52b25077f68116b9852b041d33e7fc6601 | test_http2.py | 251,881 | 44 | 269 | test_stream_concurrency | https://github.com/mitmproxy/mitmproxy.git | make it black! | 392 | 0 | 73,875 | 29 |
|
6 | 22 | def handle_template(self, template, subdir):
if template is None:
return os.path.join(django.__path__[0], "conf", subdir)
else:
if template.startswith("file://"):
template = template[7:]
expanded_template = os.path.expanduser(template)
expanded_template = os.path.normpath(expanded_template)
if os.path.isdir(expanded_template):
return expanded_template
if self.is_url(template):
# downloads the file and returns the path
absolute_path = self.download(template)
else:
absolute_path = os.path.abspath(expanded_template)
if os.path.exists(absolute_path):
return self.extract(absolute_path)
raise CommandError(
"couldn't handle %s template %s." % (self.app_or_project, template)
)
| django/core/management/templates.py | 228 | django | {
"docstring": "\n Determine where the app or project templates are.\n Use django.__path__[0] as the default because the Django install\n directory isn't known.\n ",
"language": "en",
"n_whitespaces": 49,
"n_words": 20,
"vocab_size": 18
} | 60 | Python | 43 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | templates.py | 204,714 | 19 | 140 | handle_template | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 284 | 0 | 50,848 | 15 |
|
1 | 19 | def _load_model_instance(self) -> None:
from rasa.nlu.utils.hugging_face.registry import (
model_class_dict,
model_tokenizer_dict,
)
logger.debug(f"Loading Tokenizer and Model for {self.model_name}")
self.tokenizer = model_tokenizer_dict[self.model_name].from_pretrained(
self.model_weights, cache_dir=self.cache_dir
)
self.model = model_class_dict[self.model_name].from_pretrained( # type: ignore[no-untyped-call] # noqa: E501
self.model_weights, cache_dir=self.cache_dir
)
# Use a universal pad token since all transformer architectures do not have a
# consistent token. Instead of pad_token_id we use unk_token_id because
# pad_token_id is not set for all architectures. We can't add a new token as
# well since vocabulary resizing is not yet supported for TF classes.
# Also, this does not hurt the model predictions since we use an attention mask
# while feeding input.
self.pad_token_id = self.tokenizer.unk_token_id
| rasa/nlu/featurizers/dense_featurizer/lm_featurizer.py | 145 | rasa | {
"docstring": "Tries to load the model instance.\n\n Model loading should be skipped in unit tests.\n See unit tests for examples.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 19,
"vocab_size": 18
} | 108 | Python | 80 | a2cb6b72bb72fb9e5598808d564749503ee08784 | lm_featurizer.py | 159,466 | 18 | 87 | _load_model_instance | https://github.com/RasaHQ/rasa.git | fix transformers typing issues | 258 | 0 | 38,282 | 10 |
|
2 | 7 | def all_pairs_dijkstra_path(G, cutoff=None, weight="weight"):
path = single_source_dijkstra_path
# TODO This can be trivially parallelized.
for n in G:
yield (n, path(G, n, cutoff=cutoff, weight=weight))
| networkx/algorithms/shortest_paths/weighted.py | 64 | networkx | {
"docstring": "Compute shortest paths between all nodes in a weighted graph.\n\n Parameters\n ----------\n G : NetworkX graph\n\n cutoff : integer or float, optional\n Length (sum of edge weights) at which the search is stopped.\n If cutoff is provided, only return paths with summed weight <= cutoff.\n\n weight : string or function\n If this is a string, then edge weights will be accessed via the\n edge attribute with this key (that is, the weight of the edge\n joining `u` to `v` will be ``G.edges[u, v][weight]``). If no\n such edge attribute exists, the weight of the edge is assumed to\n be one.\n\n If this is a function, the weight of an edge is the value\n returned by the function. The function must accept exactly three\n positional arguments: the two endpoints of an edge and the\n dictionary of edge attributes for that edge. The function must\n return a number or None to indicate a hidden edge.\n\n Returns\n -------\n distance : dictionary\n Dictionary, keyed by source and target, of shortest paths.\n\n Examples\n --------\n >>> G = nx.path_graph(5)\n >>> path = dict(nx.all_pairs_dijkstra_path(G))\n >>> path[0][4]\n [0, 1, 2, 3, 4]\n\n Notes\n -----\n Edge weight attributes must be numerical.\n Distances are calculated as sums of weighted edges traversed.\n\n See Also\n --------\n floyd_warshall, all_pairs_bellman_ford_path\n\n ",
"language": "en",
"n_whitespaces": 362,
"n_words": 205,
"vocab_size": 127
} | 24 | Python | 24 | d82815dba6c8ddce19cd49f700298dc82a58f066 | weighted.py | 177,500 | 4 | 41 | all_pairs_dijkstra_path | https://github.com/networkx/networkx.git | Hide edges with a weight of None in A*. (#5945)
* Hide edges with a weight of None in A*.
This matches the Dijkstra's weight interface.
* Update Dijkstra's and A* docs for weights of None.
* Add tests for A* with weight of None.
* Add another test for A* with a weight function.
* Document that None indicates a hidden edge. | 43 | 0 | 42,404 | 12 |
|
1 | 5 | def preset_modes(self) -> list[str] | None:
return self._attr_preset_modes
| homeassistant/components/climate/__init__.py | 29 | core | {
"docstring": "Return a list of available preset modes.\n\n Requires ClimateEntityFeature.PRESET_MODE.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 9,
"vocab_size": 9
} | 8 | Python | 8 | 8fc55b71c5153580508446d478adfb450c76ea41 | __init__.py | 295,294 | 6 | 17 | preset_modes | https://github.com/home-assistant/core.git | Add EntityFeature enum to Climate (#69077) | 22 | 0 | 94,318 | 6 |
|
1 | 5 | def call(cls, func, join_type="outer", labels="replace"):
| modin/core/dataframe/algebra/binary.py | 29 | modin | {
"docstring": "\n Build template binary operator.\n\n Parameters\n ----------\n func : callable(pandas.DataFrame, [pandas.DataFrame, list-like, scalar]) -> pandas.DataFrame\n Binary function to execute. Have to be able to accept at least two arguments.\n join_type : {'left', 'right', 'outer', 'inner', None}, default: 'outer'\n Type of join that will be used if indices of operands are not aligned.\n labels : {\"keep\", \"replace\", \"drop\"}, default: \"replace\"\n Whether keep labels from left Modin DataFrame, replace them with labels\n from joined DataFrame or drop altogether to make them be computed lazily later.\n\n Returns\n -------\n callable\n Function that takes query compiler and executes binary operation.\n ",
"language": "en",
"n_whitespaces": 220,
"n_words": 94,
"vocab_size": 79
} | 5 | Python | 5 | bd326f1c4175102489f08d271a53cf374bd9125e | binary.py | 154,285 | 3 | 20 | call | https://github.com/modin-project/modin.git | PERF-#4268: Implement partition-parallel __getitem__ for bool Series masks (#4753)
Signed-off-by: Vasily Litvinov <[email protected]> | 12 | 0 | 35,897 | 6 |
|
1 | 4 | def recalc_open_trade_value(self) -> None:
self.open_trade_value = self._calc_open_trade_value()
| freqtrade/persistence/models.py | 31 | freqtrade | {
"docstring": "\n Recalculate open_trade_value.\n Must be called whenever open_rate, fee_open or is_short is changed.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 12,
"vocab_size": 12
} | 7 | Python | 7 | 1c0946833da746b480f6ef88d4866d6a87824e17 | models.py | 149,271 | 7 | 17 | recalc_open_trade_value | https://github.com/freqtrade/freqtrade.git | Fix bug in exit-count detection | 21 | 0 | 34,386 | 8 |
|
1 | 6 | def dist_in_site_packages(dist):
# type: (Distribution) -> bool
return dist_location(dist).startswith(normalize_path(site_packages))
| .venv/lib/python3.8/site-packages/pip/_internal/utils/misc.py | 35 | transferlearning | {
"docstring": "\n Return True if given Distribution is installed in\n sysconfig.get_python_lib().\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 9,
"vocab_size": 9
} | 9 | Python | 9 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | misc.py | 61,230 | 2 | 19 | dist_in_site_packages | https://github.com/jindongwang/transferlearning.git | upd; format | 18 | 0 | 12,452 | 9 |
|
5 | 19 | def get_account_type_based_gl_data(company, start_date, end_date, account_type, filters=None):
cond = ""
filters = frappe._dict(filters or {})
if filters.include_default_book_entries:
company_fb = frappe.db.get_value("Company", company, "default_finance_book")
cond = % (
frappe.db.escape(filters.finance_book),
frappe.db.escape(company_fb),
)
else:
cond = " AND (finance_book in (%s, '') OR finance_book IS NULL)" % (
frappe.db.escape(cstr(filters.finance_book))
)
gl_sum = frappe.db.sql_list(
.format(
cond=cond
),
(company, start_date, end_date, account_type),
)
return gl_sum[0] if gl_sum and gl_sum[0] else 0
| erpnext/accounts/report/cash_flow/cash_flow.py | 214 | erpnext | {
"docstring": " AND (finance_book in (%s, %s, '') OR finance_book IS NULL)\n\t\t\t\n\t\tselect sum(credit) - sum(debit)\n\t\tfrom `tabGL Entry`\n\t\twhere company=%s and posting_date >= %s and posting_date <= %s\n\t\t\tand voucher_type != 'Period Closing Voucher'\n\t\t\tand account in ( SELECT name FROM tabAccount WHERE account_type = %s) {cond}\n\t",
"language": "en",
"n_whitespaces": 41,
"n_words": 46,
"vocab_size": 40
} | 64 | Python | 48 | 494bd9ef78313436f0424b918f200dab8fc7c20b | cash_flow.py | 65,186 | 27 | 137 | get_account_type_based_gl_data | https://github.com/frappe/erpnext.git | style: format code with black | 45 | 0 | 13,820 | 16 |
|
8 | 21 | def get_docstring(node, clean=True):
if not isinstance(node, (AsyncFunctionDef, FunctionDef, ClassDef, Module)):
raise TypeError("%r can't have docstrings" % node.__class__.__name__)
if not(node.body and isinstance(node.body[0], Expr)):
return None
node = node.body[0].value
if isinstance(node, Str):
text = node.s
elif isinstance(node, Constant) and isinstance(node.value, str):
text = node.value
else:
return None
if clean:
import inspect
text = inspect.cleandoc(text)
return text
| python3.10.4/Lib/ast.py | 193 | XX-Net | {
"docstring": "\n Return the docstring for the given node or None if no docstring can\n be found. If the node provided does not have docstrings a TypeError\n will be raised.\n\n If *clean* is `True`, all tabs are expanded to spaces and any whitespace\n that can be uniformly removed from the second line onwards is removed.\n ",
"language": "en",
"n_whitespaces": 73,
"n_words": 53,
"vocab_size": 43
} | 54 | Python | 39 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | ast.py | 220,220 | 16 | 124 | get_docstring | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 130 | 0 | 55,940 | 12 |
|
1 | 3 | def get_success_url(self):
return self.success_url
| wagtail/contrib/forms/views.py | 19 | wagtail | {
"docstring": "Returns the success URL to redirect to after a successful deletion",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | 4 | Python | 4 | d10f15e55806c6944827d801cd9c2d53f5da4186 | views.py | 73,081 | 2 | 10 | get_success_url | https://github.com/wagtail/wagtail.git | Reformat with black | 18 | 0 | 15,949 | 6 |
|
1 | 3 | def expand_basedirs(self):
self._expand_attrs(['install_base', 'install_platbase', 'root'])
| python3.10.4/Lib/distutils/command/install.py | 36 | XX-Net | {
"docstring": "Calls `os.path.expanduser` on install_base, install_platbase and\n root.",
"language": "en",
"n_whitespaces": 13,
"n_words": 7,
"vocab_size": 7
} | 5 | Python | 5 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | install.py | 222,753 | 2 | 18 | expand_basedirs | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 19 | 0 | 56,733 | 9 |
|
1 | 9 | async def test_delete_nonsense_block_document(self, client, block_schemas):
response = await client.get("/block_documents/not-even")
assert response.status_code == status.HTTP_404_NOT_FOUND
| tests/orion/api/test_block_documents.py | 47 | prefect | {
"docstring": "Regression test for an issue we observed in Cloud where a client made\n requests for /block_documents/null",
"language": "en",
"n_whitespaces": 22,
"n_words": 16,
"vocab_size": 15
} | 13 | Python | 13 | 74b49c72657da5e18fc00c4b1da3012b575210cd | test_block_documents.py | 58,678 | 3 | 27 | test_delete_nonsense_block_document | https://github.com/PrefectHQ/prefect.git | Prevent non-UUID slugs from raising errors on the BlockDocuments APIs. (#6541)
In Prefect Cloud, we observed some errors when clients would send requests for
`.../block_documents/null`, which should really be handled at the routing layer
with 404s when the path UUIDs can't be parsed.
