complexity
int64 1
56
| n_identifiers
int64 1
114
| code
stringlengths 19
12.7k
| path
stringlengths 8
134
| n_ast_nodes
int64 12
2.35k
| ast_errors
stringlengths 0
4.01k
| repo
stringlengths 3
28
| documentation
dict | n_words
int64 2
866
| language
stringclasses 1
value | vocab_size
int64 2
323
| commit_id
stringlengths 40
40
| file_name
stringlengths 5
79
| id
int64 243
338k
| nloc
int64 1
228
| token_counts
int64 5
1.4k
| fun_name
stringlengths 1
77
| url
stringlengths 31
60
| commit_message
stringlengths 3
15.3k
| n_whitespaces
int64 1
3.23k
| n_ast_errors
int64 0
20
| d_id
int64 74
121k
| ast_levels
int64 4
29
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | def tickangle(self):
return self["tickangle"]
| packages/python/plotly/plotly/graph_objs/bar/marker/_colorbar.py | 22 | plotly.py | {
"docstring": "\n Sets the angle of the tick labels with respect to the\n horizontal. For example, a `tickangle` of -90 draws the tick\n labels vertically.\n\n The 'tickangle' property is a angle (in degrees) that may be\n specified as a number between -180 and 180. Numeric values outside this\n range are converted to the equivalent value\n (e.g. 270 is converted to -90).\n\n Returns\n -------\n int|float\n ",
"language": "en",
"n_whitespaces": 140,
"n_words": 62,
"vocab_size": 48
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _colorbar.py | 228,753 | 2 | 11 | tickangle | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 60,426 | 7 |
|
1 | 11 | def _reset_replica_iterator(self):
replicas = list(self.in_flight_queries.keys())
random.shuffle(replicas)
self.replica_iterator = itertools.cycle(replicas)
| python/ray/serve/_private/router.py | 59 | ray | {
"docstring": "Reset the iterator used to load balance replicas.\n\n This call is expected to be called after the replica membership has\n been updated. It will shuffle the replicas randomly to avoid multiple\n handle sending requests in the same order.\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 38,
"vocab_size": 33
} | 9 | Python | 8 | 545c51609f0f55b41cf99cec95a9c21bee6846de | router.py | 126,370 | 4 | 34 | _reset_replica_iterator | https://github.com/ray-project/ray.git | [Serve] ServeHandle detects ActorError and drop replicas from target group (#26685) | 37 | 0 | 28,152 | 11 |
|
5 | 62 | def test_workflow_job_template_copy(workflow_job_template, post, get, admin, organization):
workflow_job_template.organization = organization
label = Label.objects.create(name="foobar", organization=organization)
workflow_job_template.labels.add(label)
ee = ExecutionEnvironment.objects.create(name="barfoo", organization=organization)
workflow_job_template.execution_environment = ee
ig = InstanceGroup.objects.create(name="bazbar", organization=organization)
workflow_job_template.instance_groups.add(ig)
workflow_job_template.save()
jts = [JobTemplate.objects.create(name='test-jt-{}'.format(i)) for i in range(0, 5)]
nodes = [WorkflowJobTemplateNode.objects.create(workflow_job_template=workflow_job_template, unified_job_template=jts[i]) for i in range(0, 5)]
nodes[0].success_nodes.add(nodes[1])
nodes[1].success_nodes.add(nodes[2])
nodes[0].failure_nodes.add(nodes[3])
nodes[3].failure_nodes.add(nodes[4])
with mock.patch('awx.api.generics.trigger_delayed_deep_copy') as deep_copy_mock:
wfjt_copy_id = post(
reverse('api:workflow_job_template_copy', kwargs={'pk': workflow_job_template.pk}), {'name': 'new wfjt name'}, admin, expect=201
).data['id']
wfjt_copy = type(workflow_job_template).objects.get(pk=wfjt_copy_id)
args, kwargs = deep_copy_mock.call_args
deep_copy_model_obj(*args, **kwargs)
assert wfjt_copy.organization == organization
assert wfjt_copy.created_by == admin
assert wfjt_copy.name == 'new wfjt name'
assert wfjt_copy.labels.count() != 0
assert wfjt_copy.labels.get(pk=label.pk) == label
assert wfjt_copy.execution_environment == ee
assert wfjt_copy.instance_groups.count() != 0
assert wfjt_copy.instance_groups.get(pk=ig.pk) == ig
copied_node_list = [x for x in wfjt_copy.workflow_job_template_nodes.all()]
copied_node_list.sort(key=lambda x: int(x.unified_job_template.name[-1]))
for node, success_count, failure_count, always_count in zip(copied_node_list, [1, 1, 0, 0, 0], [1, 0, 0, 1, 0], [0, 0, 0, 0, 0]):
assert node.success_nodes.count() == success_count
assert node.failure_nodes.count() == failure_count
assert node.always_nodes.count() == always_count
assert copied_node_list[1] in copied_node_list[0].success_nodes.all()
assert copied_node_list[2] in copied_node_list[1].success_nodes.all()
assert copied_node_list[3] in copied_node_list[0].failure_nodes.all()
assert copied_node_list[4] in copied_node_list[3].failure_nodes.all()
@pytest.mark.django_db | awx/main/tests/functional/test_copy.py | 837 | @pytest.mark.django_db | awx | {
"docstring": "\n Tests the FIELDS_TO_PRESERVE_AT_COPY attribute on WFJTs\n ",
"language": "en",
"n_whitespaces": 13,
"n_words": 6,
"vocab_size": 6
} | 169 | Python | 102 | 7de5f772626a00d31026270865276365287cbe37 | test_copy.py | 81,880 | 40 | 538 | test_workflow_job_template_copy | https://github.com/ansible/awx.git | adding test coverage to ensure that FIELDS_TO_PRESERVE_AT_COPY is behaving as expected for WFJTs | 328 | 1 | 17,273 | 18 |
1 | 10 | def line_collection_2d_to_3d(col, zs=0, zdir='z'):
segments3d = _paths_to_3d_segments(col.get_paths(), zs, zdir)
col.__class__ = Line3DCollection
col.set_segments(segments3d)
| lib/mpl_toolkits/mplot3d/art3d.py | 64 | matplotlib | {
"docstring": "Convert a `.LineCollection` to a `.Line3DCollection` object.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 6
} | 13 | Python | 12 | df6f95703b60348e01603f98a439b133da2938a0 | art3d.py | 109,916 | 4 | 39 | line_collection_2d_to_3d | https://github.com/matplotlib/matplotlib.git | Improve mpl_toolkit documentation | 25 | 0 | 23,823 | 10 |
|
48 | 98 | def rsolve_hyper(coeffs, f, n, **hints):
r
coeffs = list(map(sympify, coeffs))
f = sympify(f)
r, kernel, symbols = len(coeffs) - 1, [], set()
if not f.is_zero:
if f.is_Add:
similar = {}
for g in f.expand().args:
if not g.is_hypergeometric(n):
return None
for h in similar.keys():
if hypersimilar(g, h, n):
similar[h] += g
break
else:
similar[g] = S.Zero
inhomogeneous = []
for g, h in similar.items():
inhomogeneous.append(g + h)
elif f.is_hypergeometric(n):
inhomogeneous = [f]
else:
return None
for i, g in enumerate(inhomogeneous):
coeff, polys = S.One, coeffs[:]
denoms = [S.One]*(r + 1)
s = hypersimp(g, n)
for j in range(1, r + 1):
coeff *= s.subs(n, n + j - 1)
p, q = coeff.as_numer_denom()
polys[j] *= p
denoms[j] = q
for j in range(r + 1):
polys[j] *= Mul(*(denoms[:j] + denoms[j + 1:]))
R = rsolve_poly(polys, Mul(*denoms), n)
if not (R is None or R is S.Zero):
inhomogeneous[i] *= R
else:
return None
result = Add(*inhomogeneous)
else:
result = S.Zero
Z = Dummy('Z')
p, q = coeffs[0], coeffs[r].subs(n, n - r + 1)
p_factors = [z for z in roots(p, n).keys()]
q_factors = [z for z in roots(q, n).keys()]
factors = [(S.One, S.One)]
for p in p_factors:
for q in q_factors:
if p.is_integer and q.is_integer and p <= q:
continue
else:
factors += [(n - p, n - q)]
p = [(n - p, S.One) for p in p_factors]
q = [(S.One, n - q) for q in q_factors]
factors = p + factors + q
for A, B in factors:
polys, degrees = [], []
D = A*B.subs(n, n + r - 1)
for i in range(r + 1):
a = Mul(*[A.subs(n, n + j) for j in range(i)])
b = Mul(*[B.subs(n, n + j) for j in range(i, r)])
poly = quo(coeffs[i]*a*b, D, n)
polys.append(poly.as_poly(n))
if not poly.is_zero:
degrees.append(polys[i].degree())
if degrees:
d, poly = max(degrees), S.Zero
else:
return None
for i in range(r + 1):
coeff = polys[i].nth(d)
if coeff is not S.Zero:
poly += coeff * Z**i
for z in roots(poly, Z).keys():
if z.is_zero:
continue
recurr_coeffs = [polys[i].as_expr()*z**i for i in range(r + 1)]
if d == 0 and 0 != Add(*[recurr_coeffs[j]*j for j in range(1, r + 1)]):
# faster inline check (than calling rsolve_poly) for a
# constant solution to a constant coefficient recurrence.
sol = [Symbol("C" + str(len(symbols)))]
else:
sol, syms = rsolve_poly(recurr_coeffs, 0, n, len(symbols), symbols=True)
sol = sol.collect(syms)
sol = [sol.coeff(s) for s in syms]
for C in sol:
ratio = z * A * C.subs(n, n + 1) / B / C
ratio = simplify(ratio)
# If there is a nonnegative root in the denominator of the ratio,
# this indicates that the term y(n_root) is zero, and one should
# start the product with the term y(n_root + 1).
n0 = 0
for n_root in roots(ratio.as_numer_denom()[1], n).keys():
if n_root.has(I):
return None
elif (n0 < (n_root + 1)) == True:
n0 = n_root + 1
K = product(ratio, (n, n0, n - 1))
if K.has(factorial, FallingFactorial, RisingFactorial):
K = simplify(K)
if casoratian(kernel + [K], n, zero=False) != 0:
kernel.append(K)
kernel.sort(key=default_sort_key)
sk = list(zip(numbered_symbols('C'), kernel))
if sk:
for C, ker in sk:
result += C * ker
else:
return None
if hints.get('symbols', False):
# XXX: This returns the symbols in a non-deterministic order
symbols |= {s for s, k in sk}
return (result, list(symbols))
else:
return result
| sympy/solvers/recurr.py | 1,617 | sympy | {
"docstring": "\n Given linear recurrence operator `\\operatorname{L}` of order `k`\n with polynomial coefficients and inhomogeneous equation\n `\\operatorname{L} y = f` we seek for all hypergeometric solutions\n over field `K` of characteristic zero.\n\n The inhomogeneous part can be either hypergeometric or a sum\n of a fixed number of pairwise dissimilar hypergeometric terms.\n\n The algorithm performs three basic steps:\n\n (1) Group together similar hypergeometric terms in the\n inhomogeneous part of `\\operatorname{L} y = f`, and find\n particular solution using Abramov's algorithm.\n\n (2) Compute generating set of `\\operatorname{L}` and find basis\n in it, so that all solutions are linearly independent.\n\n (3) Form final solution with the number of arbitrary\n constants equal to dimension of basis of `\\operatorname{L}`.\n\n Term `a(n)` is hypergeometric if it is annihilated by first order\n linear difference equations with polynomial coefficients or, in\n simpler words, if consecutive term ratio is a rational function.\n\n The output of this procedure is a linear combination of fixed\n number of hypergeometric terms. However the underlying method\n can generate larger class of solutions - D'Alembertian terms.\n\n Note also that this method not only computes the kernel of the\n inhomogeneous equation, but also reduces in to a basis so that\n solutions generated by this procedure are linearly independent\n\n Examples\n ========\n\n >>> from sympy.solvers import rsolve_hyper\n >>> from sympy.abc import x\n\n >>> rsolve_hyper([-1, -1, 1], 0, x)\n C0*(1/2 - sqrt(5)/2)**x + C1*(1/2 + sqrt(5)/2)**x\n\n >>> rsolve_hyper([-1, 1], 1 + x, x)\n C0 + x*(x + 1)/2\n\n References\n ==========\n\n .. [1] M. Petkovsek, Hypergeometric solutions of linear recurrences\n with polynomial coefficients, J. Symbolic Computation,\n 14 (1992), 243-264.\n\n .. [2] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996.\n ",
"language": "en",
"n_whitespaces": 443,
"n_words": 270,
"vocab_size": 169
} | 553 | Python | 259 | 4a7c0c31501685f9d8e6572fe735b592a1fa3c33 | recurr.py | 198,001 | 164 | 1,051 | rsolve_hyper | https://github.com/sympy/sympy.git | rsolve_hyper: take into account degenerate solutions
This fixes sympy/sympy#8697:
In [2]: rsolve(a(n + 3) - a(n + 2) - a(n + 1) + a(n), a(n))
Out[2]:
n
(-1) ⋅C₁ + C₀ + C₂⋅n
Added also test from issue thread, which is not related
to the problem. And from PR request diofant/diofant#442.
Test for sympy/sympy#6844 was adapted. | 1,808 | 0 | 48,766 | 20 |
|
8 | 22 | def parse_targets(self, source):
self.dist_log("looking for '@targets' inside -> ", source)
# get lines between /*@targets and */
with open(source) as fd:
tokens = ""
max_to_reach = 1000 # good enough, isn't?
start_with = "@targets"
start_pos = -1
end_with = "*/"
end_pos = -1
for current_line, line in enumerate(fd):
if current_line == max_to_reach:
self.dist_fatal("reached the max of lines")
break
if start_pos == -1:
start_pos = line.find(start_with)
if start_pos == -1:
continue
start_pos += len(start_with)
tokens += line
end_pos = line.find(end_with)
if end_pos != -1:
end_pos += len(tokens) - len(line)
break
if start_pos == -1:
self.dist_fatal("expected to find '%s' within a C comment" % start_with)
if end_pos == -1:
self.dist_fatal("expected to end with '%s'" % end_with)
tokens = tokens[start_pos:end_pos]
return self._parse_target_tokens(tokens)
_parse_regex_arg = re.compile(r'\s|,|([+-])') | numpy/distutils/ccompiler_opt.py | 305 | numpy | {
"docstring": "\n Fetch and parse configuration statements that required for\n defining the targeted CPU features, statements should be declared\n in the top of source in between **C** comment and start\n with a special mark **@targets**.\n\n Configuration statements are sort of keywords representing\n CPU features names, group of statements and policies, combined\n together to determine the required optimization.\n\n Parameters\n ----------\n source : str\n the path of **C** source file.\n\n Returns\n -------\n - bool, True if group has the 'baseline' option\n - list, list of CPU features\n - list, list of extra compiler flags\n ",
"language": "en",
"n_whitespaces": 214,
"n_words": 90,
"vocab_size": 63
} | 122 | Python | 78 | f404e9e92e87a3990712d723d5c562a89300ac01 | ccompiler_opt.py | 160,174 | 29 | 165 | parse_targets | https://github.com/numpy/numpy.git | Add space after argument name | 511 | 0 | 38,546 | 15 |
|
1 | 8 | def data_system_ping_fixture():
return json.loads(load_fixture("system_ping_data.json", "guardian"))
@pytest.fixture(name="data_valve_status", scope="session") | tests/components/guardian/conftest.py | 58 | @pytest.fixture(name="data_valve_status", scope="session") | core | {
"docstring": "Define data from a successful system_ping response.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | 7 | Python | 7 | 6bbe38578c74e5ecd8aadcd2cf39cddca8a59a52 | conftest.py | 310,457 | 2 | 17 | data_system_ping_fixture | https://github.com/home-assistant/core.git | Add diagnostics to Elexa Guardian (#64599) | 12 | 1 | 109,142 | 10 |
2 | 18 | def _softmax(x, axis):
if not dtypes.issubdtype(x.dtype, np.floating):
raise TypeError(f"_softmax only accepts floating dtypes, got {x.dtype}")
x_max = jnp.max(x, axis, keepdims=True)
unnormalized = jnp.exp(x - lax.stop_gradient(x_max))
return unnormalized / unnormalized.sum(axis, keepdims=True)
| jax/_src/random.py | 118 | jax | {
"docstring": "Utility to compute the softmax of x along a given axis.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 30 | Python | 27 | 69969ef8031e424b19dd020a396b3fbdc25b703e | random.py | 119,870 | 6 | 71 | _softmax | https://github.com/google/jax.git | add random.loggamma and improve dirichlet & beta implementation | 38 | 0 | 26,701 | 12 |
|
3 | 22 | def fit(self, X, y=None):
if not self.degree >= 1:
raise ValueError(f"degree={self.degree} should be >=1.")
X = self._validate_data(X, accept_sparse="csc")
random_state = check_random_state(self.random_state)
n_features = X.shape[1]
if self.coef0 != 0:
n_features += 1
self.indexHash_ = random_state.randint(
0, high=self.n_components, size=(self.degree, n_features)
)
self.bitHash_ = random_state.choice(a=[-1, 1], size=(self.degree, n_features))
self._n_features_out = self.n_components
return self
| sklearn/kernel_approximation.py | 202 | scikit-learn | {
"docstring": "Fit the model with X.\n\n Initializes the internal variables. The method needs no information\n about the distribution of data, so we only care about n_features in X.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Training data, where `n_samples` is the number of samples\n and `n_features` is the number of features.\n\n y : array-like of shape (n_samples,) or (n_samples, n_outputs), \\\n default=None\n Target values (None for unsupervised transformations).\n\n Returns\n -------\n self : object\n Returns the instance itself.\n ",
"language": "en",
"n_whitespaces": 209,
"n_words": 80,
"vocab_size": 61
} | 50 | Python | 42 | d616e43947340e152e4a901931e954d699368fa9 | kernel_approximation.py | 259,122 | 14 | 126 | fit | https://github.com/scikit-learn/scikit-learn.git | ENH Adds feature_names_out for most of kernel_approximation (#22694) | 160 | 0 | 75,581 | 12 |
|
6 | 23 | def _poll_with_exponential_delay(request, execute_num_retries, max_n, is_done_func, is_error_func):
for i in range(0, max_n):
try:
response = request.execute(num_retries=execute_num_retries)
if is_error_func(response):
raise ValueError(f'The response contained an error: {response}')
if is_done_func(response):
log.info('Operation is done: %s', response)
return response
time.sleep((2 ** i) + (random.randint(0, 1000) / 1000))
except HttpError as e:
if e.resp.status != 429:
log.info('Something went wrong. Not retrying: %s', format(e))
raise
else:
time.sleep((2 ** i) + (random.randint(0, 1000) / 1000))
raise ValueError(f'Connection could not be established after {max_n} retries.')
| airflow/providers/google/cloud/hooks/mlengine.py | 238 | airflow | {
"docstring": "\n Execute request with exponential delay.\n\n This method is intended to handle and retry in case of api-specific errors,\n such as 429 \"Too Many Requests\", unlike the `request.execute` which handles\n lower level errors like `ConnectionError`/`socket.timeout`/`ssl.SSLError`.\n\n :param request: request to be executed.\n :param execute_num_retries: num_retries for `request.execute` method.\n :param max_n: number of times to retry request in this method.\n :param is_done_func: callable to determine if operation is done.\n :param is_error_func: callable to determine if operation is failed.\n :return: response\n :rtype: httplib2.Response\n ",
"language": "en",
"n_whitespaces": 116,
"n_words": 79,
"vocab_size": 58
} | 75 | Python | 60 | 602abe8394fafe7de54df7e73af56de848cdf617 | mlengine.py | 44,110 | 17 | 144 | _poll_with_exponential_delay | https://github.com/apache/airflow.git | Remove `:type` lines now sphinx-autoapi supports typehints (#20951)
* Remove `:type` lines now sphinx-autoapi supports typehints
Since we have no updated sphinx-autoapi to a more recent version it
supports showing type hints in the documentation, so we don't need to
have the type hints _and_ the `:type` lines -- which is good, as the
ones in the doc strings are easy to get out of date!
The following settings have been set:
`autodoc_typehints = 'description'` -- show types in description (where
previous `:type` used to show up)
`autodoc_typehints_description_target = 'documented'` -- only link to
types that are documented. (Without this we have some missing return
types that aren't documented, and aren't linked to in our current python
API docs, so this caused a build failure)
`autodoc_typehints_format = 'short'` -- Shorten type hints where
possible, i.e. `StringIO` instead of `io.StringIO`
* Add argument type names to local spelling dictionary
Now that we are using the type hints in the docs, sphinxcontrib-spelling
picks them up as words to be checked, so we have to ignore them.
