id
int64 20
338k
| vocab_size
int64 2
671
| ast_levels
int64 4
32
| nloc
int64 1
451
| n_ast_nodes
int64 12
5.6k
| n_identifiers
int64 1
186
| n_ast_errors
int64 0
10
| n_words
int64 2
2.17k
| n_whitespaces
int64 2
13.8k
| fun_name
stringlengths 2
73
| commit_message
stringlengths 51
15.3k
| url
stringlengths 31
59
| code
stringlengths 51
31k
| ast_errors
stringlengths 0
1.46k
| token_counts
int64 6
3.32k
| file_name
stringlengths 5
56
| language
stringclasses 1
value | path
stringlengths 7
134
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| complexity
int64 1
153
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
125,184 | 47 | 15 | 22 | 251 | 18 | 0 | 65 | 224 | _format | [State Observability] Use a table format by default (#26159)
NOTE: tabulate is copied/pasted to the codebase for table formatting.
This PR changes the default layout to be the table format for both summary and list APIs. | https://github.com/ray-project/ray.git | def _format(val, valtype, floatfmt, missingval="", has_invisible=True):
# noqa
if val is None:
return missingval
if valtype in [int, _text_type]:
return "{0}".format(val)
elif valtype is _binary_type:
try:
return _text_type(val, "ascii")
except TypeError:
return _text_type(val)
elif valtype is float:
is_a_colored_number = has_invisible and isinstance(
val, (_text_type, _binary_type)
)
if is_a_colored_number:
raw_val = _strip_invisible(val)
formatted_val = format(float(raw_val), floatfmt)
return val.replace(raw_val, formatted_val)
else:
return format(float(val), floatfmt)
else:
return "{0}".format(val)
| 132 | tabulate.py | Python | python/ray/_private/thirdparty/tabulate/tabulate.py | adf24bfa9723b0621183bb27f0c889b813c06e8a | ray | 8 |
|
42,070 | 10 | 8 | 3 | 53 | 9 | 0 | 10 | 19 | set_context | Convert docs to pydata-sphinx-theme and add new material (#2842)
* Do basic conversion of site to pydata_sphinx_theme
* Remove some pae structure customizations we no longer need
* Add some custom CSS
* Tweak a few more colors
* Remove vestigial div closing tag
* Reorganize release notes into hierarchical pages
* Rebuild full docs and fix some resulting issues
* Make release note doc refs absolute
* Convert homepage to use sphinx-design instead of hand-crafted html
* Remove original custom css
* Simplify header and put archive switcher in footer
* Streamline API docs for objects
* Play around with templates to fix shrinking content (not perfect yet)
* Improve use of horizontal space without sidebars
* Various tweaks
* Convert tutorial homepage source to native sphinx-design directives
* Move intro page into tutorial
* More tweaks
* Tweak theme colors and footer
* Remove reference to navbar version
* Note that error bar tutorial demonstrates new features as of v0.12
* Update layout customization for new theme features
* Various layout and CSS tweaks
* Narrow support guidance to StackOverflow
* Run all notebooks
* Adapt to new dropdown navbar in pydata theme
* Separate tutorial source and outputs
* Separate dostring source and outputs
* Add scale API template
* Update API docs
* Fix requirements
* Add new objects
* Point doc requirements at v0.10 RC for theme | https://github.com/mwaskom/seaborn.git | def set_context(context=None, font_scale=1, rc=None):
context_object = plotting_context(context, font_scale, rc)
mpl.rcParams.update(context_object)
| 34 | rcmod.py | Python | seaborn/rcmod.py | 34662f4be5c364e7518f9c1118c9b362038ee5dd | seaborn | 1 |
|
311,030 | 7 | 10 | 3 | 35 | 5 | 0 | 7 | 21 | async_unload | Replace Synology DSM services with buttons (#57352) | https://github.com/home-assistant/core.git | async def async_unload(self) -> None:
await self._syno_api_executer(self.dsm.logout)
| 19 | common.py | Python | homeassistant/components/synology_dsm/common.py | 5d7d652237b2368320a68c772ce3d837e4c1d04b | core | 1 |
|
278,720 | 35 | 16 | 14 | 160 | 16 | 0 | 46 | 191 | clone_keras_tensors | Remove pylint comments.
PiperOrigin-RevId: 452353044 | https://github.com/keras-team/keras.git | def clone_keras_tensors(args, keras_tensor_mapping):
result = []
for obj in tf.nest.flatten(args):
if node_module.is_keras_tensor(obj):
if id(obj) in keras_tensor_mapping:
cpy = keras_tensor_mapping[id(obj)]
else:
# Create copy of keras_tensor if we haven't done it before
cpy = _clone_keras_tensor(obj)
cpy._keras_history = obj._keras_history
keras_tensor_mapping[id(obj)] = cpy
result.append(cpy)
else:
result.append(obj)
return tf.nest.pack_sequence_as(args, result)
| 98 | functional_utils.py | Python | keras/engine/functional_utils.py | 3613c3defc39c236fb1592c4f7ba1a9cc887343a | keras | 4 |
|
22,168 | 7 | 7 | 9 | 31 | 4 | 0 | 7 | 21 | get_plain_headed_box | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | https://github.com/pypa/pipenv.git | def get_plain_headed_box(self) -> "Box":
return PLAIN_HEADED_SUBSTITUTIONS.get(self, self)
| 17 | box.py | Python | pipenv/patched/pip/_vendor/rich/box.py | cd5a9683be69c86c8f3adcd13385a9bc5db198ec | pipenv | 1 |
|
156,567 | 36 | 12 | 11 | 129 | 10 | 0 | 44 | 106 | apply_and_enforce | Add kwarg ``enforce_ndim`` to ``dask.array.map_blocks()`` (#8865) | https://github.com/dask/dask.git | def apply_and_enforce(*args, **kwargs):
func = kwargs.pop("_func")
expected_ndim = kwargs.pop("expected_ndim")
out = func(*args, **kwargs)
if getattr(out, "ndim", 0) != expected_ndim:
out_ndim = getattr(out, "ndim", 0)
raise ValueError(
f"Dimension mismatch: expected output of {func} "
f"to have dims = {expected_ndim}. Got {out_ndim} instead."
)
return out
| 68 | core.py | Python | dask/array/core.py | 2b90415b02d3ad1b08362889e0818590ca3133f4 | dask | 2 |
|
178,165 | 33 | 11 | 6 | 83 | 10 | 0 | 42 | 90 | get_jobs_by_meta | feat: DEV-2075: Add mixin to Project to support mechanism to cancel old jobs (#2547)
* feat: DEV-2075: Add mixin to Project to support mechanism to cancel old jobs | https://github.com/heartexlabs/label-studio.git | def get_jobs_by_meta(queue, func_name, meta):
# get all jobs from Queue
jobs = (job
for job in queue.get_jobs()
if job.func.__name__ == func_name
)
# return only with same meta data
return [job for job in jobs if hasattr(job, 'meta') and job.meta == meta]
| 52 | redis.py | Python | label_studio/core/redis.py | 283628097a10e8abafc94c683bc8be2d79a5998f | label-studio | 6 |
|
269,601 | 8 | 8 | 3 | 38 | 4 | 1 | 9 | 17 | enable_tf_random_generator | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def enable_tf_random_generator():
global _USE_GENERATOR_FOR_RNG
_USE_GENERATOR_FOR_RNG = True
@keras_export("keras.backend.experimental.disable_tf_random_generator", v1=[]) | @keras_export("keras.backend.experimental.disable_tf_random_generator", v1=[]) | 10 | backend.py | Python | keras/backend.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
42,548 | 48 | 14 | 18 | 205 | 27 | 0 | 61 | 258 | collocation_list | Docstring tests (#3050)
* fixed pytests
* fixed more pytests
* fixed more pytest and changed multiline pytest issues fixes for snowball.py and causal.py
* fixed pytests (mainly multiline or rounding issues)
* fixed treebank pytests, removed test for return_string=True (deprecated)
* fixed destructive.py pytests, removed test for return_string=True (deprecated)
* fixed pytest (rounding issues)
* fixed pytest (initialised missing object)
* fixed pytest (formatting issues)
* fixed pytest (formatting issues)
* fixed pytest (formatting issues)
* added pytest +SKIP for deprecated module stanford
* updated AUTHORS.md
* changed docstring corrections by usage of ELLIPSIS and different roundings
* fixed AUTHORS.md to be consistent
* Fix framenet doctest formatting with pprint
* Change docstring on MultiListBox.__init__
I believe the original typo was misinterpreted and changed to something that was not originally intended.
Co-authored-by: Jan Lennartz <[email protected]>
Co-authored-by: Tom Aarsen <[email protected]>
Co-authored-by: Tom Aarsen <[email protected]> | https://github.com/nltk/nltk.git | def collocation_list(self, num=20, window_size=2):
if not (
"_collocations" in self.__dict__
and self._num == num
and self._window_size == window_size
):
self._num = num
self._window_size = window_size
# print("Building collocations list")
from nltk.corpus import stopwords
ignored_words = stopwords.words("english")
finder = BigramCollocationFinder.from_words(self.tokens, window_size)
finder.apply_freq_filter(2)
finder.apply_word_filter(lambda w: len(w) < 3 or w.lower() in ignored_words)
bigram_measures = BigramAssocMeasures()
self._collocations = list(
finder.nbest(bigram_measures.likelihood_ratio, num)
)
return self._collocations
| 126 | text.py | Python | nltk/text.py | 8a4cf5d94eb94b6427c5d1d7907ba07b119932c5 | nltk | 5 |
|
294,024 | 33 | 13 | 15 | 126 | 21 | 0 | 34 | 116 | library_section_payload | Support multiple Plex servers in media browser (#68321) | https://github.com/home-assistant/core.git | def library_section_payload(section):
try:
children_media_class = ITEM_TYPE_MEDIA_CLASS[section.TYPE]
except KeyError as err:
raise UnknownMediaType(f"Unknown type received: {section.TYPE}") from err
server_id = section._server.machineIdentifier # pylint: disable=protected-access
return BrowseMedia(
title=section.title,
media_class=MEDIA_CLASS_DIRECTORY,
media_content_id=generate_plex_uri(server_id, section.key),
media_content_type="library",
can_play=False,
can_expand=True,
children_media_class=children_media_class,
)
| 77 | media_browser.py | Python | homeassistant/components/plex/media_browser.py | 653305b998dd033365576db303b32dd5df3a6c54 | core | 2 |
|
213,030 | 27 | 9 | 8 | 111 | 4 | 0 | 36 | 99 | gen_skeleton | fix: Py27hash fix (#2182)
* Add third party py27hash code
* Add Py27UniStr and unit tests
* Add py27hash_fix utils and tests
* Add to_py27_compatible_template and tests
* Apply py27hash fix to wherever it is needed
* Apply py27hash fix, all tests pass except api_with_any_method_in_swagger
* apply py27hash fix in openapi + run black
* remove py27 testing
* remove other py27 references
* black fixes
* fixes/typos
* remove py27 from tox.ini
* refactoring
* third party notice
* black
* Fix py27hash fix to deal with null events
* Fix Py27UniStr repr for unicode literals
* black reformat
* Update _template_has_api_resource to check data type more defensively
* Apply py27Dict in _get_authorizers
* Apply Py27Dict to authorizers and gateway responses which will go into swagger
* Update to_py27_compatible_template to handle parameter_values; Add Py27LongInt class
* Rename _convert_to_py27_dict to _convert_to_py27_type
* Apply Py27UniStr to path param name
* Handle HttpApi resource under to_py27_compatible_template
* Fix InvalidDocumentException to not sort different exceptions
* black reformat
* Remove unnecessary test files
Co-authored-by: Wing Fung Lau <[email protected]> | https://github.com/aws/serverless-application-model.git | def gen_skeleton():
# create as Py27Dict and insert key one by one to preserve input order
skeleton = Py27Dict()
skeleton["openapi"] = "3.0.1"
skeleton["info"] = Py27Dict()
skeleton["info"]["version"] = "1.0"
skeleton["info"]["title"] = ref("AWS::StackName")
skeleton["paths"] = Py27Dict()
return skeleton
| 55 | open_api.py | Python | samtranslator/open_api/open_api.py | a5db070f446b7cfebdaa6ad2e3dcf78f6105a272 | serverless-application-model | 1 |
|
260,625 | 48 | 12 | 13 | 175 | 24 | 0 | 57 | 171 | fit | MAINT validate parameter in KernelPCA (#24020)
Co-authored-by: Julien Jerphanion <[email protected]>
Co-authored-by: jeremiedbb <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def fit(self, X, y=None):
self._validate_params()
if self.fit_inverse_transform and self.kernel == "precomputed":
raise ValueError("Cannot fit_inverse_transform with a precomputed kernel.")
X = self._validate_data(X, accept_sparse="csr", copy=self.copy_X)
self._centerer = KernelCenterer()
K = self._get_kernel(X)
self._fit_transform(K)
if self.fit_inverse_transform:
# no need to use the kernel to transform X, use shortcut expression
X_transformed = self.eigenvectors_ * np.sqrt(self.eigenvalues_)
self._fit_inverse_transform(X_transformed, X)
self.X_fit_ = X
return self
| 106 | _kernel_pca.py | Python | sklearn/decomposition/_kernel_pca.py | 3312bc2ea6aad559643a1d920e3380fa123f627c | scikit-learn | 4 |
|
42,787 | 146 | 13 | 71 | 759 | 49 | 0 | 267 | 1,032 | get_conn | Use KubernetesHook to create api client in KubernetesPodOperator (#20578)
Add support for k8s hook in KPO; use it always (even when no conn id); continue to consider the core k8s settings that KPO already takes into account but emit deprecation warning about them.
KPO historically takes into account a few settings from core airflow cfg (e.g. verify ssl, tcp keepalive, context, config file, and in_cluster). So to use the hook to generate the client, somehow the hook has to take these settings into account. But we don't want the hook to consider these settings in general. So we read them in KPO and if necessary patch the hook and warn. | https://github.com/apache/airflow.git | def get_conn(self) -> Any:
in_cluster = self._coalesce_param(
self.in_cluster, self.conn_extras.get("extra__kubernetes__in_cluster") or None
)
cluster_context = self._coalesce_param(
self.cluster_context, self.conn_extras.get("extra__kubernetes__cluster_context") or None
)
kubeconfig_path = self._coalesce_param(
self.config_file, self.conn_extras.get("extra__kubernetes__kube_config_path") or None
)
kubeconfig = self.conn_extras.get("extra__kubernetes__kube_config") or None
num_selected_configuration = len([o for o in [in_cluster, kubeconfig, kubeconfig_path] if o])
if num_selected_configuration > 1:
raise AirflowException(
"Invalid connection configuration. Options kube_config_path, "
"kube_config, in_cluster are mutually exclusive. "
"You can only use one option at a time."