Note that this is just correcting the server-side issue, but does not attempt
to diagnose the client-side issue at this time. Also, this does not attempt
to go through every route in Orion that includes UUIDs in its path. | 34 | 0 | 11,797 | 10 |
|
1 | 31 | def test_cli_backfill_depends_on_past_backwards(self, mock_run):
dag_id = 'test_depends_on_past'
start_date = DEFAULT_DATE + timedelta(days=1)
end_date = start_date + timedelta(days=1)
args = [
'dags',
'backfill',
dag_id,
'--local',
'--start-date',
start_date.isoformat(),
'--end-date',
end_date.isoformat(),
'--ignore-first-depends-on-past',
'--run-backwards',
]
dag = self.dagbag.get_dag(dag_id)
dag_command.dag_backfill(self.parser.parse_args(args), dag=dag)
mock_run.assert_called_once_with(
start_date=start_date,
end_date=end_date,
conf=None,
delay_on_limit_secs=1.0,
donot_pickle=False,
ignore_first_depends_on_past=True,
ignore_task_deps=False,
local=True,
mark_success=False,
pool=None,
rerun_failed_tasks=False,
run_backwards=True,
verbose=False,
continue_on_failures=False,
)
| tests/cli/commands/test_dag_command.py | 230 | airflow | {
"docstring": "\n Test that CLI respects -B argument and raises on interaction with depends_on_past\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | 51 | Python | 44 | 3849b4e709acfc9e85496aa2dededb2dae117fc7 | test_dag_command.py | 46,734 | 34 | 153 | test_cli_backfill_depends_on_past_backwards | https://github.com/apache/airflow.git | support for continue backfill on failures (#22697) | 385 | 0 | 8,976 | 10 |
|
1 | 4 | def _api_status(self):
response.status = 200
return None
| glances/outputs/glances_bottle.py | 24 | glances | {
"docstring": "Glances API RESTful implementation.\n\n Return a 200 status code.\n This entry point should be used to check the API health.\n\n See related issue: Web server health check endpoint #1988\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 29,
"vocab_size": 27
} | 7 | Python | 7 | 8d4a20a6a843e1e35b5324bc83be422fbed04b87 | glances_bottle.py | 69,841 | 3 | 13 | _api_status | https://github.com/nicolargo/glances.git | Web server status check endpoint #1988 | 28 | 0 | 15,108 | 7 |
|
4 | 20 | def spatial_2d_padding(x, padding=((1, 1), (1, 1)), data_format=None):
assert len(padding) == 2
assert len(padding[0]) == 2
assert len(padding[1]) == 2
if data_format is None:
data_format = image_data_format()
if data_format not in {"channels_first", "channels_last"}:
raise ValueError("Unknown data_format: " + str(data_format))
if data_format == "channels_first":
pattern = [[0, 0], [0, 0], list(padding[0]), list(padding[1])]
else:
pattern = [[0, 0], list(padding[0]), list(padding[1]), [0, 0]]
return tf.compat.v1.pad(x, pattern)
@keras_export("keras.backend.spatial_3d_padding")
@tf.__internal__.dispatch.add_dispatch_support
@doc_controls.do_not_generate_docs | keras/backend.py | 278 | @keras_export("keras.backend.spatial_3d_padding")
@tf.__internal__.dispatch.add_dispatch_support
@doc_controls.do_not_generate_docs | keras | {
"docstring": "Pads the 2nd and 3rd dimensions of a 4D tensor.\n\n Args:\n x: Tensor or variable.\n padding: Tuple of 2 tuples, padding pattern.\n data_format: One of `channels_last` or `channels_first`.\n\n Returns:\n A padded 4D tensor.\n\n Raises:\n ValueError: if `data_format` is neither\n `channels_last` or `channels_first`.\n ",
"language": "en",
"n_whitespaces": 100,
"n_words": 42,
"vocab_size": 34
} | 65 | Python | 45 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | backend.py | 269,439 | 27 | 165 | spatial_2d_padding | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 117 | 1 | 80,078 | 13 |
1 | 5 | def is_container(self) -> bool:
return self.styles.layout is not None
| src/textual/widget.py | 29 | textual | {
"docstring": "Check if this widget is a container (contains other widgets)\n\n Returns:\n bool: True if this widget is a container.\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 19,
"vocab_size": 14
} | 9 | Python | 9 | 025a0e348d3d3c360498f4f2035451d50f79b40e | widget.py | 182,594 | 7 | 17 | is_container | https://github.com/Textualize/textual.git | Scrolling working | 23 | 0 | 43,875 | 8 |
|
2 | 5 | def available(self) -> bool:
return self._device is not None and self._device.profile_device.available
| homeassistant/components/dlna_dms/dms.py | 38 | core | {
"docstring": "Device is available when we have a connection to it.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 11 | Python | 11 | b19bf9b147f4321e89d1f7f01e68337f2102f460 | dms.py | 292,448 | 3 | 23 | available | https://github.com/home-assistant/core.git | Add dlna_dms integration to support DLNA Digital Media Servers (#66437) | 25 | 0 | 91,534 | 9 |
|
4 | 28 | def test_co_positions_artificial_instructions(self):
import dis
namespace = {}
exec(textwrap.dedent(), namespace)
exc = namespace['exc']
traceback = exc.__traceback__
code = traceback.tb_frame.f_code
artificial_instructions = []
for instr, positions in zip(
dis.get_instructions(code),
code.co_positions(),
strict=True
):
# If any of the positions is None, then all have to
# be None as well for the case above. There are still
# some places in the compiler, where the artificial instructions
# get assigned the first_lineno but they don't have other positions.
# There is no easy way of inferring them at that stage, so for now
# we don't support it.
self.assertTrue(positions.count(None) in [0, 4])
if not any(positions):
artificial_instructions.append(instr)
self.assertEqual(
[
(instruction.opname, instruction.argval)
for instruction in artificial_instructions
],
[
("PUSH_EXC_INFO", None),
("LOAD_CONST", None), # artificial 'None'
("STORE_NAME", "e"), # XX: we know the location for this
("DELETE_NAME", "e"),
("RERAISE", 1),
("COPY", 3),
("POP_EXCEPT", None),
("RERAISE", 1)
]
)
| Lib/test/test_code.py | 278 | cpython | {
"docstring": "\\\n try:\n 1/0\n except Exception as e:\n exc = e\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 10,
"vocab_size": 10
} | 142 | Python | 105 | a94461d7189d7f1147ab304a332c8684263dc17e | test_code.py | 175,178 | 37 | 169 | test_co_positions_artificial_instructions | https://github.com/python/cpython.git | bpo-46202: Remove opcode POP_EXCEPT_AND_RERAISE (GH-30302)
* bpo-46202: remove opcode POP_EXCEPT_AND_RERAISE
* do not assume that an exception group is truthy | 549 | 0 | 41,563 | 12 |
|
1 | 8 | def get_assessment_criteria(course):
return frappe.get_all(
"Course Assessment Criteria",
fields=["assessment_criteria", "weightage"],
filters={"parent": course},
order_by="idx",
)
@frappe.whitelist() | erpnext/education/api.py | 72 | @frappe.whitelist() | erpnext | {
"docstring": "Returns Assessmemt Criteria and their Weightage from Course Master.\n\n\t:param Course: Course\n\t",
"language": "en",
"n_whitespaces": 10,
"n_words": 12,
"vocab_size": 11
} | 14 | Python | 14 | 494bd9ef78313436f0424b918f200dab8fc7c20b | api.py | 65,846 | 7 | 34 | get_assessment_criteria | https://github.com/frappe/erpnext.git | style: format code with black | 6 | 1 | 14,035 | 11 |
5 | 12 | def get_cloud_syncer(local_dir, remote_dir=None, sync_function=None) -> CloudSyncer:
key = (local_dir, remote_dir)
if key in _syncers:
return _syncers[key]
if not remote_dir:
_syncers[key] = CloudSyncer(local_dir, remote_dir, NOOP)
return _syncers[key]
if sync_function == "auto":
sync_function = None # Auto-detect
# Maybe get user-provided sync client here
client = get_sync_client(sync_function)
if client:
# If the user provided a sync template or function
_syncers[key] = CloudSyncer(local_dir, remote_dir, client)
else:
# Else, get default cloud sync client (e.g. S3 syncer)
sync_client = get_cloud_sync_client(remote_dir)
_syncers[key] = CloudSyncer(local_dir, remote_dir, sync_client)
return _syncers[key]
| python/ray/tune/syncer.py | 174 | ray | {
"docstring": "Returns a Syncer.\n\n This syncer is in charge of syncing the local_dir with upload_dir.\n\n If no ``remote_dir`` is provided, it will return a no-op syncer.\n\n If a ``sync_function`` is provided, it will return a CloudSyncer using\n a custom SyncClient initialized by the sync function. Otherwise it will\n return a CloudSyncer with default templates for s3/gs/hdfs.\n\n Args:\n local_dir (str): Source directory for syncing.\n remote_dir (str): Target directory for syncing. If not provided, a\n no-op Syncer is returned.\n sync_function (func | str): Function for syncing the local_dir to\n remote_dir. If string, then it must be a string template for\n syncer to run. If not provided, it defaults\n to standard S3, gsutil or HDFS sync commands.\n\n Raises:\n ValueError if malformed remote_dir.\n ",
"language": "en",
"n_whitespaces": 214,
"n_words": 118,
"vocab_size": 72
} | 83 | Python | 53 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | syncer.py | 132,338 | 38 | 111 | get_cloud_syncer | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 177 | 0 | 29,744 | 11 |
|
8 | 19 | def assemble_files_to_ship(complete_file_list):
# All files which are in the repository except these:
ignore_patterns = (
# Developer-only tools
'.azure-pipelines/*',
'.github/*',
'.github/*/*',
'changelogs/fragments/*',
'hacking/backport/*',
'hacking/azp/*',
'hacking/tests/*',
'hacking/ticket_stubs/*',
'test/sanity/code-smell/botmeta.*',
'test/sanity/code-smell/release-names.*',
'test/utils/*',
'test/utils/*/*',
'test/utils/*/*/*',
'test/results/.tmp/*',
'test/results/.tmp/*/*',
'test/results/.tmp/*/*/*',
'test/results/.tmp/*/*/*/*',
'test/results/.tmp/*/*/*/*/*',
'.git*',
)
ignore_files = frozenset((
# Developer-only tools
'changelogs/config.yaml',
'hacking/README.md',
'hacking/ansible-profile',
'hacking/cgroup_perf_recap_graph.py',
'hacking/create_deprecated_issues.py',
'hacking/deprecated_issue_template.md',
'hacking/create_deprecation_bug_reports.py',
'hacking/fix_test_syntax.py',
'hacking/get_library.py',
'hacking/metadata-tool.py',
'hacking/report.py',
'hacking/return_skeleton_generator.py',
'hacking/test-module',
'test/support/README.md',
'test/lib/ansible_test/_internal/commands/sanity/bin_symlinks.py',
'test/lib/ansible_test/_internal/commands/sanity/integration_aliases.py',
'.cherry_picker.toml',
'.mailmap',
# Generated as part of a build step
'docs/docsite/rst/conf.py',
'docs/docsite/rst/index.rst',
# Possibly should be included
'examples/scripts/uptime.py',
'examples/scripts/my_test.py',
'examples/scripts/my_test_info.py',
'examples/scripts/my_test_facts.py',
'examples/DOCUMENTATION.yml',
'examples/play.yml',
'examples/hosts.yaml',
'examples/hosts.yml',
'examples/inventory_script_schema.json',
'examples/plugin_filters.yml',
'hacking/env-setup',
'hacking/env-setup.fish',
'MANIFEST',
'setup.cfg',
# docs for test files not included in sdist
'docs/docsite/rst/dev_guide/testing/sanity/bin-symlinks.rst',
'docs/docsite/rst/dev_guide/testing/sanity/botmeta.rst',
'docs/docsite/rst/dev_guide/testing/sanity/integration-aliases.rst',
'docs/docsite/rst/dev_guide/testing/sanity/release-names.rst',
))
# These files are generated and then intentionally added to the sdist
# Manpages
ignore_script = ('ansible-connection', 'ansible-test')
manpages = ['docs/man/man1/ansible.1']
for dirname, dummy, files in os.walk('bin'):
for filename in files:
if filename in ignore_script:
continue
manpages.append('docs/man/man1/%s.1' % filename)
# Misc
misc_generated_files = [
'PKG-INFO',
]
shipped_files = manpages + misc_generated_files
for path in complete_file_list:
if path not in ignore_files:
for ignore in ignore_patterns:
if fnmatch.fnmatch(path, ignore):
break
else:
shipped_files.append(path)
return shipped_files
| test/sanity/code-smell/package-data.py | 423 | ansible | {
"docstring": "\n This looks for all files which should be shipped in the sdist\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 12,
"vocab_size": 12
} | 177 | Python | 136 | 353511a900f6216a25a25d8a36528f636428b57b | package-data.py | 266,979 | 81 | 224 | assemble_files_to_ship | https://github.com/ansible/ansible.git | Add script to handle more deprecations. (#77400)
* Add script to handle more deprecations.