I've chosen to add the provider specific ones to local dictionary files
rather than the global, as for example, `mgmt` is an error in most
places, but not in some of the Azure provider. | 254 | 0 | 8,160 | 20 |
|
13 | 16 | def get_change_message(self):
if self.change_message and self.change_message[0] == "[":
try:
change_message = json.loads(self.change_message)
except json.JSONDecodeError:
return self.change_message
messages = []
for sub_message in change_message:
if "added" in sub_message:
if sub_message["added"]:
sub_message["added"]["name"] = gettext(
sub_message["added"]["name"]
)
messages.append(
gettext("Added {name} “{object}”.").format(
**sub_message["added"]
)
)
else:
messages.append(gettext("Added."))
elif "changed" in sub_message:
sub_message["changed"]["fields"] = get_text_list(
[
gettext(field_name)
for field_name in sub_message["changed"]["fields"]
],
gettext("and"),
)
if "name" in sub_message["changed"]:
sub_message["changed"]["name"] = gettext(
sub_message["changed"]["name"]
)
messages.append(
gettext("Changed {fields} for {name} “{object}”.").format(
**sub_message["changed"]
)
)
else:
messages.append(
gettext("Changed {fields}.").format(
**sub_message["changed"]
)
)
elif "deleted" in sub_message:
sub_message["deleted"]["name"] = gettext(
sub_message["deleted"]["name"]
)
messages.append(
gettext("Deleted {name} “{object}”.").format(
**sub_message["deleted"]
)
)
change_message = " ".join(msg[0].upper() + msg[1:] for msg in messages)
return change_message or gettext("No fields changed.")
else:
return self.change_message
| django/contrib/admin/models.py | 520 | django | {
"docstring": "\n If self.change_message is a JSON structure, interpret it as a change\n string, properly translated.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | 119 | Python | 64 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | models.py | 203,402 | 56 | 289 | get_change_message | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 1,263 | 0 | 50,352 | 22 |
|
21 | 64 | def call_ef(self, other_args):
parser = argparse.ArgumentParser(
add_help=False,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
prog="ef",
description=,
)
parser.add_argument(
"-p",
"--period",
default=self.params["historic_period"]
if "historic_period" in self.params
else "3y",
dest="historic_period",
help=,
)
parser.add_argument(
"-s",
"--start",
default=self.params["start_period"]
if "start_period" in self.params
else "",
dest="start_period",
help=,
)
parser.add_argument(
"-e",
"--end",
default=self.params["end_period"] if "end_period" in self.params else "",
dest="end_period",
help=,
)
parser.add_argument(
"-lr",
"--log-returns",
action="store_true",
default=self.params["log_returns"]
if "log_returns" in self.params
else False,
dest="log_returns",
help="If use logarithmic or arithmetic returns to calculate returns",
)
parser.add_argument(
"-f",
"--freq",
default=self.params["return_frequency"]
if "return_frequency" in self.params
else "d",
dest="return_frequency",
help=,
choices=self.FREQ_CHOICES,
)
parser.add_argument(
"-mn",
"--maxnan",
type=float,
default=self.params["max_nan"] if "max_nan" in self.params else 0.05,
dest="max_nan",
help=,
)
parser.add_argument(
"-th",
"--threshold",
type=float,
default=self.params["threshold_value"]
if "threshold_value" in self.params
else 0.30,
dest="threshold_value",
help=,
)
parser.add_argument(
"-mt",
"--method",
default=self.params["nan_fill_method"]
if "nan_fill_method" in self.params
else "time",
dest="nan_fill_method",
help=,
)
parser.add_argument(
"-rm",
"--risk-measure",
default=self.params["risk_measure"]
if "risk_measure" in self.params
else "MV",
dest="risk_measure",
help=,
choices=self.MEAN_RISK_CHOICES,
)
parser.add_argument(
"-r",
"--risk-free-rate",
type=float,
dest="risk_free",
default=self.params["risk_free"]
if "risk_free" in self.params
else get_rf(),
help=,
)
parser.add_argument(
"-a",
"--alpha",
type=float,
default=self.params["significance_level"]
if "significance_level" in self.params
else 0.05,
dest="significance_level",
help="Significance level of CVaR, EVaR, CDaR and EDaR",
)
parser.add_argument(
"-v",
"--value",
dest="long_allocation",
help="Amount to allocate to portfolio in long positions",
type=float,
default=self.params["long_allocation"]
if "long_allocation" in self.params
else 1,
)
parser.add_argument(
"-vs",
"--value-short",
dest="short_allocation",
help="Amount to allocate to portfolio in short positions",
type=float,
default=self.params["short_allocation"]
if "short_allocation" in self.params
else 0.0,
)
if other_args and "-" not in other_args[0][0]:
other_args.insert(0, "-n")
parser.add_argument(
"-n",
"--number-portfolios",
default=self.params["amount_portfolios"]
if "amount_portfolios" in self.params
else 100,
type=check_non_negative,
dest="amount_portfolios",
help="Number of portfolios to simulate",
)
parser.add_argument(
"-se",
"--seed",
default=self.params["random_seed"] if "random_seed" in self.params else 123,
type=check_non_negative,
dest="random_seed",
help="Seed used to generate random portfolios",
)
parser.add_argument(
"-t",
"--tangency",
action="store_true",
dest="tangency",
default=self.params["tangency"] if "tangency" in self.params else False,
help="Adds the optimal line with the risk-free asset",
)
ns_parser = parse_known_args_and_warn(parser, other_args)
if ns_parser:
if len(self.tickers) < 2:
console.print(
"Please have at least 2 loaded tickers to calculate weights.\n"
)
return
optimizer_view.display_ef(
stocks=self.tickers,
period=ns_parser.historic_period,
start=ns_parser.start_period,
end=ns_parser.end_period,
log_returns=ns_parser.log_returns,
freq=ns_parser.return_frequency,
maxnan=ns_parser.max_nan,
threshold=ns_parser.threshold_value,
method=ns_parser.nan_fill_method,
risk_measure=ns_parser.risk_measure.lower(),
risk_free_rate=ns_parser.risk_free,
alpha=ns_parser.significance_level,
value=ns_parser.long_allocation,
value_short=ns_parser.short_allocation,
n_portfolios=ns_parser.amount_portfolios,
seed=ns_parser.random_seed,
tangency=ns_parser.tangency,
)
| openbb_terminal/portfolio/portfolio_optimization/po_controller.py | 1,304 | OpenBBTerminal | {
"docstring": "Process ef commandThis function plots random portfolios based on their\n risk and returns and shows the efficient frontier.Period to get yfinance data from.\n Possible frequency strings are:\n 'd': means days, for example '252d' means 252 days\n 'w': means weeks, for example '52w' means 52 weeks\n 'mo': means months, for example '12mo' means 12 months\n 'y': means years, for example '1y' means 1 year\n 'ytd': downloads data from beginning of year to today\n 'max': downloads all data available for each assetStart date to get yfinance data from. Must be in\n 'YYYY-MM-DD' formatEnd date to get yfinance data from. Must be in\n 'YYYY-MM-DD' formatFrequency used to calculate returns. Possible values are:\n 'd': for daily returns\n 'w': for weekly returns\n 'm': for monthly returns\n Max percentage of nan values accepted per asset to be\n considered in the optimization processValue used to replace outliers that are higher to threshold\n in absolute valueMethod used to fill nan values in time series, by default time.\n Possible values are:\n 'linear': linear interpolation\n 'time': linear interpolation based on time index\n 'nearest': use nearest value to replace nan values\n 'zero': spline of zeroth order\n 'slinear': spline of first order\n 'quadratic': spline of second order\n 'cubic': spline of third order\n 'barycentric': builds a polynomial that pass for all pointsRisk measure used to optimize the portfolio. Possible values are:\n 'MV' : Variance\n 'MAD' : Mean Absolute Deviation\n 'MSV' : Semi Variance (Variance of negative returns)\n 'FLPM' : First Lower Partial Moment\n 'SLPM' : Second Lower Partial Moment\n 'CVaR' : Conditional Value at Risk\n 'EVaR' : Entropic Value at Risk\n 'WR' : Worst Realization\n 'ADD' : Average Drawdown of uncompounded returns\n 'UCI' : Ulcer Index of uncompounded returns\n 'CDaR' : Conditional Drawdown at Risk of uncompounded returns\n 'EDaR' : Entropic Drawdown at Risk of uncompounded returns\n 'MDD' : Maximum Drawdown of uncompounded returns\n Risk-free rate of borrowing/lending. The period of the\n risk-free rate must be annual",
"language": "en",
"n_whitespaces": 1057,
"n_words": 314,
"vocab_size": 174
} | 327 | Python | 194 | 34bc290dded1bd2418fc3c6b375a79f9cdd68d5a | po_controller.py | 284,355 | 223 | 800 | call_ef | https://github.com/OpenBB-finance/OpenBBTerminal.git | New portfolio optimization menu (#1642)
* New-Portfolio-Optimization-Menu
* New-Portfolio-Optimization-Menu
* New-Portfolio-Optimization-Menu
* Update _index.md
* New-Portfolio-Optimization-Menu
* New-Portfolio-Optimization-Menu
* configure portfolio optimization parameters ini
* minor improvement
* Revert "New-Portfolio-Optimization-Menu"
This reverts commit b4b7169cfbc8f28c379eb1920307c2cdd2e47a0f.
* Add in Excel functionality and improve the capabilities
* Add Excel load function
* Tidying up the functions
* New-Portfolio-Optimization-Menu
* New-Portfolio-Optimization-Menu
* New-Portfolio-Optimization-Menu
* Re-add my code
* Some spacing and details
* Add folder structure for portfolio
* Update terminal file loading
* New-Portfolio-Optimization-Menu
* Make it possible to move from params to po with loaded file
* New-Portfolio-Optimization-Menu
* New-Portfolio-Optimization-Menu
* Making the connection between the parameters file and the functions
* Add in allocation and new params files
* Improve params default settings
* New-Portfolio-Optimization-Menu
* Update Portfolios and Params sheets
* Update sheets
* Update command to load in correct sheet
* Adjust function to only read specific columns
* Update portfolio
* Small correction
* New-Portfolio-Optimization-Menu
* New-Portfolio-Optimization-Menu
* New-Portfolio-Optimization-Menu
* Patched up show error
* Add Equity portfolio
* Make functions more robust
* New-Portfolio-Optimization-Menu
* New-Portfolio-Optimization-Menu
* Add in Params documentation
* Fixing Linting
* Add in Requirements and Poetry Updates
* Update website
* linting
* Update tests
* Minor fix
* remove unneccesary READMEs
* Remove expected variable type
* Improve documentation
* Clean up the code
* Refractoring
* Adjust names to make it OS friendly
Co-authored-by: Jeroen Bouma <[email protected]>
Co-authored-by: jmaslek <[email protected]>
Co-authored-by: Colin Delahunty <[email protected]>
Co-authored-by: DidierRLopes <[email protected]> | 2,276 | 0 | 84,706 | 13 |
|
1 | 4 | def get(cls):
min_partition_size = super().get()
assert min_partition_size > 0, "`min_partition_size` should be > 0"
return min_partition_size
| modin/config/envvars.py | 42 | modin | {
"docstring": "\n Get ``MinPartitionSize`` with extra checks.\n\n Returns\n -------\n int\n ",
"language": "en",
"n_whitespaces": 44,
"n_words": 8,
"vocab_size": 8
} | 16 | Python | 13 | 0bdc482d6f1682e103b4c4d7ee7c4d505d2d3b1c | envvars.py | 152,965 | 4 | 23 | get | https://github.com/modin-project/modin.git | REFACTOR-#3768: change 'compute_chunksize' signature (#3769)
Co-authored-by: Yaroslav Igoshev <[email protected]>
Signed-off-by: Anatoly Myachev <[email protected]> | 44 | 0 | 35,209 | 10 |
|
1 | 3 | def _get_loss(self):
return HalfSquaredError()
# TODO(1.3): remove | sklearn/linear_model/_glm/glm.py | 21 | scikit-learn | {
"docstring": "This is only necessary because of the link and power arguments of the\n TweedieRegressor.\n\n Note that we do not need to pass sample_weight to the loss class as this is\n only needed to set loss.constant_hessian on which GLMs do not rely.\n ",
"language": "en",
"n_whitespaces": 69,
"n_words": 41,
"vocab_size": 32
} | 7 | Python | 7 | 75a94f518f7bd7d0bf581ffb67d9f961e3c4efbc | glm.py | 259,436 | 2 | 10 | _get_loss | https://github.com/scikit-learn/scikit-learn.git | ENH migrate GLMs / TweedieRegressor to linear loss (#22548)
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Thomas J. Fan <[email protected]> | 24 | 0 | 75,770 | 7 |
|
9 | 24 | def update_last_purchase_rate(doc, is_submit):
import frappe.utils
this_purchase_date = frappe.utils.getdate(doc.get("posting_date") or doc.get("transaction_date"))
for d in doc.get("items"):
# get last purchase details
last_purchase_details = get_last_purchase_details(d.item_code, doc.name)
# compare last purchase date and this transaction's date
last_purchase_rate = None
if last_purchase_details and (
doc.get("docstatus") == 2 or last_purchase_details.purchase_date > this_purchase_date
):
last_purchase_rate = last_purchase_details["base_net_rate"]
elif is_submit == 1:
# even if this transaction is the latest one, it should be submitted
# for it to be considered for latest purchase rate
if flt(d.conversion_factor):
last_purchase_rate = flt(d.base_net_rate) / flt(d.conversion_factor)
# Check if item code is present
# Conversion factor should not be mandatory for non itemized items
elif d.item_code:
frappe.throw(_("UOM Conversion factor is required in row {0}").format(d.idx))
# update last purchsae rate
frappe.db.set_value("Item", d.item_code, "last_purchase_rate", flt(last_purchase_rate))
| erpnext/buying/utils.py | 263 | erpnext | {
"docstring": "updates last_purchase_rate in item table for each item",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 7
} | 121 | Python | 80 | 494bd9ef78313436f0424b918f200dab8fc7c20b | utils.py | 65,607 | 16 | 153 | update_last_purchase_rate | https://github.com/frappe/erpnext.git | style: format code with black | 98 | 0 | 13,953 | 20 |
|
6 | 14 | def clean_subpage_models(cls):
if cls._clean_subpage_models is None:
subpage_types = getattr(cls, "subpage_types", None)
if subpage_types is None:
# if subpage_types is not specified on the Page class, allow all page types as subpages
cls._clean_subpage_models = get_page_models()
else:
cls._clean_subpage_models = [
resolve_model_string(model_string, cls._meta.app_label)
for model_string in subpage_types
]
for model in cls._clean_subpage_models:
if not issubclass(model, Page):
raise LookupError("%s is not a Page subclass" % model)
return cls._clean_subpage_models
| wagtail/core/models/__init__.py | 137 | wagtail | {
"docstring": "\n Returns the list of subpage types, normalised as model classes.\n Throws ValueError if any entry in subpage_types cannot be recognised as a model name,\n or LookupError if a model does not exist (or is not a Page subclass).\n ",
"language": "en",
"n_whitespaces": 67,
"n_words": 38,
"vocab_size": 31
} | 64 | Python | 44 | d10f15e55806c6944827d801cd9c2d53f5da4186 | __init__.py | 73,792 | 14 | 84 | clean_subpage_models | https://github.com/wagtail/wagtail.git | Reformat with black | 273 | 0 | 16,113 | 18 |
|
1 | 8 | def test_pandas_contiguous_dtypes():
pd = pytest.importorskip("pandas")
df1 = pd.DataFrame([[1, 2.2], [3, 4.4]])
df2 = pd.DataFrame([[1.1, 2.2], [3.3, 4.4]])
assert sizeof(df2) < sizeof(df1)
| dask/tests/test_sizeof.py | 99 | dask | {
"docstring": "2+ contiguous columns of the same dtype in the same DataFrame share the same\n surface thus have lower overhead\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 19,
"vocab_size": 15
} | 21 | Python | 17 | 80dd84d46ef6b7befa1b416c4597c83ef81ef972 | test_sizeof.py | 157,273 | 5 | 75 | test_pandas_contiguous_dtypes | https://github.com/dask/dask.git | Deflate sizeof() of duplicate references to pandas object types (#9776) | 36 | 0 | 36,896 | 10 |
|
1 | 2 | def namelengthsrc(self):
return self["namelengthsrc"]
| packages/python/plotly/plotly/graph_objs/bar/_hoverlabel.py | 22 | plotly.py | {
"docstring": "\n Sets the source reference on Chart Studio Cloud for\n `namelength`.\n\n The 'namelengthsrc' property must be specified as a string or\n as a plotly.grid_objs.Column object\n\n Returns\n -------\n str\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 27,
"vocab_size": 25
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _hoverlabel.py | 228,667 | 2 | 11 | namelengthsrc | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 60,340 | 7 |
|
1 | 9 | def list(self, directory='""', pattern='*'):
name = 'LIST'
typ, dat = self._simple_command(name, directory, pattern)
return self._untagged_response(typ, dat, name)
| python3.10.4/Lib/imaplib.py | 69 | XX-Net | {
"docstring": "List mailbox names in directory matching pattern.\n\n (typ, [data]) = <instance>.list(directory='\"\"', pattern='*')\n\n 'data' is list of LIST responses.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 18,
"vocab_size": 18
} | 17 | Python | 16 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | imaplib.py | 217,896 | 4 | 42 | list | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 45 | 0 | 54,999 | 8 |
|
2 | 9 | def deploy(self) -> Pipeline:
[node.deploy() for node in self._incoming_edges]
self._executor = create_executor_from_step_config(
self._serialized_callable_factory, self._config
)
return Pipeline(self)
| python/ray/serve/pipeline/node.py | 65 | ray | {
"docstring": "Instantiates executors for this and all dependent nodes.\n\n After the pipeline is deployed, .call() and .call_async() can be used.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 19,
"vocab_size": 18
} | 17 | Python | 17 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | node.py | 130,920 | 10 | 40 | deploy | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 63 | 0 | 29,427 | 9 |
|
1 | 15 | async def test_only_migrate_once(hass, utcnow):
entity_registry = er.async_get(hass)
aid = get_next_aid()
old_light_entry = entity_registry.async_get_or_create(
"light",
"homekit_controller",
f"homekit-00:00:00:00:00:00-{aid}-8",
)
new_light_entry = entity_registry.async_get_or_create(
"light",
"homekit_controller",
f"00:00:00:00:00:00_{aid}_8",
)
await setup_test_component(hass, create_lightbulb_service_with_color_temp)
assert (
entity_registry.async_get(old_light_entry.entity_id).unique_id
== f"homekit-00:00:00:00:00:00-{aid}-8"
)
assert (
entity_registry.async_get(new_light_entry.entity_id).unique_id
== f"00:00:00:00:00:00_{aid}_8"
)
| tests/components/homekit_controller/test_light.py | 163 | core | {
"docstring": "Test a we handle migration happening after an upgrade and than a downgrade and then an upgrade.",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 14
} | 39 | Python | 27 | f23b1750e85f07091eb896a0b12b8f95e5646338 | test_light.py | 288,895 | 22 | 88 | test_only_migrate_once | https://github.com/home-assistant/core.git | Migrate HomeKit Controller to use stable identifiers (#80064) | 145 | 0 | 88,044 | 11 |
|
1 | 8 | def expectation(self, expr, condition=None, evaluate=True, **kwargs):
return _SubstituteRV._expectation(expr, condition, evaluate, **kwargs)
| sympy/stats/stochastic_process_types.py | 48 | sympy | {
"docstring": "\n Computes expectation.\n\n Parameters\n ==========\n\n expr : RandomIndexedSymbol, Relational, Logic\n Condition for which expectation has to be computed. Must\n contain a RandomIndexedSymbol of the process.\n condition : Relational, Logic\n The given conditions under which computations should be done.\n\n Returns\n =======\n\n Expectation of the RandomIndexedSymbol.\n\n ",
"language": "en",
"n_whitespaces": 140,
"n_words": 43,
"vocab_size": 36
} | 11 | Python | 11 | 7fe8e027ae1d7f683243c0229b961671a6cbb4c5 | stochastic_process_types.py | 197,542 | 2 | 33 | expectation | https://github.com/sympy/sympy.git | Improved some documentation in the stats module | 25 | 0 | 48,620 | 8 |
|
2 | 11 | def slice_inputs(self, indices_dataset, inputs):
dataset = tf.data.Dataset.zip(
(indices_dataset, tf.data.Dataset.from_tensors(inputs).repeat())
)
| keras/engine/data_adapter.py | 62 | keras | {
"docstring": "Slice inputs into a Dataset of batches.\n\n Given a Dataset of batch indices and the unsliced inputs,\n this step slices the inputs in a parallelized fashion\n and produces a dataset of input batches.\n\n Args:\n indices_dataset: A Dataset of batched indices\n inputs: A python data structure that contains the inputs, targets,\n and possibly sample weights.\n\n Returns:\n A Dataset of input batches matching the batch indices.\n ",
"language": "en",
"n_whitespaces": 144,
"n_words": 64,
"vocab_size": 41
} | 10 | Python | 10 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | data_adapter.py | 271,113 | 14 | 103 | slice_inputs | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 42 | 0 | 80,693 | 15 |
|
1 | 2 | def operation(self):
return self["operation"]
| packages/python/plotly/plotly/graph_objs/contour/_contours.py | 22 | plotly.py | {
"docstring": "\n Sets the constraint operation. \"=\" keeps regions equal to\n `value` \"<\" and \"<=\" keep regions less than `value` \">\" and\n \">=\" keep regions greater than `value` \"[]\", \"()\", \"[)\", and\n \"(]\" keep regions inside `value[0]` to `value[1]` \"][\", \")(\",\n \"](\", \")[\" keep regions outside `value[0]` to value[1]` Open\n vs. closed intervals make no difference to constraint display,\n but all versions are allowed for consistency with filter\n transforms.\n\n The 'operation' property is an enumeration that may be specified as:\n - One of the following enumeration values:\n ['=', '<', '>=', '>', '<=', '[]', '()', '[)', '(]', '][',\n ')(', '](', ')[']\n\n Returns\n -------\n Any\n ",