)
disable_verify_ssl = self._coalesce_param(
self.disable_verify_ssl, _get_bool(self._get_field("disable_verify_ssl"))
)
disable_tcp_keepalive = self._coalesce_param(
self.disable_tcp_keepalive, _get_bool(self._get_field("disable_tcp_keepalive"))
)
# BEGIN apply settings from core kubernetes configuration
# this section should be removed in next major release
deprecation_warnings: List[Tuple[str, Any]] = []
if disable_verify_ssl is None and self._deprecated_core_disable_verify_ssl is True:
deprecation_warnings.append(('verify_ssl', False))
disable_verify_ssl = self._deprecated_core_disable_verify_ssl
# by default, hook will try in_cluster first. so we only need to
# apply core airflow config and alert when False and in_cluster not otherwise set.
if in_cluster is None and self._deprecated_core_in_cluster is False:
deprecation_warnings.append(('in_cluster', self._deprecated_core_in_cluster))
in_cluster = self._deprecated_core_in_cluster
if not cluster_context and self._deprecated_core_cluster_context:
deprecation_warnings.append(('cluster_context', self._deprecated_core_cluster_context))
cluster_context = self._deprecated_core_cluster_context
if not kubeconfig_path and self._deprecated_core_config_file:
deprecation_warnings.append(('config_file', self._deprecated_core_config_file))
kubeconfig_path = self._deprecated_core_config_file
if disable_tcp_keepalive is None and self._deprecated_core_disable_tcp_keepalive is True:
deprecation_warnings.append(('enable_tcp_keepalive', False))
disable_tcp_keepalive = True
if deprecation_warnings:
self._deprecation_warning_core_param(deprecation_warnings)
# END apply settings from core kubernetes configuration
if disable_verify_ssl is True:
_disable_verify_ssl()
if disable_tcp_keepalive is not True:
_enable_tcp_keepalive()
if in_cluster:
self.log.debug("loading kube_config from: in_cluster configuration")
config.load_incluster_config()
return client.ApiClient()
if kubeconfig_path is not None:
self.log.debug("loading kube_config from: %s", kubeconfig_path)
config.load_kube_config(
config_file=kubeconfig_path,
client_configuration=self.client_configuration,
context=cluster_context,
)
return client.ApiClient()
if kubeconfig is not None:
with tempfile.NamedTemporaryFile() as temp_config:
self.log.debug("loading kube_config from: connection kube_config")
temp_config.write(kubeconfig.encode())
temp_config.flush()
config.load_kube_config(
config_file=temp_config.name,
client_configuration=self.client_configuration,
context=cluster_context,
)
return client.ApiClient()
return self._get_default_client(cluster_context=cluster_context)
| 460 | kubernetes.py | Python | airflow/providers/cncf/kubernetes/hooks/kubernetes.py | 60eb9e106f5915398eafd6aa339ec710c102dc09 | airflow | 24 |
|
149,758 | 29 | 15 | 18 | 272 | 19 | 0 | 37 | 180 | load_data | add freqao backend machinery, user interface, documentation | https://github.com/freqtrade/freqtrade.git | def load_data(self) -> Any:
model = load(self.model_path+self.model_filename+"_model.joblib")
with open(self.model_path+self.model_filename+"_metadata.json", 'r') as fp:
self.data = json.load(fp)
if self.data.get('training_features_list'):
self.training_features_list = [*self.data.get('training_features_list')]
self.data_dictionary['train_features'] = pd.read_pickle(self.model_path+
self.model_filename+"_trained_df.pkl")
self.model_path = self.data['model_path']
self.model_filename = self.data['model_filename']
if self.config['freqai']['feature_parameters']['principal_component_analysis']:
self.pca = pk.load(open(self.model_path+self.model_filename+"_pca_object.pkl","rb"))
return model
| 155 | data_handler.py | Python | freqtrade/freqai/data_handler.py | fc837c4daa27a18ff0e86128f4d52089b88fa5fb | freqtrade | 3 |
|
144,300 | 13 | 9 | 3 | 56 | 11 | 0 | 13 | 34 | _bind | [Ray DAG] Implement experimental Ray DAG API for task/class (#22058) | https://github.com/ray-project/ray.git | def _bind(self, *args, **kwargs):
from ray.experimental.dag.class_node import ClassNode
return ClassNode(self.__ray_metadata__.modified_class, args, kwargs, {})
| 38 | actor.py | Python | python/ray/actor.py | c065e3f69ec248383d98b45a8d1c00832ccfdd57 | ray | 1 |
|
337,524 | 22 | 13 | 13 | 128 | 11 | 0 | 42 | 149 | find_device | Big model inference (#345)
* Big model inference
* Reorganize port cleanup
* Last cleanup
* Test fix
* Quality
* Update src/accelerate/big_modeling.py
Co-authored-by: Patrick von Platen <[email protected]>
* Fix bug in default mem
* Check device map is complete
* More tests
* Make load function more general
* Apply suggestions from code review
Co-authored-by: Zachary Mueller <[email protected]>
* Quality
* Address more review comments
* Check generation results for gpt2
* Add main wrapper around everything
* Tests for final API
* Clean infer_auto_device
* Type annotations
* Apply suggestions from code review
Co-authored-by: Sourab Mangrulkar <[email protected]>
Co-authored-by: Lysandre Debut <[email protected]>
* Address review comments
* Last review comment for now
* Fix bug in clean_device_map
* Add doc
* Style
* Fixes + dtype support
* Fix test
* Add option to offload CPU state_dict
* Indent typo
* Final tweaks
Co-authored-by: Patrick von Platen <[email protected]>
Co-authored-by: Zachary Mueller <[email protected]>
Co-authored-by: Sourab Mangrulkar <[email protected]>
Co-authored-by: Lysandre Debut <[email protected]> | https://github.com/huggingface/accelerate.git | def find_device(data):
if isinstance(data, Mapping):
for obj in data.values():
device = find_device(obj)
if device is not None:
return device
elif isinstance(data, (tuple, list)):
for obj in data:
device = find_device(obj)
if device is not None:
return device
elif isinstance(data, torch.Tensor):
return data.device
| 82 | operations.py | Python | src/accelerate/utils/operations.py | f56f4441b3d448f4a81d5131c03e7dd73eac3ba0 | accelerate | 8 |
|
60,126 | 17 | 10 | 12 | 78 | 8 | 0 | 19 | 80 | wait | Add thread-safe async primitives `Event` and `Future` (#7865)
Co-authored-by: Serina Grill <[email protected]> | https://github.com/PrefectHQ/prefect.git | async def wait(self) -> None:
if self._is_set:
return
if not self._loop:
self._loop = get_running_loop()
self._event = asyncio.Event()
await self._event.wait()
| 44 | primitives.py | Python | src/prefect/_internal/concurrency/primitives.py | a368874d1b145c1ec5201e5efd3c26ce7c1e8611 | prefect | 3 |
|
78,295 | 18 | 10 | 8 | 67 | 10 | 0 | 21 | 89 | test_get_settings_no_request | Add generic settings to compliment site-specific settings (#8327) | https://github.com/wagtail/wagtail.git | def test_get_settings_no_request(self):
context = Context()
template = Template(
"{% load wagtailsettings_tags %}"
"{% get_settings %}"
"{{ settings.tests.testgenericsetting.title }}"
)
self.assertEqual(template.render(context), self.default_settings.title)
| 36 | test_templates.py | Python | wagtail/contrib/settings/tests/generic/test_templates.py | d967eccef28ce47f60d26be1c28f2d83a25f40b0 | wagtail | 1 |
|
208,719 | 44 | 12 | 25 | 198 | 13 | 0 | 73 | 344 | get_tail | This fixed the mixing of multiple history seen in #13631
It forces get_tail to put the current session last in the returned
results. | https://github.com/ipython/ipython.git | def get_tail(self, n=10, raw=True, output=False, include_latest=False):
self.writeout_cache()
if not include_latest:
n += 1
# cursor/line/entry
this_cur = list(
self._run_sql(
"WHERE session == ? ORDER BY line DESC LIMIT ? ",
(self.session_number, n),
raw=raw,
output=output,
)
)
other_cur = list(
self._run_sql(
"WHERE session != ? ORDER BY session DESC, line DESC LIMIT ?",
(self.session_number, n),
raw=raw,
output=output,
)
)
everything = this_cur + other_cur
everything = everything[:n]
if not include_latest:
return list(everything)[:0:-1]
return list(everything)[::-1]
| 128 | history.py | Python | IPython/core/history.py | dc5bcc1c50892a5128fcf128af28887226144927 | ipython | 3 |
|
268,911 | 12 | 10 | 6 | 70 | 13 | 1 | 16 | 29 | opt_combinations_only | - Consolidate disparate test-related files into a single testing_infra folder.
- Cleanup TODO related to removing testing infra as a dependency of the Keras target.
- Standardize import naming: there is now only "test_combinations" for test combinations, and "test_utils" for utilities. The TF utilities module "test_util" is now always imported as "tf_test_utils" to avoid confusion.
PiperOrigin-RevId: 426773173 | https://github.com/keras-team/keras.git | def opt_combinations_only():
experimental_opt_combinations = test_combinations.combine(
mode='eager', opt_cls=optimizer_experimental.Optimizer)
orig_opt_combination = test_combinations.combine(
opt_cls=optimizer_v2.OptimizerV2)
return experimental_opt_combinations + orig_opt_combination
@tf_test_utils.with_control_flow_v2 | @tf_test_utils.with_control_flow_v2 | 37 | loss_scale_optimizer_test.py | Python | keras/mixed_precision/loss_scale_optimizer_test.py | b96518a22bfd92a29811e507dec0b34248a8a3f5 | keras | 1 |
148,285 | 13 | 12 | 5 | 57 | 7 | 0 | 16 | 11 | _normalize_entries | [Bugfix] fix invalid excluding of Black (#24042)
- We should use `--force-exclude` when we pass code path explicitly https://black.readthedocs.io/en/stable/usage_and_configuration/the_basics.html?highlight=--force-exclude#command-line-options
- Recover the files in `python/ray/_private/thirdparty` which has been formatted in the PR https://github.com/ray-project/ray/pull/21975 by mistake. | https://github.com/ray-project/ray.git | def _normalize_entries(entries, separators=None):
norm_files = {}
for entry in entries:
norm_files[normalize_file(entry.path, separators=separators)] = entry
return norm_files
| 36 | util.py | Python | python/ray/_private/thirdparty/pathspec/util.py | 0e6c042e29cbbe429d81c9c1af3c75c261f00980 | ray | 2 |
|
209,543 | 26 | 10 | 9 | 117 | 13 | 0 | 30 | 61 | overlap_frag | E275 - Missing whitespace after keyword (#3711)
Co-authored-by: Alexander Aring <[email protected]>
Co-authored-by: Anmol Sarma <[email protected]>
Co-authored-by: antoine.torre <[email protected]>
Co-authored-by: Antoine Vacher <[email protected]>
Co-authored-by: Arnaud Ebalard <[email protected]>
Co-authored-by: atlowl <[email protected]>
Co-authored-by: Brian Bienvenu <[email protected]>
Co-authored-by: Chris Packham <[email protected]>
Co-authored-by: CQ <[email protected]>
Co-authored-by: Daniel Collins <[email protected]>
Co-authored-by: Federico Maggi <[email protected]>
Co-authored-by: Florian Maury <[email protected]>
Co-authored-by: _Frky <[email protected]>
Co-authored-by: g-mahieux <[email protected]>
Co-authored-by: gpotter2 <[email protected]>
Co-authored-by: Guillaume Valadon <[email protected]>
Co-authored-by: Hao Zheng <[email protected]>
Co-authored-by: Haresh Khandelwal <[email protected]>
Co-authored-by: Harri Hämäläinen <[email protected]>
Co-authored-by: hecke <[email protected]>
Co-authored-by: Jan Romann <[email protected]>
Co-authored-by: Jan Sebechlebsky <[email protected]>
Co-authored-by: jdiog0 <[email protected]>
Co-authored-by: jockque <[email protected]>
Co-authored-by: Julien Bedel <[email protected]>
Co-authored-by: Keith Scott <[email protected]>
Co-authored-by: Kfir Gollan <[email protected]>
Co-authored-by: Lars Munch <[email protected]>
Co-authored-by: ldp77 <[email protected]>
Co-authored-by: Leonard Crestez <[email protected]>
Co-authored-by: Marcel Patzlaff <[email protected]>
Co-authored-by: Martijn Thé <[email protected]>
Co-authored-by: Martine Lenders <[email protected]>
Co-authored-by: Michael Farrell <[email protected]>
Co-authored-by: Michał Mirosław <[email protected]>
Co-authored-by: mkaliszan <[email protected]>
Co-authored-by: mtury <[email protected]>
Co-authored-by: Neale Ranns <[email protected]>
Co-authored-by: Octavian Toader <[email protected]>
Co-authored-by: Peter Eisenlohr <[email protected]>
Co-authored-by: Phil <[email protected]>
Co-authored-by: Pierre Lalet <[email protected]>
Co-authored-by: Pierre Lorinquer <[email protected]>
Co-authored-by: piersoh <[email protected]>
Co-authored-by: plorinquer <[email protected]>
Co-authored-by: pvinci <[email protected]>
Co-authored-by: Rahul Jadhav <[email protected]>
Co-authored-by: Robin Jarry <[email protected]>
Co-authored-by: romain-perez <[email protected]>
Co-authored-by: rperez <rperez@debian>
Co-authored-by: Sabrina Dubroca <[email protected]>
Co-authored-by: Sebastian Baar <[email protected]>
Co-authored-by: sebastien mainand <[email protected]>
Co-authored-by: smehner1 <[email protected]>
Co-authored-by: speakinghedge <[email protected]>
Co-authored-by: Steven Van Acker <[email protected]>
Co-authored-by: Thomas Faivre <[email protected]>
Co-authored-by: Tran Tien Dat <[email protected]>
Co-authored-by: Wael Mahlous <[email protected]>
Co-authored-by: waeva <[email protected]>
Co-authored-by: Alexander Aring <[email protected]>
Co-authored-by: Anmol Sarma <[email protected]>
Co-authored-by: antoine.torre <[email protected]>
Co-authored-by: Antoine Vacher <[email protected]>
Co-authored-by: Arnaud Ebalard <[email protected]>
Co-authored-by: atlowl <[email protected]>
Co-authored-by: Brian Bienvenu <[email protected]>
Co-authored-by: Chris Packham <[email protected]>
Co-authored-by: CQ <[email protected]>
Co-authored-by: Daniel Collins <[email protected]>
Co-authored-by: Federico Maggi <[email protected]>
Co-authored-by: Florian Maury <[email protected]>
Co-authored-by: _Frky <[email protected]>
Co-authored-by: g-mahieux <[email protected]>
Co-authored-by: gpotter2 <[email protected]>
Co-authored-by: Guillaume Valadon <[email protected]>
Co-authored-by: Hao Zheng <[email protected]>
Co-authored-by: Haresh Khandelwal <[email protected]>
Co-authored-by: Harri Hämäläinen <[email protected]>
Co-authored-by: hecke <[email protected]>
Co-authored-by: Jan Romann <[email protected]>
Co-authored-by: Jan Sebechlebsky <[email protected]>
Co-authored-by: jdiog0 <[email protected]>
Co-authored-by: jockque <[email protected]>
Co-authored-by: Julien Bedel <[email protected]>
Co-authored-by: Keith Scott <[email protected]>
Co-authored-by: Kfir Gollan <[email protected]>
Co-authored-by: Lars Munch <[email protected]>
Co-authored-by: ldp77 <[email protected]>
Co-authored-by: Leonard Crestez <[email protected]>
Co-authored-by: Marcel Patzlaff <[email protected]>
Co-authored-by: Martijn Thé <[email protected]>
Co-authored-by: Martine Lenders <[email protected]>
Co-authored-by: Michael Farrell <[email protected]>
Co-authored-by: Michał Mirosław <[email protected]>
Co-authored-by: mkaliszan <[email protected]>
Co-authored-by: mtury <[email protected]>
Co-authored-by: Neale Ranns <[email protected]>
Co-authored-by: Octavian Toader <[email protected]>
Co-authored-by: Peter Eisenlohr <[email protected]>
Co-authored-by: Phil <[email protected]>
Co-authored-by: Pierre Lalet <[email protected]>
Co-authored-by: Pierre Lorinquer <[email protected]>
Co-authored-by: piersoh <[email protected]>
Co-authored-by: pvinci <[email protected]>
Co-authored-by: Rahul Jadhav <[email protected]>
Co-authored-by: Robin Jarry <[email protected]>
Co-authored-by: romain-perez <[email protected]>
Co-authored-by: rperez <rperez@debian>
Co-authored-by: Sabrina Dubroca <[email protected]>
Co-authored-by: Sebastian Baar <[email protected]>
Co-authored-by: sebastien mainand <[email protected]>
Co-authored-by: smehner1 <[email protected]>
Co-authored-by: Steven Van Acker <[email protected]>
Co-authored-by: Thomas Faivre <[email protected]>
Co-authored-by: Tran Tien Dat <[email protected]>
Co-authored-by: Wael Mahlous <[email protected]>
Co-authored-by: waeva <[email protected]> | https://github.com/secdev/scapy.git | def overlap_frag(p, overlap, fragsize=8, overlap_fragsize=None):
if overlap_fragsize is None:
overlap_fragsize = fragsize
q = p.copy()
del q[IP].payload
q[IP].add_payload(overlap)
qfrag = fragment(q, overlap_fragsize)
qfrag[-1][IP].flags |= 1
return qfrag + fragment(p, fragsize)
| 76 | inet.py | Python | scapy/layers/inet.py | 08b1f9d67c8e716fd44036a027bdc90dcb9fcfdf | scapy | 2 |
|
144,233 | 8 | 9 | 2 | 34 | 6 | 0 | 8 | 22 | __len__ | [RLlib] AlphaStar: Parallelized, multi-agent/multi-GPU learning via league-based self-play. (#21356) | https://github.com/ray-project/ray.git | def __len__(self):
return sum(len(s) for s in self.shards)
| 20 | distributed_learners.py | Python | rllib/agents/alpha_star/distributed_learners.py | 3f03ef8ba8016b095c611c4d2e118771e4a750ca | ray | 2 |
|
263,805 | 68 | 11 | 11 | 135 | 17 | 0 | 88 | 163 | update_exe_pe_checksum | winutils: optimize PE headers fixup
Attempt to optimize PE headers fix-up from both time- and memory-
intensity perspective.