This script currently supports deprecations from the following sanity tests:
* deprecated-config
* update-bundled
* Ignore script in package-data test. | 791 | 0 | 78,675 | 14 |
|
3 | 25 | def _solve_svd_design_matrix(self, alpha, y, sqrt_sw, X_mean, singvals_sq, U, UT_y):
w = ((singvals_sq + alpha) ** -1) - (alpha**-1)
if self.fit_intercept:
# detect intercept column
normalized_sw = sqrt_sw / np.linalg.norm(sqrt_sw)
intercept_dim = _find_smallest_angle(normalized_sw, U)
# cancel the regularization for the intercept
w[intercept_dim] = -(alpha**-1)
c = np.dot(U, self._diag_dot(w, UT_y)) + (alpha**-1) * y
G_inverse_diag = self._decomp_diag(w, U) + (alpha**-1)
if len(y.shape) != 1:
# handle case where y is 2-d
G_inverse_diag = G_inverse_diag[:, np.newaxis]
return G_inverse_diag, c
| sklearn/linear_model/_ridge.py | 220 | scikit-learn | {
"docstring": "Compute dual coefficients and diagonal of G^-1.\n\n Used when we have an SVD decomposition of X\n (n_samples > n_features and X is dense).\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 23,
"vocab_size": 20
} | 76 | Python | 57 | 1fc86b6aacd89da44a3b4e8abf7c3e2ba4336ffe | _ridge.py | 258,898 | 11 | 143 | _solve_svd_design_matrix | https://github.com/scikit-learn/scikit-learn.git | MNT Update black to stable version (#22474) | 202 | 0 | 75,474 | 12 |
|
2 | 5 | async def _send_server_info_to_all(self) -> None:
for client_handler in self.clients:
await self.send_server_info(client_handler)
| src/textual/devtools/service.py | 39 | textual | {
"docstring": "Add `server_info` message to the queues of every client",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 11 | Python | 11 | a72e347ed99333a090377ee438eaf63477cbf98b | service.py | 182,902 | 4 | 22 | _send_server_info_to_all | https://github.com/Textualize/textual.git | Seperate server and client handling logic into classes for devtools | 36 | 0 | 44,001 | 10 |
|
1 | 16 | def test_basic_discovery(self):
with os_helper.temp_cwd():
os.mkdir('foo')
file1 = os.path.join('foo', 'file1.txt')
os_helper.create_empty_file(file1)
os.mkdir('bar')
file2 = os.path.join('bar', 'file2.txt')
os_helper.create_empty_file(file2)
expected = [file2, file1]
self.assertEqual(sorted(filelist.findall()), expected)
| python3.10.4/Lib/distutils/tests/test_filelist.py | 149 | XX-Net | {
"docstring": "\n When findall is called with no parameters or with\n '.' as the parameter, the dot should be omitted from\n the results.\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 21,
"vocab_size": 18
} | 22 | Python | 20 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | test_filelist.py | 223,221 | 10 | 83 | test_basic_discovery | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 124 | 0 | 56,865 | 13 |
|
6 | 27 | def _total_stats(self) -> Dict[str, Union[str, int, float]]:
logger.debug("Compiling Totals")
elapsed = 0
examples = 0
iterations = 0
batchset = set()
total_summaries = len(self._per_session_stats)
for idx, summary in enumerate(self._per_session_stats):
if idx == 0:
starttime = summary["start"]
if idx == total_summaries - 1:
endtime = summary["end"]
elapsed += summary["elapsed"]
examples += ((summary["batch"] * 2) * summary["iterations"])
batchset.add(summary["batch"])
iterations += summary["iterations"]
batch = ",".join(str(bs) for bs in batchset)
totals = {"session": "Total",
"start": starttime,
"end": endtime,
"elapsed": elapsed,
"rate": examples / elapsed if elapsed != 0 else 0,
"batch": batch,
"iterations": iterations}
logger.debug(totals)
return totals
| lib/gui/analysis/stats.py | 311 | faceswap | {
"docstring": " Compile the Totals stats.\n Totals are fully calculated each time as they will change on the basis of the training\n session.\n\n Returns\n -------\n dict\n The Session name, start time, end time, elapsed time, rate, batch size and number of\n iterations for all session ids within the loaded data.\n ",
"language": "en",
"n_whitespaces": 113,
"n_words": 48,
"vocab_size": 41
} | 93 | Python | 65 | 47867a0dd424b3e31d7beead0ffdb8b37c970a9e | stats.py | 101,819 | 36 | 184 | _total_stats | https://github.com/deepfakes/faceswap.git | typing: lib.gui.analysis.stats | 375 | 0 | 21,206 | 14 |
|
1 | 2 | def json_deserialize(message):
| scripts/ws_client.py | 13 | freqtrade | {
"docstring": "\n Deserialize JSON to a dict\n :param message: The message to deserialize\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 11,
"vocab_size": 10
} | 2 | Python | 2 | 3e08c6e5409d3e1b9c6f787415869e3e49289a00 | ws_client.py | 151,437 | 4 | 21 | json_deserialize | https://github.com/freqtrade/freqtrade.git | testing/debugging ws client script | 5 | 0 | 35,014 | 6 |
|
2 | 4 | def apply(func, args, kwargs=None):
if kwargs:
return func(*args, **kwargs)
else:
return func(*args)
| dask/utils.py | 53 | dask | {
"docstring": "Apply a function given its positional and keyword arguments.\n\n Equivalent to ``func(*args, **kwargs)``\n Most Dask users will never need to use the ``apply`` function.\n It is typically only used by people who need to inject\n keyword argument values into a low level Dask task graph.\n\n Parameters\n ----------\n func : callable\n The function you want to apply.\n args : tuple\n A tuple containing all the positional arguments needed for ``func``\n (eg: ``(arg_1, arg_2, arg_3)``)\n kwargs : dict, optional\n A dictionary mapping the keyword arguments\n (eg: ``{\"kwarg_1\": value, \"kwarg_2\": value}``\n\n Examples\n --------\n >>> from dask.utils import apply\n >>> def add(number, second_number=5):\n ... return number + second_number\n ...\n >>> apply(add, (10,), {\"second_number\": 2}) # equivalent to add(*args, **kwargs)\n 12\n\n >>> task = apply(add, (10,), {\"second_number\": 2})\n >>> dsk = {'task-name': task} # adds the task to a low level Dask task graph\n ",
"language": "en",
"n_whitespaces": 240,
"n_words": 139,
"vocab_size": 100
} | 12 | Python | 11 | e61405cb5d345e73f1952ee3d50708566b5263d1 | utils.py | 156,832 | 5 | 32 | apply | https://github.com/dask/dask.git | Docs: how to use kwargs with custom task graphs (#9322) | 35 | 0 | 36,780 | 11 |
|
2 | 4 | def preferred_index(self):
if self._get_preferred_index():
return self.args[1]
else:
return self.args[0]
| sympy/functions/special/tensor_functions.py | 49 | sympy | {
"docstring": "\n Returns the index which is preferred to keep in the final expression.\n\n Explanation\n ===========\n\n The preferred index is the index with more information regarding fermi\n level. If indices contain the same information, 'a' is preferred before\n 'b'.\n\n Examples\n ========\n\n >>> from sympy import KroneckerDelta, Symbol\n >>> a = Symbol('a', above_fermi=True)\n >>> i = Symbol('i', below_fermi=True)\n >>> j = Symbol('j', below_fermi=True)\n >>> p = Symbol('p')\n >>> KroneckerDelta(p, i).preferred_index\n i\n >>> KroneckerDelta(p, a).preferred_index\n a\n >>> KroneckerDelta(i, j).preferred_index\n i\n\n See Also\n ========\n\n killable_index\n\n ",
"language": "en",
"n_whitespaces": 242,
"n_words": 80,
"vocab_size": 55
} | 9 | Python | 8 | 498015021131af4dbb07eb110e5badaba8250c7b | tensor_functions.py | 196,258 | 5 | 29 | preferred_index | https://github.com/sympy/sympy.git | Updated import locations | 52 | 0 | 47,758 | 10 |
|
2 | 17 | def isoformat(self, sep='T', timespec='auto'):
s = ("%04d-%02d-%02d%c" % (self._year, self._month, self._day, sep) +
_format_time(self._hour, self._minute, self._second,
self._microsecond, timespec))
off = self.utcoffset()
tz = _format_offset(off)
if tz:
s += tz
return s
| python3.10.4/Lib/datetime.py | 121 | XX-Net | {
"docstring": "Return the time formatted according to ISO.\n\n The full format looks like 'YYYY-MM-DD HH:MM:SS.mmmmmm'.\n By default, the fractional part is omitted if self.microsecond == 0.\n\n If self.tzinfo is not None, the UTC offset is also attached, giving\n giving a full format of 'YYYY-MM-DD HH:MM:SS.mmmmmm+HH:MM'.\n\n Optional argument sep specifies the separator between date and\n time, default 'T'.\n\n The optional argument timespec specifies the number of additional\n terms of the time to include. Valid options are 'auto', 'hours',\n 'minutes', 'seconds', 'milliseconds' and 'microseconds'.\n ",
"language": "en",
"n_whitespaces": 151,
"n_words": 81,
"vocab_size": 62
} | 31 | Python | 26 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | datetime.py | 222,344 | 9 | 77 | isoformat | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 121 | 0 | 56,543 | 11 |
|
1 | 13 | async def test_cuda_visible_devices(self, job_manager):
run_cmd = f"python {_driver_script_path('check_cuda_devices.py')}"
job_id = job_manager.submit_job(entrypoint=run_cmd)
await async_wait_for_condition(
check_job_succeeded, job_manager=job_manager, job_id=job_id
)
@pytest.mark.asyncio | dashboard/modules/job/tests/test_job_manager.py | 79 | @pytest.mark.asyncio | ray | {
"docstring": "Check CUDA_VISIBLE_DEVICES behavior.\n\n Should not be set in the driver, but should be set in tasks.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 16,
"vocab_size": 13
} | 18 | Python | 17 | 4c1f27118a3af246006ab63325cdff53321bf68b | test_job_manager.py | 139,339 | 6 | 35 | test_cuda_visible_devices | https://github.com/ray-project/ray.git | [job submission] Don't set CUDA_VISIBLE_DEVICES in job driver (#24546)
Currently job drivers cannot use GPUs due to `CUDA_VISIBLE_DEVICES` being set (no resource request for job driver's supervisor actor). This is a regression from `ray submit`.
This is a temporary workaround -- in the future we should support a resource request for the job supervisor actor. | 63 | 1 | 31,668 | 11 |
1 | 8 | def query_put_bounders(query, partition_column, start, end):
where = " WHERE TMP_TABLE.{0} >= {1} AND TMP_TABLE.{0} <= {2}".format(
partition_column, start, end
)
query_with_bounders = "SELECT * FROM ({0}) AS TMP_TABLE {1}".format(query, where)
return query_with_bounders
| modin/experimental/core/execution/unidist/implementations/pandas_on_unidist/io/sql.py | 58 | modin | {
"docstring": "\n Put partition boundaries into the query.\n\n Parameters\n ----------\n query : str\n SQL query string.\n partition_column : str\n Column name used for data partitioning between the workers.\n start : int\n Lowest value to request from the `partition_column`.\n end : int\n Highest value to request from the `partition_column`.\n\n Returns\n -------\n str\n Query string with boundaries.\n ",
"language": "en",
"n_whitespaces": 122,
"n_words": 53,
"vocab_size": 38
} | 32 | Python | 27 | 193505fdf0c984743397ba3df56262f30aee13a8 | sql.py | 155,212 | 6 | 36 | query_put_bounders | https://github.com/modin-project/modin.git | FEAT-#5053: Add pandas on unidist execution with MPI backend (#5059)
Signed-off-by: Igoshev, Iaroslav <[email protected]> | 54 | 0 | 36,303 | 9 |
|
4 | 14 | def resize_feats(self, feats):
out = []
for i in range(len(feats)):
if i == 0:
out.append(
F.interpolate(
feats[0],
size=feats[i + 1].shape[-2:],
mode='bilinear',
align_corners=False))
elif i == len(feats) - 1:
out.append(
F.interpolate(
feats[i],
size=feats[i - 1].shape[-2:],
mode='bilinear',
align_corners=False))
else:
out.append(feats[i])
return out
| mmdet/models/dense_heads/solo_head.py | 198 | mmdetection | {
"docstring": "Downsample the first feat and upsample last feat in feats.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | 40 | Python | 29 | d18cdb140ef3cb9ed5fdef6f1a815f5836f1b1ab | solo_head.py | 244,278 | 20 | 127 | resize_feats | https://github.com/open-mmlab/mmdetection.git | [Feature] Support SOLOv2 (#7441)
* solov2 init
* solov2 r18 lightweight
* add model docstrings and reformat the code
* add docstrings to model method
* add solov2 big model config and correct some errors in the docstring
* fix linting issues
* refactor code and configs
* rename variables according to the convention
* add and enhance solov2 logic
* add doc strings
* update solov2 config files
* fix norm_cfg in mask head
* minor fix
* update configs
Co-authored-by: BIGWangYuDong <[email protected]> | 368 | 0 | 70,305 | 19 |
|
2 | 4 | def top_widget(self):
if self.overlay:
return self.overlay
return self.top_window()
| mitmproxy/tools/console/window.py | 37 | mitmproxy | {
"docstring": "\n The current top widget - either a window or the active overlay.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | 8 | Python | 7 | b3587b52b25077f68116b9852b041d33e7fc6601 | window.py | 251,580 | 4 | 21 | top_widget | https://github.com/mitmproxy/mitmproxy.git | make it black! | 40 | 0 | 73,795 | 8 |
|
1 | 21 | def get_config(self):
json_word_counts = json.dumps(self.word_counts)
json_word_docs = json.dumps(self.word_docs)
json_index_docs = json.dumps(self.index_docs)
json_word_index = json.dumps(self.word_index)
json_index_word = json.dumps(self.index_word)
return {
"num_words": self.num_words,
"filters": self.filters,
"lower": self.lower,
"split": self.split,
"char_level": self.char_level,
"oov_token": self.oov_token,