"language": "en",
"n_whitespaces": 232,
"n_words": 101,
"vocab_size": 82
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _contours.py | 229,518 | 2 | 11 | operation | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 61,191 | 7 |
|
1 | 2 | def test_generic_inline_model_admin_bad_fk_field(self):
| tests/admin_checks/tests.py | 13 | django | {
"docstring": "\n A GenericInlineModelAdmin errors if the ct_fk_field points to a\n nonexistent field.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 11,
"vocab_size": 11
} | 2 | Python | 2 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | tests.py | 207,036 | 15 | 72 | test_generic_inline_model_admin_bad_fk_field | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 9 | 0 | 51,842 | 6 |
|
12 | 19 | def evaluate(self, expr, context):
if isinstance(expr, string_types):
if expr[0] in '\'"':
result = expr[1:-1]
else:
if expr not in context:
raise SyntaxError('unknown variable: %s' % expr)
result = context[expr]
else:
assert isinstance(expr, dict)
op = expr['op']
if op not in self.operations:
raise NotImplementedError('op not implemented: %s' % op)
elhs = expr['lhs']
erhs = expr['rhs']
if _is_literal(expr['lhs']) and _is_literal(expr['rhs']):
raise SyntaxError('invalid comparison: %s %s %s' % (elhs, op, erhs))
lhs = self.evaluate(elhs, context)
rhs = self.evaluate(erhs, context)
if ((elhs == 'python_version' or erhs == 'python_version') and
op in ('<', '<=', '>', '>=', '===', '==', '!=', '~=')):
lhs = NV(lhs)
rhs = NV(rhs)
elif elhs == 'python_version' and op in ('in', 'not in'):
lhs = NV(lhs)
rhs = _get_versions(rhs)
result = self.operations[op](lhs, rhs)
return result
| pipenv/patched/notpip/_vendor/distlib/markers.py | 395 | pipenv | {
"docstring": "\n Evaluate a marker expression returned by the :func:`parse_requirement`\n function in the specified context.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 13,
"vocab_size": 12
} | 123 | Python | 73 | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | markers.py | 20,032 | 28 | 233 | evaluate | https://github.com/pypa/pipenv.git | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 463 | 0 | 3,185 | 16 |
|
9 | 18 | def _is_function_class_equation(func_class, f, symbol):
if f.is_Mul or f.is_Add:
return all(_is_function_class_equation(func_class, arg, symbol)
for arg in f.args)
if f.is_Pow:
if not f.exp.has(symbol):
return _is_function_class_equation(func_class, f.base, symbol)
else:
return False
if not f.has(symbol):
return True
if isinstance(f, func_class):
try:
g = Poly(f.args[0], symbol)
return g.degree() <= 1
except PolynomialError:
return False
else:
return False
| sympy/solvers/solveset.py | 185 | sympy | {
"docstring": " Tests whether the equation is an equation of the given function class.\n\n The given equation belongs to the given function class if it is\n comprised of functions of the function class which are multiplied by\n or added to expressions independent of the symbol. In addition, the\n arguments of all such functions must be linear in the symbol as well.\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import _is_function_class_equation\n >>> from sympy import tan, sin, tanh, sinh, exp\n >>> from sympy.abc import x\n >>> from sympy.functions.elementary.trigonometric import TrigonometricFunction\n >>> from sympy.functions.elementary.hyperbolic import HyperbolicFunction\n >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x)\n False\n >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x)\n True\n >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x)\n False\n >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x)\n True\n >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x)\n True\n ",
"language": "en",
"n_whitespaces": 190,
"n_words": 123,
"vocab_size": 73
} | 52 | Python | 35 | e0dc14eca132f37c5f49369eb4051eae37c9b119 | solveset.py | 197,067 | 19 | 119 | _is_function_class_equation | https://github.com/sympy/sympy.git | Refactored import ordering in functions | 192 | 0 | 48,321 | 14 |
|
6 | 21 | def update_connected_interfaces(instance, created, raw=False, **kwargs):
logger = logging.getLogger('netbox.wireless.wirelesslink')
if raw:
logger.debug(f"Skipping endpoint updates for imported wireless link {instance}")
return
if instance.interface_a.wireless_link != instance:
logger.debug(f"Updating interface A for wireless link {instance}")
instance.interface_a.wireless_link = instance
instance.interface_a._link_peer = instance.interface_b
instance.interface_a.save()
if instance.interface_b.cable != instance:
logger.debug(f"Updating interface B for wireless link {instance}")
instance.interface_b.wireless_link = instance
instance.interface_b._link_peer = instance.interface_a
instance.interface_b.save()
# Create/update cable paths
if created:
for interface in (instance.interface_a, instance.interface_b):
create_cablepath([interface])
@receiver(post_delete, sender=WirelessLink) | netbox/wireless/signals.py | 244 | @receiver(post_delete, sender=WirelessLink) | netbox | {
"docstring": "\n When a WirelessLink is saved, save a reference to it on each connected interface.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 14,
"vocab_size": 13
} | 69 | Python | 46 | 951627093c11584ffb73ad2be2aef40a91a90934 | signals.py | 264,921 | 18 | 134 | update_connected_interfaces | https://github.com/netbox-community/netbox.git | Test cleanup | 177 | 1 | 77,914 | 12 |
19 | 39 | def get_payload(self, i=None, decode=False):
# Here is the logic table for this code, based on the email5.0.0 code:
# i decode is_multipart result
# ------ ------ ------------ ------------------------------
# None True True None
# i True True None
# None False True _payload (a list)
# i False True _payload element i (a Message)
# i False False error (not a list)
# i True False error (not a list)
# None False False _payload
# None True False _payload decoded (bytes)
# Note that Barry planned to factor out the 'decode' case, but that
# isn't so easy now that we handle the 8 bit data, which needs to be
# converted in both the decode and non-decode path.
if self.is_multipart():
if decode:
return None
if i is None:
return self._payload
else:
return self._payload[i]
# For backward compatibility, Use isinstance and this error message
# instead of the more logical is_multipart test.
if i is not None and not isinstance(self._payload, list):
raise TypeError('Expected list, got %s' % type(self._payload))
payload = self._payload
# cte might be a Header, so for now stringify it.
cte = str(self.get('content-transfer-encoding', '')).lower()
# payload may be bytes here.
if isinstance(payload, str):
if utils._has_surrogates(payload):
bpayload = payload.encode('ascii', 'surrogateescape')
if not decode:
try:
payload = bpayload.decode(self.get_param('charset', 'ascii'), 'replace')
except LookupError:
payload = bpayload.decode('ascii', 'replace')
elif decode:
try:
bpayload = payload.encode('ascii')
except UnicodeError:
# This won't happen for RFC compliant messages (messages
# containing only ASCII code points in the unicode input).
# If it does happen, turn the string into bytes in a way
# guaranteed not to fail.
bpayload = payload.encode('raw-unicode-escape')
if not decode:
return payload
if cte == 'quoted-printable':
return quopri.decodestring(bpayload)
elif cte == 'base64':
# XXX: this is a bit of a hack; decode_b should probably be factored
# out somewhere, but I haven't figured out where yet.
value, defects = decode_b(b''.join(bpayload.splitlines()))
for defect in defects:
self.policy.handle_defect(self, defect)
return value
elif cte in ('x-uuencode', 'uuencode', 'uue', 'x-uue'):
in_file = BytesIO(bpayload)
out_file = BytesIO()
try:
uu.decode(in_file, out_file, quiet=True)
return out_file.getvalue()
except uu.Error:
# Some decoding problem
return bpayload
if isinstance(payload, str):
return bpayload
return payload
| python3.10.4/Lib/email/message.py | 534 | XX-Net | {
"docstring": "Return a reference to the payload.\n\n The payload will either be a list object or a string. If you mutate\n the list object, you modify the message's payload in place. Optional\n i returns that index into the payload.\n\n Optional decode is a flag indicating whether the payload should be\n decoded or not, according to the Content-Transfer-Encoding header\n (default is False).\n\n When True and the message is not a multipart, the payload will be\n decoded if this header's value is `quoted-printable' or `base64'. If\n some other encoding is used, or the header is missing, or if the\n payload has bogus data (i.e. bogus base64 or uuencoded data), the\n payload is returned as-is.\n\n If the message is a multipart and the decode flag is True, then None\n is returned.\n ",
"language": "en",
"n_whitespaces": 228,
"n_words": 127,
"vocab_size": 73
} | 350 | Python | 187 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | message.py | 223,818 | 45 | 301 | get_payload | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 1,271 | 0 | 57,083 | 19 |
|
1 | 2 | def notched(self):
return self["notched"]
| packages/python/plotly/plotly/graph_objs/_box.py | 22 | plotly.py | {
"docstring": "\n Determines whether or not notches are drawn. Notches displays a\n confidence interval around the median. We compute the\n confidence interval as median +/- 1.57 * IQR / sqrt(N), where\n IQR is the interquartile range and N is the sample size. If two\n boxes' notches do not overlap there is 95% confidence their\n medians differ. See\n https://sites.google.com/site/davidsstatistics/home/notched-\n box-plots for more info. Defaults to False unless `notchwidth`\n or `notchspan` is set.\n\n The 'notched' property must be specified as a bool\n (either True, or False)\n\n Returns\n -------\n bool\n ",
"language": "en",
"n_whitespaces": 191,
"n_words": 85,
"vocab_size": 68
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _box.py | 226,302 | 2 | 11 | notched | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 57,975 | 7 |
|
8 | 34 | def solve_biquadratic(f, g, opt):
G = groebner([f, g])
if len(G) == 1 and G[0].is_ground:
return None
if len(G) != 2:
raise SolveFailed
x, y = opt.gens
p, q = G
if not p.gcd(q).is_ground:
# not 0-dimensional
raise SolveFailed
p = Poly(p, x, expand=False)
p_roots = [rcollect(expr, y) for expr in roots(p).keys()]
q = q.ltrim(-1)
q_roots = list(roots(q).keys())
solutions = []
for q_root in q_roots:
for p_root in p_roots:
solution = (p_root.subs(y, q_root), q_root)
solutions.append(solution)
return sorted(solutions, key=default_sort_key)
| sympy/solvers/polysys.py | 266 | sympy | {
"docstring": "Solve a system of two bivariate quadratic polynomial equations.\n\n Parameters\n ==========\n\n f: a single Expr or Poly\n First equation\n g: a single Expr or Poly\n Second Equation\n opt: an Options object\n For specifying keyword arguments and generators\n\n Returns\n =======\n\n List[Tuple]\n A List of tuples. Solutions for symbols that satisfy the\n equations listed in seq.\n\n Examples\n ========\n\n >>> from sympy import Options, Poly\n >>> from sympy.abc import x, y\n >>> from sympy.solvers.polysys import solve_biquadratic\n >>> NewOption = Options((x, y), {'domain': 'ZZ'})\n\n >>> a = Poly(y**2 - 4 + x, y, x, domain='ZZ')\n >>> b = Poly(y*2 + 3*x - 7, y, x, domain='ZZ')\n >>> solve_biquadratic(a, b, NewOption)\n [(1/3, 3), (41/27, 11/9)]\n\n >>> a = Poly(y + x**2 - 3, y, x, domain='ZZ')\n >>> b = Poly(-y + x - 4, y, x, domain='ZZ')\n >>> solve_biquadratic(a, b, NewOption)\n [(7/2 - sqrt(29)/2, -sqrt(29)/2 - 1/2), (sqrt(29)/2 + 7/2, -1/2 + \\\n sqrt(29)/2)]\n ",
"language": "en",
"n_whitespaces": 258,
"n_words": 149,
"vocab_size": 97
} | 77 | Python | 55 | 59d22b6bb7287613d598611027f640d068ca5748 | polysys.py | 196,425 | 20 | 170 | solve_biquadratic | https://github.com/sympy/sympy.git | Moved imports to higher level | 176 | 0 | 47,925 | 13 |
|
14 | 35 | def _get_metric_object(self, metric, y_t, y_p):
if metric is None:
return None # Ok to have no metric for an output.
# Convenience feature for selecting b/t binary, categorical,
# and sparse categorical.
if str(metric).lower() not in ["accuracy", "acc", "crossentropy", "ce"]:
metric_obj = metrics_mod.get(metric)
else:
y_t_rank = len(y_t.shape.as_list())
y_p_rank = len(y_p.shape.as_list())
y_t_last_dim = y_t.shape.as_list()[-1]
y_p_last_dim = y_p.shape.as_list()[-1]
is_binary = y_p_last_dim == 1
is_sparse_categorical = (
y_t_rank < y_p_rank or y_t_last_dim == 1 and y_p_last_dim > 1
)
if str(metric).lower() in ["accuracy", "acc"]:
if is_binary:
metric_obj = metrics_mod.binary_accuracy
elif is_sparse_categorical:
metric_obj = metrics_mod.sparse_categorical_accuracy
else:
metric_obj = metrics_mod.categorical_accuracy
else:
if is_binary:
metric_obj = metrics_mod.binary_crossentropy
elif is_sparse_categorical:
metric_obj = metrics_mod.sparse_categorical_crossentropy
else:
metric_obj = metrics_mod.categorical_crossentropy
if isinstance(metric_obj, losses_mod.Loss):
metric_obj._allow_sum_over_batch_size = (
True # pylint: disable=protected-access
)
if not isinstance(metric_obj, metrics_mod.Metric):
if isinstance(metric, str):
metric_name = metric
else:
metric_name = get_custom_object_name(metric)
if metric_name is None:
raise ValueError(
f"Metric should be a callable, received: {metric}"
)
metric_obj = metrics_mod.MeanMetricWrapper(
metric_obj, name=metric_name
)
return metric_obj
| keras/engine/compile_utils.py | 428 | keras | {
"docstring": "Converts user-supplied metric to a `Metric` object.\n\n Args:\n metric: A string, function, or `Metric` object.\n y_t: Sample of label.\n y_p: Sample of output.\n\n Returns:\n A `Metric` object.\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 27,
"vocab_size": 20
} | 157 | Python | 89 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | compile_utils.py | 271,042 | 45 | 256 | _get_metric_object | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 764 | 0 | 80,679 | 16 |
|
1 | 19 | def test_visibility_when_disabled(self) -> None:
room_id = self.helper.create_room_as(self.user_id, tok=self.token)
self.helper.send_state(
room_id=room_id,
event_type=EventTypes.Retention,
body={"max_lifetime": one_day_ms},
tok=self.token,
)
resp = self.helper.send(room_id=room_id, body="test", tok=self.token)
self.reactor.advance(one_day_ms * 2 / 1000)
self.get_event(room_id, resp["event_id"])
| tests/rest/client/test_retention.py | 160 | synapse | {
"docstring": "Retention policies should be ignored when the retention feature is disabled.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 27 | Python | 25 | 4cc4229cd7a55d2556c798fecbb1c9660dc821c8 | test_retention.py | 248,358 | 12 | 102 | test_visibility_when_disabled | https://github.com/matrix-org/synapse.git | Prevent expired events from being filtered out when retention is disabled (#12611)
Co-authored-by: Richard van der Hoff <[email protected]>
Co-authored-by: Patrick Cloke <[email protected]> | 120 | 0 | 72,235 | 11 |
|
11 | 12 | def __eq__(self, other):
if self is other:
return True
if not isinstance(other, Basic):
return self._do_eq_sympify(other)
# check for pure number expr
if not (self.is_Number and other.is_Number) and (
type(self) != type(other)):
return False
a, b = self._hashable_content(), other._hashable_content()
if a != b:
return False
# check number *in* an expression
for a, b in zip(a, b):
if not isinstance(a, Basic):
continue
if a.is_Number and type(a) != type(b):
return False
return True
| sympy/core/basic.py | 193 | sympy | {
"docstring": "Return a boolean indicating whether a == b on the basis of\n their symbolic trees.\n\n This is the same as a.compare(b) == 0 but faster.\n\n Notes\n =====\n\n If a class that overrides __eq__() needs to retain the\n implementation of __hash__() from a parent class, the\n interpreter must be told this explicitly by setting\n __hash__ : Callable[[object], int] = <ParentClass>.__hash__.\n Otherwise the inheritance of __hash__() will be blocked,\n just as if __hash__ had been explicitly set to None.\n\n References\n ==========\n\n from http://docs.python.org/dev/reference/datamodel.html#object.__hash__\n ",
"language": "en",
"n_whitespaces": 179,
"n_words": 81,
"vocab_size": 64
} | 71 | Python | 45 | f5ef4e62e5cb5637f2bf2af0ee73e43c58c33c25 | basic.py | 195,887 | 17 | 120 | __eq__ | https://github.com/sympy/sympy.git | core/basic: Basic.__eq__ only performs user defined conversions
core/evalf: no longer create unneeded Tuples with None arguments
Fixes #22581
only use _sympify in __eq__ when needed
defined _converter and updated Boolean comparisons
removed try-except for sympify because it should always be possible at that point
completely split sympy and external converters
checking entire mro
use the relevant part of sympify directly
type from copy paste
removed ambiguous try-except blocks
changed resolve order for sympy/user converters and mro
updated documentation
typo | 253 | 0 | 47,468 | 11 |
|
1 | 4 | def check_for_updates():
version_message = get_update_status()
print(version_message)
| spotdl/utils/console.py | 28 | spotify-downloader | {
"docstring": "\n Check for updates to the current version.\n ",
"language": "en",
"n_whitespaces": 14,
"n_words": 7,
"vocab_size": 7
} | 6 | Python | 6 | deca40c2e26afed62e1f9ec4be14aff9e125929b | console.py | 30,421 | 3 | 14 | check_for_updates | https://github.com/spotDL/spotify-downloader.git | moved console actions to a new file | 15 | 0 | 5,565 | 8 |
|
1 | 4 | def is_packaged_application() -> bool:
return cfg.LOGGING_APP_NAME == "gst_packaged"
| openbb_terminal/terminal_helper.py | 26 | OpenBBTerminal | {
"docstring": "Tell whether or not it is a packaged version (Windows or Mac installer).\n\n\n Returns:\n bool: If the application is packaged\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 20,
"vocab_size": 17
} | 8 | Python | 8 | eb244a1d8d01e1ad93c5dc349656aa4170397f90 | terminal_helper.py | 286,154 | 8 | 13 | is_packaged_application | https://github.com/OpenBB-finance/OpenBBTerminal.git | Docker : building + publishing (#2904)
* fixed integrated test test_stocks_ba.openbb
* fixed integrated test test_stocks_dd.openbb
* improved and centralised the check
* fix lint
* Docker : update ci + build files
* Docker : update build and CD
* Docker : update CD
* Docker : test
* Docker : test CD
* Docker : test CD
* Docker : rename `build.sh`
* Docker : tests CD
* Docker : test CD
* Docker : update CD + build
* Docker : fix CD
* Docker : fix CD
* Docker : build
* Docker : test CD
* Docker : CD
* Docker : CD
* Docker : test
* Docker : test CD
* Docker : test CD
* Docker : test CD
* Docker : test CD
* Docker : test CD
* Docker : test CD
* Docker : test CD
* Docker : test CD
* Docker : build + CD
* Docker : test CD
* Docker : test CD
* Docker : test CD
* Docker : test CD
* Docker : build
* Docker : test CD
* Docker : build + cd
* Moving `scripts`
* Checkout `helper_funcs.py` from main
* Docker : remove test file with alpine
* fixing readme errors
* fixing missed readme errors
* Docker : build
* Logging : handle docker app name
* Docker : test CD
* Docker : cd
* Doc
* Doc
* Doc : linting
* Doc
* Docker
* Doc
* Fixing `terminal_controller`
* Linting
* Doc : fixing links
* Version 1.9.1
* Docker : fix name
* Doc : add volumes in command
Co-authored-by: hjoaquim <[email protected]>
Co-authored-by: James Simmons <[email protected]>
Co-authored-by: Colin Delahunty <[email protected]> | 14 | 0 | 85,600 | 7 |
|
4 | 25 | def _optimize_stages(self):
context = DatasetContext.get_current()
if not context.optimize_fuse_stages:
self._optimized_stages = self._stages
return
# This dummy dataset will be used to get a set of optimized stages.
dummy_ds = Dataset(
ExecutionPlan(BlockList([], []), DatasetStats(stages={}, parent=None)),
0,
True,
used_from_dataset_pipeline=True,
)
# Apply all pipeline operations to the dummy dataset.
for stage in self._stages:
dummy_ds = stage(dummy_ds)
# Get the optimized stages.
_, _, stages = dummy_ds._plan._optimize()
# Apply these optimized stages to the datasets underlying the pipeline.
# These optimized stages will be executed by the PipelineExecutor.
optimized_stages = []
for stage in stages:
optimized_stages.append(
lambda ds, stage=stage: Dataset(
ds._plan.with_stage(stage),
ds._epoch,
True,
used_from_dataset_pipeline=True,
)
)
self._optimized_stages = optimized_stages
| python/ray/data/dataset_pipeline.py | 217 | ray | {
"docstring": "Optimize this pipeline, fusing stages together as possible.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 105 | Python | 67 | 45ba0e3cacbf4f38b9724437798c75341c2ddc7c | dataset_pipeline.py | 124,671 | 25 | 138 | _optimize_stages | https://github.com/ray-project/ray.git | Object GC for block splitting inside the dataset splitting (#26196)
The pipeline will spill objects when splitting the dataset into multiple equal parts.