First, avoid specifying `fast_load=False` in `pefile.PE` constructor,
because that triggers the bytes statistics collection
https://github.com/erocarrera/pefile/blob/v2022.5.30/pefile.py#L2862-L2876
which takes a long time for large files. Instead, we can obtain
full headers (required for build timestamp modification) by
calling `pe.full_load()` ourselves.
Second, use (an equivalent of) `MapFileAndCheckSumW` to compute
the PE checksum. For large files, it is orders of magnitude
faster than its pure-python `pefile.PE.generate_checksum`
counterpart.
The downside is that `MapFileAndCheckSumW` requires an on-disk
file as opposed to a memory buffer, so we need to split the
PE headers fixup into two separate steps, with each modifying
the corresponding PE headers and (re)writing the whole file.
Even so, this brings the fix-up process for a 700MB executable
down to seconds instead of minutes.
In addition, as noted on MSDN, `MapFileAndCheckSumW` internally
calls its ASCII variant (`MapFileAndCheckSumA`), so it cannot
handle file paths that contain characters that are not representable
in the current code page. Therefore, we implement our own equivalent
using `ctypes` and pure widechar-based win32 API functions. | https://github.com/pyinstaller/pyinstaller.git | def update_exe_pe_checksum(exe_path):
import pefile
# Compute checksum using our equivalent of the MapFileAndCheckSumW - for large files, it is significantly faster
# than pure-pyton pefile.PE.generate_checksum(). However, it requires the file to be on disk (i.e., cannot operate
# on a memory buffer).
try:
checksum = compute_exe_pe_checksum(exe_path)
except Exception as e:
raise RuntimeError("Failed to compute PE checksum!") from e
# Update the checksum
with pefile.PE(exe_path, fast_load=True) as pe:
pe.OPTIONAL_HEADER.CheckSum = checksum
# Generate updated EXE data
data = pe.write()
# Rewrite the exe
with open(exe_path, 'wb') as fp:
fp.write(data)
| 72 | winutils.py | Python | PyInstaller/utils/win32/winutils.py | 41483cb9e6d5086416c8fea6ad6781782c091c60 | pyinstaller | 2 |
|
78,323 | 74 | 16 | 20 | 201 | 17 | 0 | 102 | 506 | test_get_page_url_when_for_settings_fetched_via_for_site | Add generic settings to compliment site-specific settings (#8327) | https://github.com/wagtail/wagtail.git | def test_get_page_url_when_for_settings_fetched_via_for_site(self):
self._create_importantpagessitesetting_object()
settings = ImportantPagesSiteSetting.for_site(self.default_site)
# Force site root paths query beforehand
self.default_site.root_page._get_site_root_paths()
for page_fk_field, expected_result in (
("sign_up_page", "http://localhost/"),
("general_terms_page", "http://localhost/"),
("privacy_policy_page", "http://other/"),
):
with self.subTest(page_fk_field=page_fk_field):
# only the first request for each URL will trigger queries.
# 2 are triggered instead of 1 here, because tests use the
# database cache backed, and the cache is queried each time
# to fetch site root paths (because there's no 'request' to
# store them on)
with self.assertNumQueries(2):
self.assertEqual(
settings.get_page_url(page_fk_field), expected_result
)
# when called directly
self.assertEqual(
settings.get_page_url(page_fk_field), expected_result
)
# when called indirectly via shortcut
self.assertEqual(
getattr(settings.page_url, page_fk_field), expected_result
)
| 115 | test_model.py | Python | wagtail/contrib/settings/tests/site_specific/test_model.py | d967eccef28ce47f60d26be1c28f2d83a25f40b0 | wagtail | 2 |
|
269,136 | 48 | 15 | 18 | 142 | 12 | 0 | 58 | 140 | recursively_deserialize_keras_object | Support Keras saving/loading for ShardedVariables with arbitrary partitions.
PiperOrigin-RevId: 439837516 | https://github.com/keras-team/keras.git | def recursively_deserialize_keras_object(config, module_objects=None):
if isinstance(config, dict):
if 'class_name' in config:
return generic_utils.deserialize_keras_object(
config, module_objects=module_objects)
else:
return {
key: recursively_deserialize_keras_object(config[key], module_objects)
for key in config
}
elif isinstance(config, (tuple, list)):
return [
recursively_deserialize_keras_object(x, module_objects) for x in config
]
else:
raise ValueError(
f'Unable to decode Keras layer config. Config should be a dictionary, '
f'tuple or list. Received: config={config}')
| 89 | load.py | Python | keras/saving/saved_model/load.py | e61cbc52fd3b0170769c120e9b8dabc8c4205322 | keras | 6 |
|
309,801 | 28 | 14 | 15 | 106 | 9 | 0 | 42 | 227 | get_latest_device_activity | spelling: components/august (#64232)
Co-authored-by: Josh Soref <[email protected]> | https://github.com/home-assistant/core.git | def get_latest_device_activity(self, device_id, activity_types):
if device_id not in self._latest_activities:
return None
latest_device_activities = self._latest_activities[device_id]
latest_activity = None
for activity_type in activity_types:
if activity_type in latest_device_activities:
if (
latest_activity is not None
and latest_device_activities[activity_type].activity_start_time
<= latest_activity.activity_start_time
):
continue
latest_activity = latest_device_activities[activity_type]
return latest_activity
| 69 | activity.py | Python | homeassistant/components/august/activity.py | dadcc5ebcbcf951ff677568b281c5897d990c8ae | core | 6 |
|
159,623 | 6 | 12 | 3 | 40 | 7 | 0 | 6 | 12 | project_root | [ATO-114]Add nightly workflows and creation scripts | https://github.com/RasaHQ/rasa.git | def project_root() -> Path:
return Path(os.path.dirname(__file__)).parent.parent
| 23 | prepare_nightly_release.py | Python | scripts/prepare_nightly_release.py | 9f634d248769198881bbb78ccd8d333982462ef5 | rasa | 1 |
|
248,026 | 24 | 14 | 17 | 121 | 14 | 0 | 28 | 279 | add_device_change | Process device list updates asynchronously (#12365) | https://github.com/matrix-org/synapse.git | def add_device_change(self, user_id, device_ids, host):
for device_id in device_ids:
stream_id = self.get_success(
self.store.add_device_change_to_streams(
"user_id", [device_id], ["!some:room"]
)
)
self.get_success(
self.store.add_device_list_outbound_pokes(
user_id=user_id,
device_id=device_id,
room_id="!some:room",
stream_id=stream_id,
hosts=[host],
context={},
)
)
| 79 | test_devices.py | Python | tests/storage/test_devices.py | aa2811026402394b4013033f075d8f509cdc1257 | synapse | 2 |
|
267,050 | 35 | 13 | 7 | 71 | 7 | 0 | 54 | 93 | self_check | ansible-test - Support multiple coverage versions.
ci_complete
ci_coverage | https://github.com/ansible/ansible.git | def self_check() -> None:
# Verify all supported Python versions have a coverage version.
for version in SUPPORTED_PYTHON_VERSIONS:
get_coverage_version(version)
# Verify all controller Python versions are mapped to the latest coverage version.
for version in CONTROLLER_PYTHON_VERSIONS:
if get_coverage_version(version) != CONTROLLER_COVERAGE_VERSION:
raise InternalError(f'Controller Python version {version} is not mapped to the latest coverage version.')
self_check()
| 35 | coverage_util.py | Python | test/lib/ansible_test/_internal/coverage_util.py | b9606417598217106e394c12c776d8c5ede9cd98 | ansible | 4 |
|
258,546 | 65 | 15 | 21 | 310 | 26 | 0 | 99 | 320 | predict | MAINT Do not compute distances for uniform weighting (#22280) | https://github.com/scikit-learn/scikit-learn.git | def predict(self, X):
if self.weights == "uniform":
# In that case, we do not need the distances to perform
# the weighting so we do not compute them.
neigh_ind = self.kneighbors(X, return_distance=False)
neigh_dist = None
else:
neigh_dist, neigh_ind = self.kneighbors(X)
weights = _get_weights(neigh_dist, self.weights)
_y = self._y
if _y.ndim == 1:
_y = _y.reshape((-1, 1))
if weights is None:
y_pred = np.mean(_y[neigh_ind], axis=1)
else:
y_pred = np.empty((X.shape[0], _y.shape[1]), dtype=np.float64)
denom = np.sum(weights, axis=1)
for j in range(_y.shape[1]):
num = np.sum(_y[neigh_ind, j] * weights, axis=1)
y_pred[:, j] = num / denom
if self._y.ndim == 1:
y_pred = y_pred.ravel()
return y_pred
| 199 | _regression.py | Python | sklearn/neighbors/_regression.py | fb082b223dc9f1dd327f48dc9b830ee382d6f661 | scikit-learn | 6 |
|
190,825 | 61 | 10 | 10 | 130 | 7 | 0 | 90 | 217 | getImageDescriptor | Reformat of files using black
These files were not properly formatted. | https://github.com/thumbor/thumbor.git | def getImageDescriptor(self, im, xy=None):
# Defaule use full image and place at upper left
if xy is None:
xy = (0, 0)
# Image separator,
bb = b"\x2C"
# Image position and size
bb += int2long(xy[0]) # Left position
bb += int2long(xy[1]) # Top position
bb += int2long(im.size[0]) # image width
bb += int2long(im.size[1]) # image height
# packed field: local color table flag1, interlace0, sorted table0,
# reserved00, lct size111=7=2^(7+1)=256.
bb += b"\x87"
# LZW minimum size code now comes later,
# begining of [image data] blocks
return bb
| 74 | pil.py | Python | thumbor/engines/extensions/pil.py | 3c745ef193e9af9244cc406734e67815377472ed | thumbor | 2 |
|
272,348 | 36 | 12 | 9 | 203 | 22 | 0 | 62 | 153 | test_calculate_scores_one_dim_with_scale | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def test_calculate_scores_one_dim_with_scale(self):
# Query tensor of shape [1, 1, 1]
q = np.array([[[1.1]]], dtype=np.float32)
# Key tensor of shape [1, 1, 1]
k = np.array([[[1.6]]], dtype=np.float32)
attention_layer = keras.layers.Attention(use_scale=True)
attention_layer.build(input_shape=([1, 1, 1], [1, 1, 1]))
attention_layer.scale = -2.0
actual = attention_layer._calculate_scores(query=q, key=k)
# Expected tensor of shape [1, 1, 1].
# expected000 = -2*1.1*1.6 = -3.52
expected = np.array([[[-3.52]]], dtype=np.float32)
self.assertAllClose(expected, actual)
| 139 | attention_test.py | Python | keras/layers/attention/attention_test.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
|
281,114 | 65 | 12 | 48 | 339 | 22 | 0 | 84 | 266 | prepare_all_coins_df | Crypto menu refactor (#1119)
* enabled some crypto commands in dd to be called independent of source loaded
* support for coin_map_df in all dd functions + load ta and plot chart refactor
* updated tests and removed coingecko scrapping where possible
* removed ref of command from hugo
* updated pycoingecko version
* refactoring load
* refactored load to fetch prices; pred can run independent of source now
* load by default usd on cp/cg and usdt on cb/bin
* updated to rich for formatting and updated dependencies
* fixed changes requested
* update docs
* revert discord requirements
* removed absolute from calculate change for price
* fixing pr issues
* fix loading issue when similar coins exist, move coins to home, fill n/a
* update docs for coins
* adds load to ta and pred menu | https://github.com/OpenBB-finance/OpenBBTerminal.git | def prepare_all_coins_df() -> pd.DataFrame:
gecko_coins_df = load_coins_list("coingecko_coins.json")
paprika_coins_df = load_coins_list("coinpaprika_coins.json")
paprika_coins_df = paprika_coins_df[paprika_coins_df["is_active"]]
paprika_coins_df = paprika_coins_df[["rank", "id", "name", "symbol", "type"]]
# TODO: Think about scheduled job, that once a day will update data
binance_coins_df = load_binance_map().rename(columns={"symbol": "Binance"})
coinbase_coins_df = load_coinbase_map().rename(columns={"symbol": "Coinbase"})
gecko_paprika_coins_df = pd.merge(
gecko_coins_df, paprika_coins_df, on="name", how="left"
)
df_merged = pd.merge(
left=gecko_paprika_coins_df,
right=binance_coins_df,
left_on="id_x",
right_on="id",
how="left",
)
df_merged.rename(
columns={
"id_x": "CoinGecko",
"symbol_x": "Symbol",
"id_y": "CoinPaprika",
},
inplace=True,
)
df_merged = pd.merge(
left=df_merged,
right=coinbase_coins_df,
left_on="CoinGecko",
right_on="id",
how="left",
)
return df_merged[["CoinGecko", "CoinPaprika", "Binance", "Coinbase", "Symbol"]]
| 191 | cryptocurrency_helpers.py | Python | gamestonk_terminal/cryptocurrency/cryptocurrency_helpers.py | ea964109d654394cc0a5237e6ec5510ba6404097 | OpenBBTerminal | 1 |
|
34,009 | 30 | 9 | 3 | 64 | 10 | 1 | 33 | 52 | _set_gradient_checkpointing | Add Nystromformer (#14659)
* Initial commit
* Config and modelling changes
Added Nystromformer-specific attributes to config and removed all decoder functionality from modelling.
* Modelling and test changes
Added Nystrom approximation and removed decoder tests.
* Code quality fixes
* Modeling changes and conversion script
Initial commits to conversion script, modeling changes.
* Minor modeling changes and conversion script
* Modeling changes
* Correct modeling, add tests and documentation
* Code refactor
* Remove tokenizers
* Code refactor
* Update __init__.py
* Fix bugs
* Update src/transformers/__init__.py
Co-authored-by: NielsRogge <[email protected]>
* Update src/transformers/__init__.py
Co-authored-by: NielsRogge <[email protected]>
* Update src/transformers/models/nystromformer/__init__.py
Co-authored-by: NielsRogge <[email protected]>
* Update docs/source/model_doc/nystromformer.mdx
Co-authored-by: NielsRogge <[email protected]>
* Update src/transformers/models/nystromformer/configuration_nystromformer.py
Co-authored-by: NielsRogge <[email protected]>
* Update src/transformers/models/nystromformer/configuration_nystromformer.py
Co-authored-by: NielsRogge <[email protected]>
* Update src/transformers/models/nystromformer/configuration_nystromformer.py
Co-authored-by: NielsRogge <[email protected]>
* Update src/transformers/models/nystromformer/configuration_nystromformer.py
Co-authored-by: NielsRogge <[email protected]>
* Update src/transformers/models/nystromformer/convert_nystromformer_original_pytorch_checkpoint_to_pytorch.py
Co-authored-by: NielsRogge <[email protected]>
* Update src/transformers/models/nystromformer/configuration_nystromformer.py
Co-authored-by: NielsRogge <[email protected]>
* Update modeling and test_modeling
* Code refactor
* .rst to .mdx
* doc changes
* Doc changes
* Update modeling_nystromformer.py
* Doc changes
* Fix copies
* Apply suggestions from code review
Co-authored-by: NielsRogge <[email protected]>
* Apply suggestions from code review
Co-authored-by: NielsRogge <[email protected]>
* Update configuration_nystromformer.py
* Fix copies
* Update tests/test_modeling_nystromformer.py
Co-authored-by: NielsRogge <[email protected]>
* Update test_modeling_nystromformer.py
* Apply suggestions from code review
Co-authored-by: Lysandre Debut <[email protected]>
* Fix code style
* Update modeling_nystromformer.py
* Update modeling_nystromformer.py
* Fix code style
* Reformat modeling file
* Update modeling_nystromformer.py
* Modify NystromformerForMultipleChoice
* Fix code quality
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* Code style changes and torch.no_grad()
* make style
* Apply suggestions from code review
Co-authored-by: NielsRogge <[email protected]>
Co-authored-by: Lysandre Debut <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]> | https://github.com/huggingface/transformers.git | def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, NystromformerEncoder):
module.gradient_checkpointing = value
NYSTROMFORMER_START_DOCSTRING = r
NYSTROMFORMER_INPUTS_DOCSTRING = r
@add_start_docstrings(
"The bare Nyströmformer Model transformer outputting raw hidden-states without any specific head on top.",
NYSTROMFORMER_START_DOCSTRING,
) | @add_start_docstrings(
"The bare Nyströmformer Model transformer outputting raw hidden-states without any specific head on top.",
NYSTROMFORMER_START_DOCSTRING,
) | 24 | modeling_nystromformer.py | Python | src/transformers/models/nystromformer/modeling_nystromformer.py | 28e091430eea9e0d40839e56fd0d57aec262f5f9 | transformers | 2 |
119,984 | 23 | 9 | 8 | 124 | 16 | 1 | 27 | 91 | bcoo_dot_general_sampled | [sparse] Update docstrings for bcoo primitives.