"document_count": self.document_count,
"word_counts": json_word_counts,
"word_docs": json_word_docs,
"index_docs": json_index_docs,
"index_word": json_index_word,
"word_index": json_word_index,
}
| keras/preprocessing/text.py | 203 | keras | {
"docstring": "Returns the tokenizer configuration as Python dictionary.\n\n The word count dictionaries used by the tokenizer get serialized\n into plain JSON, so that the configuration can be read by other\n projects.\n\n Returns:\n A Python dictionary with the tokenizer configuration.\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 38,
"vocab_size": 30
} | 44 | Python | 40 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | text.py | 275,783 | 20 | 121 | get_config | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 232 | 0 | 81,462 | 9 |
|
6 | 24 | def write_file(masvs_file, input_file, output_file):
# enhanced_masvs_dict = {}
# for file in Path('masvs_yaml').glob('*.yaml'):
# masvs_dict = yaml.load(open(file))
# enhanced_masvs_dict[MASVS_TITLES[file.stem]] = masvs_dict
masvs = yaml.safe_load(open(masvs_file))
testcases_info = []
for file in Path(input_file).glob("*.html"):
contents = file.read_text()
chapter = BeautifulSoup(contents, "lxml")
# print(get_links_to_other_chapters(chapter))
# print(get_all_links_to_tools(chapter))
# print(get_links_to_tools_per_section(chapter))
testcases_info += get_testcases_info(f"{file.stem}.md", chapter)
# print_yaml(testcases_info)
# print(get_sections_plain_text(chapter, "overview"))
# print(get_sections_innerHtml(chapter, "overview"))
for tc in testcases_info:
for id in tc["mstg_ids"]:
if masvs.get(id):
# masvs[id].update(tc)
masvs_req = masvs[id]
if not masvs_req.get("links"):
masvs_req["links"] = []
masvs_req["links"].append(tc["link"])
# masvs_dict[id]['solution'].append(tc['overview']) # todo
# print_yaml(masvs)
write_yaml_file(output_file, masvs)
| tools/scripts/parse_html.py | 227 | owasp-mastg | {
"docstring": "\n Parses the MSTG and completes the MASVS file with information from the MSTG.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 13,
"vocab_size": 11
} | 86 | Python | 53 | a4c1ff1391bfa45b78db5473d1df4a1ace6651f5 | parse_html.py | 191,744 | 15 | 123 | write_file | https://github.com/OWASP/owasp-mastg.git | Generate MSTG Checklists automatically and machine-readable YAML (#2010)
* port masvs checklist generation to the mstg
* add recursive ls
* fix Tools -> tools
* generate MSTG html
* checkout latest masvs tag
* use GITHUB_ENV instead of steps.output
* add MASVS and MSTG link including versions and commit IDs
* add new logo
* set avenir as main font
* add column status with validation
* add conditional formatting for pass, fail and n/a
* add step Show openpyxl Version
* try format only relevant status cells
* create new About sheet with the same header
* add intro to project
* black and flake8 fixes | 298 | 0 | 46,842 | 16 |
|
4 | 6 | def _signature_get_bound_param(spec):
assert spec.startswith('($')
pos = spec.find(',')
if pos == -1:
pos = spec.find(')')
cpos = spec.find(':')
assert cpos == -1 or cpos > pos
cpos = spec.find('=')
assert cpos == -1 or cpos > pos
return spec[2:pos]
| python3.10.4/Lib/inspect.py | 134 | XX-Net | {
"docstring": " Private helper to get first parameter name from a\n __text_signature__ of a builtin method, which should\n be in the following format: '($param1, ...)'.\n Assumptions are that the first argument won't have\n a default value or an annotation.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 37,
"vocab_size": 33
} | 38 | Python | 19 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | inspect.py | 218,383 | 10 | 76 | _signature_get_bound_param | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 72 | 0 | 55,271 | 11 |
|
1 | 5 | def upgrade():
with op.get_context().autocommit_block():
op.execute(
)
op.execute(
)
op.execute(
)
op.execute(
)
| src/prefect/orion/database/migrations/versions/postgresql/2022_06_04_133535_d60c18774a5d_add_indexes_for_partial_name_matches.py | 77 | prefect | {
"docstring": "\n CREATE INDEX CONCURRENTLY \n trgm_ix_flow_name \n ON flow USING gin (name gin_trgm_ops);\n \n CREATE INDEX CONCURRENTLY \n trgm_ix_flow_run_name \n ON flow_run USING gin (name gin_trgm_ops);\n \n CREATE INDEX CONCURRENTLY \n trgm_ix_task_run_name \n ON task_run USING gin (name gin_trgm_ops);\n \n CREATE INDEX CONCURRENTLY \n trgm_ix_deployment_name \n ON deployment USING gin (name gin_trgm_ops);\n ",
"language": "en",
"n_whitespaces": 228,
"n_words": 40,
"vocab_size": 16
} | 12 | Python | 6 | b5b3d808bf059294a7adf17156e4ccdb5a3799da | 2022_06_04_133535_d60c18774a5d_add_indexes_for_partial_name_matches.py | 56,199 | 30 | 39 | upgrade | https://github.com/PrefectHQ/prefect.git | Add index migrations | 118 | 0 | 11,462 | 11 |
|
1 | 8 | def write_exports(self, exports):
rf = self.get_distinfo_file(EXPORTS_FILENAME)
with open(rf, 'w') as f:
write_exports(exports, f)
| .venv/lib/python3.8/site-packages/pip/_vendor/distlib/database.py | 57 | transferlearning | {
"docstring": "\n Write a dictionary of exports to a file in .ini format.\n :param exports: A dictionary of exports, mapping an export category to\n a list of :class:`ExportEntry` instances describing the\n individual export entries.\n ",
"language": "en",
"n_whitespaces": 100,
"n_words": 32,
"vocab_size": 25
} | 13 | Python | 13 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | database.py | 61,961 | 4 | 32 | write_exports | https://github.com/jindongwang/transferlearning.git | upd; format | 45 | 0 | 12,781 | 11 |
|
1 | 3 | def pause_writing(self):
self._app_protocol.pause_writing()
| python3.10.4/Lib/asyncio/sslproto.py | 25 | XX-Net | {
"docstring": "Called when the low-level transport's buffer goes over\n the high-water mark.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 11,
"vocab_size": 10
} | 3 | Python | 3 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | sslproto.py | 220,708 | 2 | 13 | pause_writing | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 17 | 0 | 56,095 | 8 |
|
5 | 11 | def local_process_index(self):
if is_torch_tpu_available():
return xm.get_local_ordinal()
elif is_sagemaker_mp_enabled():
return smp.local_rank()
elif is_sagemaker_dp_enabled():
return dist.get_rank()
elif self.local_rank != -1:
return self.local_rank
return 0
| src/transformers/training_args.py | 92 | transformers | {
"docstring": "\n The index of the local process used.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | 22 | Python | 15 | 81ac45f85c35244831f11f73c09ea10eee4f953a | training_args.py | 36,752 | 10 | 53 | local_process_index | https://github.com/huggingface/transformers.git | update smddp api to v1.4.0 (#16371)
* update smddp api to v1.4.0
* Update src/transformers/trainer.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/trainer.py
Co-authored-by: Sylvain Gugger <[email protected]>
* address comments
* fix style
* remove unused import
* fix indent
* disable style check for import
* fix space
Co-authored-by: Sylvain Gugger <[email protected]> | 108 | 0 | 6,671 | 10 |
|
1 | 8 | async def test_only_one_lock(hass, client, lock_home_connect_620, integration):
assert len(hass.states.async_entity_ids("lock")) == 1
| tests/components/zwave_js/test_lock.py | 44 | core | {
"docstring": "Test node with both Door Lock and Lock CC values only gets one lock entity.",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 14
} | 10 | Python | 10 | 9d14201b13be4f5a5cc5e5f52bba56bfd8fa9694 | test_lock.py | 294,590 | 2 | 26 | test_only_one_lock | https://github.com/home-assistant/core.git | Don't create two zwave_js.lock entities for a single device (#68651) | 16 | 0 | 93,624 | 11 |
|
1 | 6 | def axis_1(request):
return request.param
@pytest.fixture(params=[True, False, None]) | pandas/conftest.py | 41 | @pytest.fixture(params=[True, False, None]) | pandas | {
"docstring": "\n Fixture for returning aliases of axis 1 of a DataFrame.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 9
} | 7 | Python | 7 | 15a06d3d9e7656afff239da7a295a7b684456680 | conftest.py | 164,912 | 2 | 10 | axis_1 | https://github.com/pandas-dev/pandas.git | BUG: groupby.size and groupby.transform('size') incorrect for axis=1 (#45987) | 12 | 1 | 39,619 | 8 |
12 | 44 | def list_summaries(logdir):
result = _SummaryFile()
for (dirpath, _, filenames) in os.walk(logdir):
for filename in filenames:
if not filename.startswith("events.out."):
continue
path = os.path.join(dirpath, filename)
for event in tf.compat.v1.train.summary_iterator(path):
if event.graph_def:
result.graph_defs.append(event.graph_def)
if not event.summary: # (e.g., it's a `graph_def` event)
continue
for value in event.summary.value:
tag = value.tag
# Case on the `value` rather than the summary metadata because
# the Keras callback uses `summary_ops_v2` to emit old-style
# summaries. See b/124535134.
kind = value.WhichOneof("value")
container = {
"simple_value": result.scalars,
"image": result.images,
"histo": result.histograms,
"tensor": result.tensors,
}.get(kind)
if container is None:
raise ValueError(
"Unexpected summary kind %r in event file %s:\n%r"
% (kind, path, event)
)
elif kind == "tensor" and tag != "keras":
# Convert the tf2 summary proto to old style for type checking.
plugin_name = value.metadata.plugin_data.plugin_name
container = {
"images": result.images,
"histograms": result.histograms,
"scalars": result.scalars,
}.get(plugin_name)
if container is not None:
result.convert_from_v2_summary_proto = True
else:
container = result.tensors
container.add(_ObservedSummary(logdir=dirpath, tag=tag))
return result
@test_combinations.run_with_all_model_types
@test_combinations.run_all_keras_modes(always_skip_v1=True) | keras/callbacks_test.py | 426 | @test_combinations.run_with_all_model_types
@test_combinations.run_all_keras_modes(always_skip_v1=True) | keras | {
"docstring": "Read all summaries under the logdir into a `_SummaryFile`.\n\n Args:\n logdir: A path to a directory that contains zero or more event\n files, either as direct children or in transitive subdirectories.\n Summaries in these events must only contain old-style scalars,\n images, and histograms. Non-summary events, like `graph_def`s, are\n ignored.\n\n Returns:\n A `_SummaryFile` object reflecting all summaries written to any\n event files in the logdir or any of its descendant directories.\n\n Raises:\n ValueError: If an event file contains an summary of unexpected kind.\n ",
"language": "en",
"n_whitespaces": 142,
"n_words": 82,
"vocab_size": 65
} | 156 | Python | 107 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | callbacks_test.py | 269,998 | 39 | 245 | list_summaries | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 960 | 1 | 80,375 | 22 |
1 | 2 | def dash(self):
return self["dash"]
| packages/python/plotly/plotly/graph_objs/contour/_line.py | 22 | plotly.py | {
"docstring": "\n Sets the dash style of lines. Set to a dash type string\n (\"solid\", \"dot\", \"dash\", \"longdash\", \"dashdot\", or\n \"longdashdot\") or a dash length list in px (eg\n \"5px,10px,2px,2px\").\n\n The 'dash' property is an enumeration that may be specified as:\n - One of the following dash styles:\n ['solid', 'dot', 'dash', 'longdash', 'dashdot', 'longdashdot']\n - A string containing a dash length list in pixels or percentages\n (e.g. '5px 10px 2px 2px', '5, 10, 2, 2', '10% 20% 40%', etc.)\n\n Returns\n -------\n str\n ",
"language": "en",
"n_whitespaces": 192,
"n_words": 80,
"vocab_size": 65
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _line.py | 229,539 | 2 | 11 | dash | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 61,212 | 7 |
|
8 | 17 | def _get_state(self):
result = {}
for child_attr, child_obj in self.__dict__.items():
# TODO(rchao): Store non-variable states in the dict as well.
if isinstance(child_obj, tf.Variable):
result[child_attr] = child_obj.numpy()
elif saving_lib.is_container(child_obj):
for k, contained_obj in enumerate(child_obj):
if isinstance(contained_obj, tf.Variable):
# Handling the case where `child_obj` is a list/tuple.
result[f"{child_attr}-{k}"] = contained_obj.numpy()
elif isinstance(child_obj, dict) and isinstance(
child_obj[contained_obj], tf.Variable
):
# Handling the case where `child_obj` is a dict.
result[f"{child_attr}-{contained_obj}"] = child_obj[
contained_obj
].numpy()
return result
| keras/engine/base_layer.py | 205 | keras | {
"docstring": "Experimental method for getting the state of this layer object.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 72 | Python | 50 | ba5086fa31d24a9f61b46d4a844311b58dea7ff1 | base_layer.py | 279,672 | 16 | 118 | _get_state | https://github.com/keras-team/keras.git | Keras saving: A prototype of config-based (idempotent) saving and loading, with simple model state restoration added. It's done via the archive provided by `zipfile` package.
Preliminary for review and the APIs and implementation are subject to changes.