Co-authored-by: Ubuntu <[email protected]> | 415 | 0 | 27,652 | 15 |
|
2 | 13 | def vertices_loss(criterion_vertices, pred_vertices, gt_vertices, has_smpl):
pred_vertices_with_shape = pred_vertices[has_smpl == 1]
gt_vertices_with_shape = gt_vertices[has_smpl == 1]
if len(gt_vertices_with_shape) > 0:
return criterion_vertices(pred_vertices_with_shape,
gt_vertices_with_shape)
else:
return paddle.to_tensor([1.]).fill_(0.)
@register
@serializable | ppdet/modeling/losses/pose3d_loss.py | 99 | @register
@serializable | PaddleDetection | {
"docstring": "\n Compute per-vertex loss if vertex annotations are available.\n ",
"language": "en",
"n_whitespaces": 15,
"n_words": 8,
"vocab_size": 8
} | 27 | Python | 23 | d4e34fe165c09db65fd00113708be1b711ac957c | pose3d_loss.py | 211,434 | 8 | 61 | vertices_loss | https://github.com/PaddlePaddle/PaddleDetection.git | pose3d metro modeling (#6612)
* pose3d metro modeling
* delete extra comments | 87 | 1 | 53,098 | 13 |
3 | 6 | def step(self):
if self._implements_method("_train") and log_once("_train"):
raise DeprecationWarning(
"Trainable._train is deprecated and is now removed. Override "
"Trainable.step instead."
)
raise NotImplementedError
| python/ray/tune/trainable.py | 55 | ray | {
"docstring": "Subclasses should override this to implement train().\n\n The return value will be automatically passed to the loggers. Users\n can also return `tune.result.DONE` or `tune.result.SHOULD_CHECKPOINT`\n as a key to manually trigger termination or checkpointing of this\n trial. Note that manual checkpointing only works when subclassing\n Trainables.\n\n .. versionadded:: 0.8.7\n\n Returns:\n A dict that describes training progress.\n\n ",
"language": "en",
"n_whitespaces": 122,
"n_words": 55,
"vocab_size": 48
} | 22 | Python | 19 | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | trainable.py | 132,815 | 7 | 27 | step | https://github.com/ray-project/ray.git | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | 95 | 0 | 29,807 | 11 |
|
1 | 7 | def print_help(self):
help_text =
console.print(text=help_text, menu="Cryptocurrency - Discovery")
| gamestonk_terminal/cryptocurrency/discovery/discovery_controller.py | 40 | OpenBBTerminal | {
"docstring": "Print help[cmds]\n[src][CoinGecko][/src]\n cgtrending trending coins\n cgvoted most voted coins\n cgvisited most visited coins\n cgvolume coins with highest volume\n cgrecently recently added\n cgsentiment coins with most positive sentiment\n cggainers top gainers - coins which price gained the most in given period\n cglosers top losers - coins which price dropped the most in given period\n cgyfarms top yield farms\n cgdefi top defi protocols\n cgdex top decentralized exchanges\n cgnft top non fungible tokens\n[src][CoinPaprika][/src]\n cpsearch search for coins\n[src][CoinMarketCap][/src]\n cmctop top coins[/cmds]\n",
"language": "en",
"n_whitespaces": 246,
"n_words": 80,
"vocab_size": 55
} | 8 | Python | 8 | 82747072c511beb1b2672846ae2ee4aec53eb562 | discovery_controller.py | 281,450 | 21 | 21 | print_help | https://github.com/OpenBB-finance/OpenBBTerminal.git | Terminal Wide Rich (#1161)
* My idea for how we handle Rich moving forward
* remove independent consoles
* FIxed pylint issues
* add a few vars
* Switched print to console
* More transitions
* Changed more prints
* Replaced all prints
* Fixing tabulate
* Finished replace tabulate
* Finished removing rich from Tabulate
* add Panel around menu
* add GST watermark under feature flag
* Fixed 46 tests
* Delete test_screener[False].yaml
* Delete test_screener[True].yaml
* Fixed the rest of the tests
* add help and source color vars and use rgb
* rich on stocks/options
* update rich on disc, dps, sia
* rich in gov, ins and scr menus
* ba and ca menus with rich
* Fixed import issue
* Fixed some tests
* removed termcolor
* Removed prettytable
* add rich to remaining stocks menus
* FIxed linting issue
* Added James' changes
* Updated dependencies
* Add rich to cryptocurrency menu
* refactor economy and forex
* refactor etf with rich
* refactor mfunds
* refactor rich rest
* not specify style so default color works well on any background
* Fixing mypy issues
* Updated tests
* More test fixes
* James' test fixes
* Updating tests : stocks/screener - fix cassettes using BR
* Updating tests : crypto
* Updating tests : disable DEBUG_MODE
* Updating tests : stocks/fa/yfinance
* minor fixes that escape
* Improve the rich table function (that replaces tabulate :D )
* Fixed bad code
* delete rogue file + dcf fix + NoConsole
* sia mypy
* fuck you linter
* fuck you linter pt 2
* skip hehe
* i hate the black linter
* ubuntu mypy attempt
* Update : rich_config + gtff
* Updating tests : conftest
* Updating tests : stocks
* Update : rich_config
* Updating : rich_config
* make panel configurable for Theodore :b
* colors update
* Merged
* Updating : rich_config + feature_flags
* Updating : rich_config
* Updating tests : stocks
* Updating : feature_flags
Co-authored-by: DidierRLopes <[email protected]>
Co-authored-by: Chavithra PARANA <[email protected]>
Co-authored-by: james <[email protected]>
Co-authored-by: jose-donato <[email protected]> | 30 | 0 | 83,767 | 9 |
|
9 | 5 | def _rpc_stats(self) -> Dict[str, Any]:
| freqtrade/rpc/rpc.py | 22 | freqtrade | {
"docstring": "\n Generate generic stats for trades in database\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | 5 | Python | 5 | be84a028c18bdbfd58dea8a51b6d59b77b672a8c | rpc.py | 148,776 | 21 | 272 | _rpc_stats | https://github.com/freqtrade/freqtrade.git | Avoid mixed types in the api for /stats | 12 | 0 | 34,332 | 6 |
|
4 | 31 | def preprocess_samples(self):
r
# sort items based on the sequence length in ascending order
text_ignore_idx, text_keep_idx = self.sort_and_filter_by_length(self.text_lengths, self.min_text_len, self.max_text_len)
audio_ignore_idx, audio_keep_idx = self.sort_and_filter_by_length(self.audio_lengths, self.min_audio_len, self.max_audio_len)
keep_idx = list(set(audio_keep_idx) | set(text_keep_idx))
ignore_idx = list(set(audio_ignore_idx) | set(text_ignore_idx))
samples = []
for idx in keep_idx:
samples.append(self.samples[idx])
if len(samples) == 0:
raise RuntimeError(" [!] No samples left")
# shuffle batch groups
# create batches with similar length items
# the larger the `batch_group_size`, the higher the length variety in a batch.
samples = self.create_buckets(samples, self.batch_group_size)
# update items to the new sorted items
self.samples = samples
if self.verbose:
print(" | > Preprocessing samples")
print(" | > Max text length: {}".format(np.max(self.text_lengths)))
print(" | > Min text length: {}".format(np.min(self.text_lengths)))
print(" | > Avg text length: {}".format(np.mean(self.text_lengths)))
print(" | ")
print(" | > Max audio length: {}".format(np.max(self.audio_lengths)))
print(" | > Min audio length: {}".format(np.min(self.audio_lengths)))
print(" | > Avg audio length: {}".format(np.mean(self.audio_lengths)))
print(f" | > Num. instances discarded samples: {len(ignore_idx)}")
print(" | > Batch group size: {}.".format(self.batch_group_size))
| TTS/tts/datasets/dataset.py | 434 | TTS | {
"docstring": "Sort `items` based on text length or audio length in ascending order. Filter out samples out or the length\n range.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 20,
"vocab_size": 16
} | 160 | Python | 95 | 176b712c1a40cf630da9a77f1826836723c40fde | dataset.py | 262,050 | 26 | 250 | preprocess_samples | https://github.com/coqui-ai/TTS.git | Refactor TTSDataset ⚡️ | 403 | 0 | 77,109 | 14 |
|
1 | 2 | def selectedpoints(self):
return self["selectedpoints"]
| packages/python/plotly/plotly/graph_objs/_bar.py | 22 | plotly.py | {
"docstring": "\n Array containing integer indices of selected points. Has an\n effect only for traces that support selections. Note that an\n empty array means an empty selection where the `unselected` are\n turned on for all points, whereas, any other non-array values\n means no selection all where the `selected` and `unselected`\n styles have no effect.\n\n The 'selectedpoints' property accepts values of any type\n\n Returns\n -------\n Any\n ",
"language": "en",
"n_whitespaces": 141,
"n_words": 63,
"vocab_size": 48
} | 4 | Python | 4 | 43e3a4011080911901176aab919c0ecf5046ddd3 | _bar.py | 226,180 | 2 | 11 | selectedpoints | https://github.com/plotly/plotly.py.git | switch to black .22 | 18 | 0 | 57,853 | 7 |
|
5 | 24 | def make_release_tree(self, base_dir, files):
# Create all the directories under 'base_dir' necessary to
# put 'files' there; the 'mkpath()' is just so we don't die
# if the manifest happens to be empty.
self.mkpath(base_dir)
dir_util.create_tree(base_dir, files, dry_run=self.dry_run)
# And walk over the list of files, either making a hard link (if
# os.link exists) to each one that doesn't already exist in its
# corresponding location under 'base_dir', or copying each file
# that's out-of-date in 'base_dir'. (Usually, all files will be
# out-of-date, because by default we blow away 'base_dir' when
# we're done making the distribution archives.)
if hasattr(os, 'link'): # can make hard links on this system
link = 'hard'
msg = "making hard links in %s..." % base_dir
else: # nope, have to copy
link = None
msg = "copying files to %s..." % base_dir
if not files:
log.warn("no files to distribute -- empty manifest?")
else:
log.info(msg)
for file in files:
if not os.path.isfile(file):
log.warn("'%s' not a regular file -- skipping", file)
else:
dest = os.path.join(base_dir, file)
self.copy_file(file, dest, link=link)
self.distribution.metadata.write_pkg_info(base_dir)
| python3.10.4/Lib/distutils/command/sdist.py | 235 | XX-Net | {
"docstring": "Create the directory tree that will become the source\n distribution archive. All directories implied by the filenames in\n 'files' are created under 'base_dir', and then we hard link or copy\n (if hard linking is unavailable) those files into place.\n Essentially, this duplicates the developer's source tree, but in a\n directory named after the distribution, containing only the files\n to be distributed.\n ",
"language": "en",
"n_whitespaces": 111,
"n_words": 61,
"vocab_size": 51
} | 175 | Python | 117 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | sdist.py | 222,813 | 20 | 134 | make_release_tree | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 468 | 0 | 56,754 | 14 |
|
1 | 2 | def run_after_hook(self):
return None
| wagtail/admin/views/generic/mixins.py | 16 | wagtail | {
"docstring": "\n Define how to run the hooks after the operation is executed.\n The `self.run_hook(hook_name, *args, **kwargs)` from HookResponseMixin\n can be utilised to call the hooks.\n\n If this method returns a response, it will be returned as the view\n response immediately after the operation finishes, skipping the default\n response.\n ",
"language": "en",
"n_whitespaces": 97,
"n_words": 47,
"vocab_size": 38
} | 4 | Python | 4 | bc1a2ab1148b0f27cfd1435f8cb0e44c2721102d | mixins.py | 77,224 | 2 | 8 | run_after_hook | https://github.com/wagtail/wagtail.git | Extract mixins from Snippet views and use it in generic create/edit/delete views (#8361) | 18 | 0 | 16,643 | 6 |
|
5 | 17 | def __setitem__(self, name, val):
max_count = self.policy.header_max_count(name)
if max_count:
lname = name.lower()
found = 0
for k, v in self._headers:
if k.lower() == lname:
found += 1
if found >= max_count:
raise ValueError("There may be at most {} {} headers "
"in a message".format(max_count, name))
self._headers.append(self.policy.header_store_parse(name, val))
| python3.10.4/Lib/email/message.py | 146 | XX-Net | {
"docstring": "Set the value of a header.\n\n Note: this does not overwrite an existing header with the same field\n name. Use __delitem__() first to delete any existing headers.\n ",
"language": "en",
"n_whitespaces": 49,
"n_words": 27,
"vocab_size": 25
} | 47 | Python | 39 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | message.py | 223,837 | 12 | 89 | __setitem__ | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 224 | 0 | 57,096 | 19 |
|
7 | 14 | def __call__(self, *i):
# list indices can be Integer or int; leave this
# as it is (don't test or convert it) because this
# gets called a lot and should be fast
if len(i) == 1:
i = i[0]
if not isinstance(i, Iterable):
i = as_int(i)
if i < 0 or i > self.size:
raise TypeError(
"{} should be an integer between 0 and {}"
.format(i, self.size-1))
return self._array_form[i]
# P([a, b, c])
if len(i) != self.size:
raise TypeError(
"{} should have the length {}.".format(i, self.size))
return [i[j] for j in self._array_form]
# P(1, 2, 3)
return self*Permutation(Cycle(*i), size=self.size)
| sympy/combinatorics/permutations.py | 204 | sympy | {
"docstring": "\n Allows applying a permutation instance as a bijective function.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import Permutation\n >>> p = Permutation([[2, 0], [3, 1]])\n >>> p.array_form\n [2, 3, 0, 1]\n >>> [p(i) for i in range(4)]\n [2, 3, 0, 1]\n\n If an array is given then the permutation selects the items\n from the array (i.e. the permutation is applied to the array):\n\n >>> from sympy.abc import x\n >>> p([x, 1, 0, x**2])\n [0, x**2, x, 1]\n ",
"language": "en",
"n_whitespaces": 181,
"n_words": 75,
"vocab_size": 52
} | 100 | Python | 73 | 498015021131af4dbb07eb110e5badaba8250c7b | permutations.py | 196,174 | 15 | 126 | __call__ | https://github.com/sympy/sympy.git | Updated import locations | 348 | 0 | 47,674 | 17 |
|
12 | 56 | def transform(self, X):
check_is_fitted(self)
X = self._validate_input(X, in_fit=False)
statistics = self.statistics_
if X.shape[1] != statistics.shape[0]:
raise ValueError(
"X has %d features per sample, expected %d"
% (X.shape[1], self.statistics_.shape[0])
)
# compute mask before eliminating invalid features
missing_mask = _get_mask(X, self.missing_values)
# Decide whether to keep missing features
if self.strategy == "constant" or self.keep_empty_features:
valid_statistics = statistics
valid_statistics_indexes = None
else:
# same as np.isnan but also works for object dtypes
invalid_mask = _get_mask(statistics, np.nan)
valid_mask = np.logical_not(invalid_mask)
valid_statistics = statistics[valid_mask]
valid_statistics_indexes = np.flatnonzero(valid_mask)
if invalid_mask.any():
invalid_features = np.arange(X.shape[1])[invalid_mask]
if self.verbose != "deprecated" and self.verbose:
# use feature names warning if features are provided
if hasattr(self, "feature_names_in_"):
invalid_features = self.feature_names_in_[invalid_features]
warnings.warn(
"Skipping features without any observed values:"
f" {invalid_features}. At least one non-missing value is needed"
f" for imputation with strategy='{self.strategy}'."
)
X = X[:, valid_statistics_indexes]
# Do actual imputation
if sp.issparse(X):
if self.missing_values == 0:
raise ValueError(
"Imputation not possible when missing_values "
"== 0 and input is sparse. Provide a dense "
"array instead."
)
else:
# if no invalid statistics are found, use the mask computed
# before, else recompute mask
if valid_statistics_indexes is None:
mask = missing_mask.data
else:
mask = _get_mask(X.data, self.missing_values)
indexes = np.repeat(
np.arange(len(X.indptr) - 1, dtype=int), np.diff(X.indptr)
)[mask]
X.data[mask] = valid_statistics[indexes].astype(X.dtype, copy=False)
else:
# use mask computed before eliminating invalid mask
if valid_statistics_indexes is None:
mask_valid_features = missing_mask
else:
mask_valid_features = missing_mask[:, valid_statistics_indexes]
n_missing = np.sum(mask_valid_features, axis=0)
values = np.repeat(valid_statistics, n_missing)
coordinates = np.where(mask_valid_features.transpose())[::-1]
X[coordinates] = values
X_indicator = super()._transform_indicator(missing_mask)
return super()._concatenate_indicator(X, X_indicator)
| sklearn/impute/_base.py | 642 | scikit-learn | {
"docstring": "Impute all missing values in `X`.\n\n Parameters\n ----------\n X : {array-like, sparse matrix}, shape (n_samples, n_features)\n The input data to complete.\n\n Returns\n -------\n X_imputed : {ndarray, sparse matrix} of shape \\\n (n_samples, n_features_out)\n `X` with imputed values.\n ",
"language": "en",
"n_whitespaces": 123,
"n_words": 37,
"vocab_size": 33
} | 249 | Python | 160 | d8fa96c29828e3ca79ddd5d7466521ac4d95213c | _base.py | 261,576 | 56 | 388 | transform | https://github.com/scikit-learn/scikit-learn.git | ENH keep features with all missing values during imputation (#24770)
Co-authored-by: Chiara Marmo <[email protected]>
Co-authored-by: Julien Jerphanion <[email protected]>
Co-authored-by: Jérémie du Boisberranger <[email protected]>
Co-authored-by: Vitor SRG <[email protected]>
Fixes https://github.com/scikit-learn/scikit-learn/pull/16695
Fixes https://github.com/scikit-learn/scikit-learn/issues/16426
Fixes https://github.com/scikit-learn/scikit-learn/issues/16977 | 1,085 | 0 | 76,872 | 20 |
|
2 | 4 | def get_running_loop():
# NOTE: this function is implemented in C (see _asynciomodule.c)
loop = _get_running_loop()
if loop is None:
raise RuntimeError('no running event loop')
return loop
| python3.10.4/Lib/asyncio/events.py | 43 | XX-Net | {
"docstring": "Return the running event loop. Raise a RuntimeError if there is none.\n\n This function is thread-specific.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 16,
"vocab_size": 15
} | 26 | Python | 23 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | events.py | 220,442 | 5 | 22 | get_running_loop | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 48 | 0 | 55,997 | 10 |
|
13 | 44 | def _predict_faces(self) -> None:
faces_seen = 0
consecutive_no_faces = 0
batch: List[ConvertItem] = []
is_amd = get_backend() == "amd"
while True:
item: Union[Literal["EOF"], ConvertItem] = self._in_queue.get()
if item == "EOF":
logger.debug("EOF Received")
break
logger.trace("Got from queue: '%s'", item.inbound.filename) # type:ignore
faces_count = len(item.inbound.detected_faces)