PiperOrigin-RevId: 438685829 | https://github.com/google/jax.git | def bcoo_dot_general_sampled(A, B, indices, *, dimension_numbers):
(lhs_contract, rhs_contract), (lhs_batch, rhs_batch) = dimension_numbers
cdims = (api_util._ensure_index_tuple(lhs_contract),
api_util._ensure_index_tuple(rhs_contract))
bdims = (api_util._ensure_index_tuple(lhs_batch),
api_util._ensure_index_tuple(rhs_batch))
return bcoo_dot_general_sampled_p.bind(A, B, indices,
dimension_numbers=(cdims, bdims))
@bcoo_dot_general_sampled_p.def_impl | @bcoo_dot_general_sampled_p.def_impl | 80 | bcoo.py | Python | jax/experimental/sparse/bcoo.py | 3184dd65a222354bffa2466d9a375162f5649132 | jax | 1 |
80,736 | 21 | 11 | 9 | 95 | 10 | 0 | 28 | 83 | _get_instance_id | Fix up new Django 3.0 deprecations
Mostly text based: force/smart_text, ugettext_* | https://github.com/ansible/awx.git | def _get_instance_id(from_dict, new_id, default=''):
instance_id = default
for key in new_id.split('.'):
if not hasattr(from_dict, 'get'):
instance_id = default
break
instance_id = from_dict.get(key, default)
from_dict = instance_id
return smart_str(instance_id)
| 56 | _inventory_source.py | Python | awx/main/migrations/_inventory_source.py | a3a216f91f1158fd54c001c34cbdf2f68ccbc272 | awx | 3 |
|
100,396 | 48 | 11 | 13 | 225 | 20 | 0 | 74 | 225 | compile_sample | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | https://github.com/deepfakes/faceswap.git | def compile_sample(self, batch_size, samples=None, images=None, masks=None):
num_images = self._config.get("preview_images", 14)
num_images = min(batch_size, num_images) if batch_size is not None else num_images
retval = {}
for side in ("a", "b"):
logger.debug("Compiling samples: (side: '%s', samples: %s)", side, num_images)
side_images = images[side] if images is not None else self._target[side]
side_masks = masks[side] if masks is not None else self._masks[side]
side_samples = samples[side] if samples is not None else self._samples[side]
retval[side] = [side_samples[0:num_images],
side_images[0:num_images],
side_masks[0:num_images]]
return retval
| 153 | _base.py | Python | plugins/train/trainer/_base.py | c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | faceswap | 6 |
|
314,211 | 8 | 6 | 6 | 25 | 4 | 0 | 8 | 22 | temperature | Weather unit conversion (#73441)
Co-authored-by: Erik <[email protected]> | https://github.com/home-assistant/core.git | def temperature(self) -> float | None:
return self._attr_temperature
| 14 | __init__.py | Python | homeassistant/components/weather/__init__.py | 90e1fb6ce2faadb9a35fdbe1774fce7b4456364f | core | 1 |
|
20,801 | 6 | 7 | 3 | 26 | 4 | 0 | 6 | 20 | get_time | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | https://github.com/pypa/pipenv.git | def get_time(self) -> float:
return self._get_time()
| 14 | progress.py | Python | pipenv/patched/notpip/_vendor/rich/progress.py | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | 1 |
|
118,718 | 28 | 12 | 13 | 173 | 19 | 0 | 35 | 142 | test_add_unstyled_rows_to_styled_rows | Pandas 1.4 styler fix (#4316)
Change the way we detect custom styling in a DataFrame, to account for changes in Pandas 1.4.
Our DataFrame styling support is based on internal Pandas APIs, so they're always subject to change out from underneath us. In general, we'd prefer to only pass `display_value` data to the frontend when a DataFrame cell has been custom-formatted by the user, to save on bandwidth. However, Panda's Styler's internals are private, and it doesn't give us a consistent way of testing whether a cell has a custom `display_value` or not.
Prior to Pandas 1.4, we could test whether a cell's `display_value` differed from its `value`, and only stick the `display_value` in the protobuf when that was the case. In 1.4, an unmodified Styler will contain `display_value` strings for all cells, regardless of whether any formatting has been applied to that cell, so we no longer have this ability (or at least I couldn't figure out a reasonable way to test for this).
So instead, as of this PR, calling `st._legacy_dataframe(df.styler)` will *always* result in `display_value` strings being written to the dataframe protobuf (even though there isn't any custom formatting). This means that styled DataFrames may result in more data being sent to the frontend now than was the case before. In practice, I don't think this is a big deal - only the legacy DataFrame code has styling support; and often, if you're styling a DataFrame, you're customizing the formatting on most or all of its cells anyway.
I also made a number of small type-safety changes as I was working with the dataframe code, and those are all in the PR as well. (I've left a PR comment under the actual logic changes.) | https://github.com/streamlit/streamlit.git | def test_add_unstyled_rows_to_styled_rows(self, st_element, get_proto):
df1 = pd.DataFrame([5, 6])
df2 = pd.DataFrame([7, 8])
css_values = [
{css_s("color", "black")},
{css_s("color", "black")},
set(),
set(),
]
x = st_element(df1.style.applymap(lambda val: "color: black"))
x._legacy_add_rows(df2)
proto_df = get_proto(self._get_element())
self._assert_column_css_styles(proto_df, 0, css_values)
| 106 | legacy_dataframe_styling_test.py | Python | lib/tests/streamlit/legacy_dataframe_styling_test.py | 2c153aa179a27539f856e389870161d5a58da213 | streamlit | 1 |
|
282,770 | 13 | 11 | 4 | 53 | 9 | 0 | 13 | 37 | handle_error_code | Output Missing API Key Message to Console (#1357)
* Decorator to output error msg to console of missing API Key
* Refactor FMP & alpha advantage
* Refactor FRED & QUANDL
* Refactor Polygon
* Refactor FRED
* Refactor FRED
* Refactor Finnhub & coinmarketcap & Newsapi
* Allow disabling of check api
* Updating tests : disable check api for tests
* Refactor Finnhub & SI & Binance
* Fix linting
* Fix test & add black formatting
* Fix test failing
* Fix test failing
* Refactor CryptoPanic & Whales alert & Glassnode & Coinglass
* Refactor ETHexplorer & Smartstake & Alpha Advanage & Coinbase
* Add decorators to controllers
* Fix test & Refactor Coinbase, RH, Reddit
* Add contributing guideline
* Update CONTRIBUTING.md
* Update CONTRIBUTING.md
* fix tests
* add decorator to snews cmd
Co-authored-by: Chavithra PARANA <[email protected]>
Co-authored-by: didierlopes.eth <[email protected]> | https://github.com/OpenBB-finance/OpenBBTerminal.git | def handle_error_code(requests_obj, error_code_map):
for error_code, error_msg in error_code_map.items():
if requests_obj.status_code == error_code:
console.print(error_msg)
| 32 | helper_funcs.py | Python | gamestonk_terminal/helper_funcs.py | 401e4c739a6f9d18944e0ab49c782e97b56fda94 | OpenBBTerminal | 3 |
|
21,882 | 27 | 15 | 10 | 99 | 11 | 0 | 31 | 97 | detect | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | https://github.com/pypa/pipenv.git | def detect(byte_str):
if not isinstance(byte_str, bytearray):
if not isinstance(byte_str, bytes):
raise TypeError(
f"Expected object of type bytes or bytearray, got: {type(byte_str)}"
)
byte_str = bytearray(byte_str)
detector = UniversalDetector()
detector.feed(byte_str)
return detector.close()
| 53 | __init__.py | Python | pipenv/patched/pip/_vendor/chardet/__init__.py | cd5a9683be69c86c8f3adcd13385a9bc5db198ec | pipenv | 3 |
|
212,923 | 37 | 13 | 9 | 133 | 13 | 0 | 46 | 129 | delete_file | Added report_error setting for user_settings_delete_file. Global Settings window complete rework to use Tabs. Hoping nothing broke, but just remember things are in flux for a little bit while the ttk scrollbars are finishing up | https://github.com/PySimpleGUI/PySimpleGUI.git | def delete_file(self, filename=None, path=None, report_error=False):
if filename is not None or path is not None or (filename is None and path is None):
self.set_location(filename=filename, path=path)
try:
os.remove(self.full_filename)
except Exception as e:
if report_error:
_error_popup_with_traceback('UserSettings delete_file warning ***', 'Exception trying to perform os.remove', e)
self.dict = {}
| 83 | PySimpleGUI.py | Python | PySimpleGUI.py | f776589349476a41b98aa1f467aff2f30e2a8fc2 | PySimpleGUI | 7 |
|
60,235 | 31 | 9 | 10 | 91 | 11 | 0 | 44 | 86 | compose | Balanced joint maximum mean discrepancy for deep transfer learning | https://github.com/jindongwang/transferlearning.git | def compose(base_map, next_map):
ax1, a1, b1 = base_map
ax2, a2, b2 = next_map
if ax1 is None:
ax = ax2
elif ax2 is None or ax1 == ax2:
ax = ax1
else:
raise AxisMismatchException
return ax, a1 * a2, a1 * b2 + b1
| 58 | coord_map.py | Python | code/deep/BJMMD/caffe/python/caffe/coord_map.py | cc4d0564756ca067516f71718a3d135996525909 | transferlearning | 4 |
|
225,809 | 9 | 7 | 3 | 29 | 5 | 1 | 9 | 22 | is_doc_id_none | Add index composability! (#86)
Summary of changes
- Bumped version to 0.1.0
- Abstracted out a BaseDocument class that both Document (from data loaders) and IndexStruct (our data struct classes) inherit from.
- Add a DocumentStore that contains the id's of all BaseDocuments. Both Document objects and IndexStruct objects are registered in here, allowing us to recursively fetch and query sub-index structures within an index structure.
- Add a reference document id to each Node class. This allows us to recursively query within another index struct after we traverse a node, if the reference document id of that node corresponds to another index struct in the DocumentStore.
- Use Node as the central abstraction containing both "text" as well as a reference document_id: use for List, Tree, KeywordTable
- Factored out a QueryRunner to recursively run queries. I grappled with some circular dependency issues but I believe the current approach works.
- Add a bunch of unit tests
Co-authored-by: Jerry Liu <[email protected]> | https://github.com/jerryjliu/llama_index.git | def is_doc_id_none(self) -> bool:
return self.doc_id is None
@dataclass | @dataclass | 14 | schema.py | Python | gpt_index/schema.py | c22d865acb3899a181921d94b6e94e665a12b432 | llama_index | 1 |
301,395 | 17 | 10 | 6 | 91 | 17 | 0 | 19 | 37 | test_setup_not_ready | Create iAlarmXR integration (#67817)
* Creating iAlarmXR integration
* fixing after review code
* fixing remaining review hints
* fixing remaining review hints
* updating underlying pyialarm library
* Creating iAlarmXR integration
* fixing after review code
* fixing remaining review hints
* fixing remaining review hints
* updating underlying pyialarm library
* fixing after iMicknl review
* Improving exception handling
* Updating pyialarmxr library
* fixing after merge dev
* fixing after iMicknl review
* Update CODEOWNERS
Co-authored-by: Ludovico de Nittis <[email protected]>
* fixing iot_class
* Update homeassistant/components/ialarmxr/config_flow.py
Co-authored-by: J. Nick Koston <[email protected]>
* fixing after bdraco review
* Update homeassistant/components/ialarmxr/config_flow.py
Co-authored-by: J. Nick Koston <[email protected]>
* reverting catching exception in setup step
* Update homeassistant/components/ialarmxr/__init__.py
Co-authored-by: J. Nick Koston <[email protected]>
* Update homeassistant/components/ialarmxr/__init__.py
Co-authored-by: J. Nick Koston <[email protected]>
* fixing after bdraco suggestions
* Update homeassistant/components/ialarmxr/alarm_control_panel.py
Co-authored-by: J. Nick Koston <[email protected]>
* Update homeassistant/components/ialarmxr/alarm_control_panel.py
Co-authored-by: Mick Vleeshouwer <[email protected]>
* Update homeassistant/components/ialarmxr/config_flow.py
Co-authored-by: J. Nick Koston <[email protected]>
* Update homeassistant/components/ialarmxr/config_flow.py
Co-authored-by: J. Nick Koston <[email protected]>
* Update homeassistant/components/ialarmxr/__init__.py
Co-authored-by: J. Nick Koston <[email protected]>
* Update homeassistant/components/ialarmxr/__init__.py
Co-authored-by: J. Nick Koston <[email protected]>
* Update homeassistant/components/ialarmxr/utils.py
Co-authored-by: J. Nick Koston <[email protected]>
* regenerate translation and rename function to async_get_ialarmxr_mac
* removing and collapsing unused error messages
* fixing tests
* improve code coverage in tests
* improve code coverage in tests
* improve code coverage in tests
* fixing retry policy with new pyalarmxr library
* snake case fix
* renaming integration in ialarm_xr
* renaming control panel name
Co-authored-by: Ludovico de Nittis <[email protected]>
Co-authored-by: J. Nick Koston <[email protected]>
Co-authored-by: Mick Vleeshouwer <[email protected]> | https://github.com/home-assistant/core.git | async def test_setup_not_ready(hass, ialarmxr_api, mock_config_entry):
ialarmxr_api.return_value.get_mac = Mock(side_effect=ConnectionError)
mock_config_entry.add_to_hass(hass)
assert not await hass.config_entries.async_setup(mock_config_entry.entry_id)
await hass.async_block_till_done()
assert mock_config_entry.state is ConfigEntryState.SETUP_RETRY
| 55 | test_init.py | Python | tests/components/ialarm_xr/test_init.py | 42c80dda85f567192c182da2b4c603408a890381 | core | 1 |
|
264,031 | 99 | 15 | 19 | 243 | 20 | 0 | 146 | 397 | collect_qtqml_files | hookutils: reorganize the Qt hook utilities
Reorganize the Qt module information to provide information necessary
to deal with variations between different python Qt bindings (PySide2,
PyQt5, PySide6, and PyQt6). Replace the existing table-like dictionary
with list of entries, which is easier to format and document. From this
list, we now generate two dictionaries; one that maps Qt module (shared
library) names to the module info entries (the same role as the old
dictionary), and one that maps python module names to the module info
entries. The latter is necessary to accommodate python modules that do
not have corresponding Qt shared libraries (header-only Qt modules,
such as QtAxContainer; or statically-linked module, such as QSci), but
we still need to provide information about plugins or translation
files.
The new information list is based on manual inspection of source code
for Qt 5.15 and 6.3, and should provide comprehensive information about
all plugin names and translation file basenames.