PiperOrigin-RevId: 470784761 | 385 | 0 | 83,087 | 19 |
|
19 | 19 | def radius_of_convergence(self):
if any(a.is_integer and (a <= 0) == True for a in self.ap + self.bq):
aints = [a for a in self.ap if a.is_Integer and (a <= 0) == True]
bints = [a for a in self.bq if a.is_Integer and (a <= 0) == True]
if len(aints) < len(bints):
return S.Zero
popped = False
for b in bints:
cancelled = False
while aints:
a = aints.pop()
if a >= b:
cancelled = True
break
popped = True
if not cancelled:
return S.Zero
if aints or popped:
# There are still non-positive numerator parameters.
# This is a polynomial.
return oo
if len(self.ap) == len(self.bq) + 1:
return S.One
elif len(self.ap) <= len(self.bq):
return oo
else:
return S.Zero
| sympy/functions/special/hyper.py | 294 | sympy | {
"docstring": "\n Compute the radius of convergence of the defining series.\n\n Explanation\n ===========\n\n Note that even if this is not ``oo``, the function may still be\n evaluated outside of the radius of convergence by analytic\n continuation. But if this is zero, then the function is not actually\n defined anywhere else.\n\n Examples\n ========\n\n >>> from sympy import hyper\n >>> from sympy.abc import z\n >>> hyper((1, 2), [3], z).radius_of_convergence\n 1\n >>> hyper((1, 2, 3), [4], z).radius_of_convergence\n 0\n >>> hyper((1, 2), (3, 4), z).radius_of_convergence\n oo\n\n ",
"language": "en",
"n_whitespaces": 207,
"n_words": 80,
"vocab_size": 54
} | 118 | Python | 61 | 498015021131af4dbb07eb110e5badaba8250c7b | hyper.py | 196,251 | 25 | 185 | radius_of_convergence | https://github.com/sympy/sympy.git | Updated import locations | 479 | 0 | 47,751 | 14 |
|
2 | 13 | def get_ordered_amount(args, budget):
item_code = args.get("item_code")
condition = get_other_condition(args, budget, "Purchase Order")
data = frappe.db.sql(
.format(
condition
),
item_code,
as_list=1,
)
return data[0][0] if data else 0
| erpnext/accounts/doctype/budget/budget.py | 92 | erpnext | {
"docstring": " select ifnull(sum(child.amount - child.billed_amt), 0) as amount\n\t\tfrom `tabPurchase Order Item` child, `tabPurchase Order` parent where\n\t\tparent.name = child.parent and child.item_code = %s and parent.docstatus = 1 and child.amount > child.billed_amt\n\t\tand parent.status != 'Closed' and {0}",
"language": "en",
"n_whitespaces": 34,
"n_words": 37,
"vocab_size": 30
} | 27 | Python | 23 | 494bd9ef78313436f0424b918f200dab8fc7c20b | budget.py | 64,812 | 14 | 59 | get_ordered_amount | https://github.com/frappe/erpnext.git | style: format code with black | 16 | 0 | 13,728 | 11 |
|
4 | 13 | def set_color_by_t2c(self, t2c=None):
t2c = t2c if t2c else self.t2c
for word, color in list(t2c.items()):
for start, end in self.find_indexes(word, self.text):
self.chars[start:end].set_color(color)
| manim/mobject/svg/text_mobject.py | 96 | manim | {
"docstring": "Internally used function. Sets color for specified strings.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 22 | Python | 18 | 540dc70d2fd7a2f759a6da158303ef81a1ae53f8 | text_mobject.py | 189,392 | 5 | 62 | set_color_by_t2c | https://github.com/ManimCommunity/manim.git | Update `Text` to use new ManimPango color setting (#2341)
* Find indexes in stripped text, not original text
* Add regression test
* Only run the test in linux environement
* Rewrite text2settings in Text to set text color via pango
* Make gradient in Text use pango coloring
* Bump manimpango to newest version
* Update test to use new frames_comparison
* Don't remove svg file on exception
* Bump manimpango
* Fix pre-commit errors
* Fix index bug
* Deprecate no longer used functions set_color_by_t2x
* Remove old commented out code
* Update poetry.lock | 69 | 0 | 46,033 | 13 |
|
2 | 7 | def sleeper(self, duration):
s = time()
yield
time_to_sleep = duration - (time() - s)
if time_to_sleep > 0:
self.wait(time_to_sleep)
| src/streamlink/stream/dash.py | 63 | streamlink | {
"docstring": "\n Do something and then wait for a given duration minus the time it took doing something\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 16,
"vocab_size": 15
} | 19 | Python | 16 | d1a8d1597d4fe9f129a72fe94c1508304b7eae0f | dash.py | 187,407 | 6 | 36 | sleeper | https://github.com/streamlink/streamlink.git | stream.dash: update DASHStreamWorker.iter_segments
- Refactor DASHStreamWorker.iter_segments()
- Replace dash_manifest.sleeper() with SegmentedStreamWorker.wait(),
and make the worker thread shut down immediately on close().
- Prevent unnecessary wait times for static manifest types by calling
close() after all segments were put into the writer's queue. | 65 | 0 | 45,770 | 11 |
|
5 | 9 | def _group_lengths(grouping):
# The result from localeconv()['grouping'], and the input to this
# function, should be a list of integers in one of the
# following three forms:
#
# (1) an empty list, or
# (2) nonempty list of positive integers + [0]
# (3) list of positive integers + [locale.CHAR_MAX], or
from itertools import chain, repeat
if not grouping:
return []
elif grouping[-1] == 0 and len(grouping) >= 2:
return chain(grouping[:-1], repeat(grouping[-2]))
elif grouping[-1] == _locale.CHAR_MAX:
return grouping[:-1]
else:
raise ValueError('unrecognised format for grouping')
| python3.10.4/Lib/_pydecimal.py | 138 | XX-Net | {
"docstring": "Convert a localeconv-style grouping into a (possibly infinite)\n iterable of integers representing group lengths.\n\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 14,
"vocab_size": 13
} | 86 | Python | 62 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | _pydecimal.py | 219,711 | 10 | 79 | _group_lengths | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 159 | 0 | 55,734 | 14 |
|
5 | 26 | def expand(image, border=0, fill=0):
left, top, right, bottom = _border(border)
width = left + image.size[0] + right
height = top + image.size[1] + bottom
color = _color(fill, image.mode)
if image.mode == "P" and image.palette:
palette = ImagePalette.ImagePalette(palette=image.getpalette())
if isinstance(color, tuple):
color = palette.getcolor(color)
else:
palette = None
out = Image.new(image.mode, (width, height), color)
if palette:
out.putpalette(palette.palette)
out.paste(image, (left, top))
return out
| src/PIL/ImageOps.py | 230 | Pillow | {
"docstring": "\n Add border to the image\n\n :param image: The image to expand.\n :param border: Border width, in pixels.\n :param fill: Pixel fill value (a color value). Default is 0 (black).\n :return: An image.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 32,
"vocab_size": 28
} | 61 | Python | 45 | 279ddf4ce6c76498ac29df2552a3023b9aaa76c1 | ImageOps.py | 243,427 | 16 | 149 | expand | https://github.com/python-pillow/Pillow.git | Use getpalette() in ImageOps | 133 | 0 | 70,030 | 13 |
|
5 | 21 | def merge_account(old, new, is_group, root_type, company):
# Validate properties before merging
if not frappe.db.exists("Account", new):
throw(_("Account {0} does not exist").format(new))
val = list(frappe.db.get_value("Account", new, ["is_group", "root_type", "company"]))
if val != [cint(is_group), root_type, company]:
throw(
_(
)
)
if is_group and frappe.db.get_value("Account", new, "parent_account") == old:
frappe.db.set_value(
"Account", new, "parent_account", frappe.db.get_value("Account", old, "parent_account")
)
frappe.rename_doc("Account", old, new, merge=1, force=1)
return new
@frappe.whitelist() | erpnext/accounts/doctype/account/account.py | 248 | @frappe.whitelist() | erpnext | {
"docstring": "Merging is only possible if following properties are same in both records. Is Group, Root Type, Company",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 17
} | 61 | Python | 47 | 494bd9ef78313436f0424b918f200dab8fc7c20b | account.py | 64,741 | 16 | 145 | merge_account | https://github.com/frappe/erpnext.git | style: format code with black | 44 | 1 | 13,713 | 14 |
11 | 16 | def print_help(self):
has_fund_start = "" if self.fund_symbol else "[unvl]"
has_fund_end = "" if self.fund_symbol else "[/unvl]"
has_fund_usa_start = (
"" if self.fund_symbol and self.country == "united states" else "[unvl]"
)
has_fund_usa_end = (
"" if self.fund_symbol and self.country == "united states" else "[/unvl]"
)
if self.fund_name:
if self.fund_symbol:
fund_string = f"{self.fund_name} ({self.fund_symbol})"
else:
fund_string = f"{self.fund_name}"
else:
fund_string = ""
help_text = f
if self.fund_symbol != "" and self.country == "sweden":
help_text +=
console.print(text=help_text, menu="Mutual Funds")
| gamestonk_terminal/mutual_funds/mutual_fund_controller.py | 267 | OpenBBTerminal | {
"docstring": "Print help\n[src][Investing.com][/src][cmds]\n country set a country for filtering[/cmds]\n\n[param]Current Country: [/param]{self.country.title()}\n\n[src][Investing.com][/src][cmds]\n overview overview of top funds by country\n search search for Mutual Funds\n load load historical fund data[/cmds]\n\n[param]Current Fund: [/param]{fund_string}\n{has_fund_start}\n[src][Investing.com][/src][cmds]\n info get fund information\n plot plot loaded historical fund data{has_fund_end}{has_fund_usa_start}\n[src][YFinance][/src]\n sector sector weightings\n equity equity holdings[/cmds]{has_fund_usa_end}\n \n[src][Avanza][/src]\n al_swe display fund allocation (sector, country, holdings)\n info_swe get fund information\n ",
"language": "en",
"n_whitespaces": 164,
"n_words": 64,
"vocab_size": 45
} | 76 | Python | 35 | 493617752699ff4ab63a1ed9df478ac030e68492 | mutual_fund_controller.py | 282,826 | 43 | 115 | print_help | https://github.com/OpenBB-finance/OpenBBTerminal.git | Add avanza mutual fund data and commands (#1452)
* Adding info_se and al_swe commands
* Linting
* Linting
* linting
* Fixes
* Fixes to formatting
* Linting
* Linting
* Linting
Co-authored-by: jmaslek <[email protected]>
Co-authored-by: Colin Delahunty <[email protected]>
Co-authored-by: didierlopes.eth <[email protected]> | 257 | 0 | 84,315 | 14 |
|
1 | 11 | def forward_dummy(self, img, img_metas):
super(SingleStageDetector, self).forward_train(img, img_metas)
x = self.extract_feat(img)
outs = self.panoptic_head(x, img_metas)
return outs
| mmdet/models/detectors/maskformer.py | 67 | mmdetection | {
"docstring": "Used for computing network flops. See\n `mmdetection/tools/analysis_tools/get_flops.py`\n\n Args:\n img (Tensor): of shape (N, C, H, W) encoding input images.\n Typically these should be mean centered and std scaled.\n img_metas (list[Dict]): list of image info dict where each dict\n has: 'img_shape', 'scale_factor', 'flip', and may also contain\n 'filename', 'ori_shape', 'pad_shape', and 'img_norm_cfg'.\n For details on the values of these keys see\n `mmdet/datasets/pipelines/formatting.py:Collect`.\n ",
"language": "en",
"n_whitespaces": 179,
"n_words": 61,
"vocab_size": 55
} | 16 | Python | 13 | cac356380d505bf15587f07c0529218cc36b9652 | maskformer.py | 244,047 | 5 | 43 | forward_dummy | https://github.com/open-mmlab/mmdetection.git | [Feature] Add Maskformer to mmdet (#7212)
* first commit
* add README
* move model description from config to readme
add description for binary_input
add description for dice loss
add a independent panoptic gt processing function
add a independent panoptic gt processing function
remove compatibility of pretrain in maskformer
* update comments in maskformer_head
* update docs format | 51 | 0 | 70,214 | 9 |
|
1 | 4 | def setDefaultWhitespaceChars(chars):
r
ParserElement.DEFAULT_WHITE_CHARS = chars
| .venv/lib/python3.8/site-packages/pip/_vendor/pyparsing.py | 21 | transferlearning | {
"docstring": "\n Overrides the default whitespace chars\n\n Example::\n\n # default whitespace chars are space, <TAB> and newline\n OneOrMore(Word(alphas)).parseString(\"abc def\\nghi jkl\") # -> ['abc', 'def', 'ghi', 'jkl']\n\n # change to just treat newline as significant\n ParserElement.setDefaultWhitespaceChars(\" \\t\")\n OneOrMore(Word(alphas)).parseString(\"abc def\\nghi jkl\") # -> ['abc', 'def']\n ",
"language": "en",
"n_whitespaces": 120,
"n_words": 41,
"vocab_size": 29
} | 6 | Python | 6 | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | pyparsing.py | 63,356 | 14 | 12 | setDefaultWhitespaceChars | https://github.com/jindongwang/transferlearning.git | upd; format | 19 | 0 | 13,265 | 7 |
|
7 | 9 | def override_recursive(a, b):
for key in b:
if isinstance(b[key], dict) is False:
a[key] = b[key]
elif key not in a or isinstance(a[key], dict) is False:
a[key] = b[key]
# make config section empty by demand
elif isinstance(b[key], dict) is True and b[key] == {}:
a[key] = b[key]
else:
override_recursive(a[key], b[key])
@pytest.fixture(scope="module") | tests/integration_tests/flows/conftest.py | 176 | @pytest.fixture(scope="module") | mindsdb | {
"docstring": "Overrides some elements in json 'a' by elements in json 'b'",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 8
} | 51 | Python | 35 | ae4fa77a2c0a9fa57cc9c8bc7e8961dd01e4067e | conftest.py | 117,084 | 10 | 106 | override_recursive | https://github.com/mindsdb/mindsdb.git | It mysql api test pytest (#3694)
* migration to pytest
* Tests start passing
* Fully working tests
* Increase timeout for mindsdb start
* reduce amount of logs
* show logs only for failed tests | 135 | 1 | 25,896 | 13 |
1 | 5 | def result(term):
print("\n" + str(calc(term)))
| calculator.py | 36 | Python | {
"docstring": "\n input: term of type str\n output: none\n purpose: passes the argument to the function calc(...) and\n prints the result onto console.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 21,
"vocab_size": 19
} | 5 | Python | 5 | f0af0c43340763724f139fa68aa1e5a9ffe458b4 | calculator.py | 22,595 | 2 | 18 | result | https://github.com/geekcomputers/Python.git | refactor: clean code
Signed-off-by: slowy07 <[email protected]> | 11 | 0 | 4,374 | 12 |
|
3 | 9 | def installed_location(self) -> Optional[str]:
egg_link = egg_link_path_from_location(self.raw_name)
if egg_link:
location = egg_link
elif self.location:
location = self.location
else:
return None
return normalize_path(location)
| pipenv/patched/notpip/_internal/metadata/base.py | 74 | pipenv | {
"docstring": "The distribution's \"installed\" location.\n\n This should generally be a ``site-packages`` directory. This is\n usually ``dist.location``, except for legacy develop-installed packages,\n where ``dist.location`` is the source code location, and this is where\n the ``.egg-link`` file is.\n\n The returned location is normalized (in particular, with symlinks removed).\n ",
"language": "en",
"n_whitespaces": 87,
"n_words": 45,
"vocab_size": 38
} | 22 | Python | 17 | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | base.py | 19,913 | 18 | 44 | installed_location | https://github.com/pypa/pipenv.git | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 97 | 0 | 3,146 | 10 |
|
2 | 14 | def spsolve(data, indices, indptr, b, tol=1e-6, reorder=1):
if jax._src.lib.xla_extension_version < 86:
raise ValueError('spsolve requires jaxlib version 86 or above.')