# Safety measure. If a large stream of frames appear that do not have faces,
# these will stack up into RAM. Keep a count of consecutive frames with no faces.
# If self._batchsize number of frames appear, force the current batch through
# to clear RAM.
consecutive_no_faces = consecutive_no_faces + 1 if faces_count == 0 else 0
self._faces_count += faces_count
if faces_count > 1:
self._verify_output = True
logger.verbose("Found more than one face in an image! '%s'", # type:ignore
os.path.basename(item.inbound.filename))
self.load_aligned(item)
faces_seen += faces_count
batch.append(item)
if faces_seen < self._batchsize and consecutive_no_faces < self._batchsize:
logger.trace("Continuing. Current batchsize: %s, " # type:ignore
"consecutive_no_faces: %s", faces_seen, consecutive_no_faces)
continue
if batch:
logger.trace("Batching to predictor. Frames: %s, Faces: %s", # type:ignore
len(batch), faces_seen)
feed_batch = [feed_face for item in batch
for feed_face in item.feed_faces]
if faces_seen != 0:
feed_faces = self._compile_feed_faces(feed_batch)
batch_size = None
if is_amd and feed_faces.shape[0] != self._batchsize:
logger.verbose("Fallback to BS=1") # type:ignore
batch_size = 1
predicted = self._predict(feed_faces, batch_size)
else:
predicted = np.array([])
self._queue_out_frames(batch, predicted)
consecutive_no_faces = 0
faces_seen = 0
batch = []
logger.debug("Putting EOF")
self._out_queue.put("EOF")
logger.debug("Load queue complete")
| scripts/convert.py | 509 | faceswap | {
"docstring": " Run Prediction on the Faceswap model in a background thread.\n\n Reads from the :attr:`self._in_queue`, prepares images for prediction\n then puts the predictions back to the :attr:`self.out_queue`\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 26,
"vocab_size": 23
} | 221 | Python | 138 | 1022651eb8a7741014f5d2ec7cbfe882120dfa5f | convert.py | 101,368 | 51 | 300 | _predict_faces | https://github.com/deepfakes/faceswap.git | Bugfix: convert - Gif Writer
- Fix non-launch error on Gif Writer
- convert plugins - linting
- convert/fs_media/preview/queue_manager - typing
- Change convert items from dict to Dataclass | 919 | 0 | 20,783 | 16 |
|
3 | 20 | def prepare(self, timestamp, duration, organization):
reports = {}
for project in organization.project_set.all():
reports[project.id] = self.__encode(self.build(timestamp, duration, project))
if not reports:
# XXX: HMSET requires at least one key/value pair, so we need to
# protect ourselves here against organizations that were created
# but haven't set up any projects yet.
return
with self.cluster.map() as client:
key = self.__make_key(timestamp, duration, organization)
client.hmset(key, reports)
client.expire(key, self.ttl)
| src/sentry/tasks/reports.py | 152 | sentry | {
"docstring": "\n For every project belonging to the organization, serially build a report and zlib compress it\n After this completes, store it in Redis with an expiration\n ",
"language": "en",
"n_whitespaces": 47,
"n_words": 25,
"vocab_size": 24
} | 64 | Python | 58 | 9731253cf103cfdced62c36753a0e957ab29d705 | reports.py | 85,595 | 10 | 95 | prepare | https://github.com/getsentry/sentry.git | feat: Add instrumentation to Celery tasks for weekly reports (#38561)
It seems that if we don't include the parent celery task, it will not trace any of the children tasks.
This enables further investigation as to why the building of the report is slow.
Fixes WOR-2159. | 187 | 0 | 18,014 | 12 |
|
1 | 16 | def test_file_not_found_error(self):
response = self.get_success_response(
self.organization.slug, self.project.slug, qs_params={"file": self.filepath}
)
assert response.data["config"] == self.expected_configurations(self.code_mapping1)
assert not response.data["sourceUrl"]
# XXX: This depends on what was the last attempted code mapping
assert response.data["error"] == "stack_root_mismatch"
assert response.data["integrations"] == [serialized_integration(self.integration)]
# XXX: This depends on what was the last attempted code mapping
assert (
response.data["attemptedUrl"]
== f"https://example.com/{self.repo.name}/blob/master/src/sentry/src/sentry/utils/safe.py"
)
| tests/sentry/api/endpoints/test_project_stacktrace_link.py | 171 | sentry | {
"docstring": "File matches code mapping but it cannot be found in the source repository.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | 55 | Python | 35 | 2e0d2c856eb17a842c67d88363bed92c99578c20 | test_project_stacktrace_link.py | 88,596 | 12 | 95 | test_file_not_found_error | https://github.com/getsentry/sentry.git | ref(stacktrace_link): Add more than one code mapping in the tests (#41409)
Include more than one code mapping in the setup code. Cleaning up a bit how we tag the transactions.
This makes the PR for WOR-2395 a little easier to read. | 165 | 0 | 18,415 | 12 |
|
3 | 4 | def has_pretrained_cfg_key(model_name, cfg_key):
if model_name in _model_pretrained_cfgs and cfg_key in _model_pretrained_cfgs[model_name]:
return True
return False
| timm/models/registry.py | 39 | pytorch-image-models | {
"docstring": " Query model default_cfgs for existence of a specific key.\n ",
"language": "en",
"n_whitespaces": 13,
"n_words": 9,
"vocab_size": 9
} | 15 | Python | 13 | abc9ba254430ef971ea3dbd12f2b4f1969da55be | registry.py | 331,645 | 4 | 24 | has_pretrained_cfg_key | https://github.com/huggingface/pytorch-image-models.git | Transitioning default_cfg -> pretrained_cfg. Improving handling of pretrained_cfg source (HF-Hub, files, timm config, etc). Checkpoint handling tweaks. | 31 | 0 | 119,879 | 8 |
|
1 | 57 | def is_ccl_available():
return _is_ccl_available
# docstyle-ignore
DATASETS_IMPORT_ERROR =
# docstyle-ignore
TOKENIZERS_IMPORT_ERROR =
# docstyle-ignore
SENTENCEPIECE_IMPORT_ERROR =
# docstyle-ignore
PROTOBUF_IMPORT_ERROR =
# docstyle-ignore
FAISS_IMPORT_ERROR =
# docstyle-ignore
PYTORCH_IMPORT_ERROR =
# docstyle-ignore
PYTORCH_IMPORT_ERROR_WITH_TF =
# docstyle-ignore
TF_IMPORT_ERROR_WITH_PYTORCH =
# docstyle-ignore
SKLEARN_IMPORT_ERROR =
# docstyle-ignore
TENSORFLOW_IMPORT_ERROR =
# docstyle-ignore
DETECTRON2_IMPORT_ERROR =
# docstyle-ignore
FLAX_IMPORT_ERROR =
# docstyle-ignore
FTFY_IMPORT_ERROR =
# docstyle-ignore
SCATTER_IMPORT_ERROR =
# docstyle-ignore
PYTORCH_QUANTIZATION_IMPORT_ERROR =
# docstyle-ignore
TENSORFLOW_PROBABILITY_IMPORT_ERROR =
# docstyle-ignore
TENSORFLOW_TEXT_IMPORT_ERROR =
# docstyle-ignore
PANDAS_IMPORT_ERROR =
# docstyle-ignore
PHONEMIZER_IMPORT_ERROR =
# docstyle-ignore
SACREMOSES_IMPORT_ERROR =
# docstyle-ignore
SCIPY_IMPORT_ERROR =
# docstyle-ignore
SPEECH_IMPORT_ERROR =
# docstyle-ignore
TIMM_IMPORT_ERROR =
# docstyle-ignore
VISION_IMPORT_ERROR =
# docstyle-ignore
PYTESSERACT_IMPORT_ERROR =
# docstyle-ignore
PYCTCDECODE_IMPORT_ERROR =
# docstyle-ignore
ACCELERATE_IMPORT_ERROR =
# docstyle-ignore
CCL_IMPORT_ERROR =
BACKENDS_MAPPING = OrderedDict(
[
("datasets", (is_datasets_available, DATASETS_IMPORT_ERROR)),
("detectron2", (is_detectron2_available, DETECTRON2_IMPORT_ERROR)),
("faiss", (is_faiss_available, FAISS_IMPORT_ERROR)),
("flax", (is_flax_available, FLAX_IMPORT_ERROR)),
("ftfy", (is_ftfy_available, FTFY_IMPORT_ERROR)),
("pandas", (is_pandas_available, PANDAS_IMPORT_ERROR)),
("phonemizer", (is_phonemizer_available, PHONEMIZER_IMPORT_ERROR)),
("protobuf", (is_protobuf_available, PROTOBUF_IMPORT_ERROR)),
("pyctcdecode", (is_pyctcdecode_available, PYCTCDECODE_IMPORT_ERROR)),
("pytesseract", (is_pytesseract_available, PYTESSERACT_IMPORT_ERROR)),
("sacremoses", (is_sacremoses_available, SACREMOSES_IMPORT_ERROR)),
("scatter", (is_scatter_available, SCATTER_IMPORT_ERROR)),
("pytorch_quantization", (is_pytorch_quantization_available, PYTORCH_QUANTIZATION_IMPORT_ERROR)),
("sentencepiece", (is_sentencepiece_available, SENTENCEPIECE_IMPORT_ERROR)),
("sklearn", (is_sklearn_available, SKLEARN_IMPORT_ERROR)),
("speech", (is_speech_available, SPEECH_IMPORT_ERROR)),
("tensorflow_probability", (is_tensorflow_probability_available, TENSORFLOW_PROBABILITY_IMPORT_ERROR)),
("tf", (is_tf_available, TENSORFLOW_IMPORT_ERROR)),
("tensorflow_text", (is_tensorflow_text_available, TENSORFLOW_TEXT_IMPORT_ERROR)),
("timm", (is_timm_available, TIMM_IMPORT_ERROR)),
("tokenizers", (is_tokenizers_available, TOKENIZERS_IMPORT_ERROR)),
("torch", (is_torch_available, PYTORCH_IMPORT_ERROR)),
("vision", (is_vision_available, VISION_IMPORT_ERROR)),
("scipy", (is_scipy_available, SCIPY_IMPORT_ERROR)),
("accelerate", (is_accelerate_available, ACCELERATE_IMPORT_ERROR)),
("oneccl_bind_pt", (is_ccl_available, CCL_IMPORT_ERROR)),
]
)
| src/transformers/utils/import_utils.py | 611 | transformers | {
"docstring": "\n{0} requires the 🤗 Datasets library but it was not found in your environment. You can install it with:\n```\npip install datasets\n```\nIn a notebook or a colab, you can install it by executing a cell with\n```\n!pip install datasets\n```\nthen restarting your kernel.\n\nNote that if you have a local folder named `datasets` or a local python file named `datasets.py` in your current\nworking directory, python may try to import this instead of the 🤗 Datasets library. You should rename this folder or\nthat python file if that's the case.\n\n{0} requires the 🤗 Tokenizers library but it was not found in your environment. You can install it with:\n```\npip install tokenizers\n```\nIn a notebook or a colab, you can install it by executing a cell with\n```\n!pip install tokenizers\n```\n\n{0} requires the SentencePiece library but it was not found in your environment. Checkout the instructions on the\ninstallation page of its repo: https://github.com/google/sentencepiece#installation and follow the ones\nthat match your environment.\n\n{0} requires the protobuf library but it was not found in your environment. Checkout the instructions on the\ninstallation page of its repo: https://github.com/protocolbuffers/protobuf/tree/master/python#installation and follow the ones\nthat match your environment.\n\n{0} requires the faiss library but it was not found in your environment. Checkout the instructions on the\ninstallation page of its repo: https://github.com/facebookresearch/faiss/blob/master/INSTALL.md and follow the ones\nthat match your environment.\n\n{0} requires the PyTorch library but it was not found in your environment. Checkout the instructions on the\ninstallation page: https://pytorch.org/get-started/locally/ and follow the ones that match your environment.\n\n{0} requires the PyTorch library but it was not found in your environment.\nHowever, we were able to find a TensorFlow installation. TensorFlow classes begin\nwith \"TF\", but are otherwise identically named to our PyTorch classes. This\nmeans that the TF equivalent of the class you tried to import would be \"TF{0}\".\nIf you want to use TensorFlow, please use TF classes instead!\n\nIf you really do want to use PyTorch please go to\nhttps://pytorch.org/get-started/locally/ and follow the instructions that\nmatch your environment.\n\n{0} requires the TensorFlow library but it was not found in your environment.\nHowever, we were able to find a PyTorch installation. PyTorch classes do not begin\nwith \"TF\", but are otherwise identically named to our TF classes.\nIf you want to use PyTorch, please use those classes instead!\n\nIf you really do want to use TensorFlow, please follow the instructions on the\ninstallation page https://www.tensorflow.org/install that match your environment.\n\n{0} requires the scikit-learn library but it was not found in your environment. You can install it with:\n```\npip install -U scikit-learn\n```\nIn a notebook or a colab, you can install it by executing a cell with\n```\n!pip install -U scikit-learn\n```\n\n{0} requires the TensorFlow library but it was not found in your environment. Checkout the instructions on the\ninstallation page: https://www.tensorflow.org/install and follow the ones that match your environment.\n\n{0} requires the detectron2 library but it was not found in your environment. Checkout the instructions on the\ninstallation page: https://github.com/facebookresearch/detectron2/blob/master/INSTALL.md and follow the ones\nthat match your environment.\n\n{0} requires the FLAX library but it was not found in your environment. Checkout the instructions on the\ninstallation page: https://github.com/google/flax and follow the ones that match your environment.\n\n{0} requires the ftfy library but it was not found in your environment. Checkout the instructions on the\ninstallation section: https://github.com/rspeer/python-ftfy/tree/master#installing and follow the ones\nthat match your environment.\n\n{0} requires the torch-scatter library but it was not found in your environment. You can install it with pip as\nexplained here: https://github.com/rusty1s/pytorch_scatter.\n\n{0} requires the pytorch-quantization library but it was not found in your environment. You can install it with pip:\n`pip install pytorch-quantization --extra-index-url https://pypi.ngc.nvidia.com`\n\n{0} requires the tensorflow_probability library but it was not found in your environment. You can install it with pip as\nexplained here: https://github.com/tensorflow/probability.\n\n{0} requires the tensorflow_text library but it was not found in your environment. You can install it with pip as\nexplained here: https://www.tensorflow.org/text/guide/tf_text_intro.\n\n{0} requires the pandas library but it was not found in your environment. You can install it with pip as\nexplained here: https://pandas.pydata.org/pandas-docs/stable/getting_started/install.html.\n\n{0} requires the phonemizer library but it was not found in your environment. You can install it with pip:\n`pip install phonemizer`\n\n{0} requires the sacremoses library but it was not found in your environment. You can install it with pip:\n`pip install sacremoses`\n\n{0} requires the scipy library but it was not found in your environment. You can install it with pip:\n`pip install scipy`\n\n{0} requires the torchaudio library but it was not found in your environment. You can install it with pip:\n`pip install torchaudio`\n\n{0} requires the timm library but it was not found in your environment. You can install it with pip:\n`pip install timm`\n\n{0} requires the PIL library but it was not found in your environment. You can install it with pip:\n`pip install pillow`\n\n{0} requires the PyTesseract library but it was not found in your environment. You can install it with pip:\n`pip install pytesseract`\n\n{0} requires the pyctcdecode library but it was not found in your environment. You can install it with pip:\n`pip install pyctcdecode`\n\n{0} requires the accelerate library but it was not found in your environment. You can install it with pip:\n`pip install accelerate`\n\n{0} requires the torch ccl library but it was not found in your environment. You can install it with pip:\n`pip install oneccl_bind_pt -f https://developer.intel.com/ipex-whl-stable`\n",
"language": "en",
"n_whitespaces": 824,
"n_words": 917,
"vocab_size": 167
} | 200 | Python | 118 | 2b81f72be9fa6d69734ae27cfcbfd72b04988fe4 | import_utils.py | 32,535 | 2 | 6 | is_ccl_available | https://github.com/huggingface/transformers.git | start from 1.12, torch_ccl is renamed as oneccl_bindings_for_pytorch … (#18229)
* start from 1.12, torch_ccl is renamed as oneccl_bindings_for_pytorch and should import it before use
Signed-off-by: Wang, Yi A <[email protected]>
* add doc for perf_train_cpu_many
Signed-off-by: Wang, Yi A <[email protected]>
* update doc
Signed-off-by: Wang, Yi A <[email protected]> | 360 | 0 | 5,947 | 9 |
|
2 | 25 | def test_json_get_subscribers(self) -> None:
stream_name = gather_subscriptions(self.user_profile)[0][0]["name"]
stream_id = get_stream(stream_name, self.user_profile.realm).id
expected_subscribers = gather_subscriptions(self.user_profile, include_subscribers=True)[0][
0
]["subscribers"]
result = self.client_get(f"/json/streams/{stream_id}/members")
result_dict = self.assert_json_success(result)
self.assertIn("subscribers", result_dict)
self.assertIsInstance(result_dict["subscribers"], list)
subscribers: List[int] = []
for subscriber in result_dict["subscribers"]:
self.assertIsInstance(subscriber, int)
subscribers.append(subscriber)
self.assertEqual(set(subscribers), set(expected_subscribers))
| zerver/tests/test_subs.py | 231 | zulip | {
"docstring": "\n json_get_subscribers in zerver/views/streams.py\n also returns the list of subscribers for a stream, when requested.\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 14
} | 40 | Python | 35 | a142fbff85302c5e3acb2e204eca2e9c75dbc74b | test_subs.py | 84,134 | 19 | 141 | test_json_get_subscribers | https://github.com/zulip/zulip.git | tests: Refactor away result.json() calls with helpers.
Signed-off-by: Zixuan James Li <[email protected]> | 157 | 0 | 17,779 | 12 |
|
9 | 10 | def _fix_compile_args(self, output_dir, macros, include_dirs):
if output_dir is None:
output_dir = self.output_dir
elif not isinstance(output_dir, str):
raise TypeError("'output_dir' must be a string or None")
if macros is None:
macros = self.macros
elif isinstance(macros, list):
macros = macros + (self.macros or [])
else:
raise TypeError("'macros' (if supplied) must be a list of tuples")
if include_dirs is None:
include_dirs = self.include_dirs
elif isinstance(include_dirs, (list, tuple)):
include_dirs = list(include_dirs) + (self.include_dirs or [])
else:
raise TypeError(
"'include_dirs' (if supplied) must be a list of strings")
return output_dir, macros, include_dirs
| python3.10.4/Lib/distutils/ccompiler.py | 199 | XX-Net | {
"docstring": "Typecheck and fix-up some of the arguments to the 'compile()'\n method, and return fixed-up values. Specifically: if 'output_dir'\n is None, replaces it with 'self.output_dir'; ensures that 'macros'\n is a list, and augments it with 'self.macros'; ensures that\n 'include_dirs' is a list, and augments it with 'self.include_dirs'.\n Guarantees that the returned values are of the correct type,\n i.e. for 'output_dir' either string or None, and for 'macros' and\n 'include_dirs' either list or None.\n ",
"language": "en",
"n_whitespaces": 129,
"n_words": 72,
"vocab_size": 44
} | 86 | Python | 48 | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | ccompiler.py | 222,586 | 19 | 123 | _fix_compile_args | https://github.com/XX-net/XX-Net.git | add python 3.10.4 for windows | 261 | 0 | 56,654 | 13 |
|
4 | 16 | def get_template_names(self):
try:
names = super().get_template_names()
except ImproperlyConfigured:
# If template_name isn't specified, it's not a problem --
# we just start with an empty list.
names = []
# If the list is a queryset, we'll invent a template name based on the
# app and model name. This name gets put at the end of the template
# name list so that user-supplied names override the automatically-
# generated ones.
if hasattr(self.object_list, "model"):
opts = self.object_list.model._meta
names.append(
"%s/%s%s.html"
% (opts.app_label, opts.model_name, self.template_name_suffix)
)
elif not names:
raise ImproperlyConfigured(
"%(cls)s requires either a 'template_name' attribute "
"or a get_queryset() method that returns a QuerySet."