In addition, most of the helper functions, which take a reference to
the `QtLibraryInfo` class as their first argument, have been turned
into methods of the `QtLibraryInfo` class. The corresponding hooks
have also been adjusted. | https://github.com/pyinstaller/pyinstaller.git | def collect_qtqml_files(self):
# No-op if requested Qt-based package is not available.
if self.version is None:
return [], []
# Not all PyQt5/PySide2 installs have QML files. In this case, location['Qml2ImportsPath'] is empty.
# Furthermore, even if location path is provided, the directory itself may not exist.
#
# https://github.com/pyinstaller/pyinstaller/pull/3229#issuecomment-359735031
# https://github.com/pyinstaller/pyinstaller/issues/3864
#
# In Qt 6, Qml2ImportsPath was deprecated in favor of QmlImportsPath. The former is not available in PySide6
# 6.4.0 anymore (but is in PyQt6 6.4.0). Use the new QmlImportsPath if available.
if 'QmlImportsPath' in self.location:
qml_src_dir = self.location['QmlImportsPath']
else:
qml_src_dir = self.location['Qml2ImportsPath']
if not qml_src_dir or not os.path.isdir(qml_src_dir):
logger.warning('%s: QML directory %r does not exist. QML files not packaged.', self, qml_src_dir)
return [], []
qml_dst_dir = os.path.join(self.qt_rel_dir, 'qml')
datas = [(qml_src_dir, qml_dst_dir)]
binaries = [
# Produce ``/path/to/Qt/Qml/path_to_qml_binary/qml_binary, PyQt5/Qt/Qml/path_to_qml_binary``.
(
qml_plugin_file,
os.path.join(qml_dst_dir, os.path.dirname(os.path.relpath(qml_plugin_file, qml_src_dir)))
) for qml_plugin_file in misc.dlls_in_subdirs(qml_src_dir)
]
return binaries, datas
| 144 | __init__.py | Python | PyInstaller/utils/hooks/qt/__init__.py | d789a7daa7712716c89259b987349917a89aece7 | pyinstaller | 6 |
|
82,418 | 50 | 11 | 26 | 356 | 15 | 0 | 72 | 314 | test_patricks_move | ci: Added codespell (#7355)
Co-authored-by: Christian Clauss <[email protected]>
* ci: codespell config taken from #7292 | https://github.com/django-cms/django-cms.git | def test_patricks_move(self):
self.assertEqual(self.pg.node.parent, self.pe.node)
# perform moves under slave...
self.move_page(self.pg, self.pc)
self.reload_pages()
# page is now under PC
self.assertEqual(self.pg.node.parent, self.pc.node)
self.assertEqual(self.pg.get_absolute_url(), self.pg.publisher_public.get_absolute_url())
self.move_page(self.pe, self.pg)
self.reload_pages()
self.assertEqual(self.pe.node.parent, self.pg.node)
self.ph = self.ph.reload()
# check urls - they should stay be the same now after the move
self.assertEqual(
self.pg.publisher_public.get_absolute_url(),
self.pg.get_absolute_url()
)
self.assertEqual(
self.ph.publisher_public.get_absolute_url(),
self.ph.get_absolute_url()
)
# check if urls are correct after move
self.assertEqual(
self.pg.publisher_public.get_absolute_url(),
'%smaster/slave-home/pc/pg/' % self.get_pages_root()
)
self.assertEqual(
self.ph.publisher_public.get_absolute_url(),
'%smaster/slave-home/pc/pg/pe/ph/' % self.get_pages_root()
)
| 215 | test_permmod.py | Python | cms/tests/test_permmod.py | c1290c9ff89cb00caa5469129fd527e9d82cd820 | django-cms | 1 |
|
291,315 | 23 | 10 | 9 | 85 | 15 | 0 | 24 | 67 | test_text_new_min_max_pattern | Add `text` platform (#79454)
Co-authored-by: Franck Nijhof <[email protected]>
Co-authored-by: Franck Nijhof <[email protected]> | https://github.com/home-assistant/core.git | async def test_text_new_min_max_pattern(hass):
text = MockTextEntity(native_min=-1, native_max=500, pattern=r"[a-z]")
text.hass = hass
assert text.capability_attributes == {
ATTR_MIN: 0,
ATTR_MAX: MAX_LENGTH_STATE_STATE,
ATTR_MODE: TextMode.TEXT,
ATTR_PATTERN: r"[a-z]",
}
| 55 | test_init.py | Python | tests/components/text/test_init.py | 003e4224c89a6da381960dc5347750d1521d85c9 | core | 1 |
|
260,017 | 266 | 15 | 48 | 713 | 67 | 0 | 475 | 735 | load_dataset | DOC rework plot_document_classification_20newsgroups.py example (#22928)
Co-authored-by: Jérémie du Boisberranger <[email protected]>
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Julien Jerphanion <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def load_dataset(verbose=False, remove=()):
data_train = fetch_20newsgroups(
subset="train",
categories=categories,
shuffle=True,
random_state=42,
remove=remove,
)
data_test = fetch_20newsgroups(
subset="test",
categories=categories,
shuffle=True,
random_state=42,
remove=remove,
)
# order of labels in `target_names` can be different from `categories`
target_names = data_train.target_names
# split target in a training set and a test set
y_train, y_test = data_train.target, data_test.target
# Extracting features from the training data using a sparse vectorizer
t0 = time()
vectorizer = TfidfVectorizer(
sublinear_tf=True, max_df=0.5, min_df=5, stop_words="english"
)
X_train = vectorizer.fit_transform(data_train.data)
duration_train = time() - t0
# Extracting features from the test data using the same vectorizer
t0 = time()
X_test = vectorizer.transform(data_test.data)
duration_test = time() - t0
feature_names = vectorizer.get_feature_names_out()
if verbose:
# compute size of loaded data
data_train_size_mb = size_mb(data_train.data)
data_test_size_mb = size_mb(data_test.data)
print(
f"{len(data_train.data)} documents - "
f"{data_train_size_mb:.2f}MB (training set)"
)
print(f"{len(data_test.data)} documents - {data_test_size_mb:.2f}MB (test set)")
print(f"{len(target_names)} categories")
print(
f"vectorize training done in {duration_train:.3f}s "
f"at {data_train_size_mb / duration_train:.3f}MB/s"
)
print(f"n_samples: {X_train.shape[0]}, n_features: {X_train.shape[1]}")
print(
f"vectorize testing done in {duration_test:.3f}s "
f"at {data_test_size_mb / duration_test:.3f}MB/s"
)
print(f"n_samples: {X_test.shape[0]}, n_features: {X_test.shape[1]}")
return X_train, X_test, y_train, y_test, feature_names, target_names
# %%
# Compare feature effects
# -----------------------
# We train a first classification model without attempting to strip the metadata
# of the dataset.
X_train, X_test, y_train, y_test, feature_names, target_names = load_dataset(
verbose=True
)
# %%
# Our first model is an instance of the
# :class:`~sklearn.linear_model.RidgeClassifier` class. This is a linear
# classification model that uses the mean squared error on {-1, 1} encoded
# targets, one for each possible class. Contrary to
# :class:`~sklearn.linear_model.LogisticRegression`,
# :class:`~sklearn.linear_model.RidgeClassifier` does not
# provide probabilistic predictions (no `predict_proba` method),
# but it is often faster to train.
from sklearn.linear_model import RidgeClassifier
clf = RidgeClassifier(tol=1e-2, solver="sparse_cg")
clf.fit(X_train, y_train)
pred = clf.predict(X_test)
# %%
# We plot the confusion matrix of this classifier to find if there is a pattern
# in the classification errors.
import matplotlib.pyplot as plt
from sklearn.metrics import ConfusionMatrixDisplay
fig, ax = plt.subplots(figsize=(10, 5))
ConfusionMatrixDisplay.from_predictions(y_test, pred, ax=ax)
ax.xaxis.set_ticklabels(target_names)
ax.yaxis.set_ticklabels(target_names)
_ = ax.set_title(
f"Confusion Matrix for {clf.__class__.__name__}\non the original documents"
)
# %%
# The confusion matrix highlights that documents of the `alt.atheism` class are
# often confused with documents with the class `talk.religion.misc` class and
# vice-versa which is expected since the topics are semantically related.
#
# We also observe that some documents of the `sci.space` class can be misclassified as
# `comp.graphics` while the converse is much rarer. A manual inspection of those
# badly classified documents would be required to get some insights on this
# asymmetry. It could be the case that the vocabulary of the space topic could
# be more specific than the vocabulary for computer graphics.
#
# We can gain a deeper understanding of how this classifier makes its decisions
# by looking at the words with the highest average feature effects:
import pandas as pd
import numpy as np
| 224 | plot_document_classification_20newsgroups.py | Python | examples/text/plot_document_classification_20newsgroups.py | 71028322e8964cf1f341a7b293abaefeb5275e12 | scikit-learn | 2 |
|
155,176 | 51 | 13 | 13 | 222 | 21 | 0 | 64 | 193 | apply | FEAT-#5053: Add pandas on unidist execution with MPI backend (#5059)
Signed-off-by: Igoshev, Iaroslav <[email protected]> | https://github.com/modin-project/modin.git | def apply(self, func, *args, **kwargs):
logger = get_logger()
logger.debug(f"ENTER::Partition.apply::{self._identity}")
data = self._data
call_queue = self.call_queue + [[func, args, kwargs]]
if len(call_queue) > 1:
logger.debug(f"SUBMIT::_apply_list_of_funcs::{self._identity}")
result, length, width, ip = _apply_list_of_funcs.remote(call_queue, data)
else:
# We handle `len(call_queue) == 1` in a different way because
# this dramatically improves performance.
result, length, width, ip = _apply_func.remote(data, func, *args, **kwargs)
logger.debug(f"SUBMIT::_apply_func::{self._identity}")
logger.debug(f"EXIT::Partition.apply::{self._identity}")
return PandasOnUnidistDataframePartition(result, length, width, ip)
| 126 | partition.py | Python | modin/core/execution/unidist/implementations/pandas_on_unidist/partitioning/partition.py | 193505fdf0c984743397ba3df56262f30aee13a8 | modin | 2 |
|
157,201 | 55 | 14 | 15 | 278 | 22 | 1 | 60 | 148 | test_roundtrip_nullable_dtypes | Add support for `use_nullable_dtypes` to `dd.read_parquet` (#9617) | https://github.com/dask/dask.git | def test_roundtrip_nullable_dtypes(tmp_path, write_engine, read_engine):
if read_engine == "fastparquet" or write_engine == "fastparquet":
pytest.xfail("https://github.com/dask/fastparquet/issues/465")
df = pd.DataFrame(
{
"a": pd.Series([1, 2, pd.NA, 3, 4], dtype="Int64"),
"b": pd.Series([True, pd.NA, False, True, False], dtype="boolean"),
"c": pd.Series([0.1, 0.2, 0.3, pd.NA, 0.4], dtype="Float64"),
"d": pd.Series(["a", "b", "c", "d", pd.NA], dtype="string"),
}
)
ddf = dd.from_pandas(df, npartitions=2)
ddf.to_parquet(tmp_path, engine=write_engine)
ddf2 = dd.read_parquet(tmp_path, engine=read_engine)
assert_eq(df, ddf2)
@PYARROW_MARK | @PYARROW_MARK | 182 | test_parquet.py | Python | dask/dataframe/io/tests/test_parquet.py | b1e468e8645baee30992fbfa84250d816ac1098a | dask | 3 |
290,831 | 90 | 16 | 47 | 410 | 41 | 0 | 167 | 606 | async_update_group_state | Cleanup supported_features in group (#82242)
* Cleanup supported_features in group
* Remove defaults
(already set to 0 in fan and media_player) | https://github.com/home-assistant/core.git | def async_update_group_state(self) -> None:
self._attr_assumed_state = False
states = [
state
for entity_id in self._entities
if (state := self.hass.states.get(entity_id)) is not None
]
self._attr_assumed_state |= not states_equal(states)
# Set group as unavailable if all members are unavailable or missing
self._attr_available = any(state.state != STATE_UNAVAILABLE for state in states)
valid_state = any(
state.state not in (STATE_UNKNOWN, STATE_UNAVAILABLE) for state in states
)
if not valid_state:
# Set as unknown if all members are unknown or unavailable
self._is_on = None
else:
# Set as ON if any member is ON
self._is_on = any(state.state == STATE_ON for state in states)
percentage_states = self._async_states_by_support_flag(
FanEntityFeature.SET_SPEED
)
self._percentage = reduce_attribute(percentage_states, ATTR_PERCENTAGE)
self._attr_assumed_state |= not attribute_equal(
percentage_states, ATTR_PERCENTAGE
)
if (
percentage_states
and percentage_states[0].attributes.get(ATTR_PERCENTAGE_STEP)
and attribute_equal(percentage_states, ATTR_PERCENTAGE_STEP)
):
self._speed_count = (
round(100 / percentage_states[0].attributes[ATTR_PERCENTAGE_STEP])
or 100
)
else:
self._speed_count = 100
self._set_attr_most_frequent(
"_oscillating", FanEntityFeature.OSCILLATE, ATTR_OSCILLATING
)
self._set_attr_most_frequent(
"_direction", FanEntityFeature.DIRECTION, ATTR_DIRECTION
)
self._attr_supported_features = reduce(
ior, [feature for feature in SUPPORTED_FLAGS if self._fans[feature]], 0
)
self._attr_assumed_state |= any(
state.attributes.get(ATTR_ASSUMED_STATE) for state in states
)
| 265 | fan.py | Python | homeassistant/components/group/fan.py | 38a8e86ddeb65ee8c731b90a7063a3b3702dc1ef | core | 14 |
|
261,351 | 15 | 10 | 6 | 75 | 11 | 0 | 15 | 61 | predict | OPTIM use pairwise_distances_argmin in NearestCentroid.predict (#24645)
Co-authored-by: Julien Jerphanion <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def predict(self, X):
check_is_fitted(self)
X = self._validate_data(X, accept_sparse="csr", reset=False)
return self.classes_[
pairwise_distances_argmin(X, self.centroids_, metric=self.metric)
]
| 48 | _nearest_centroid.py | Python | sklearn/neighbors/_nearest_centroid.py | e01035d3b2dc147cbbe9f6dbd7210a76119991e8 | scikit-learn | 1 |
|
109,149 | 69 | 13 | 35 | 487 | 22 | 0 | 146 | 463 | _suplabels | Add rcparam for figure label size and weight (#22566)
* Add rcparam for figure label size and weight | https://github.com/matplotlib/matplotlib.git | def _suplabels(self, t, info, **kwargs):
suplab = getattr(self, info['name'])
x = kwargs.pop('x', None)
y = kwargs.pop('y', None)
if info['name'] in ['_supxlabel', '_suptitle']:
autopos = y is None
elif info['name'] == '_supylabel':
autopos = x is None
if x is None:
x = info['x0']
if y is None:
y = info['y0']
if 'horizontalalignment' not in kwargs and 'ha' not in kwargs:
kwargs['horizontalalignment'] = info['ha']
if 'verticalalignment' not in kwargs and 'va' not in kwargs:
kwargs['verticalalignment'] = info['va']
if 'rotation' not in kwargs:
kwargs['rotation'] = info['rotation']
if 'fontproperties' not in kwargs:
if 'fontsize' not in kwargs and 'size' not in kwargs:
kwargs['size'] = mpl.rcParams[info['size']]
if 'fontweight' not in kwargs and 'weight' not in kwargs:
kwargs['weight'] = mpl.rcParams[info['weight']]
sup = self.text(x, y, t, **kwargs)
if suplab is not None:
suplab.set_text(t)
suplab.set_position((x, y))
suplab.update_from(sup)
sup.remove()
else:
suplab = sup
suplab._autopos = autopos
setattr(self, info['name'], suplab)
self.stale = True
return suplab
| 283 | figure.py | Python | lib/matplotlib/figure.py | eeac402ec56d7e69234e0cd7b15f59d53852e457 | matplotlib | 16 |
|
47,465 | 65 | 15 | 34 | 372 | 49 | 0 | 84 | 398 | test_backfill_execute_subdag_with_removed_task | Replace usage of `DummyOperator` with `EmptyOperator` (#22974)
* Replace usage of `DummyOperator` with `EmptyOperator` | https://github.com/apache/airflow.git | def test_backfill_execute_subdag_with_removed_task(self):
dag = self.dagbag.get_dag('example_subdag_operator')
subdag = dag.get_task('section-1').subdag
session = settings.Session()
executor = MockExecutor()
job = BackfillJob(