return spsolve_p.bind(data, indices, indptr, b, tol=tol, reorder=reorder)
| jax/experimental/sparse/linalg.py | 83 | jax | {
"docstring": "A sparse direct solver using QR factorization.\n\n Accepts a sparse matrix in CSR format `data, indices, indptr` arrays.\n Currently only the CUDA GPU backend is implemented.\n\n Args:\n data : An array containing the non-zero entries of the CSR matrix.\n indices : The column indices of the CSR matrix.\n indptr : The row pointer array of the CSR matrix.\n b : The right hand side of the linear system.\n tol : Tolerance to decide if singular or not. Defaults to 1e-6.\n reorder : The reordering scheme to use to reduce fill-in. No reordering if\n `reorder=0'. Otherwise, symrcm, symamd, or csrmetisnd (`reorder=1,2,3'),\n respectively. Defaults to symrcm.\n\n Returns:\n An array with the same dtype and size as b representing the solution to\n the sparse linear system.\n ",
"language": "en",
"n_whitespaces": 166,
"n_words": 123,
"vocab_size": 81
} | 26 | Python | 23 | 2bc3e39cd9104071ee39dacac22abd51b94eb27e | linalg.py | 121,503 | 4 | 59 | spsolve | https://github.com/google/jax.git | Sparse direct solver using QR factorization from cuSOLVER. This is the jaxlib implementation. We will want to combine this with the sparse libraries already existing in JAX.
PiperOrigin-RevId: 468303019 | 32 | 0 | 27,067 | 10 |
|
3 | 14 | def request_params(self, **kwargs) -> MutableMapping[str, Any]:
params = {"limit": self.page_size}
if self._include_deleted:
params.update(self._filter_all_statuses())
if self.send_fields:
params.update({"fields": ",".join(self.fields)})
return params
| airbyte-integrations/connectors/source-facebook-marketing/source_facebook_marketing/streams.py | 109 | airbyte | {
"docstring": "Parameters that should be passed to query_records method",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 19 | Python | 17 | 2573fa145a1fbf4e849d26c54de105bcacde114f | streams.py | 3,690 | 8 | 64 | request_params | https://github.com/airbytehq/airbyte.git | 🎉 Source Facebook Marketing: Add AdAccount and Images stream implementation (#10180)
* Add AdAccount and Images stream implementation
* Update PR number
* Updated docker version
* Updated to linter
* Update to review
* Add comment to AdAccount read_records method
* Bumped version in seed, definitions and specs files | 76 | 0 | 516 | 14 |
|
1 | 9 | def axis(self):
q = self
AX = Quaternion(0, q.b, q.c, q.d).normalize()
return AX
| sympy/algebras/quaternion.py | 53 | sympy | {
"docstring": "\n Returns the axis part of the quaternion.\n\n Returns\n =======\n Ax : The axis of the quaternion.\n\n Examples\n ========\n\n >>> from sympy.algebras.quaternion import Quaternion\n >>> q = Quaternion(1, 1, 1, 1)\n >>> q.axis()\n 0 + sqrt(3)/3*i + sqrt(3)/3*j + sqrt(3)/3*k\n\n >>> q = Quaternion(4, 8, 13, 12)\n >>> q.axis()\n 0 + 8*sqrt(377)/377*i + sqrt(377)/29*j + 12*sqrt(377)/377*k\n\n ",
"language": "en",
"n_whitespaces": 154,
"n_words": 55,
"vocab_size": 35
} | 13 | Python | 11 | e8c5f4fe692e863bf0a48573a1d0c7b92487c5c1 | quaternion.py | 196,510 | 4 | 33 | axis | https://github.com/sympy/sympy.git | hamilton | 41 | 0 | 47,950 | 11 |
|
1 | 11 | def dagrun_queued(self):
dag_id = request.form.get('dag_id')
dag_run_id = request.form.get('dag_run_id')
confirmed = request.form.get('confirmed') == 'true'
origin = get_safe_url(request.form.get('origin'))
return self._mark_dagrun_state_as_queued(dag_id, dag_run_id, confirmed, origin)
| airflow/www/views.py | 112 | airflow | {
"docstring": "Queue DagRun so tasks that haven't run yet can be started.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 21 | Python | 18 | afd3c135c7d1815c56578d020625a33dc27fe640 | views.py | 46,033 | 6 | 64 | dagrun_queued | https://github.com/apache/airflow.git | Add queue button to click-on-DagRun interface. (#21555)
* Initial implementation of adding Queue button to DagRun interface
* Implement the test cases
* FIX Add all required MyPy ignores
* FIX import
* Update airflow/www/views.py
FIX Documentation
Co-authored-by: Brent Bovenzi <[email protected]>
* update modal UI
Co-authored-by: Brent Bovenzi <[email protected]> | 63 | 0 | 8,767 | 11 |
|
1 | 13 | def _start(self) -> int:
warnings.warn(
self._deprecation_message.format("_start", "start"),
FutureWarning,
stacklevel=find_stack_level(inspect.currentframe()),
)
return self.start
| pandas/core/indexes/range.py | 69 | pandas | {
"docstring": "\n The value of the `start` parameter (``0`` if this was not supplied).\n\n .. deprecated:: 0.25.0\n Use ``start`` instead.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 18,
"vocab_size": 18
} | 12 | Python | 12 | 2f8d0a36703e81e4dca52ca9fe4f58c910c1b304 | range.py | 168,252 | 13 | 41 | _start | https://github.com/pandas-dev/pandas.git | PERF cache find_stack_level (#48023)
cache stacklevel | 73 | 0 | 40,259 | 12 |
|
2 | 6 | def string_position(self, id_):
if self.bow:
return self.string_start[self.positions[id_]]
else:
return self.string_start[[self.positions[id_]]]
| examples/model_interpretation/task/senti/LIME/lime_text.py | 64 | PaddleNLP | {
"docstring": "Returns a np array with indices to id_ (int) occurrences",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | 10 | Python | 9 | 93cae49c0c572b5c1ac972759140fbe924b0374d | lime_text.py | 322,894 | 5 | 41 | string_position | https://github.com/PaddlePaddle/PaddleNLP.git | Add NLP model interpretation (#1752)
* upload NLP interpretation
* fix problems and relocate project
* remove abandoned picture
* remove abandoned picture
* fix dead link in README
* fix dead link in README
* fix code style problems
* fix CR round 1
* remove .gitkeep files
* fix code style
* fix file encoding problem
* fix code style
* delete duplicated files due to directory rebuild
* fix CR round 2
* fix code style
* fix ernie tokenizer
* fix code style
* fix problem from CR round 1
* fix bugs
* fix README
* remove duplicated files
* deal with diff of old and new tokenizer results
* fix CR round 4
* fix code style
* add missing dependence
* fix broken import path
* move some data file to cloud
* MRC upper case to lower case
Co-authored-by: Zeyu Chen <[email protected]>
Co-authored-by: binlinquge <xxx>
Co-authored-by: Guo Sheng <[email protected]> | 53 | 0 | 118,273 | 12 |
|
5 | 13 | def _get_save_args(self) -> Tuple[int, ...]:
filetype = self.config["format"]
args: Tuple[int, ...] = tuple()
if filetype == "jpg" and self.config["jpg_quality"] > 0:
args = (cv2.IMWRITE_JPEG_QUALITY, # pylint: disable=no-member
self.config["jpg_quality"])
if filetype == "png" and self.config["png_compress_level"] > -1:
args = (cv2.IMWRITE_PNG_COMPRESSION, # pylint: disable=no-member
self.config["png_compress_level"])
logger.debug(args)
return args
| plugins/convert/writer/opencv.py | 165 | faceswap | {
"docstring": " Obtain the save parameters for the file format.\n\n Returns\n -------\n tuple\n The OpenCV specific arguments for the selected file format\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 20,
"vocab_size": 16
} | 46 | Python | 31 | 049314429f71a21e6595e9d27e9e36f6a3479c42 | opencv.py | 101,068 | 18 | 98 | _get_save_args | https://github.com/deepfakes/faceswap.git | Convert: Add option to output mask separately for draw-transparent | 157 | 0 | 20,505 | 11 |
|
2 | 25 | def test_resample():
n = 101
colorlist = np.empty((n, 4), float)
colorlist[:, 0] = np.linspace(0, 1, n)
colorlist[:, 1] = 0.2
colorlist[:, 2] = np.linspace(1, 0, n)
colorlist[:, 3] = 0.7
lsc = mcolors.LinearSegmentedColormap.from_list('lsc', colorlist)
lc = mcolors.ListedColormap(colorlist)
# Set some bad values for testing too
for cmap in [lsc, lc]:
cmap.set_under('r')
cmap.set_over('g')
cmap.set_bad('b')
lsc3 = lsc.resample(3)
lc3 = lc.resample(3)
expected = np.array([[0.0, 0.2, 1.0, 0.7],
[0.5, 0.2, 0.5, 0.7],
[1.0, 0.2, 0.0, 0.7]], float)
assert_array_almost_equal(lsc3([0, 0.5, 1]), expected)
assert_array_almost_equal(lc3([0, 0.5, 1]), expected)
# Test over/under was copied properly
assert_array_almost_equal(lsc(np.inf), lsc3(np.inf))
assert_array_almost_equal(lsc(-np.inf), lsc3(-np.inf))
assert_array_almost_equal(lsc(np.nan), lsc3(np.nan))
assert_array_almost_equal(lc(np.inf), lc3(np.inf))
assert_array_almost_equal(lc(-np.inf), lc3(-np.inf))
assert_array_almost_equal(lc(np.nan), lc3(np.nan))
| lib/matplotlib/tests/test_colors.py | 467 | matplotlib | {
"docstring": "\n GitHub issue #6025 pointed to incorrect ListedColormap.resample;\n here we test the method for LinearSegmentedColormap as well.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 16,
"vocab_size": 16
} | 100 | Python | 76 | 1e40f41713fab2d4a86aa26766b3cf6cccd9203d | test_colors.py | 109,337 | 26 | 337 | test_resample | https://github.com/matplotlib/matplotlib.git | ENH: Make the ability to resample interpolated colormaps public | 238 | 0 | 23,532 | 11 |
|
5 | 16 | def test_cr_image_consistency():
cr = _get_basic_ray_cr()
group_specs = [cr["spec"]["headGroupSpec"]] + cr["spec"]["workerGroupSpecs"]
# Head, CPU group, GPU group.
assert len(group_specs) == 3
ray_containers = [
group_spec["template"]["spec"]["containers"][0] for group_spec in group_specs
]
# All Ray containers in the example config have "ray-" in their name.
assert all("ray-" in ray_container["name"] for ray_container in ray_containers)
# All Ray images are from the Ray repo.
assert all(
"rayproject/ray" in ray_container["image"] for ray_container in ray_containers
)