% {
"cls": self.__class__.__name__,
}
)
return names
| django/views/generic/list.py | 155 | django | {
"docstring": "\n Return a list of template names to be used for the request. Must return\n a list. May not be called if render_to_response is overridden.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 24,
"vocab_size": 22
} | 113 | Python | 85 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | list.py | 206,882 | 20 | 86 | get_template_names | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 391 | 0 | 51,781 | 15 |
|
1 | 3 | def _SpinboxSelectHandler(self):
self._generic_callback_handler('')
| PySimpleGUI.py | 25 | PySimpleGUI | {
"docstring": "\n Internal callback function for when an entry is selected in a Combobox.\n\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | 3 | Python | 3 | 40757180b5d0ac66d44958e4ab13329c7b03ea36 | PySimpleGUI.py | 212,675 | 2 | 12 | _SpinboxSelectHandler | https://github.com/PySimpleGUI/PySimpleGUI.git | Fix for enable_events for Spin element. Changed how the event is generated. Need to determine manual entry of value still | 17 | 0 | 53,336 | 8 |
|
1 | 19 | def test_small_integration_test(self):
model = TFAutoModelForSeq2SeqLM.from_pretrained("google/mt5-small")
tokenizer = AutoTokenizer.from_pretrained("google/mt5-small")
input_ids = tokenizer("Hello there", return_tensors="tf").input_ids
labels = tokenizer("Hi I am", return_tensors="tf").input_ids
loss = model(input_ids, labels=labels).loss
mtf_score = -tf.math.reduce_mean(loss).numpy()
EXPECTED_SCORE = -21.210594
self.assertTrue(abs(mtf_score - EXPECTED_SCORE) < 2e-4)
| tests/models/mt5/test_modeling_tf_mt5.py | 158 | transformers | {
"docstring": "\n For comparision run:\n >>> import t5 # pip install t5==0.7.1\n >>> from t5.data.sentencepiece_vocabulary import SentencePieceVocabulary\n\n >>> path_to_mtf_small_mt5_checkpoint = '<fill_in>'\n >>> path_to_mtf_small_mt5_spm_model_path = '<fill_in>'\n >>> t5_model = t5.models.MtfModel(model_dir=path_to_mtf_small_mt5_checkpoint, batch_size=1, tpu=None)\n >>> vocab = SentencePieceVocabulary(path_to_mtf_small_mt5_spm_model_path, extra_ids=100)\n >>> score = t5_model.score(inputs=[\"Hello there\"], targets=[\"Hi I am\"], vocabulary=vocab)\n ",
"language": "en",
"n_whitespaces": 108,
"n_words": 43,
"vocab_size": 31
} | 34 | Python | 27 | 5ae087cf8ec080b121c9cdc9bafdc2b35b6e110e | test_modeling_tf_mt5.py | 32,078 | 9 | 94 | test_small_integration_test | https://github.com/huggingface/transformers.git | Fix T5/mT5 tests (#18029) | 97 | 0 | 5,847 | 12 |
|
1 | 8 | async def test_in_interface(self):
iface = gr.Interface(lambda x: x, "text", "markdown")
input_data = "Here's an [image](https://gradio.app/images/gradio_logo.png)"
output_data = iface(input_data)
assert (
output_data
==
)
| test/test_components.py | 69 | gradio | {
"docstring": "\n Interface, process\n <p>Here's an <a href=\"https://gradio.app/images/gradio_logo.png\">image</a></p>\\n",
"language": "en",
"n_whitespaces": 20,
"n_words": 6,
"vocab_size": 6
} | 23 | Python | 20 | d79039beb1c3eab597de4871f7eb6522196d1a00 | test_components.py | 181,302 | 8 | 36 | test_in_interface | https://github.com/gradio-app/gradio.git | Latex support (#2696)
* initial use of dollarmath plugin
* add frontend support
* chnages
* changes
* changes
* changes
* changes
* fix
* added latex to kinematics blocks
* changes
* Update CHANGELOG.md
Co-authored-by: Abubakar Abid <[email protected]>
* added example to changelog
* remove param
* doc fix
* fixes
* latex noteboox fix
* fix
* changes
Co-authored-by: Ali Abid <[email protected]>
Co-authored-by: Abubakar Abid <[email protected]> | 88 | 0 | 43,297 | 10 |
|
1 | 6 | def gelu(x):
return x * 0.5 * (1.0 + paddle.erf(x / math.sqrt(2.0)))
| modules/image/text_to_image/disco_diffusion_cnclip_vitb16/cn_clip/clip/modeling_bert.py | 47 | PaddleHub | {
"docstring": " Original Implementation of the gelu activation function in Google Bert repo when initially created.\n For information: OpenAI GPT's gelu is slightly different (and gives slightly different results):\n 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))\n Also see https://arxiv.org/abs/1606.08415\n ",
"language": "en",
"n_whitespaces": 71,
"n_words": 46,
"vocab_size": 39
} | 12 | Python | 11 | f4d6e64cdc132ae868699a0ba442f4ab1d304a14 | modeling_bert.py | 49,740 | 2 | 34 | gelu | https://github.com/PaddlePaddle/PaddleHub.git | add disco_diffusion_cnclip_vitb16 module | 18 | 0 | 9,899 | 13 |
|
2 | 20 | def _set_preview_feed(self):
retval = {}
for idx, side in enumerate(("a", "b")):
logger.debug("Setting preview feed: (side: '%s')", side)
preview_images = self._config.get("preview_images", 14)
preview_images = min(max(preview_images, 2), 16)
batchsize = min(len(self._images[side]), preview_images)
retval[side] = self._load_generator(idx).minibatch_ab(self._images[side],
batchsize,
side,
do_shuffle=True,
is_preview=True)
logger.debug("Set preview feed. Batchsize: %s", batchsize)
return retval
| plugins/train/trainer/_base.py | 184 | faceswap | {
"docstring": " Set the preview feed for this feeder.\n\n Creates a generator from :class:`lib.training_data.TrainingDataGenerator` specifically\n for previews for the feeder.\n\n Returns\n -------\n dict\n The side (\"a\" or \"b\") as key, :class:`~lib.training_data.TrainingDataGenerator` as\n value.\n ",
"language": "en",
"n_whitespaces": 96,
"n_words": 31,
"vocab_size": 26
} | 45 | Python | 38 | c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | _base.py | 100,389 | 14 | 116 | _set_preview_feed | https://github.com/deepfakes/faceswap.git | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | 395 | 0 | 19,874 | 14 |
|
4 | 26 | def script_error_handler(path, exc, msg="", tb=False):
exception = type(exc).__name__
if msg:
exception = msg
lineno = ""
if hasattr(exc, "lineno"):
lineno = str(exc.lineno)
log_msg = f"in script {path}:{lineno} {exception}"
if tb:
etype, value, tback = sys.exc_info()
tback = addonmanager.cut_traceback(tback, "invoke_addon_sync")
log_msg = (
log_msg + "\n" + "".join(traceback.format_exception(etype, value, tback))
)
ctx.log.error(log_msg)
ReloadInterval = 1
| mitmproxy/addons/script.py | 199 | mitmproxy | {
"docstring": "\n Handles all the user's script errors with\n an optional traceback\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 10,
"vocab_size": 10
} | 54 | Python | 37 | b3587b52b25077f68116b9852b041d33e7fc6601 | script.py | 251,307 | 15 | 108 | script_error_handler | https://github.com/mitmproxy/mitmproxy.git | make it black! | 130 | 0 | 73,672 | 14 |
|
1 | 2 | def prevent_sync_event_circular_query(func):
| saleor/graphql/checkout/utils.py | 13 | saleor | {
"docstring": "Prevent circular dependencies in synchronous events resolvers.\n\n Synchronous events are not allowed to request fields that are resolved using other\n synchronous events, which would lead to circular calls of the webhook.\n Using this decorator prevents such circular events resolution.\n\n :raises CircularSubscriptionSyncEvent: When a field being resolved from a\n synchronous webhook's payload uses another synchronous webhook internally.\n ",
"language": "en",
"n_whitespaces": 74,
"n_words": 56,
"vocab_size": 45
} | 2 | Python | 2 | 8201efcde2d7aacccf3512c544cceea6780a0598 | utils.py | 28,243 | 3 | 10 | prevent_sync_event_circular_query | https://github.com/saleor/saleor.git | GraphQL subscription support for synchronous webhook events (#9763)
* WIP add sync webhooks subscription payload handling
* add tests, fix minor things
* update schema
* remove unneeded code
* add fix for circular field resolve
* fix-filter-shipping-methods-payload
* added_in added to desription
* add missing types
* revert refactor, precommit issues
* fixes after review
* cosmetix fixes post-review
* subscription types description fixes
* remove unneeded description from PaymentBase
* add validation for creating webhook with two top level fields, add tests for shippingListMethodsForCheckout
* add docstring, refactor prevent_sync_event_circular_wuery wrapper
* fix docstring of revent_sync_event_circular_query
* fix linters | 5 | 0 | 5,164 | 6 |
|
1 | 3 | def iterations(self):
return self._iterations
| keras/optimizers/optimizer_experimental/optimizer.py | 19 | keras | {
"docstring": "The number of training steps this `optimizer` has run.\n\n By default, iterations would be incremented by one every time\n `apply_gradients()` is called.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 22,
"vocab_size": 22
} | 4 | Python | 4 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | optimizer.py | 275,290 | 2 | 10 | iterations | https://github.com/keras-team/keras.git | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 18 | 0 | 81,374 | 6 |
|
1 | 3 | def test_nested_auto_heights(snap_compare):
assert snap_compare("snapshot_apps/nested_auto_heights.py", press=["1", "2"])
# --- Other ---
| tests/snapshot_tests/test_snapshots.py | 38 | textual | {
"docstring": "Test refreshing widget within a auto sized container",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | 10 | Python | 9 | 32b7308ac83c20c49ca422726be149fdc5b8fc2d | test_snapshots.py | 186,216 | 2 | 19 | test_nested_auto_heights | https://github.com/Textualize/textual.git | fox for nested heights | 15 | 0 | 45,406 | 10 |
|
1 | 4 | def num_arrays_on_dev(dev):
return len(get_all_arrays_on_dev(dev))
# noinspection PyShadowingNames | ivy/core/device.py | 27 | ivy | {
"docstring": "\n Returns the number of arrays which are currently alive on the specified device.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 13,
"vocab_size": 12
} | 7 | Python | 7 | d743336b1f3654cd0315f380f43eed4116997c1d | device.py | 213,609 | 2 | 14 | num_arrays_on_dev | https://github.com/unifyai/ivy.git | renamed dev_str arg to dev for all methods. | 12 | 0 | 53,674 | 9 |
|
3 | 6 | def pattern(self) -> str | None:
if hasattr(self, "_attr_pattern"):
return self._attr_pattern
if hasattr(self, "entity_description"):
return self.entity_description.pattern
return None
| homeassistant/components/text/__init__.py | 65 | core | {
"docstring": "Return the regex pattern that the value must match.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | 18 | Python | 14 | 003e4224c89a6da381960dc5347750d1521d85c9 | __init__.py | 291,305 | 7 | 38 | pattern | https://github.com/home-assistant/core.git | Add `text` platform (#79454)
Co-authored-by: Franck Nijhof <[email protected]>
Co-authored-by: Franck Nijhof <[email protected]> | 68 | 0 | 90,415 | 9 |
|
6 | 4 | def render_pep440(pieces):
if pieces["closest-tag"]:
rendered = pieces["closest-tag"]
if pieces["distance"] or pieces["dirty"]:
rendered += plus_or_dot(pieces)
rendered += f"{pieces['distance']}.g{pieces['short']}"
if pieces["dirty"]:
rendered += ".dirty"
else:
# exception #1
rendered = f"0+untagged.{pieces['distance']}.g{pieces['short']}"
if pieces["dirty"]:
rendered += ".dirty"
return rendered
| pandas/_version.py | 163 | pandas | {
"docstring": "Build up version string, with post-release \"local version identifier\".\n\n Our goal: TAG[+DISTANCE.gHEX[.dirty]] . Note that if you\n get a tagged build and then dirty it, you'll get TAG+0.gHEX.dirty\n\n Exceptions:\n 1: no tags. git_describe was just HEX. 0+untagged.DISTANCE.gHEX[.dirty]\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 37,
"vocab_size": 35
} | 36 | Python | 20 | e2df99823758210fb2b7c4aba39e23f3445f7cd3 | _version.py | 171,627 | 13 | 65 | render_pep440 | https://github.com/pandas-dev/pandas.git | BLD: use nonvendor versioneer (#49924)
* BLD: remove vendored versioneer
* run vis
* move config to pyproject.toml
* add versioneer to deps
* run pyupgrade
* fix isort and pylint
* fix ci
* fix env | 142 | 0 | 40,694 | 14 |
|
1 | 4 | def clear(self):
del self._toklist[:]
self._tokdict.clear()
| pipenv/patched/notpip/_vendor/pyparsing/results.py | 36 | pipenv | {
"docstring": "\n Clear all elements and results names.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 6,
"vocab_size": 6
} | 5 | Python | 5 | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | results.py | 20,624 | 3 | 20 | clear | https://github.com/pypa/pipenv.git | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 26 | 0 | 3,461 | 8 |
|
1 | 2 | def _refresh_on_access_denied(func):
| homeassistant/components/ubus/device_tracker.py | 13 | core | {
"docstring": "If remove rebooted, it lost our session so rebuild one and try again.",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 13
} | 2 | Python | 2 | 8819634b613f6bfd55885283bab86c3852ae40c4 | device_tracker.py | 298,014 | 3 | 10 | _refresh_on_access_denied | https://github.com/home-assistant/core.git | String formatting and max line length - Part 6 (#84525) | 5 | 0 | 96,962 | 6 |
|
8 | 14 | def format(tokens, formatter, outfile=None): # pylint: disable=redefined-builtin
try:
if not outfile:
realoutfile = getattr(formatter, 'encoding', None) and BytesIO() or StringIO()
formatter.format(tokens, realoutfile)
return realoutfile.getvalue()
else:
formatter.format(tokens, outfile)
except TypeError as err:
if (isinstance(err.args[0], str) and
('unbound method format' in err.args[0] or
'missing 1 required positional argument' in err.args[0])):
raise TypeError('format() argument must be a formatter instance, '
'not a class')
raise
| pipenv/patched/notpip/_vendor/pygments/__init__.py | 180 | pipenv | {
"docstring": "\n Format a tokenlist ``tokens`` with the formatter ``formatter``.\n\n If ``outfile`` is given and a valid file object (an object\n with a ``write`` method), the result will be written to it, otherwise\n it is returned as a string.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 37,
"vocab_size": 30
} | 61 | Python | 54 | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | __init__.py | 20,262 | 15 | 107 | format | https://github.com/pypa/pipenv.git | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 204 | 0 | 3,301 | 15 |
|
14 | 21 | def get_bin_path(arg, opt_dirs=None, required=None):
opt_dirs = [] if opt_dirs is None else opt_dirs
sbin_paths = ['/sbin', '/usr/sbin', '/usr/local/sbin']
paths = []
for d in opt_dirs:
if d is not None and os.path.exists(d):
paths.append(d)
paths += os.environ.get('PATH', '').split(os.pathsep)
bin_path = None
# mangle PATH to include /sbin dirs
for p in sbin_paths:
if p not in paths and os.path.exists(p):
paths.append(p)
for d in paths:
if not d:
continue
path = os.path.join(d, arg)
if os.path.exists(path) and not os.path.isdir(path) and is_executable(path):
bin_path = path
break
if bin_path is None:
raise ValueError('Failed to find required executable "%s" in paths: %s' % (arg, os.pathsep.join(paths)))
return bin_path
| lib/ansible/module_utils/common/process.py | 303 | ansible | {
"docstring": "\n Find system executable in PATH. Raises ValueError if executable is not found.\n Optional arguments:\n - required: [Deprecated] Prior to 2.10, if executable is not found and required is true it raises an Exception.\n In 2.10 and later, an Exception is always raised. This parameter will be removed in 2.14.\n - opt_dirs: optional list of directories to search in addition to PATH\n In addition to PATH and opt_dirs, this function also looks through /sbin, /usr/sbin and /usr/local/sbin. A lot of\n modules, especially for gathering facts, depend on this behaviour.\n If found return full path, otherwise raise ValueError.\n ",
"language": "en",
"n_whitespaces": 148,
"n_words": 96,
"vocab_size": 73
} | 101 | Python | 61 | b56d73796e85f162d50b4fcd5930035183032d4a | process.py | 267,630 | 22 | 187 | get_bin_path | https://github.com/ansible/ansible.git | Clarify that sbin directories are always looked at in get_bin_path (#78171) | 234 | 0 | 78,989 | 14 |
|
10 | 33 | def aggregate(self, *args, **kwargs):
if self.query.distinct_fields:
raise NotImplementedError("aggregate() + distinct(fields) not implemented.")
self._validate_values_are_expressions(
(*args, *kwargs.values()), method_name="aggregate"
)
for arg in args:
# The default_alias property raises TypeError if default_alias
# can't be set automatically or AttributeError if it isn't an
# attribute.
try:
arg.default_alias
except (AttributeError, TypeError):
raise TypeError("Complex aggregates require an alias")
kwargs[arg.default_alias] = arg
query = self.query.chain()
for (alias, aggregate_expr) in kwargs.items():
query.add_annotation(aggregate_expr, alias, is_summary=True)
annotation = query.annotations[alias]
if not annotation.contains_aggregate:
raise TypeError("%s is not an aggregate expression" % alias)
for expr in annotation.get_source_expressions():
if (
expr.contains_aggregate
and isinstance(expr, Ref)
and expr.refs in kwargs
):
name = expr.refs
raise exceptions.FieldError(
"Cannot compute %s('%s'): '%s' is an aggregate"
% (annotation.name, name, name)
)
return query.get_aggregation(self.db, kwargs)
| django/db/models/query.py | 306 | django | {
"docstring": "\n Return a dictionary containing the calculations (aggregation)\n over the current queryset.\n\n If args is present the expression is passed as a kwarg using\n the Aggregate object's default alias.\n ",
"language": "en",
"n_whitespaces": 64,
"n_words": 28,
"vocab_size": 23
} | 117 | Python | 88 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | query.py | 205,775 | 30 | 191 | aggregate | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 540 | 0 | 51,208 | 16 |
|
1 | 16 | def to_local_object_without_private_data_child(self) -> NDimEntityPhiTensor:
# relative
from ..tensor import Tensor
public_shape = getattr(self, "public_shape", None)
public_dtype = getattr(self, "public_dtype", None)
return Tensor(
child=NDimEntityPhiTensor(
child=FixedPrecisionTensor(value=None),
entities=self.entities,
min_vals=self.min_vals, # type: ignore
max_vals=self.max_vals, # type: ignore
),
public_shape=public_shape,
public_dtype=public_dtype,
)
@serializable(capnp_bytes=True) | packages/syft/src/syft/core/tensor/autodp/ndim_entity_phi.py | 137 | @serializable(capnp_bytes=True) | PySyft | {
"docstring": "Convert this pointer into a partial version of the NDimEntityPhiTensor but without\n any of the private data therein.",
"language": "en",
"n_whitespaces": 24,
"n_words": 18,
"vocab_size": 16
} | 38 | Python | 31 | 8fdb37e3227eb40d431c32ae8f5bfb44866e4490 | ndim_entity_phi.py | 967 | 16 | 79 | to_local_object_without_private_data_child | https://github.com/OpenMined/PySyft.git | working ndept addition | 192 | 1 | 147 | 14 |
1 | 5 | def current_umask() -> int:
mask = os.umask(0)
os.umask(mask)
return mask
| pipenv/patched/notpip/_internal/utils/unpacking.py | 41 | pipenv | {
"docstring": "Get the current umask which involves having to set it temporarily.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 10 | Python | 9 | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | unpacking.py | 20,003 | 5 | 23 | current_umask | https://github.com/pypa/pipenv.git | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | 22 | 0 | 3,171 | 8 |
|
3 | 12 | async def _recover_running_jobs(self):
all_jobs = await self._job_info_client.get_all_jobs()
for job_id, job_info in all_jobs.items():
if not job_info.status.is_terminal():
create_task(self._monitor_job(job_id))
| dashboard/modules/job/job_manager.py | 80 | ray | {
"docstring": "Recovers all running jobs from the status client.\n\n For each job, we will spawn a coroutine to monitor it.\n Each will be added to self._running_jobs and reconciled.\n ",
"language": "en",
"n_whitespaces": 48,
"n_words": 27,
"vocab_size": 25
} | 16 | Python | 16 | 326b5bd1acc6d3d00ab0546e4ae45da6bed501f7 | job_manager.py | 126,657 | 5 | 46 | _recover_running_jobs | https://github.com/ray-project/ray.git | Convert job_manager to be async (#27123)
Updates jobs api
Updates snapshot api
Updates state api
Increases jobs api version to 2
Signed-off-by: Alan Guo [email protected]
Why are these changes needed?