dag=subdag, start_date=DEFAULT_DATE, end_date=DEFAULT_DATE, executor=executor, donot_pickle=True
)
dr = DagRun(
dag_id=subdag.dag_id, execution_date=DEFAULT_DATE, run_id="test", run_type=DagRunType.BACKFILL_JOB
)
session.add(dr)
removed_task_ti = TI(
task=EmptyOperator(task_id='removed_task'), run_id=dr.run_id, state=State.REMOVED
)
removed_task_ti.dag_id = subdag.dag_id
dr.task_instances.append(removed_task_ti)
session.commit()
with timeout(seconds=30):
job.run()
for task in subdag.tasks:
instance = (
session.query(TI)
.filter(
TI.dag_id == subdag.dag_id, TI.task_id == task.task_id, TI.execution_date == DEFAULT_DATE
)
.first()
)
assert instance is not None
assert instance.state == State.SUCCESS
removed_task_ti.refresh_from_db()
assert removed_task_ti.state == State.REMOVED
subdag.clear()
dag.clear()
| 232 | test_backfill_job.py | Python | tests/jobs/test_backfill_job.py | 49e336ae0302b386a2f47269a6d13988382d975f | airflow | 2 |
|
210,267 | 46 | 11 | 11 | 197 | 19 | 1 | 59 | 174 | __call__ | Remove conditional block in RCNN export onnx (#5371)
* support rcnn onnx
* clean code
* update cascade rcnn
* add todo for rpn proposals | https://github.com/PaddlePaddle/PaddleDetection.git | def __call__(self, mask_out, bboxes, bbox_num, origin_shape):
num_mask = mask_out.shape[0]
origin_shape = paddle.cast(origin_shape, 'int32')
# TODO: support bs > 1 and mask output dtype is bool
pred_result = paddle.zeros(
[num_mask, origin_shape[0][0], origin_shape[0][1]], dtype='int32')
im_h, im_w = origin_shape[0][0], origin_shape[0][1]
pred_mask = self.paste_mask(mask_out[:, None, :, :], bboxes[:, 2:],
im_h, im_w)
pred_mask = pred_mask >= self.binary_thresh
pred_result = paddle.cast(pred_mask, 'int32')
return pred_result
@register | @register | 129 | post_process.py | Python | ppdet/modeling/post_process.py | afb3b7a1c7842921b8eacae9d2ac4f2e660ea7e1 | PaddleDetection | 1 |
81,344 | 146 | 19 | 96 | 894 | 7 | 0 | 244 | 1,599 | context_stub | Adding fields to job_metadata for workflows and approval nodes (#12255) | https://github.com/ansible/awx.git | def context_stub(cls):
context = {
'job': {
'allow_simultaneous': False,
'artifacts': {},
'controller_node': 'foo_controller',
'created': datetime.datetime(2018, 11, 13, 6, 4, 0, 0, tzinfo=datetime.timezone.utc),
'custom_virtualenv': 'my_venv',
'description': 'Sample job description',
'diff_mode': False,
'elapsed': 0.403018,
'execution_node': 'awx',
'failed': False,
'finished': False,
'force_handlers': False,
'forks': 0,
'host_status_counts': {'skipped': 1, 'ok': 5, 'changed': 3, 'failures': 0, 'dark': 0, 'failed': False, 'processed': 0, 'rescued': 0},
'id': 42,
'job_explanation': 'Sample job explanation',
'job_slice_count': 1,
'job_slice_number': 0,
'job_tags': '',
'job_type': 'run',
'launch_type': 'workflow',
'limit': 'bar_limit',
'modified': datetime.datetime(2018, 12, 13, 6, 4, 0, 0, tzinfo=datetime.timezone.utc),
'name': 'Stub JobTemplate',
'playbook': 'ping.yml',
'scm_branch': '',
'scm_revision': '',
'skip_tags': '',
'start_at_task': '',
'started': '2019-07-29T17:38:14.137461Z',
'status': 'running',
'summary_fields': {
'created_by': {'first_name': '', 'id': 1, 'last_name': '', 'username': 'admin'},
'instance_group': {'id': 1, 'name': 'tower'},
'inventory': {
'description': 'Sample inventory description',
'has_active_failures': False,
'has_inventory_sources': False,
'hosts_with_active_failures': 0,
'id': 17,
'inventory_sources_with_failures': 0,
'kind': '',
'name': 'Stub Inventory',
'organization_id': 121,
'total_groups': 0,
'total_hosts': 1,
'total_inventory_sources': 0,
},
'job_template': {'description': 'Sample job template description', 'id': 39, 'name': 'Stub JobTemplate'},
'labels': {'count': 0, 'results': []},
'project': {'description': 'Sample project description', 'id': 38, 'name': 'Stub project', 'scm_type': 'git', 'status': 'successful'},
'schedule': {
'description': 'Sample schedule',
'id': 42,
'name': 'Stub schedule',
'next_run': datetime.datetime(2038, 1, 1, 0, 0, 0, 0, tzinfo=datetime.timezone.utc),
},
'unified_job_template': {
'description': 'Sample unified job template description',
'id': 39,
'name': 'Stub Job Template',
'unified_job_type': 'job',
},
},
'timeout': 0,
'type': 'job',
'url': '/api/v2/jobs/13/',
'use_fact_cache': False,
'verbosity': 0,
},
'job_friendly_name': 'Job',
'url': 'https://towerhost/#/jobs/playbook/1010',
'approval_status': 'approved',
'approval_node_name': 'Approve Me',
'workflow_url': 'https://towerhost/#/jobs/workflow/1010',
'job_metadata': ,
}
return context
| 480 | notifications.py | Python | awx/main/models/notifications.py | 389c4a318035cdb02a972ba8200391765f522169 | awx | 1 |
|
274,647 | 5 | 10 | 11 | 32 | 8 | 0 | 5 | 19 | test_build_in_tf_function | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def test_build_in_tf_function(self):
m = metrics.MeanTensor(dtype=tf.float64)
| 117 | base_metric_test.py | Python | keras/metrics/base_metric_test.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
|
276,840 | 28 | 14 | 13 | 185 | 20 | 0 | 42 | 105 | func_dump | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def func_dump(func):
if os.name == "nt":
raw_code = marshal.dumps(func.__code__).replace(b"\\", b"/")
code = codecs.encode(raw_code, "base64").decode("ascii")
else:
raw_code = marshal.dumps(func.__code__)
code = codecs.encode(raw_code, "base64").decode("ascii")
defaults = func.__defaults__
if func.__closure__:
closure = tuple(c.cell_contents for c in func.__closure__)
else:
closure = None
return code, defaults, closure
| 109 | generic_utils.py | Python | keras/utils/generic_utils.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 4 |
|
257,048 | 6 | 8 | 8 | 33 | 5 | 0 | 6 | 20 | get_evaluation_sets | EvaluationSetClient for deepset cloud to fetch evaluation sets and la… (#2345)
* EvaluationSetClient for deepset cloud to fetch evaluation sets and labels for one specific evaluation set
* make DeepsetCloudDocumentStore able to fetch uploaded evaluation set names
* fix missing renaming of get_evaluation_set_names in DeepsetCloudDocumentStore
* update documentation for evaluation set functionality in deepset cloud document store
* DeepsetCloudDocumentStore tests for evaluation set functionality
* rename index to evaluation_set_name for DeepsetCloudDocumentStore evaluation set functionality
* raise DeepsetCloudError when no labels were found for evaluation set
* make use of .get_with_auto_paging in EvaluationSetClient
* Return result of get_with_auto_paging() as it parses the response already
* Make schema import source more specific
* fetch all evaluation sets for a workspace in deepset Cloud
* Rename evaluation_set_name to label_index
* make use of generator functionality for fetching labels
* Update Documentation & Code Style
* Adjust function input for DeepsetCloudDocumentStore.get_all_labels, adjust tests for it, fix typos, make linter happy
* Match error message with pytest.raises
* Update Documentation & Code Style
* DeepsetCloudDocumentStore.get_labels_count raises DeepsetCloudError when no evaluation set was found to count labels on
* remove unneeded import in tests
* DeepsetCloudDocumentStore tests, make reponse bodies a string through json.dumps
* DeepsetcloudDocumentStore.get_label_count - move raise to return
* stringify uuid before json.dump as uuid is not serilizable
* DeepsetcloudDocumentStore - adjust response mocking in tests
* DeepsetcloudDocumentStore - json dump response body in test
* DeepsetCloudDocumentStore introduce label_index, EvaluationSetClient rename label_index to evaluation_set
* Update Documentation & Code Style
* DeepsetCloudDocumentStore rename evaluation_set to evaluation_set_response as there is a name clash with the input variable
* DeepsetCloudDocumentStore - rename missed variable in test
* DeepsetCloudDocumentStore - rename missed label_index to index in doc string, rename label_index to evaluation_set in EvaluationSetClient
* Update Documentation & Code Style
* DeepsetCloudDocumentStore - update docstrings for EvaluationSetClient
* DeepsetCloudDocumentStore - fix typo in doc string
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | https://github.com/deepset-ai/haystack.git | def get_evaluation_sets(self) -> List[dict]:
return self.evaluation_set_client.get_evaluation_sets()
| 19 | deepsetcloud.py | Python | haystack/document_stores/deepsetcloud.py | a273c3a51dd432bd125e5b35df4be94260a2cdb7 | haystack | 1 |
|
95,412 | 36 | 13 | 17 | 274 | 26 | 0 | 52 | 215 | test_simple | feat(codeowners): Add endpoint to view code owner associations per organization (#31030)
See API-2186
So the earlier version of this PR just had the endpoint return the entire serialized ProjectCodeOwners for an organization. While that works, the intention behind this feature is to read and use the associations, so sending the raw codeowners file, and timestamps are unnecessary and increase the latency with such large payloads, especially for larger orgs.
@NisanthanNanthakumar suggested limiting what the endpoint returns to just what the feature will need on the frontend, and making the endpoint name a bit more specific. OrganizationCodeOwners -> OrganizationCodeOwnersAssocations.
Along with this refactor, tests have been updated. | https://github.com/getsentry/sentry.git | def test_simple(self):
code_owner_1 = self.create_codeowners(
self.project_1, self.code_mapping_1, raw=self.data_1["raw"]
)
code_owner_2 = self.create_codeowners(
self.project_2, self.code_mapping_2, raw=self.data_2["raw"]
)
response = self.get_success_response(self.organization.slug, status=status.HTTP_200_OK)
for code_owner in [code_owner_1, code_owner_2]:
assert code_owner.project.slug in response.data.keys()
associations, errors = ProjectCodeOwners.validate_codeowners_associations(
code_owner.raw, code_owner.project
)
assert "associations" in response.data[code_owner.project.slug].keys()
assert response.data[code_owner.project.slug]["associations"] == associations
assert "errors" in response.data[code_owner.project.slug].keys()
assert response.data[code_owner.project.slug]["errors"] == errors
| 175 | test_organization_codeowners_associations.py | Python | tests/sentry/api/endpoints/test_organization_codeowners_associations.py | 5efa5eeb57ae6ddf740256e08ce3b9ff4ec98eaa | sentry | 2 |
|
189,402 | 14 | 9 | 54 | 53 | 7 | 0 | 15 | 47 | set | Clarify the docs for MObject.animate, MObject.set and Variable. (#2407)
* Clarify the docs for MObject.animate, MObject.set and Variable.
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Slight reword
* Apply suggestions from code review
Co-authored-by: Benjamin Hackl <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Benjamin Hackl <[email protected]> | https://github.com/ManimCommunity/manim.git | def set(self, **kwargs) -> "Mobject":
for attr, value in kwargs.items():
setattr(self, attr, value)
return self
| 32 | mobject.py | Python | manim/mobject/mobject.py | 6d15ca5e745ecdd5d0673adbd55fc7a589abdae3 | manim | 2 |
|
181,598 | 53 | 17 | 23 | 231 | 15 | 0 | 64 | 265 | test_driver_3 | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | https://github.com/EpistasisLab/tpot.git | def test_driver_3():
args_list = [
'tests/tests.csv',
'-is', ',',
'-target', 'class',
'-g', '1',
'-p', '2',
'-cv', '3',
'-s',' 45',
'-config', 'TPOT light',
'-v', '2'
]
args = _get_arg_parser().parse_args(args_list)
with captured_output() as (out, err):
tpot_driver(args)
ret_stdout = out.getvalue()
assert "TPOT settings" in ret_stdout
assert "Final Pareto front testing scores" not in ret_stdout
try:
ret_val = float(ret_stdout.split('\n')[-2].split(': ')[-1])
except Exception:
ret_val = -float('inf')
assert ret_val > 0.0
| 125 | driver_tests.py | Python | tests/driver_tests.py | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | 2 |
|
263,901 | 58 | 12 | 15 | 105 | 13 | 0 | 81 | 111 | _find_all_or_none | hookutils: qt: ensure ANGLE DLLs are collected from Anaconda Qt5
Anaconda's Qt5 ships ANGLE DLLs (`libEGL.dll` and `libGLESv2.dll`)
but does not seem to provide the `d3dcompiler_XY.dll`. Therefore,
we need to adjust the extra Qt DLL collection to consider the
latter an optional dependency whose absence does not preclude
the collection of the ANGLE DLL group.
Rework the `get_qt_binaries` hook utility function and its
`_find_all_or_none` helper to peform collection based on a list
of mandatory and a list of optional patterns, instead of a single
list and number of expected matches (since up until now, all
matches were always expected to be found). | https://github.com/pyinstaller/pyinstaller.git | def _find_all_or_none(qt_library_info, mandatory_dll_patterns, optional_dll_patterns=None):
optional_dll_patterns = optional_dll_patterns or []
# Resolve path to the the corresponding python package (actually, its parent directory). Used to preserve directory
# structure when DLLs are collected from the python package (e.g., PyPI wheels).
package_parent_path = pathlib.Path(qt_library_info.package_location).resolve().parent
# In PyQt5/PyQt6, the DLLs we are looking for are located in location['BinariesPath'], whereas in PySide2/PySide6,
# they are located in location['PrefixPath'].
dll_path = qt_library_info.location['BinariesPath' if qt_library_info.is_pyqt else 'PrefixPath']
dll_path = pathlib.Path(dll_path).resolve()
# Helper for processing single DLL pattern | 100 | qt.py | Python | PyInstaller/utils/hooks/qt.py | 49abfa5498b1db83b8f1b2e859e461b1e8540c6f | pyinstaller | 6 |
|
261,040 | 20 | 11 | 9 | 104 | 13 | 0 | 25 | 60 | test_asarray_with_order | ENH Adds Array API support to LinearDiscriminantAnalysis (#22554)
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Julien Jerphanion <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def test_asarray_with_order(is_array_api):
if is_array_api:
xp = pytest.importorskip("numpy.array_api")
else:
xp = numpy
X = xp.asarray([1.2, 3.4, 5.1])
X_new = _asarray_with_order(X, order="F")
X_new_np = numpy.asarray(X_new)
assert X_new_np.flags["F_CONTIGUOUS"]
| 67 | test_array_api.py | Python | sklearn/utils/tests/test_array_api.py | 2710a9e7eefd2088ce35fd2fb6651d5f97e5ef8b | scikit-learn | 2 |
|
277,191 | 7 | 8 | 4 | 43 | 6 | 0 | 7 | 35 | set_params | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def set_params(self, **params):
self.check_params(params)
self.sk_params.update(params)
return self
| 25 | scikit_learn.py | Python | keras/wrappers/scikit_learn.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 1 |
|
44,722 | 33 | 14 | 20 | 143 | 21 | 0 | 36 | 152 | _validate_argument_count | Straighten up MappedOperator hierarchy and typing (#21505) | https://github.com/apache/airflow.git | def _validate_argument_count(self) -> None:
if isinstance(self.operator_class, str):
return # No need to validate deserialized operator.