# All Ray images are the same.
assert len({ray_container["image"] for ray_container in ray_containers}) == 1
@pytest.mark.parametrize("exception", [Exception, requests.HTTPError])
@pytest.mark.parametrize("num_exceptions", range(6)) | python/ray/tests/kuberay/test_autoscaling_config.py | 229 | @pytest.mark.parametrize("exception", [Exception, requests.HTTPError])
@pytest.mark.parametrize("num_exceptions", range(6)) | ray | {
"docstring": "Verify that the example config uses the same Ray image for all Ray pods.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 12
} | 89 | Python | 57 | 7d3ceb222c8af98a5c101b1c28ab37ffcb0a3793 | test_autoscaling_config.py | 124,155 | 12 | 101 | test_cr_image_consistency | https://github.com/ray-project/ray.git | [kuberay][autoscaler] Improve CPU, GPU, and memory detection. (#26219)
This PR improves the autoscaler's resource detection logic | 143 | 1 | 27,530 | 12 |
2 | 12 | def resized_crop(clip, i, j, h, w, size, interpolation_mode="bilinear"):
if not _is_tensor_video_clip(clip):
raise ValueError("clip should be a 4D torch.tensor")
clip = crop(clip, i, j, h, w)
clip = resize(clip, size, interpolation_mode)
return clip
| torchvision/transforms/_functional_video.py | 87 | vision | {
"docstring": "\n Do spatial cropping and resizing to the video clip\n Args:\n clip (torch.tensor): Video clip to be cropped. Size is (C, T, H, W)\n i (int): i in (i,j) i.e coordinates of the upper left corner.\n j (int): j in (i,j) i.e coordinates of the upper left corner.\n h (int): Height of the cropped region.\n w (int): Width of the cropped region.\n size (tuple(int, int)): height and width of resized clip\n Returns:\n clip (torch.tensor): Resized and cropped clip. Size is (C, T, H, W)\n ",
"language": "en",
"n_whitespaces": 145,
"n_words": 83,
"vocab_size": 46
} | 32 | Python | 25 | 289fce29b3e2392114aadbe7a419df0f2e3ac1be | _functional_video.py | 192,417 | 6 | 58 | resized_crop | https://github.com/pytorch/vision.git | Replace asserts with exceptions (#5587)
* replace most asserts with exceptions
* fix formating issues
* fix linting and remove more asserts
* fix regresion
* fix regresion
* fix bug
* apply ufmt
* apply ufmt
* fix tests
* fix format
* fix None check
* fix detection models tests
* non scriptable any
* add more checks for None values
* fix retinanet test
* fix retinanet test
* Update references/classification/transforms.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update references/classification/transforms.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update references/optical_flow/transforms.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update references/optical_flow/transforms.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update references/optical_flow/transforms.py
Co-authored-by: Nicolas Hug <[email protected]>
* make value checks more pythonic:
* Update references/optical_flow/transforms.py
Co-authored-by: Nicolas Hug <[email protected]>
* make value checks more pythonic
* make more checks pythonic
* fix bug
* appy ufmt
* fix tracing issues
* fib typos
* fix lint
* remove unecessary f-strings
* fix bug
* Update torchvision/datasets/mnist.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update torchvision/datasets/mnist.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update torchvision/ops/boxes.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update torchvision/ops/poolers.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update torchvision/utils.py
Co-authored-by: Nicolas Hug <[email protected]>
* address PR comments
* Update torchvision/io/_video_opt.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update torchvision/models/detection/generalized_rcnn.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update torchvision/models/feature_extraction.py
Co-authored-by: Nicolas Hug <[email protected]>
* Update torchvision/models/optical_flow/raft.py
Co-authored-by: Nicolas Hug <[email protected]>
* address PR comments
* addressing further pr comments
* fix bug
* remove unecessary else
* apply ufmt
* last pr comment
* replace RuntimeErrors
Co-authored-by: Nicolas Hug <[email protected]> | 54 | 0 | 46,892 | 10 |
|
1 | 13 | def test_spectral_params_validation(input, params, err_type, err_msg):
est = SpectralClustering(**params)
with pytest.raises(err_type, match=err_msg):
est.fit(input)
@pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr")) | sklearn/cluster/tests/test_spectral.py | 93 | @pytest.mark.parametrize("assign_labels", ("kmeans", "discretize", "cluster_qr")) | scikit-learn | {
"docstring": "Check the parameters validation in `SpectralClustering`.",
"language": "en",
"n_whitespaces": 5,
"n_words": 6,
"vocab_size": 6
} | 16 | Python | 16 | 26e2c38a961a27a9e53ce7814bf27f840510b237 | test_spectral.py | 258,494 | 4 | 37 | test_spectral_params_validation | https://github.com/scikit-learn/scikit-learn.git | [MRG] MNT use check_scalar to validate scalar in SpectralClustering (#21881)
* use check_scalar in SpectralClustering
* Add check_scalar parameters validation for cluster.SpectralClustering
* fix missing comma
* tiny changelog update to relauch CI
* errors are raised at fit time solely
Co-authored-by: Julien Jerphanion <[email protected]>
* fix typos
Co-authored-by: Julien Jerphanion <[email protected]>
* merge ..utils imports
Co-authored-by: Julien Jerphanion <[email protected]>
Co-authored-by: hvassard <[email protected]>
Co-authored-by: Julien Jerphanion <[email protected]> | 31 | 1 | 75,252 | 10 |
8 | 15 | def check_graph_consistency(tensor=None, method="add_loss", force_raise=False):
if force_raise or (
tf.compat.v1.executing_eagerly_outside_functions()
and hasattr(tensor, "graph")
and tensor.graph.is_control_flow_graph
):
if method == "activity_regularizer":
bad_example = | keras/engine/base_layer_utils.py | 102 | bad_example = """ | keras | {
"docstring": "Checks that tensors passed to `add_*` method match the Keras graph.\n\n When one of the `add_*` method is called inside a V2 conditional branch,\n the underlying tensor gets created in a FuncGraph managed by control_flow_v2.\n We need to raise clear error messages in such cases.\n\n Args:\n tensor: Tensor to check, or `False` if it is known that an error\n should be raised.\n method: Caller method, one of {'add_metric', 'add_loss', 'add_update'}.\n force_raise: If an error should be raised regardless of `tensor`.\n\n Raises:\n RuntimeError: In case of an out-of-graph tensor.\n \n class TestModel(tf.keras.Model):\n",
"language": "en",
"n_whitespaces": 140,
"n_words": 90,
"vocab_size": 70
} | 21 | Python | 19 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | base_layer_utils.py | 270,862 | 112 | 142 | check_graph_consistency | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 70 | 1 | 80,577 | 13 |
6 | 20 | def get_url(path, dest="", saltenv=None, makedirs=False, source_hash=None):
if not saltenv:
saltenv = __opts__["saltenv"] or "base"
if isinstance(dest, str):
result = _client().get_url(
path, dest, makedirs, saltenv, source_hash=source_hash
)
else:
result = _client().get_url(
path, None, makedirs, saltenv, no_cache=True, source_hash=source_hash
)
if not result:
log.error(
"Unable to fetch file %s from saltenv %s.",
salt.utils.url.redact_http_basic_auth(path),
saltenv,
)
if result:
return salt.utils.stringutils.to_unicode(result)
return result
| salt/modules/cp.py | 198 | salt | {
"docstring": "\n .. versionchanged:: 3005\n ``saltenv`` will use value from config if not explicitly set\n\n .. versionchanged:: 2018.3.0\n ``dest`` can now be a directory\n\n Used to get a single file from a URL.\n\n path\n A URL to download a file from. Supported URL schemes are: ``salt://``,\n ``http://``, ``https://``, ``ftp://``, ``s3://``, ``swift://`` and\n ``file://`` (local filesystem). If no scheme was specified, this is\n equivalent of using ``file://``.\n If a ``file://`` URL is given, the function just returns absolute path\n to that file on a local filesystem.\n The function returns ``False`` if Salt was unable to fetch a file from\n a ``salt://`` URL.\n\n dest\n The default behaviour is to write the fetched file to the given\n destination path. If this parameter is omitted or set as empty string\n (``''``), the function places the remote file on the local filesystem\n inside the Minion cache directory and returns the path to that file.\n\n .. note::\n\n To simply return the file contents instead, set destination to\n ``None``. This works with ``salt://``, ``http://``, ``https://``\n and ``file://`` URLs. The files fetched by ``http://`` and\n ``https://`` will not be cached.\n\n saltenv\n Salt fileserver environment from which to retrieve the file. Ignored if\n ``path`` is not a ``salt://`` URL.\n\n source_hash\n If ``path`` is an http(s) or ftp URL and the file exists in the\n minion's file cache, this option can be passed to keep the minion from\n re-downloading the file if the cached copy matches the specified hash.\n\n .. versionadded:: 2018.3.0\n\n CLI Example:\n\n .. code-block:: bash\n\n salt '*' cp.get_url salt://my/file /tmp/this_file_is_mine\n salt '*' cp.get_url http://www.slashdot.org /tmp/index.html\n ",
"language": "en",
"n_whitespaces": 491,
"n_words": 255,
"vocab_size": 146
} | 58 | Python | 39 | 2bd6323ef5f87d871891a59917ee96f44ef55e75 | cp.py | 216,181 | 20 | 128 | get_url | https://github.com/saltstack/salt.git | fixes saltstack/salt#61562 cp functions derive saltenv from config | 190 | 0 | 54,458 | 13 |
|
1 | 4 | def test_mapped_literal_verify_integrity(dag_maker, session):
with dag_maker(session=session) as dag:
| tests/models/test_dagrun.py | 34 | airflow | {
"docstring": "Test that when the length of a mapped literal changes we remove extra TIs",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 14
} | 7 | Python | 7 | 91832a42d8124b040073481fd93c54e9e64c2609 | test_dagrun.py | 46,886 | 19 | 173 | test_mapped_literal_verify_integrity | https://github.com/apache/airflow.git | Expand mapped tasks at DagRun.Veriy_integrity (#22679)
Create the necessary task instances for a mapped task at dagrun.verify_integrity
Co-authored-by: Ash Berlin-Taylor <[email protected]> | 13 | 0 | 9,033 | 11 |
|
1 | 9 | def test_cursor_var(self):
with connection.cursor() as cursor:
var = cursor.var(str)
cursor.execute("BEGIN %s := 'X'; END; ", [var])
self.assertEqual(var.getvalue(), "X")
| tests/backends/oracle/tests.py | 82 | django | {
"docstring": "Cursor variables can be passed as query parameters.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 18 | Python | 18 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 201,727 | 5 | 45 | test_cursor_var | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 65 | 0 | 49,983 | 11 |
|
18 | 29 | def _eval_Mod(self, q):
r
base, exp = self.base, self.exp
if exp.is_integer and exp.is_positive:
if q.is_integer and base % q == 0:
return S.Zero
from sympy.ntheory.factor_ import totient
if base.is_Integer and exp.is_Integer and q.is_Integer:
b, e, m = int(base), int(exp), int(q)
mb = m.bit_length()
if mb <= 80 and e >= mb and e.bit_length()**4 >= m:
phi = totient(m)
return Integer(pow(b, phi + e%phi, m))
return Integer(pow(b, e, m))
from .mod import Mod
if isinstance(base, Pow) and base.is_integer and base.is_number:
base = Mod(base, q)
return Mod(Pow(base, exp, evaluate=False), q)
if isinstance(exp, Pow) and exp.is_integer and exp.is_number:
bit_length = int(q).bit_length()
# XXX Mod-Pow actually attempts to do a hanging evaluation
# if this dispatched function returns None.
# May need some fixes in the dispatcher itself.
if bit_length <= 80:
phi = totient(q)
exp = phi + Mod(exp, phi)
return Mod(Pow(base, exp, evaluate=False), q)
| sympy/core/power.py | 389 | sympy | {
"docstring": "A dispatched function to compute `b^e \\bmod q`, dispatched\n by ``Mod``.\n\n Notes\n =====\n\n Algorithms:\n\n 1. For unevaluated integer power, use built-in ``pow`` function\n with 3 arguments, if powers are not too large wrt base.\n\n 2. For very large powers, use totient reduction if $e \\ge \\log(m)$.\n Bound on m, is for safe factorization memory wise i.e. $m^{1/4}$.\n For pollard-rho to be faster than built-in pow $\\log(e) > m^{1/4}$\n check is added.\n\n 3. For any unevaluated power found in `b` or `e`, the step 2\n will be recursed down to the base and the exponent\n such that the $b \\bmod q$ becomes the new base and\n $\\phi(q) + e \\bmod \\phi(q)$ becomes the new exponent, and then\n the computation for the reduced expression can be done.\n ",
"language": "en",
"n_whitespaces": 237,
"n_words": 125,
"vocab_size": 95
} | 142 | Python | 90 | cda8dfe6f45dc5ed394c2f5cda706cd6c729f713 | power.py | 195,855 | 45 | 253 | _eval_Mod | https://github.com/sympy/sympy.git | Improved documentation formatting | 503 | 0 | 47,442 | 17 |
|
4 | 10 | def host_header(self) -> Optional[str]:
if self.is_http2 or self.is_http3:
return self.authority or self.data.headers.get("Host", None)
else:
return self.data.headers.get("Host", None)
| mitmproxy/http.py | 86 | mitmproxy | {
"docstring": "\n The request's host/authority header.\n\n This property maps to either ``request.headers[\"Host\"]`` or\n ``request.authority``, depending on whether it's HTTP/1.x or HTTP/2.0.\n\n *See also:* `Request.authority`,`Request.host`, `Request.pretty_host`\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 23,
"vocab_size": 22
} | 17 | Python | 13 | 8e71b0331b8de95c4204d5cc26fb07e967883972 | http.py | 252,191 | 13 | 52 | host_header | https://github.com/mitmproxy/mitmproxy.git | [quic] add is_http3 where necessary | 60 | 0 | 73,921 | 12 |
|
2 | 46 | def test_proxy_manager_lifecycle(shutdown_only):
proxier.CHECK_PROCESS_INTERVAL_S = 1
os.environ["TIMEOUT_FOR_SPECIFIC_SERVER_S"] = "5"
pm, free_ports = start_ray_and_proxy_manager(n_ports=2)
client = "client1"
pm.create_specific_server(client)
assert pm.start_specific_server(client, JobConfig())
# Channel should be ready and corresponding to an existing server
grpc.channel_ready_future(pm.get_channel(client)).result(timeout=5)
proc = pm._get_server_for_client(client)
assert proc.port == free_ports[0], f"Free Ports are: {free_ports}"
log_files_path = os.path.join(
pm.node.get_session_dir_path(), "logs", "ray_client_server*"
)
files = glob(log_files_path)
assert any(str(free_ports[0]) in f for f in files)
proc.process_handle_future.result().process.wait(10)
# Wait for reconcile loop
time.sleep(2)
assert len(pm._free_ports) == 2
assert pm._get_unused_port() == free_ports[1]
@pytest.mark.skipif(
sys.platform == "win32", reason="PSUtil does not work the same on windows."
) | python/ray/tests/test_client_proxy.py | 315 | @pytest.mark.skipif(
sys.platform == "win32", reason="PSUtil does not work the same on windows."