follow-up for #25902 (comment) | 63 | 0 | 28,217 | 13 |
|
6 | 16 | def collate_full_clips(batch):
max_mel_length = max([b[0].shape[1] for b in batch]) if len(batch) > 1 else batch[0][0].shape[1]
max_audio_length = max([b[1].shape[0] for b in batch]) if len(batch) > 1 else batch[0][1].shape[0]
mels = torch.zeros([len(batch), batch[0][0].shape[0], max_mel_length])
audios = torch.zeros([len(batch), max_audio_length])
for idx, b in enumerate(batch):
mel = b[0]
audio = b[1]
mels[idx, :, : mel.shape[1]] = mel
audios[idx, : audio.shape[0]] = audio
return mels, audios
| TTS/vocoder/datasets/wavegrad_dataset.py | 272 | TTS | {
"docstring": "This is used in tune_wavegrad.py.\n It pads sequences to the max length.",
"language": "en",
"n_whitespaces": 18,
"n_words": 12,
"vocab_size": 12
} | 62 | Python | 38 | 2c9f00a808e0aa76a82af2e8b325abb71f50d1df | wavegrad_dataset.py | 262,565 | 11 | 185 | collate_full_clips | https://github.com/coqui-ai/TTS.git | Fix tune wavegrad (#1844)
* fix imports in tune_wavegrad
* load_config returns Coqpit object instead None
* set action (store true) for flag "--use_cuda"; start to tune if module is running as the main program
* fix var order in the result of batch collating
* make style
* make style with black and isort | 155 | 0 | 77,276 | 13 |
|
1 | 7 | def waist2rayleigh(w, wavelen, n=1):
w, wavelen = map(sympify, (w, wavelen))
return w**2*n*pi/wavelen
| sympy/physics/optics/gaussopt.py | 55 | sympy | {
"docstring": "\n Calculate the rayleigh range from the waist of a gaussian beam.\n\n See Also\n ========\n\n rayleigh2waist, BeamParameter\n\n Examples\n ========\n\n >>> from sympy.physics.optics import waist2rayleigh\n >>> from sympy import symbols\n >>> w, wavelen = symbols('w wavelen')\n >>> waist2rayleigh(w, wavelen)\n pi*w**2/wavelen\n ",
"language": "en",
"n_whitespaces": 75,
"n_words": 38,
"vocab_size": 30
} | 12 | Python | 12 | c32aa66c02befb7a12915e6ae4ae953a1a81c8f7 | gaussopt.py | 196,508 | 3 | 36 | waist2rayleigh | https://github.com/sympy/sympy.git | Refractive_Index_Parameter_Considered | 21 | 0 | 47,949 | 9 |
|
1 | 7 | def __copy__(self):
# Shallow copy.
return self.__constructor__(
self.gpu_manager, self.key, self._length_cache, self._width_cache
)
| modin/core/execution/ray/implementations/cudf_on_ray/partitioning/partition.py | 43 | modin | {
"docstring": "\n Create a copy of this object.\n\n Returns\n -------\n cuDFOnRayDataframePartition\n A copy of this object.\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 14,
"vocab_size": 10
} | 12 | Python | 12 | 2bb9a1fab7b0092974853e616dfd5e7ed98f085d | partition.py | 155,358 | 4 | 27 | __copy__ | https://github.com/modin-project/modin.git | REFACTOR-#5363: introduce partition constructor; move `add_to_apply_calls` impl in base class (#5354)
Signed-off-by: Myachev <[email protected]> | 51 | 0 | 36,353 | 8 |
|
2 | 16 | def upgrade():
try:
with op.batch_alter_table('connection') as batch_op:
batch_op.alter_column("conn_id", nullable=False, existing_type=sa.String(250, **COLLATION_ARGS))
batch_op.create_unique_constraint(constraint_name="unique_conn_id", columns=["conn_id"])
except sa.exc.IntegrityError:
raise Exception("Make sure there are no duplicate connections with the same conn_id or null values")
| airflow/migrations/versions/8d48763f6d53_add_unique_constraint_to_conn_id.py | 117 | airflow | {
"docstring": "Apply Add unique constraint to ``conn_id`` and set it as non-nullable",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 30 | Python | 29 | 69f6f9e01b6df76c3c8fa266d460324163957887 | 8d48763f6d53_add_unique_constraint_to_conn_id.py | 45,476 | 7 | 65 | upgrade | https://github.com/apache/airflow.git | Autogenerate migration reference doc (#21601)
* document airflow version in each alembic migration module and use this to autogen the doc
* update each migration module to have the same description used in migration ref (so it can be used in autogen) | 75 | 0 | 8,603 | 15 |
|
2 | 19 | def forward(self, input_ids, token_type_ids=None, attention_mask=None):
r
if attention_mask is None:
attention_mask = paddle.unsqueeze(
(input_ids == self.pad_token_id
).astype(self.pooler.dense.weight.dtype) * -1e4,
axis=[1, 2])
embedding_output = self.embeddings(input_ids, token_type_ids)
encoded_layer = self.encoder(embedding_output, attention_mask)
pooled_output = self.pooler(encoded_layer)
return encoded_layer, pooled_output
| paddlenlp/transformers/tinybert/modeling.py | 139 | PaddleNLP | {
"docstring": "\n The TinyBertModel forward method, overrides the `__call__()` special method.\n\n Args:\n input_ids (Tensor):\n Indices of input sequence tokens in the vocabulary. They are\n numerical representations of tokens that build the input sequence.\n Its data type should be `int64` and it has a shape of [batch_size, sequence_length].\n token_type_ids (Tensor, optional):\n Segment token indices to indicate different portions of the inputs.\n Selected in the range ``[0, type_vocab_size - 1]``.\n If `type_vocab_size` is 2, which means the inputs have two portions.\n Indices can either be 0 or 1:\n\n - 0 corresponds to a *sentence A* token,\n - 1 corresponds to a *sentence B* token.\n\n Its data type should be `int64` and it has a shape of [batch_size, sequence_length].\n Defaults to `None`, which means we don't add segment embeddings.\n attention_mask (Tensor, optional):\n Mask used in multi-head attention to avoid performing attention to some unwanted positions,\n usually the paddings or the subsequent positions.\n Its data type can be int, float and bool.\n When the data type is bool, the `masked` tokens have `False` values and the others have `True` values.\n When the data type is int, the `masked` tokens have `0` values and the others have `1` values.\n When the data type is float, the `masked` tokens have `-INF` values and the others have `0` values.\n It is a tensor with shape broadcasted to `[batch_size, num_attention_heads, sequence_length, sequence_length]`.\n For example, its shape can be [batch_size, sequence_length], [batch_size, sequence_length, sequence_length],\n [batch_size, num_attention_heads, sequence_length, sequence_length].\n Defaults to `None`, which means nothing needed to be prevented attention to.\n\n Returns:\n tuple: Returns tuple (`encoder_output`, `pooled_output`).\n\n With the fields:\n\n - `encoder_output` (Tensor):\n Sequence of hidden-states at the last layer of the model.\n It's data type should be float32 and its shape is [batch_size, sequence_length, hidden_size].\n\n - `pooled_output` (Tensor):\n The output of first token (`[CLS]`) in sequence.\n We \"pool\" the model by simply taking the hidden state corresponding to the first token.\n Its data type should be float32 and its shape is [batch_size, hidden_size].\n\n Example:\n .. code-block::\n\n import paddle\n from paddlenlp.transformers import TinyBertModel, TinyBertTokenizer\n\n tokenizer = TinyBertTokenizer.from_pretrained('tinybert-4l-312d')\n model = TinyBertModel.from_pretrained('tinybert-4l-312d')\n\n inputs = tokenizer(\"Welcome to use PaddlePaddle and PaddleNLP! \")\n inputs = {k:paddle.to_tensor([v]) for (k, v) in inputs.items()}\n output = model(**inputs)\n ",
"language": "en",
"n_whitespaces": 978,
"n_words": 358,
"vocab_size": 185
} | 35 | Python | 30 | b0c35d5e1ff02a634fa26392b60d3885c2c78677 | modeling.py | 322,100 | 68 | 92 | forward | https://github.com/PaddlePaddle/PaddleNLP.git | Fix the attention mask for fp16 (#1585) | 133 | 0 | 118,057 | 17 |
|
1 | 4 | def available(self) -> bool:
return self.netdata.available
| homeassistant/components/netdata/sensor.py | 25 | core | {
"docstring": "Could the resource be accessed during the last update call.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | 6 | Python | 6 | 420733a064286cfe6fc5cf11483835d15ff83462 | sensor.py | 305,670 | 3 | 14 | available | https://github.com/home-assistant/core.git | Improve entity type hints [n] (#77824) | 20 | 0 | 104,454 | 7 |
|
1 | 6 | def vlatex(expr, **settings):
r
latex_printer = VectorLatexPrinter(settings)
return latex_printer.doprint(expr)
| sympy/physics/vector/printing.py | 38 | sympy | {
"docstring": "Function for printing latex representation of sympy.physics.vector\n objects.\n\n For latex representation of Vectors, Dyadics, and dynamicsymbols. Takes the\n same options as SymPy's :func:`~.latex`; see that function for more\n information;\n\n Parameters\n ==========\n\n expr : valid SymPy object\n SymPy expression to represent in LaTeX form\n settings : args\n Same as latex()\n\n Examples\n ========\n\n >>> from sympy.physics.vector import vlatex, ReferenceFrame, dynamicsymbols\n >>> N = ReferenceFrame('N')\n >>> q1, q2 = dynamicsymbols('q1 q2')\n >>> q1d, q2d = dynamicsymbols('q1 q2', 1)\n >>> q1dd, q2dd = dynamicsymbols('q1 q2', 2)\n >>> vlatex(N.x + N.y)\n '\\\\mathbf{\\\\hat{n}_x} + \\\\mathbf{\\\\hat{n}_y}'\n >>> vlatex(q1 + q2)\n 'q_{1} + q_{2}'\n >>> vlatex(q1d)\n '\\\\dot{q}_{1}'\n >>> vlatex(q1 * q2d)\n 'q_{1} \\\\dot{q}_{2}'\n >>> vlatex(q1dd * q1 / q1d)\n '\\\\frac{q_{1} \\\\ddot{q}_{1}}{\\\\dot{q}_{1}}'\n\n ",
"language": "en",
"n_whitespaces": 205,
"n_words": 113,
"vocab_size": 84
} | 9 | Python | 9 | 9a3ffc6781bd44c47cf49e128ef154389c32876a | printing.py | 197,452 | 38 | 23 | vlatex | https://github.com/sympy/sympy.git | Some pep8 cleanup of sympy.physics.vector. | 17 | 0 | 48,558 | 8 |
|
4 | 12 | def test_pick_two_individuals_eligible_for_crossover_bad():
ind1 = creator.Individual.from_string(
'BernoulliNB(input_matrix, BernoulliNB__alpha=1.0, BernoulliNB__fit_prior=True)',
tpot_obj._pset
)
ind2 = creator.Individual.from_string(
'BernoulliNB(input_matrix, BernoulliNB__alpha=1.0, BernoulliNB__fit_prior=True)',
tpot_obj._pset
)
ind3 = creator.Individual.from_string(
'GaussianNB(input_matrix)',
tpot_obj._pset
)
# Ind1 and ind2 are not a pair because they are the same, ind3 shares no primitive
pick1, pick2 = pick_two_individuals_eligible_for_crossover([ind1, ind2, ind3])
assert pick1 is None and pick2 is None
# You can not do crossover with a population of only 1.
pick1, pick2 = pick_two_individuals_eligible_for_crossover([ind1])
assert pick1 is None and pick2 is None
# You can not do crossover with a population of 0.
pick1, pick2 = pick_two_individuals_eligible_for_crossover([])
assert pick1 is None and pick2 is None
| tests/tpot_tests.py | 171 | tpot | {
"docstring": "Assert that pick_two_individuals_eligible_for_crossover() returns the right output when no pair is eligible",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 12
} | 102 | Python | 48 | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot_tests.py | 181,690 | 19 | 104 | test_pick_two_individuals_eligible_for_crossover_bad | https://github.com/EpistasisLab/tpot.git | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | 192 | 0 | 43,477 | 9 |
|
9 | 27 | def _vindex(x, *indexes):
indexes = replace_ellipsis(x.ndim, indexes)
nonfancy_indexes = []
reduced_indexes = []
for ind in indexes:
if isinstance(ind, Number):
nonfancy_indexes.append(ind)
elif isinstance(ind, slice):
nonfancy_indexes.append(ind)
reduced_indexes.append(slice(None))
else:
nonfancy_indexes.append(slice(None))
reduced_indexes.append(ind)
nonfancy_indexes = tuple(nonfancy_indexes)
reduced_indexes = tuple(reduced_indexes)
x = x[nonfancy_indexes]
array_indexes = {}
for i, (ind, size) in enumerate(zip(reduced_indexes, x.shape)):
if not isinstance(ind, slice):
ind = np.array(ind, copy=True)
if ind.dtype.kind == "b":
raise IndexError("vindex does not support indexing with boolean arrays")
if ((ind >= size) | (ind < -size)).any():
raise IndexError(
"vindex key has entries out of bounds for "
"indexing along axis %s of size %s: %r" % (i, size, ind)
)
ind %= size
array_indexes[i] = ind
if array_indexes:
x = _vindex_array(x, array_indexes)
return x
| dask/array/core.py | 355 | dask | {
"docstring": "Point wise indexing with broadcasting.\n\n >>> x = np.arange(56).reshape((7, 8))\n >>> x\n array([[ 0, 1, 2, 3, 4, 5, 6, 7],\n [ 8, 9, 10, 11, 12, 13, 14, 15],\n [16, 17, 18, 19, 20, 21, 22, 23],\n [24, 25, 26, 27, 28, 29, 30, 31],\n [32, 33, 34, 35, 36, 37, 38, 39],\n [40, 41, 42, 43, 44, 45, 46, 47],\n [48, 49, 50, 51, 52, 53, 54, 55]])\n\n >>> d = from_array(x, chunks=(3, 4))\n >>> result = _vindex(d, [0, 1, 6, 0], [0, 1, 0, 7])\n >>> result.compute()\n array([ 0, 9, 48, 7])\n ",
"language": "en",
"n_whitespaces": 189,
"n_words": 95,
"vocab_size": 80
} | 115 | Python | 82 | b016998fa931f644df4d266a3ed5e7604c20d2a9 | core.py | 156,931 | 32 | 221 | _vindex | https://github.com/dask/dask.git | Removed unused loop control variables (`B007`) (#9458)
Co-authored-by: James Bourbeau <[email protected]> | 379 | 0 | 36,811 | 16 |
|
1 | 13 | def test_warn_once():
with warnings.catch_warnings(record=True) as record:
# Ignore Deprecation warnings.
warnings.filterwarnings("ignore", category=DeprecationWarning)
assert not load_checkpoint()
assert not load_checkpoint()
assert not save_checkpoint(x=2)
assert not report(x=2)
assert not report(x=3)
assert not get_dataset_shard()
# Should only warn once.
assert len(record) == 4
| python/ray/train/tests/test_session.py | 130 | ray | {
"docstring": "Checks if session misuse warning is only shown once per function.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 39 | Python | 26 | 0e8eb8aedb3e158da8c3e7378e818ce87ca7813e | test_session.py | 128,341 | 10 | 73 | test_warn_once | https://github.com/ray-project/ray.git | [AIR] More Train and Tune session deprecations (#28856)
Signed-off-by: Amog Kamsetty [email protected]
Finish marking train. and tune. session APIs as deprecated | 107 | 0 | 28,675 | 11 |
|
1 | 6 | def _tie_weights(self):
# To tie those two weights if they get disconnected (on TPU or when the bias is resized)
self.bias = self.decoder.bias
@add_start_docstrings(
,
XLM_ROBERTA_XL_START_DOCSTRING,
) | src/transformers/models/xlm_roberta_xl/modeling_xlm_roberta_xl.py | 38 | @add_start_docstrings(
"""
XLM-RoBERTa-xlarge Model transformer with a sequence classification/regression head on top (a linear layer on top
of the pooled output) e.g. for GLUE tasks.
""",
XLM_ROBERTA_XL_START_DOCSTRING,
) | transformers | {
"docstring": "\n XLM-RoBERTa-xlarge Model transformer with a sequence classification/regression head on top (a linear layer on top\n of the pooled output) e.g. for GLUE tasks.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 23,
"vocab_size": 21
} | 27 | Python | 27 | e09473a817c5e5871e11cc81004355ef30250502 | modeling_xlm_roberta_xl.py | 34,690 | 2 | 14 | _tie_weights | https://github.com/huggingface/transformers.git | Add support for XLM-R XL and XXL models by modeling_xlm_roberta_xl.py (#13727)
* add xlm roberta xl
* add convert xlm xl fairseq checkpoint to pytorch
* fix init and documents for xlm-roberta-xl
* fix indention
* add test for XLM-R xl,xxl
* fix model hub name
* fix some stuff
* up
* correct init
* fix more
* fix as suggestions
* add torch_device
* fix default values of doc strings
* fix leftovers
* merge to master
* up
* correct hub names
* fix docs
* fix model
* up
* finalize
* last fix
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* add copied from
* make style
Co-authored-by: Patrick von Platen <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]> | 44 | 1 | 6,311 | 8 |
2 | 27 | def _convert_mesh_to_triangles(self, coordinates):
if isinstance(coordinates, np.ma.MaskedArray):
p = coordinates.data
else:
p = coordinates
p_a = p[:-1, :-1]
p_b = p[:-1, 1:]
p_c = p[1:, 1:]
p_d = p[1:, :-1]
p_center = (p_a + p_b + p_c + p_d) / 4.0
triangles = np.concatenate([
p_a, p_b, p_center,
p_b, p_c, p_center,
p_c, p_d, p_center,
p_d, p_a, p_center,
], axis=2).reshape((-1, 3, 2))
c = self.get_facecolor().reshape((*coordinates.shape[:2], 4))
c_a = c[:-1, :-1]
c_b = c[:-1, 1:]
c_c = c[1:, 1:]
c_d = c[1:, :-1]
c_center = (c_a + c_b + c_c + c_d) / 4.0
colors = np.concatenate([
c_a, c_b, c_center,
c_b, c_c, c_center,
c_c, c_d, c_center,
c_d, c_a, c_center,
], axis=2).reshape((-1, 3, 4))
return triangles, colors
| lib/matplotlib/collections.py | 390 | matplotlib | {
"docstring": "\n Convert a given mesh into a sequence of triangles, each point\n with its own color. The result can be used to construct a call to\n `~.RendererBase.draw_gouraud_triangles`.\n ",
"language": "en",
"n_whitespaces": 56,
"n_words": 26,
"vocab_size": 23
} | 112 | Python | 56 | 4a5d09cba5f4a20e14553cebd8f70c1f34d20d35 | collections.py | 109,611 | 29 | 273 | _convert_mesh_to_triangles | https://github.com/matplotlib/matplotlib.git | Deprecate draw_gouraud_triangle (#23824)
* Deprecate draw_gouraud_triangle
* DOC: minor rewording
Co-authored-by: Elliott Sales de Andrade <[email protected]>
Co-authored-by: Thomas A Caswell <[email protected]>
Co-authored-by: Elliott Sales de Andrade <[email protected]> | 355 | 0 | 23,670 | 12 |
|
2 | 12 | def get_binance_available_quotes_for_each_coin() -> dict:
trading_pairs = _get_trading_pairs()
results = defaultdict(list)
for pair in trading_pairs:
results[pair["baseAsset"]].append(pair["quoteAsset"])
return results
@log_start_end(log=logger) | gamestonk_terminal/cryptocurrency/due_diligence/binance_model.py | 82 | @log_start_end(log=logger) | OpenBBTerminal | {
"docstring": "Helper methods that for every coin available on Binance add all quote assets. [Source: Binance]\n\n Returns\n -------\n dict:\n All quote assets for given coin\n {'ETH' : ['BTC', 'USDT' ...], 'UNI' : ['ETH', 'BTC','BUSD', ...]\n\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 34,
"vocab_size": 30
} | 18 | Python | 16 | e1b6022b9cf156ffc0697d0d25a5ed2772ea8d68 | binance_model.py | 282,485 | 15 | 40 | get_binance_available_quotes_for_each_coin | https://github.com/OpenBB-finance/OpenBBTerminal.git | Global plot styles (#1228)
* Add default stylesheets
* Add terminal style helper class and global style initialization in cfg
* Style comments and docstrings
* Load rich terminal theme from config file
* Add application chart styles to candle charts
* Add todos
* Remove explicit color setting for some ta charts
* Add user styles folder to gitignore
* Update default stylesheets
* Add matplotlib font manager support
* Add matplotlib font manager support
* Update docstrings and default style
* Update stocks candle chart formatting (return fig to style title)
* Style common ta overlap view
* Make up and down market colors a part of the style helper
* Update stylesheets
* Style common ta volume view
* Style common ta momentum view
* Style common ta trend indicators view
* Style common ta volatility view
* Style common ta volume view
* Style common ta custom indicators view
* Fix styling bugs and remove the obvious time x lablel
* Style charts in the covid menu
* Set legend position to upper left in the mpl stylesheet
* Add mpl_rcparams configs for parameters not covered by stylesheets
* Remove font configuration files
* Update style class utility functions
* Implement passing external axes and style utility usage in ema & stoch
* Add theme watermark and output helpers
* Rename style to theme
* Update helper usage in ta/ma and ta/stoch
* Update style to theme in sample menus
* Style forex (#1305)
* Make tight layout optional 'cause mplfinance doesn't support it
* Apply global style to the forex menu
* Update code layout in oanda view and black
* Style common TA (#1315)
* Make tight layout optional 'cause mplfinance doesn't support it
* Apply global style to the forex menu
* Add linewidth to theme for use in mpf's addplots
* Add vwap to the stocks notebook api
* Update common/ta overlap to follow charting style
* Apply style on TerminalStyle init
* Enable infrastructure for excluding non-trading days from plots
* Update notebook api to include there and resolve bandit warning
* Update ta/common/overlap to exclude non-trading days
* Enable external ax, style and non-trading days in common/ta/momentum
* Enable external ax, style and non-trading days in common/ta/trend
* Update vwap to the argument naming convention
* Enable external ax, style and non-trading days in common/ta/volatility
* Enable external ax, style and non-trading days in common/ta/volume
* Enable external ax, style and non-trading days in common/ta/custom
* Fix controller tests
* Forgot to disable rewriting of the cassettes ...