operator = self._create_unmapped_operator(
mapped_kwargs={k: unittest.mock.MagicMock(name=k) for k in self.mapped_kwargs},
partial_kwargs=self.partial_kwargs,
real=False,
)
if operator.task_group:
operator.task_group._remove(operator)
dag = operator.get_dag()
if dag:
dag._remove_task(operator.task_id)
| 90 | mappedoperator.py | Python | airflow/models/mappedoperator.py | 0cd3b11f3a5c406fbbd4433d8e44d326086db634 | airflow | 5 |
|
299,547 | 88 | 13 | 41 | 477 | 42 | 0 | 158 | 656 | turn_on | Use LightEntityFeature enum in limitlessled (#71061) | https://github.com/home-assistant/core.git | def turn_on(self, transition_time, pipeline, **kwargs):
# The night effect does not need a turned on light
if kwargs.get(ATTR_EFFECT) == EFFECT_NIGHT:
if EFFECT_NIGHT in self._effect_list:
pipeline.night_light()
self._effect = EFFECT_NIGHT
return
pipeline.on()
# Set up transition.
args = {}
if self.config[CONF_FADE] and not self.is_on and self._brightness:
args["brightness"] = self.limitlessled_brightness()
if ATTR_BRIGHTNESS in kwargs:
self._brightness = kwargs[ATTR_BRIGHTNESS]
args["brightness"] = self.limitlessled_brightness()
if ATTR_HS_COLOR in kwargs and self._supported & SUPPORT_COLOR:
self._color = kwargs[ATTR_HS_COLOR]
# White is a special case.
if self._color[1] < MIN_SATURATION:
pipeline.white()
self._color = WHITE
else:
args["color"] = self.limitlessled_color()
if ATTR_COLOR_TEMP in kwargs:
if self._supported & SUPPORT_COLOR:
pipeline.white()
self._color = WHITE
if self._supported & SUPPORT_COLOR_TEMP:
self._temperature = kwargs[ATTR_COLOR_TEMP]
args["temperature"] = self.limitlessled_temperature()
if args:
pipeline.transition(transition_time, **args)
# Flash.
if ATTR_FLASH in kwargs and self._supported & LightEntityFeature.FLASH:
duration = 0
if kwargs[ATTR_FLASH] == FLASH_LONG:
duration = 1
pipeline.flash(duration=duration)
# Add effects.
if ATTR_EFFECT in kwargs and self._effect_list:
if kwargs[ATTR_EFFECT] == EFFECT_COLORLOOP:
self._effect = EFFECT_COLORLOOP
pipeline.append(COLORLOOP)
if kwargs[ATTR_EFFECT] == EFFECT_WHITE:
pipeline.white()
self._color = WHITE
| 291 | light.py | Python | homeassistant/components/limitlessled/light.py | 6635fc4e3111f72bfa6095c97b3f522429fa1a8b | core | 21 |
|
302,108 | 32 | 8 | 15 | 137 | 8 | 0 | 51 | 108 | test_duplicate_removal | Update MQTT tests to use the config entry setup (#72373)
* New testframework and tests for fan platform
* Merge test_common_new to test_common
* Add alarm_control_panel
* Add binary_sensor
* Add button
* Add camera
* Add climate
* Add config_flow
* Add cover
* Add device_tracker_disovery
* Add device_trigger
* Add diagnostics
* Add discovery
* Add humidifier
* Add init
* Add lecacy_vacuum
* Add light_json
* Add light_template
* Add light
* Add lock
* Add number
* Add scene
* Add select
* Add sensor
* Add siren
* Add state_vacuum
* Add subscription
* Add switch
* Add tag
* Add trigger
* Add missed tests
* Add another missed test
* Add device_tracker
* Remove commented out code
* Correct tests according comments
* Improve mqtt_mock_entry and recover tests
* Split fixtures with and without yaml setup
* Update fixtures manual_mqtt
* Update fixtures mqtt_json
* Fix test tasmota
* Update fixture mqtt_room
* Revert fixture changes, improve test
* re-add test | https://github.com/home-assistant/core.git | async def test_duplicate_removal(hass, mqtt_mock_entry_no_yaml_config, caplog):
await mqtt_mock_entry_no_yaml_config()
async_fire_mqtt_message(
hass,
"homeassistant/binary_sensor/bla/config",
'{ "name": "Beer", "state_topic": "test-topic" }',
)
await hass.async_block_till_done()
async_fire_mqtt_message(hass, "homeassistant/binary_sensor/bla/config", "")
await hass.async_block_till_done()
assert "Component has already been discovered: binary_sensor bla" in caplog.text
caplog.clear()
async_fire_mqtt_message(hass, "homeassistant/binary_sensor/bla/config", "")
await hass.async_block_till_done()
assert "Component has already been discovered: binary_sensor bla" not in caplog.text
| 75 | test_discovery.py | Python | tests/components/mqtt/test_discovery.py | 52561ce0769ddcf1e8688c8909692b66495e524b | core | 1 |
|
276,769 | 53 | 21 | 29 | 297 | 29 | 1 | 79 | 397 | _extract_archive | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def _extract_archive(file_path, path=".", archive_format="auto"):
if archive_format is None:
return False
if archive_format == "auto":
archive_format = ["tar", "zip"]
if isinstance(archive_format, str):
archive_format = [archive_format]
file_path = io_utils.path_to_string(file_path)
path = io_utils.path_to_string(path)
for archive_type in archive_format:
if archive_type == "tar":
open_fn = tarfile.open
is_match_fn = tarfile.is_tarfile
if archive_type == "zip":
open_fn = zipfile.ZipFile
is_match_fn = zipfile.is_zipfile
if is_match_fn(file_path):
with open_fn(file_path) as archive:
try:
archive.extractall(path)
except (tarfile.TarError, RuntimeError, KeyboardInterrupt):
if os.path.exists(path):
if os.path.isfile(path):
os.remove(path)
else:
shutil.rmtree(path)
raise
return True
return False
@keras_export("keras.utils.get_file") | @keras_export("keras.utils.get_file") | 169 | data_utils.py | Python | keras/utils/data_utils.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 11 |
31,499 | 29 | 12 | 23 | 195 | 23 | 0 | 33 | 106 | test_run_image_classification_no_trainer | Change no trainer image_classification test (#17635)
* Adjust test arguments and use a new example test | https://github.com/huggingface/transformers.git | def test_run_image_classification_no_trainer(self):
tmp_dir = self.get_auto_remove_tmp_dir()
testargs = f.split()
if is_cuda_and_apex_available():
testargs.append("--fp16")
_ = subprocess.run(self._launch_args + testargs, stdout=subprocess.PIPE)
result = get_results(tmp_dir)
# The base model scores a 25%
self.assertGreaterEqual(result["eval_accuracy"], 0.625)
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "step_1")))
self.assertTrue(os.path.exists(os.path.join(tmp_dir, "image_classification_no_trainer")))
| 112 | test_accelerate_examples.py | Python | examples/pytorch/test_accelerate_examples.py | acb709d55150501698b5b500ca49683b913d4b3d | transformers | 2 |
|
224,518 | 19 | 12 | 10 | 90 | 12 | 0 | 29 | 91 | nest_paths | Refactor URI handling to not have to deal with backslashes | https://github.com/mkdocs/mkdocs.git | def nest_paths(paths):
nested = []
for path in paths:
parts = PurePath(path).parent.parts
branch = nested
for part in parts:
part = dirname_to_title(part)
branch = find_or_create_node(branch, part)
branch.append(path)
return nested
| 55 | __init__.py | Python | mkdocs/utils/__init__.py | 1c50987f9c17b228fdf22456aa369b83bd6b11b9 | mkdocs | 3 |
|
77,226 | 4 | 6 | 2 | 16 | 2 | 0 | 4 | 18 | run_before_hook | Extract mixins from Snippet views and use it in generic create/edit/delete views (#8361) | https://github.com/wagtail/wagtail.git | def run_before_hook(self):
return None
| 8 | mixins.py | Python | wagtail/admin/views/generic/mixins.py | bc1a2ab1148b0f27cfd1435f8cb0e44c2721102d | wagtail | 1 |
|
181,586 | 39 | 19 | 8 | 123 | 12 | 0 | 44 | 76 | test_driver | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | https://github.com/EpistasisLab/tpot.git | def test_driver():
batcmd = "python -m tpot.driver tests/tests.csv -is , -target class -g 1 -p 2 -os 4 -cv 5 -s 45 -v 1"
ret_stdout = subprocess.check_output(batcmd, shell=True)
try:
ret_val = float(ret_stdout.decode('UTF-8').split('\n')[-2].split(': ')[-1])
except Exception as e:
ret_val = -float('inf')
assert ret_val > 0.0
| 69 | driver_tests.py | Python | tests/driver_tests.py | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | 2 |
|
164,682 | 28 | 10 | 4 | 147 | 13 | 1 | 34 | 66 | close | DEP: Protect some ExcelWriter attributes (#45795)
* DEP: Deprecate ExcelWriter attributes
* DEP: Deprecate ExcelWriter attributes
* Fixup for test
* Move tests and restore check_extension
y
* Deprecate xlwt fm_date and fm_datetime; doc improvements | https://github.com/pandas-dev/pandas.git | def close(self) -> None:
self._save()
self._handles.close()
XLS_SIGNATURES = (
b"\x09\x00\x04\x00\x07\x00\x10\x00", # BIFF2
b"\x09\x02\x06\x00\x00\x00\x10\x00", # BIFF3
b"\x09\x04\x06\x00\x00\x00\x10\x00", # BIFF4
b"\xD0\xCF\x11\xE0\xA1\xB1\x1A\xE1", # Compound File Binary
)
ZIP_SIGNATURE = b"PK\x03\x04"
PEEK_SIZE = max(map(len, XLS_SIGNATURES + (ZIP_SIGNATURE,)))
@doc(storage_options=_shared_docs["storage_options"]) | @doc(storage_options=_shared_docs["storage_options"]) | 20 | _base.py | Python | pandas/io/excel/_base.py | 047137ce2619cfe2027e3999dfb92eb614d9a485 | pandas | 1 |
124,708 | 78 | 15 | 15 | 270 | 21 | 1 | 120 | 225 | test_max_concurrent_in_progress_functions | [Core | State Observability] Implement API Server (Dashboard) HTTP Requests Throttling (#26257)
This is to limit the max number of HTTP requests the dashboard (API server) will accept before rejecting more requests.
This will make sure the observability requests do not overload the downstream systems (raylet/gcs) when delegating too many concurrent state observability requests to the cluster. | https://github.com/ray-project/ray.git | async def test_max_concurrent_in_progress_functions(extra_req_num):
max_req = 10
a = A(max_num_call=max_req)
# Run more than allowed concurrent async functions should trigger rate limiting
res_arr = await asyncio.gather(
*[a.fn1() if i % 2 == 0 else a.fn2() for i in range(max_req + extra_req_num)]
)
fail_cnt = 0
for ok in res_arr:
fail_cnt += 0 if ok else 1
expected_fail_cnt = max(0, extra_req_num)
assert fail_cnt == expected_fail_cnt, (
f"{expected_fail_cnt} out of {max_req + extra_req_num} "
f"concurrent runs should fail with max={max_req} but {fail_cnt}."
)
assert a.num_call_ == 0, "All requests should be done"
@pytest.mark.asyncio
@pytest.mark.parametrize(
"failures",
[
[True, True, True, True, True],
[False, False, False, False, False],
[False, True, False, True, False],
[False, False, False, True, True],
[True, True, False, False, False],
],
) | @pytest.mark.asyncio
@pytest.mark.parametrize(
"failures",
[
[True, True, True, True, True],
[False, False, False, False, False],
[False, True, False, True, False],
[False, False, False, True, True],
[True, True, False, False, False],
],
) | 96 | test_state_head.py | Python | dashboard/tests/test_state_head.py | 365ffe21e592589880e3116302705b5e08a5b81f | ray | 5 |
176,904 | 34 | 10 | 41 | 80 | 9 | 0 | 45 | 75 | astar_path | Updated astar docstring (#5797)
The docstring now reflects on heuristic admissibility and heuristic value caching | https://github.com/networkx/networkx.git | def astar_path(G, source, target, heuristic=None, weight="weight"):
if source not in G or target not in G:
msg = f"Either source {source} or target {target} is not in G"
raise nx.NodeNotFound(msg)
if heuristic is None:
# The default heuristic is h=0 - same as Dijkstra's algorithm | 273 | astar.py | Python | networkx/algorithms/shortest_paths/astar.py | b28d30bd552a784d60692fd2d2016f8bcd1cfa17 | networkx | 13 |
|
89,927 | 48 | 14 | 24 | 269 | 30 | 0 | 62 | 294 | test_note_generic_issue | feat(integrations): Support generic issue type alerts (#42110)
Add support for issue alerting integrations that use the message builder
(Slack and MSTeams) for generic issue types.
Preview text for Slack alert:
<img width="350" alt="Screen Shot 2022-12-08 at 4 07 16 PM"
src="https://user-images.githubusercontent.com/29959063/206593405-7a206d88-a31a-4e85-8c15-1f7534733ca7.png">
Slack generic issue alert shows the `occurrence.issue_title` and the
"important" evidence value
<img width="395" alt="Screen Shot 2022-12-08 at 4 11 20 PM"
src="https://user-images.githubusercontent.com/29959063/206593408-6942d74d-4238-4df9-bfee-601ce2bc1098.png">
MSTeams generic issue alert shows the `occurrence.issue_title` and the
"important" evidence value
<img width="654" alt="Screen Shot 2022-12-08 at 4 13 45 PM"
src="https://user-images.githubusercontent.com/29959063/206593410-2773746a-16b3-4652-ba2c-a7d5fdc76992.png">
Fixes #42047 | https://github.com/getsentry/sentry.git | def test_note_generic_issue(self, mock_func, occurrence):
event = self.store_event(
data={"message": "Hellboy's world", "level": "error"}, project_id=self.project.id
)
event = event.for_group(event.groups[0])
notification = NoteActivityNotification(
Activity(
project=self.project,
group=event.group,
user=self.user,
type=ActivityType.NOTE,
data={"text": "text", "mentions": []},
)
)
with self.tasks():
notification.send()
attachment, text = get_attachment()
assert text == f"New comment by {self.name}"
assert attachment["title"] == TEST_ISSUE_OCCURRENCE.issue_title
assert attachment["text"] == notification.activity.data["text"]
assert (
attachment["footer"]
== f"{self.project.slug} | <http://testserver/settings/account/notifications/workflow/?referrer=note_activity-slack-user|Notification Settings>"
)
| 151 | test_note.py | Python | tests/sentry/integrations/slack/notifications/test_note.py | 3255fa4ebb9fbc1df6bb063c0eb77a0298ca8f72 | sentry | 1 |
|
299,399 | 4 | 6 | 3 | 16 | 3 | 0 | 4 | 7 | async_add_devices | Insteon Device Control Panel (#70834)
Co-authored-by: Paulus Schoutsen <[email protected]> | https://github.com/home-assistant/core.git | async def async_add_devices(address, multiple):
| 26 | device.py | Python | homeassistant/components/insteon/api/device.py | a9ca774e7ed1d8fe502a53d5b765c1d9b393a524 | core | 2 |
|
270,861 | 10 | 11 | 5 | 58 | 4 | 0 | 12 | 35 | is_subclassed | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | https://github.com/keras-team/keras.git | def is_subclassed(layer):
return (
layer.__module__.find("keras.engine") == -1
and layer.__module__.find("keras.layers") == -1
)
| 32 | base_layer_utils.py | Python | keras/engine/base_layer_utils.py | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | 2 |
|
297,866 | 37 | 13 | 13 | 90 | 10 | 0 | 39 | 194 | _async_device_changed | String formatting and max line length - Part 2 (#84393) | https://github.com/home-assistant/core.git | def _async_device_changed(self, *args, **kwargs) -> None:
# Don't update disabled entities
if self.enabled:
_LOGGER.debug("Event %s (%s)", self.name, CONST_ALARM_CONTROL_PANEL_NAME)
self.async_write_ha_state()
else:
_LOGGER.debug(
(
"Device Changed Event for %s (Alarm Control Panel) not fired."