) | ray | {
"docstring": "\n Creates a ProxyManager and tests basic handling of the lifetime of a\n specific RayClient Server. It checks the following properties:\n 1. The SpecificServer is created using the first port.\n 2. The SpecificServer comes alive and has a log associated with it.\n 3. The SpecificServer destructs itself when no client connects.\n 4. The ProxyManager returns the port of the destructed SpecificServer.\n ",
"language": "en",
"n_whitespaces": 82,
"n_words": 60,
"vocab_size": 45
} | 88 | Python | 70 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | test_client_proxy.py | 131,422 | 19 | 170 | test_proxy_manager_lifecycle | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 156 | 1 | 29,519 | 11 |
2 | 5 | def require_wandb(test_case):
if not is_wandb_available():
return unittest.skip("test requires wandb")(test_case)
else:
return test_case
| src/transformers/testing_utils.py | 49 | transformers | {
"docstring": "\n Decorator marking a test that requires wandb.\n\n These tests are skipped when wandb isn't installed.\n\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 15,
"vocab_size": 15
} | 12 | Python | 11 | c74f3d4c480a6971e302de7cef226e9a157ef0d0 | testing_utils.py | 34,828 | 5 | 26 | require_wandb | https://github.com/huggingface/transformers.git | Add W&B backend for hyperparameter sweep (#14582)
# Add support for W&B hyperparameter sweep
This PR:
* allows using wandb for running hyperparameter search.
* The runs are visualized on W&B sweeps dashboard
* This supports runnning sweeps on parallel devices, all reporting to the same central dashboard.
### Usage
**To run new a hyperparameter search:**
```
trainer.hyperparameter_search(
backend="wandb",
project="transformers_sweep", # name of the project
n_trials=5,
metric="eval/loss", # metric to be optimized, default 'eval/loss'. A warning is raised if the passed metric is not found
)
```
This outputs a sweep id. Eg. `my_project/sweep_id`
**To run sweeps on parallel devices:**
Just pass sweep id which you want to run parallel
```
trainer.hyperparameter_search(
backend="wandb",
sweep_id = "my_project/sweep_id"
)
``` | 35 | 0 | 6,347 | 11 |
|
1 | 9 | def _object2proto(self) -> GetObjectResponseMessage_PB:
ser = serialize(self.obj)
return GetObjectResponseMessage_PB(
msg_id=serialize(self.id),
address=serialize(self.address),
obj=ser,
)
| packages/syft/src/syft/core/node/common/action/get_object_action.py | 67 | PySyft | {
"docstring": "Returns a protobuf serialization of self.\n\n As a requirement of all objects which inherit from Serializable,\n this method transforms the current object into the corresponding\n Protobuf object so that it can be further serialized.\n\n :return: returns a protobuf object\n :rtype: GetObjectResponseMessage_PB\n\n .. note::\n This method is purely an internal method. Please use serialize(object) or one of\n the other public serialization methods if you wish to serialize an\n object.\n ",
"language": "en",
"n_whitespaces": 150,
"n_words": 68,
"vocab_size": 56
} | 13 | Python | 13 | 7f44809cca9457058171cfd65994fb4aee8031ac | get_object_action.py | 2,736 | 21 | 42 | _object2proto | https://github.com/OpenMined/PySyft.git | Replace absolute syft imports | 74 | 0 | 355 | 11 |
|
1 | 1 | def doctest_tb_context():
| IPython/core/tests/test_iplib.py | 12 | ipython | {
"docstring": "\n In [3]: xmode context\n Exception reporting mode: Context\n\n In [4]: run simpleerr.py\n ---------------------------------------------------------------------------\n ZeroDivisionError Traceback (most recent call last)\n <BLANKLINE>\n ...\n 30 except IndexError:\n 31 mode = 'div'\n ---> 33 bar(mode)\n <BLANKLINE>\n ... in bar(mode)\n 15 \"bar\"\n 16 if mode=='div':\n ---> 17 div0()\n 18 elif mode=='exit':\n 19 try:\n <BLANKLINE>\n ... in div0()\n 6 x = 1\n 7 y = 0\n ----> 8 x/y\n <BLANKLINE>\n ZeroDivisionError: ...",
"language": "en",
"n_whitespaces": 260,
"n_words": 66,
"vocab_size": 53
} | 2 | Python | 2 | a72418e2dcdfc3c91f70d724d16d2691a41c9c24 | test_iplib.py | 208,726 | 1 | 5 | doctest_tb_context | https://github.com/ipython/ipython.git | Restore lineno's for Input mapped files (#13560)
* Implement lineno's for Input mapped files
* Adopt In [123], line 123 format
* Revert "Set co_name for cells run line by line. Fixes https://github.com/ipython/ipykernel/issues/841"
(This reverts commit d11e987f174a15f1640f8006c86f58d884c3faa4.)
* Omit mention of ", in <module>" for input tracebacks
* Input cell -> Cell
* Remove <module> from traceback doctests
* Use f-string for `in ...' format
* Simplify _format_list logic, converting to f-strings | 5 | 0 | 52,485 | 6 |
|
11 | 42 | def new(self) -> None:
from rich import box, print
from rich.console import Console
from rich.panel import Panel
from rich.progress import track
from rich.prompt import Confirm, Prompt
from rich.syntax import Syntax
from rich.table import Table
console = Console()
print(
Panel.fit(
,
title='Create New Executor',
)
)
exec_name = (
self.args.name
if self.args.name
else Prompt.ask(
':grey_question: What is the [bold]name[/bold] of your executor?\n'
'[dim]CamelCase is required[/dim]',
default=f'MyExecutor{random.randint(0, 100)}',
)
)
exec_path = (
self.args.path
if self.args.path
else Prompt.ask(
':grey_question: [bold]Which folder[/bold] to store your executor?',
default=os.path.join(os.getcwd(), exec_name),
)
)
exec_description = '{{}}'
exec_keywords = '{{}}'
exec_url = '{{}}'
is_dockerfile = False
if self.args.advance_configuration or Confirm.ask(
'[green]That\'s all we need to create an Executor![/green]\n'
':grey_question: Or do you want to proceed to advanced configuration',
default=False,
):
exec_description = (
self.args.description
if self.args.description
else (
Prompt.ask(
':grey_question: Please give a [bold]short description[/bold] of your executor?\n'
f'[dim]Example: {exec_name} embeds images into 128-dim vectors using ResNet.[/dim]'
)
)
)
exec_keywords = (
self.args.keywords
if self.args.keywords
else (
Prompt.ask(
':grey_question: Please give some [bold]keywords[/bold] to help people search your executor [dim](separated by comma)[/dim]\n'
f'[dim]Example: image cv embedding encoding resnet[/dim]'
)
)
)
exec_url = (
self.args.url
if self.args.url
else (
Prompt.ask(
':grey_question: What is the [bold]URL[/bold] for GitHub repo?\n'
f'[dim]Example: https://github.com/yourname/my-executor[/dim]'
)
)
)
print(
Panel.fit(
,
title='[Optional] [bold]Dockerfile[/bold]',
width=80,
)
)
is_dockerfile = self.args.add_dockerfile or Confirm.ask(
':grey_question: Do you need to write your own [bold]Dockerfile[/bold] instead of the auto-generated one?',
default=False,
)
print('[green]That\'s all we need to create an Executor![/green]')
| jina/hubble/hubio.py | 505 | jina | {
"docstring": "Create a new executor folder interactively.\n[bold green]Executor[/bold green] is how Jina processes [bold]Document[/bold].\n\nThis guide helps you to create your own Executor in 30 seconds.\n[bold]Dockerfile[/bold] describes how this executor will be built. It is useful when\nyour executor has non-trivial dependencies or must be run under certain environment.\n\n- If the [bold]Dockerfile[/bold] is missing, Jina automatically generates one for you.\n- If you provide one, then Jina will respect the given [bold]Dockerfile[/bold].",
"language": "en",
"n_whitespaces": 67,
"n_words": 74,
"vocab_size": 59
} | 244 | Python | 133 | beb0d8f569530755f7797781a8cb49e1b8a2faaf | hubio.py | 11,754 | 205 | 694 | new | https://github.com/jina-ai/jina.git | feat(hubble): fetch image only when required (#4445) | 1,309 | 0 | 2,111 | 16 |
|
14 | 20 | def split_having(self, negated=False):
if not self.contains_aggregate:
return self, None
in_negated = negated ^ self.negated
# If the effective connector is OR and this node contains an aggregate,
# then we need to push the whole branch to HAVING clause.
may_need_split = (in_negated and self.connector == AND) or (
not in_negated and self.connector == OR
)
if may_need_split and self.contains_aggregate:
return None, self
where_parts = []
having_parts = []
for c in self.children:
if hasattr(c, "split_having"):
where_part, having_part = c.split_having(in_negated)
if where_part is not None:
where_parts.append(where_part)
if having_part is not None:
having_parts.append(having_part)
elif c.contains_aggregate:
having_parts.append(c)
else:
where_parts.append(c)
having_node = (
self.__class__(having_parts, self.connector, self.negated)
if having_parts
else None
)
where_node = (
self.__class__(where_parts, self.connector, self.negated)
if where_parts
else None
)
return where_node, having_node
| django/db/models/sql/where.py | 290 | django | {
"docstring": "\n Return two possibly None nodes: one for those parts of self that\n should be included in the WHERE clause and one for those parts of\n self that must be included in the HAVING clause.\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 34,
"vocab_size": 23
} | 121 | Python | 75 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | where.py | 205,899 | 33 | 184 | split_having | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 478 | 0 | 51,273 | 13 |
|
2 | 9 | def unpack_collections(*args, traverse=True):
collections = []
repack_dsk = {}
collections_token = uuid.uuid4().hex
| dask/base.py | 49 | dask | {
"docstring": "Extract collections in preparation for compute/persist/etc...\n\n Intended use is to find all collections in a set of (possibly nested)\n python objects, do something to them (compute, etc...), then repackage them\n in equivalent python objects.\n\n Parameters\n ----------\n *args\n Any number of objects. If it is a dask collection, it's extracted and\n added to the list of collections returned. By default, python builtin\n collections are also traversed to look for dask collections (for more\n information see the ``traverse`` keyword).\n traverse : bool, optional\n If True (default), builtin python collections are traversed looking for\n any dask collections they might contain.\n\n Returns\n -------\n collections : list\n A list of all dask collections contained in ``args``\n repack : callable\n A function to call on the transformed collections to repackage them as\n they were in the original ``args``.\n ",
"language": "en",
"n_whitespaces": 231,
"n_words": 132,
"vocab_size": 83
} | 12 | Python | 10 | 8971c37f810aa242295dd6a7d9a7cbdf9621d92e | base.py | 155,868 | 9 | 64 | unpack_collections | https://github.com/dask/dask.git | Tokenize dataclasses (#8557) | 24 | 0 | 36,480 | 9 |
|
1 | 30 | async def test_callback_view_with_jwt(hass, hass_client):
registrations = {"device": SUBSCRIPTION_1}
client = await mock_client(hass, hass_client, registrations)
with patch("homeassistant.components.html5.notify.WebPusher") as mock_wp:
mock_wp().send().status_code = 201
await hass.services.async_call(
"notify",
"notify",
{"message": "Hello", "target": ["device"], "data": {"icon": "beer.png"}},
blocking=True,
)
assert len(mock_wp.mock_calls) == 4
# WebPusher constructor
assert mock_wp.mock_calls[2][1][0] == SUBSCRIPTION_1["subscription"]
# Call to send
push_payload = json.loads(mock_wp.mock_calls[3][1][0])
assert push_payload["body"] == "Hello"
assert push_payload["icon"] == "beer.png"
bearer_token = "Bearer {}".format(push_payload["data"]["jwt"])
resp = await client.post(
PUBLISH_URL, json={"type": "push"}, headers={AUTHORIZATION: bearer_token}
)
assert resp.status == HTTPStatus.OK
body = await resp.json()
assert body == {"event": "push", "status": "ok"}
| tests/components/html5/test_notify.py | 368 | core | {
"docstring": "Test that the notification callback view works with JWT.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | 89 | Python | 66 | 652fedf4d1de2645ba08e6ace5376c7126839154 | test_notify.py | 296,995 | 23 | 208 | test_callback_view_with_jwt | https://github.com/home-assistant/core.git | Fix html5 Firefox Notifications (#82556)
Co-authored-by: Paulus Schoutsen <[email protected]>
fixes undefined | 212 | 0 | 95,966 | 15 |
|
4 | 12 | def _render_href(x, format):
if isinstance(x, str):
if format == "html":
href = '<a href="{0}" target="_blank">{0}</a>'
elif format == "latex":
href = r"\href{{{0}}}{{{0}}}"
else:
raise ValueError("``hyperlinks`` format can only be 'html' or 'latex'")
pat = r"((http|ftp)s?:\/\/|www.)[\w/\-?=%.:@]+\.[\w/\-&?=%.,':;~!@#$*()\[\]]+"
return re.sub(pat, lambda m: href.format(m.group(0)), x)
return x
| pandas/io/formats/style_render.py | 121 | pandas | {
"docstring": "uses regex to detect a common URL pattern and converts to href tag in format.",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 14
} | 43 | Python | 35 | f99ec8bf80ba64b2f852cfab7b27ec9e05055589 | style_render.py | 165,791 | 11 | 70 | _render_href | https://github.com/pandas-dev/pandas.git | BUG: url regex in `style_render` does not pass colon and other valid (#46457)
* BUG: url regex in `style_render` does not pass colon and other valid
URLs containing some valid characters such as colon in port numbers get
cut off when html-formatting. As a workaround, expanded the regex to
match a wider variety of URLs.
* Add whatsnew entry for #46389 fix
* Update whatsnew entry for fix #46389
Co-authored-by: Simon Hawkins <[email protected]>
Co-authored-by: Simon Hawkins <[email protected]> | 120 | 0 | 39,716 | 14 |