* Fix controller errors that came up because a merge conflict
* Fix price label position on fib
* Fix line having wrong x values in fib
Co-authored-by: Colin Delahunty <[email protected]>
* Style economy (#1308)
* Began converting
* Added alphavan_view
* Added CNN View
* Updated nasdaq view, fixed glitch
* Added fred
* Refactored URL
* Theo's requested changes
* Updated docstrings
* Updated tests
* Fixed pylint
* Fixed tests
* Theo changes
* Econ Fix
* Refactor chart style for Crypto context (#1306)
* Remove mock for gff
* Mock visualize_output helper function
* Refactor
* Fix plot helper
* Update legend loc
* Refactor mplfinance candle plot
* Fix errors in the helper function
* Fix binbook having the wrong call_ function name
* Remove hardcoded style params
* Resolve kwargs future warning from pandas
* Remove warnings import
Co-authored-by: Theodore Aptekarev <[email protected]>
* funds + custom (#1311)
* funds + custom
* cleanup cleanup everybody everywhere
* Fix external axes conditional and a typo
Co-authored-by: Theodore Aptekarev <[email protected]>
* Add external axes mode to covid charts (#1328)
* Add portfolio menu plots (#1318)
* Portfolio view plots (commenting out report stuff)
* PA Menu broken. Commenting out and fix tests
* portfolio optimization
* comment out commented api line
* Add notes on disabling the pa submenu
Co-authored-by: Theodore Aptekarev <[email protected]>
* Plot updates in common BA (#1335)
* Add external axes support to common/ba/finbrain
* Add external axes support to common/ba/twitter
* Add external axes support to common/ba/google
* Add external axes support to common/ba/sentimentinvestor
* Add sentimentinvestor to the notebooks API
* Fix tests
* Etf refactor (#1323)
* Refactored no ETF
* Fixed gtff import
* Fixed tests
* Fix pie chart style
* Refactored etf/candle
* Added pylint fix
* Fixed tests
* Update candle chart layout
* Update etf controller test
* Remove strange binary file
Co-authored-by: Theodore Aptekarev <[email protected]>
* Expose ETF candle function in the notebooks API
* Common BA and Common QA charts update (#1342)
* Add external axes support to common/ba/finbrain
* Add external axes support to common/ba/twitter
* Add external axes support to common/ba/google
* Add external axes support to common/ba/sentimentinvestor
* Add sentimentinvestor to the notebooks API
* Fix tests
* Update stylesheet files
* Refactor charts for common/qa
* Update the forgotten line plot
* Update tests
* Add missing arg to a docstring
* Remove scientific notation
* Black imports
Co-authored-by: Minh Hoang <[email protected]>
* Options refactor (#1324)
* Fixed alphaquery_view
* finished options
* Fixed pylint
* Fixed tests
* Fixed tests
* Fixed tests
* update yfinance
* Tradier + Chartexchange
* change mocks from gtff to theme.visualize output
* tests
Co-authored-by: Theodore Aptekarev <[email protected]>
Co-authored-by: james <[email protected]>
* Refactor Stocks menu (#1325)
* Fix backtesting menu
* Refactor comparison analysis
* Refactor Dark pool shorts
* Refactor rest of menu
* Fix test
* Fix tests failing
* Fix tests fail
* Fix test failing
* Remove record mode=none to record new output
* Rewrite test output
* Rewrite test outputs
* Adding more rewritten test output
* Mock plt.show
* Mock missing plt.show
* Missing @pytest.mark.vcr
* Updating tests : common/behavioural_analysis/finbrain
* Improve notebooks API coverage for CA and DPS
* Silence annoying flake8 warning
Co-authored-by: Chavithra PARANA <[email protected]>
Co-authored-by: Theodore Aptekarev <[email protected]>
* Charts update for common/pred (#1344)
* Add external axes support to common/ba/finbrain
* Add external axes support to common/ba/twitter
* Add external axes support to common/ba/google
* Add external axes support to common/ba/sentimentinvestor
* Add sentimentinvestor to the notebooks API
* Fix tests
* Update stylesheet files
* Refactor charts for common/qa
* Update the forgotten line plot
* Update tests
* Add missing arg to a docstring
* Style pred helper and controllers
* Update ETS plot
* Update plots in KNN and pred helper
* Update plot and pretty table for arima
* Update plot for common/pred/regression
* Refactor mc_view
* Fix linting
* Fix mypy
* Move plot title to the axis level to make more vertical space
Co-authored-by: Minh Hoang <[email protected]>
Co-authored-by: jmaslek <[email protected]>
* linter
* Update common/ba test data
* Change etf candle to match stock candle
* try updating sia test
Co-authored-by: Colin Delahunty <[email protected]>
Co-authored-by: jmaslek <[email protected]>
Co-authored-by: minhhoang1023 <[email protected]>
Co-authored-by: Minh Hoang <[email protected]>
Co-authored-by: Chavithra PARANA <[email protected]> | 39 | 1 | 84,165 | 12 |
9 | 19 | def get_actual_start_end_datetime_of_shift(employee, for_datetime, consider_default_shift=False):
actual_shift_start = actual_shift_end = shift_details = None
shift_timings_as_per_timestamp = get_employee_shift_timings(
employee, for_datetime, consider_default_shift
)
timestamp_list = []
for shift in shift_timings_as_per_timestamp:
if shift:
timestamp_list.extend([shift.actual_start, shift.actual_end])
else:
timestamp_list.extend([None, None])
timestamp_index = None
for index, timestamp in enumerate(timestamp_list):
if timestamp and for_datetime <= timestamp:
timestamp_index = index
break
if timestamp_index and timestamp_index % 2 == 1:
shift_details = shift_timings_as_per_timestamp[int((timestamp_index - 1) / 2)]
actual_shift_start = shift_details.actual_start
actual_shift_end = shift_details.actual_end
elif timestamp_index:
shift_details = shift_timings_as_per_timestamp[int(timestamp_index / 2)]
return actual_shift_start, actual_shift_end, shift_details
| erpnext/hr/doctype/shift_assignment/shift_assignment.py | 225 | erpnext | {
"docstring": "Takes a datetime and returns the 'actual' start datetime and end datetime of the shift in which the timestamp belongs.\n\tHere 'actual' means - taking in to account the \"begin_check_in_before_shift_start_time\" and \"allow_check_out_after_shift_end_time\".\n\tNone is returned if the timestamp is outside any actual shift timings.\n\tShift Details is also returned(current/upcoming i.e. if timestamp not in any actual shift then details of next shift returned)\n\t",
"language": "en",
"n_whitespaces": 59,
"n_words": 63,
"vocab_size": 41
} | 82 | Python | 54 | 494bd9ef78313436f0424b918f200dab8fc7c20b | shift_assignment.py | 66,198 | 23 | 145 | get_actual_start_end_datetime_of_shift | https://github.com/frappe/erpnext.git | style: format code with black | 59 | 0 | 14,136 | 14 |
|
3 | 5 | def synchronize_labels(self, axis=None):
if axis is None:
self._deferred_index = True
self._deferred_column = True
elif axis == 0:
self._deferred_index = True
else:
self._deferred_column = True
| modin/core/dataframe/pandas/dataframe/dataframe.py | 70 | modin | {
"docstring": "\n Set the deferred axes variables for the ``PandasDataframe``.\n\n Parameters\n ----------\n axis : int, default: None\n The deferred axis.\n 0 for the index, 1 for the columns.\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 26,
"vocab_size": 20
} | 24 | Python | 15 | 3c740dbfcdd69ddc3ab45a42be996e5c61104342 | dataframe.py | 152,959 | 8 | 42 | synchronize_labels | https://github.com/modin-project/modin.git | FEAT-#3111: Ensure relabeling Modin Frame does not lose partition shape (#3662)
Co-authored-by: Devin Petersohn <[email protected]>
Signed-off-by: Naren Krishna <[email protected]> | 96 | 0 | 35,205 | 10 |
|
2 | 2 | def testResourceDeadlock(self):
| python/ray/tune/tests/test_trial_runner_pg.py | 13 | ray | {
"docstring": "Tests that resource deadlock is avoided for heterogeneous PGFs.\n\n We start 4 trials in a cluster with 2 CPUs. The first two trials\n require 1 CPU each, the third trial 2 CPUs, the fourth trial 1 CPU.\n\n The second trial needs a bit more time to finish. This means that the\n resources from the first trial will be freed, and the PG of the\n _fourth_ trial becomes ready (not that of the third trial, because that\n requires 2 CPUs - however, one is still occupied by trial 2).\n\n After the first two trials finished, the FIFOScheduler tries to start\n the third trial. However, it can't be started because its placement\n group is not ready. Instead, the placement group of the fourth\n trial is ready. Thus, we opt to run the fourth trial instead.\n ",
"language": "en",
"n_whitespaces": 210,
"n_words": 133,
"vocab_size": 84
} | 2 | Python | 2 | 976ece4bc43abdb628cf4cbffc8546abab723a6d | test_trial_runner_pg.py | 129,037 | 24 | 190 | testResourceDeadlock | https://github.com/ray-project/ray.git | [tune] Add test for heterogeneous resource request deadlocks (#21397)
This adds a test for potential resource deadlocks in experiments with heterogeneous PGFs. If the PGF of a later trial becomes ready before that of a previous trial, we could run into a deadlock. This is currently avoided, but untested, flagging the code path for removal in #21387. | 9 | 0 | 28,880 | 6 |
|
1 | 34 | async def test_vocolinc_flowerbud_setup(hass):
accessories = await setup_accessories_from_file(hass, "vocolinc_flowerbud.json")
await setup_test_accessories(hass, accessories)
await assert_devices_and_entities_created(
hass,
DeviceTestInfo(
unique_id=HUB_TEST_ACCESSORY_ID,
name="VOCOlinc-Flowerbud-0d324b",
model="Flowerbud",
manufacturer="VOCOlinc",
sw_version="3.121.2",
hw_version="0.1",
serial_number="AM01121849000327",
devices=[],
entities=[
EntityTestInfo(
entity_id="humidifier.vocolinc_flowerbud_0d324b",
friendly_name="VOCOlinc-Flowerbud-0d324b",
unique_id="00:00:00:00:00:00_1_30",
supported_features=HumidifierEntityFeature.MODES,
capabilities={
"available_modes": ["normal", "auto"],
"max_humidity": 100.0,
"min_humidity": 0.0,
},
state="off",
),
EntityTestInfo(
entity_id="light.vocolinc_flowerbud_0d324b_mood_light",
friendly_name="VOCOlinc-Flowerbud-0d324b Mood Light",
unique_id="00:00:00:00:00:00_1_9",
supported_features=0,
capabilities={"supported_color_modes": ["hs"]},
state="on",
),
EntityTestInfo(
entity_id="number.vocolinc_flowerbud_0d324b_spray_quantity",
friendly_name="VOCOlinc-Flowerbud-0d324b Spray Quantity",
unique_id="00:00:00:00:00:00_1_30_38",
capabilities={
"max": 5,
"min": 1,
"mode": NumberMode.AUTO,
"step": 1,
},
state="5",
entity_category=EntityCategory.CONFIG,
),
EntityTestInfo(
entity_id="sensor.vocolinc_flowerbud_0d324b_current_humidity",
friendly_name="VOCOlinc-Flowerbud-0d324b Current Humidity",
unique_id="00:00:00:00:00:00_1_30_33",
capabilities={"state_class": SensorStateClass.MEASUREMENT},
unit_of_measurement=PERCENTAGE,
state="45.0",
),
],
),
)
| tests/components/homekit_controller/specific_devices/test_vocolinc_flowerbud.py | 389 | core | {
"docstring": "Test that a Vocolinc Flowerbud can be correctly setup in HA.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | 84 | Python | 70 | f23b1750e85f07091eb896a0b12b8f95e5646338 | test_vocolinc_flowerbud.py | 288,885 | 59 | 238 | test_vocolinc_flowerbud_setup | https://github.com/home-assistant/core.git | Migrate HomeKit Controller to use stable identifiers (#80064) | 1,005 | 0 | 88,034 | 19 |
|
3 | 12 | def closure(self, rel, depth=-1):
from nltk.util import acyclic_breadth_first
for synset in acyclic_breadth_first(self, rel, depth):
if synset != self:
yield synset
from nltk.util import acyclic_depth_first as acyclic_tree
from nltk.util import unweighted_minimum_spanning_tree as mst
# Also add this shortcut?
# from nltk.util import unweighted_minimum_spanning_digraph as umsd
| nltk/corpus/reader/wordnet.py | 89 | nltk | {
"docstring": "\n Return the transitive closure of source under the rel\n relationship, breadth-first, discarding cycles:\n\n >>> from nltk.corpus import wordnet as wn\n >>> computer = wn.synset('computer.n.01')\n >>> topic = lambda s:s.topic_domains()\n >>> print(list(computer.closure(topic)))\n [Synset('computer_science.n.01')]\n\n UserWarning: Discarded redundant search for Synset('computer.n.01') at depth 2\n\n\n Include redundant paths (but only once), avoiding duplicate searches\n (from 'animal.n.01' to 'entity.n.01'):\n\n >>> dog = wn.synset('dog.n.01')\n >>> hyp = lambda s:s.hypernyms()\n >>> print(list(dog.closure(hyp)))\n [Synset('canine.n.02'), Synset('domestic_animal.n.01'), Synset('carnivore.n.01'),\\\n Synset('animal.n.01'), Synset('placental.n.01'), Synset('organism.n.01'),\\\n Synset('mammal.n.01'), Synset('living_thing.n.01'), Synset('vertebrate.n.01'),\\\n Synset('whole.n.02'), Synset('chordate.n.01'), Synset('object.n.01'),\\\n Synset('physical_entity.n.01'), Synset('entity.n.01')]\n\n UserWarning: Discarded redundant search for Synset('animal.n.01') at depth 7\n ",
"language": "en",
"n_whitespaces": 201,
"n_words": 88,
"vocab_size": 69
} | 44 | Python | 29 | 692adaff901dd9daf29400fdf3385130aefbfb2a | wordnet.py | 42,481 | 5 | 38 | closure | https://github.com/nltk/nltk.git | Fix some tests in Wordnet-related DocStrings | 106 | 0 | 7,566 | 10 |
|
2 | 7 | def is_on(self) -> bool:
return (
self.coordinator.data[self.entity_description.key] == "TooLow"
or self.coordinator.data[self.entity_description.key] == "TooHigh"
)
| homeassistant/components/flipr/binary_sensor.py | 67 | core | {
"docstring": "Return true if the binary sensor is on in case of a Problem is detected.",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 14
} | 14 | Python | 12 | c7dfd6b15a3fc9fa81d260b3dfa8a3d836f9afa8 | binary_sensor.py | 290,673 | 6 | 40 | is_on | https://github.com/home-assistant/core.git | Add flipr battery level sensor (#81389)
* Addition of battery level sensor. Correction of pylint errors
* Review improvement for typing
* Review improvement for typing
* Correction following review | 57 | 0 | 89,787 | 11 |
|
1 | 3 | def test_archive_too_large_for_mem_cache(self, cache_set):
| tests/sentry/lang/javascript/test_processor.py | 15 | sentry | {
"docstring": "cache.set is never called if the archive is too large",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | 3 | Python | 3 | 8cdaa4e86e8296cdbc145f2a53d3eb38cb7a1c2b | test_processor.py | 90,778 | 8 | 74 | test_archive_too_large_for_mem_cache | https://github.com/getsentry/sentry.git | ref: close files explicitly in tests.sentry.lang.javascript.test_processor (#35262) | 10 | 0 | 18,689 | 6 |
|
1 | 2 | def BurstTaskRunner():
job_queue = []
| src/sentry/testutils/helpers/task_runner.py | 19 | sentry | {
"docstring": "\n A fixture for queueing up Celery tasks and working them off in bursts.\n\n The main interesting property is that one can run tasks at a later point in\n the future, testing \"concurrency\" without actually spawning any kind of\n worker.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 39,
"vocab_size": 37
} | 5 | Python | 5 | ce3e457ef18fe0046d6aca0b545eac55eae8f17c | task_runner.py | 87,360 | 7 | 28 | BurstTaskRunner | https://github.com/getsentry/sentry.git | feat(perf-issues): Move queue info for post_process into headers (ISP… (#40239)
Re-do of https://github.com/getsentry/sentry/pull/39946 as merge
conflict didn't mesh right.
Sends dedicated issue category data to post_process_group call so we can
route to the appropriate celery queue
Will need to include changes from
https://github.com/getsentry/sentry/pull/40283 to be merged first and an
ensuing PR to remove the old queue. | 11 | 0 | 18,288 | 7 |
|
8 | 52 | def update_proxy_model_permissions(apps, schema_editor, reverse=False):
style = color_style()
Permission = apps.get_model("auth", "Permission")
ContentType = apps.get_model("contenttypes", "ContentType")
alias = schema_editor.connection.alias
for Model in apps.get_models():
opts = Model._meta
if not opts.proxy:
continue
proxy_default_permissions_codenames = [
"%s_%s" % (action, opts.model_name) for action in opts.default_permissions
]
permissions_query = Q(codename__in=proxy_default_permissions_codenames)
for codename, name in opts.permissions:
permissions_query = permissions_query | Q(codename=codename, name=name)
content_type_manager = ContentType.objects.db_manager(alias)
concrete_content_type = content_type_manager.get_for_model(
Model, for_concrete_model=True
)
proxy_content_type = content_type_manager.get_for_model(
Model, for_concrete_model=False
)
old_content_type = proxy_content_type if reverse else concrete_content_type
new_content_type = concrete_content_type if reverse else proxy_content_type
try:
with transaction.atomic(using=alias):
Permission.objects.using(alias).filter(
permissions_query,
content_type=old_content_type,
).update(content_type=new_content_type)
except IntegrityError:
old = "{}_{}".format(old_content_type.app_label, old_content_type.model)
new = "{}_{}".format(new_content_type.app_label, new_content_type.model)
sys.stdout.write(
style.WARNING(WARNING.format(old=old, new=new, query=permissions_query))
)
| django/contrib/auth/migrations/0011_update_proxy_permissions.py | 413 | django | {
"docstring": "\n Update the content_type of proxy model permissions to use the ContentType\n of the proxy model.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 15,
"vocab_size": 11
} | 106 | Python | 74 | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 0011_update_proxy_permissions.py | 203,669 | 36 | 259 | update_proxy_model_permissions | https://github.com/django/django.git | Refs #33476 -- Reformatted code with Black. | 422 | 0 | 50,502 | 18 |
|
7 | 20 | def get_loss(self, session_id=None):
logger.debug("Getting loss: (session_id: %s)", session_id)
retval = {}
for idx in [session_id] if session_id else self.session_ids:
self._check_cache(idx)
data = self._cache.get_data(idx, "loss")
if not data:
continue
data = data[idx]
retval[idx] = {title: data["loss"][:, idx] for idx, title in enumerate(data["labels"])}
logger.debug({key: {k: v.shape for k, v in val.items()}
for key, val in retval.items()})
return retval
| lib/gui/analysis/event_reader.py | 210 | faceswap | {
"docstring": " Read the loss from the TensorBoard event logs\n\n Parameters\n ----------\n session_id: int, optional\n The Session ID to return the loss for. Set to ``None`` to return all session\n losses. Default ``None``\n\n Returns\n -------\n dict\n The session id(s) as key, with a further dictionary as value containing the loss name\n and list of loss values for each step\n ",
"language": "en",
"n_whitespaces": 151,
"n_words": 57,
"vocab_size": 44
} | 56 | Python | 44 | c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | event_reader.py | 100,308 | 13 | 132 | get_loss | https://github.com/deepfakes/faceswap.git | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | 189 | 0 | 19,805 | 14 |