" Entity is disabled"
),
self.name,
)
| 52 | alarm_control_panel.py | Python | homeassistant/components/homematicip_cloud/alarm_control_panel.py | cb13418babd21a1e9584978b0c523f1b1e4e1cb0 | core | 2 |
|
183,841 | 24 | 10 | 6 | 82 | 12 | 0 | 27 | 45 | test_stylesheet_many_classes_dont_overrule_id | Add various additional tests around CSS specificity | https://github.com/Textualize/textual.git | def test_stylesheet_many_classes_dont_overrule_id():
css = "#id {color: red;} .a.b.c.d {color: blue;}"
stylesheet = _make_stylesheet(css)
node = DOMNode(classes="a b c d", id="id")
stylesheet.apply(node)
assert node.styles.color == Color(255, 0, 0)
| 47 | test_stylesheet.py | Python | tests/css/test_stylesheet.py | 4dd0d9fae43583638f34257f97d5749ca4f2c00c | textual | 1 |
|
297,532 | 4 | 6 | 18 | 16 | 3 | 0 | 4 | 7 | test_check_requesterror | Improve HomeWizard request issue reporting (#82366)
* Trigger reauth flow when HomeWizard API was disabled
* Add tests for reauth flow
* Fix typo in test
* Add parallel updates constant
* Improve error message when device in unreachable during config
* Set quality scale
* Remove quality scale
* Throw error instead of abort when setup fails
* Adjust test for new setup behaviour
* Trigger reauth flow when API is disabled and continue retrying
* Reload entry and raise AuthFailed during init
* Abort running config flow
* Listen for coordinator updates to trigger reload
* Use build-in backoff system
* Fix failing test
* Test reauth flow is active after disable-api init
* Test reauth flow removal | https://github.com/home-assistant/core.git | async def test_check_requesterror(hass, aioclient_mock):
| 112 | test_config_flow.py | Python | tests/components/homewizard/test_config_flow.py | b41d0be9522fabda0ac8affd2add6876a66205ea | core | 1 |
|
265,772 | 53 | 14 | 18 | 194 | 14 | 0 | 87 | 177 | to_grams | 9654 device weight (#10448)
* 9654 add weight fields to devices
* 9654 changes from code review
* 9654 change _abs_weight to grams
* Resolve migrations conflict
* 9654 code-review changes
* 9654 total weight on devices
* Misc cleanup
Co-authored-by: Jeremy Stretch <[email protected]> | https://github.com/netbox-community/netbox.git | def to_grams(weight, unit):
try:
if weight < 0:
raise ValueError("Weight must be a positive number")
except TypeError:
raise TypeError(f"Invalid value '{weight}' for weight (must be a number)")
valid_units = WeightUnitChoices.values()
if unit not in valid_units:
raise ValueError(f"Unknown unit {unit}. Must be one of the following: {', '.join(valid_units)}")
if unit == WeightUnitChoices.UNIT_KILOGRAM:
return weight * 1000
if unit == WeightUnitChoices.UNIT_GRAM:
return weight
if unit == WeightUnitChoices.UNIT_POUND:
return weight * Decimal(453.592)
if unit == WeightUnitChoices.UNIT_OUNCE:
return weight * Decimal(28.3495)
raise ValueError(f"Unknown unit {unit}. Must be 'kg', 'g', 'lb', 'oz'.")
| 106 | utils.py | Python | netbox/utilities/utils.py | 204c10c053fddc26ad23ec15a3c60eee38bfc081 | netbox | 8 |
|
153,944 | 6 | 6 | 27 | 26 | 6 | 0 | 6 | 13 | _setitem | PERF-#4325: Improve perf of multi-column assignment in `__setitem__` when no new column names are assigning (#4455)
Co-authored-by: Yaroslav Igoshev <[email protected]>
Signed-off-by: Myachev <[email protected]> | https://github.com/modin-project/modin.git | def _setitem(self, axis, key, value, how="inner"):
| 168 | query_compiler.py | Python | modin/core/storage_formats/pandas/query_compiler.py | eddfda4b521366c628596dcb5c21775c7f50eec1 | modin | 4 |
|
92,181 | 107 | 14 | 68 | 1,025 | 52 | 0 | 225 | 858 | test_update_organization_config | ref(integrations): Update Vercel endpoints (#36150)
This PR updates the endpoints we reach to in the Vercel integration. It seems to work just fine without changes as the payloads returned from vercel haven't updated, but we'll need to specify API Scopes so they don't receive 403s.
This also refactored the pagination code to loop 100 at a time, indefinitely
I had previously tried to consolidate the project webhooks in this PR, but I'll be doing that separately. | https://github.com/getsentry/sentry.git | def test_update_organization_config(self):
with self.tasks():
self.assert_setup_flow()
org = self.organization
project_id = self.project.id
enabled_dsn = ProjectKey.get_default(project=Project.objects.get(id=project_id)).get_dsn(
public=True
)
sentry_auth_token = SentryAppInstallationToken.objects.get_token(org.id, "vercel")
env_var_map = {
"SENTRY_ORG": {"type": "encrypted", "value": org.slug},
"SENTRY_PROJECT": {"type": "encrypted", "value": self.project.slug},
"SENTRY_DSN": {"type": "encrypted", "value": enabled_dsn},
"SENTRY_AUTH_TOKEN": {"type": "encrypted", "value": sentry_auth_token},
"VERCEL_GIT_COMMIT_SHA": {"type": "system", "value": "VERCEL_GIT_COMMIT_SHA"},
}
# mock get_project API call
responses.add(
responses.GET,
f"{VercelClient.base_url}{VercelClient.GET_PROJECT_URL % self.project_id}",
json={"link": {"type": "github"}, "framework": "nextjs"},
)
# mock create the env vars
for env_var, details in env_var_map.items():
responses.add(
responses.POST,
f"{VercelClient.base_url}{VercelClient.CREATE_ENV_VAR_URL % self.project_id}",
json={
"key": env_var,
"value": details["value"],
"target": ["production"],
"type": details["type"],
},
)
integration = Integration.objects.get(provider=self.provider.key)
installation = integration.get_installation(org.id)
org_integration = OrganizationIntegration.objects.get(
organization_id=org.id, integration_id=integration.id
)
assert org_integration.config == {}
data = {"project_mappings": [[project_id, self.project_id]]}
installation.update_organization_config(data)
org_integration = OrganizationIntegration.objects.get(
organization_id=org.id, integration_id=integration.id
)
assert org_integration.config == {"project_mappings": [[project_id, self.project_id]]}
# assert the env vars were created correctly
req_params = json.loads(responses.calls[5].request.body)
assert req_params["key"] == "SENTRY_ORG"
assert req_params["value"] == org.slug
assert req_params["target"] == ["production"]
assert req_params["type"] == "encrypted"
req_params = json.loads(responses.calls[6].request.body)
assert req_params["key"] == "SENTRY_PROJECT"
assert req_params["value"] == self.project.slug
assert req_params["target"] == ["production"]
assert req_params["type"] == "encrypted"
req_params = json.loads(responses.calls[7].request.body)
assert req_params["key"] == "NEXT_PUBLIC_SENTRY_DSN"
assert req_params["value"] == enabled_dsn
assert req_params["target"] == ["production"]
assert req_params["type"] == "encrypted"
req_params = json.loads(responses.calls[8].request.body)
assert req_params["key"] == "SENTRY_AUTH_TOKEN"
assert req_params["target"] == ["production"]
assert req_params["type"] == "encrypted"
req_params = json.loads(responses.calls[9].request.body)
assert req_params["key"] == "VERCEL_GIT_COMMIT_SHA"
assert req_params["value"] == "VERCEL_GIT_COMMIT_SHA"
assert req_params["target"] == ["production"]
assert req_params["type"] == "system"
| 566 | test_integration.py | Python | tests/sentry/integrations/vercel/test_integration.py | 8201e74ec3d81e89354905c946e62436f0247602 | sentry | 2 |
|
293,197 | 80 | 16 | 28 | 242 | 32 | 0 | 104 | 536 | async_step_manual_connection | Ensure elkm1 can be manually configured when discovered instance is not used (#67712) | https://github.com/home-assistant/core.git | async def async_step_manual_connection(self, user_input=None):
errors = {}
if user_input is not None:
# We might be able to discover the device via directed UDP
# in case its on another subnet
if device := await async_discover_device(
self.hass, user_input[CONF_ADDRESS]
):
await self.async_set_unique_id(
dr.format_mac(device.mac_address), raise_on_progress=False
)
self._abort_if_unique_id_configured()
# Ignore the port from discovery since its always going to be
# 2601 if secure is turned on even though they may want insecure
user_input[CONF_ADDRESS] = device.ip_address
errors, result = await self._async_create_or_error(user_input, False)
if not errors:
return result
return self.async_show_form(
step_id="manual_connection",
data_schema=vol.Schema(
{
**BASE_SCHEMA,
vol.Required(CONF_ADDRESS): str,
vol.Optional(CONF_PREFIX, default=""): str,
vol.Required(
CONF_PROTOCOL, default=DEFAULT_SECURE_PROTOCOL
): vol.In(ALL_PROTOCOLS),
}
),
errors=errors,
)
| 153 | config_flow.py | Python | homeassistant/components/elkm1/config_flow.py | 26c5dca45d9b3dee002dfe1549780747e5007e06 | core | 4 |
|
224,049 | 6 | 9 | 2 | 35 | 4 | 0 | 6 | 20 | on_page_read_source | Remove spaces at the ends of docstrings, normalize quotes | https://github.com/mkdocs/mkdocs.git | def on_page_read_source(self, **kwargs):
return f'{self.config["foo"]} source'
| 12 | plugin_tests.py | Python | mkdocs/tests/plugin_tests.py | e7f07cc82ab2be920ab426ba07456d8b2592714d | mkdocs | 1 |
|
259,640 | 115 | 16 | 84 | 352 | 32 | 0 | 173 | 322 | trustworthiness | FIX Raise error when n_neighbors >= n_samples / 2 in manifold.trustworthiness (#23033)
Co-authored-by: Shao Yang Hong <[email protected]>
Co-authored-by: Thomas J. Fan <[email protected]>
Co-authored-by: Jérémie du Boisberranger <[email protected]> | https://github.com/scikit-learn/scikit-learn.git | def trustworthiness(X, X_embedded, *, n_neighbors=5, metric="euclidean"):
r
n_samples = X.shape[0]
if n_neighbors >= n_samples / 2:
raise ValueError(
f"n_neighbors ({n_neighbors}) should be less than n_samples / 2"
f" ({n_samples / 2})"
)
dist_X = pairwise_distances(X, metric=metric)
if metric == "precomputed":
dist_X = dist_X.copy()
# we set the diagonal to np.inf to exclude the points themselves from
# their own neighborhood
np.fill_diagonal(dist_X, np.inf)
ind_X = np.argsort(dist_X, axis=1)
# `ind_X[i]` is the index of sorted distances between i and other samples
ind_X_embedded = (
NearestNeighbors(n_neighbors=n_neighbors)
.fit(X_embedded)
.kneighbors(return_distance=False)
)
# We build an inverted index of neighbors in the input space: For sample i,
# we define `inverted_index[i]` as the inverted index of sorted distances:
# inverted_index[i][ind_X[i]] = np.arange(1, n_sample + 1)
inverted_index = np.zeros((n_samples, n_samples), dtype=int)
ordered_indices = np.arange(n_samples + 1)
inverted_index[ordered_indices[:-1, np.newaxis], ind_X] = ordered_indices[1:]
ranks = (
inverted_index[ordered_indices[:-1, np.newaxis], ind_X_embedded] - n_neighbors
)
t = np.sum(ranks[ranks > 0])
t = 1.0 - t * (
2.0 / (n_samples * n_neighbors * (2.0 * n_samples - 3.0 * n_neighbors - 1.0))
)
return t
| 228 | _t_sne.py | Python | sklearn/manifold/_t_sne.py | ade90145c9c660a1a7baf2315185995899b0f356 | scikit-learn | 3 |
|
132,895 | 34 | 12 | 10 | 108 | 9 | 0 | 38 | 140 | start | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | https://github.com/ray-project/ray.git | def start(self):
if self.actors and len(self.actors) > 0:
raise RuntimeError(
"The actors have already been started. "
"Please call `shutdown` first if you want to "
"restart them."
)
logger.debug(f"Starting {self.num_actors} actors.")
self.add_actors(self.num_actors)
logger.debug(f"{len(self.actors)} actors have successfully started.")
| 49 | actor_group.py | Python | python/ray/util/actor_group.py | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | 3 |
|
126,264 | 59 | 14 | 20 | 179 | 21 | 0 | 72 | 215 | _detect_checkpoint_function | [air] Add annotation for Tune module. (#27060)
Co-authored-by: Kai Fricke <[email protected]> | https://github.com/ray-project/ray.git | def _detect_checkpoint_function(train_func, abort=False, partial=False):
func_sig = inspect.signature(train_func)
validated = True
try:
# check if signature is func(config, checkpoint_dir=None)
if partial:
func_sig.bind_partial({}, checkpoint_dir="tmp/path")
else:
func_sig.bind({}, checkpoint_dir="tmp/path")
except Exception as e:
logger.debug(str(e))
validated = False
if abort and not validated:
func_args = inspect.getfullargspec(train_func).args
raise ValueError(
"Provided training function must have 2 args "
"in the signature, and the latter arg must "
"contain `checkpoint_dir`. For example: "
"`func(config, checkpoint_dir=None)`. Got {}".format(func_args)
)
return validated
| 102 | util.py | Python | python/ray/tune/utils/util.py | eb69c1ca286a2eec594f02ddaf546657a8127afd | ray | 5 |
|
323,123 | 10 | 10 | 5 | 43 | 5 | 0 | 13 | 56 | should_log | [Trainer] Add init version of paddlenlp trainer and apply finetune for ernie-1.0 pretraining. (#1761)
* add some datasets for finetune.
* support fine tune for all tastks.
* add trainer prototype.
* init verison for paddlenlp trainer.
* refine trainer.
* update for some details.
* support multi-cards training evaluation.
* support load from ckpt.
* support for export inference model.
* first version of trainer.
* seq cls support clue.
* trainer support for token classification and question answersing tasks.
* fix as reviews.
Co-authored-by: Zeyu Chen <[email protected]> | https://github.com/PaddlePaddle/PaddleNLP.git | def should_log(self):
if self.log_on_each_node:
return self.local_process_index == 0
else:
return self.process_index == 0
| 25 | trainer_args.py | Python | paddlenlp/trainer/trainer_args.py | 44a290e94d1becd1f09fddc3d873f9e19c9d6919 | PaddleNLP | 2 |
|
300,405 | 37 | 19 | 21 | 169 | 8 | 0 | 50 | 309 | test_all_optional_config | Remove unused calls fixture from template tests (#71735) | https://github.com/home-assistant/core.git | async def test_all_optional_config(hass):
with assert_setup_component(1, "template"):
assert await setup.async_setup_component(
hass,
"template",
{
"template": {
"number": {
"state": "{{ 4 }}",
"set_value": {"service": "script.set_value"},
"min": "{{ 3 }}",
"max": "{{ 5 }}",
"step": "{{ 1 }}",
}
}
},
)
await hass.async_block_till_done()
await hass.async_start()
await hass.async_block_till_done()
_verify(hass, 4, 1, 3, 5)
| 90 | test_number.py | Python | tests/components/template/test_number.py | b70e97e949ca73fe57849625c0b0c51f0b8796f7 | core | 1 |
|
167,393 | 21 | 9 | 79 | 88 | 10 | 0 | 21 | 75 | radviz | TYP: Missing return annotations in util/tseries/plotting (#47510)
* TYP: Missing return annotations in util/tseries/plotting
* the more tricky parts | https://github.com/pandas-dev/pandas.git | def radviz(frame, class_column, ax=None, color=None, colormap=None, **kwds) -> Axes:
plot_backend = _get_plot_backend("matplotlib")
return plot_backend.radviz(
frame=frame,
class_column=class_column,
ax=ax,
color=color,
colormap=colormap,
**kwds,
)
| 60 | _misc.py | Python | pandas/plotting/_misc.py | 4bb1fd50a63badd38b5d96d9c4323dae7bc36d8d | pandas | 1 |
|
266,663 | 19 | 12 | 4 | 63 | 10 | 0 | 19 | 40 | download_file | ansible-test - Fix consistency of managed venvs. (#77028) | https://github.com/ansible/ansible.git | def download_file(url, path): # type: (str, str) -> None
with open(to_bytes(path), 'wb') as saved_file:
download = urlopen(url)
shutil.copyfileobj(download, saved_file)
| 35 | requirements.py | Python | test/lib/ansible_test/_util/target/setup/requirements.py | 68fb3bf90efa3a722ba5ab7d66b1b22adc73198c | ansible | 1 |
|
46,474 | 4 | 11 | 2 | 44 | 3 | 0 | 4 | 18 | extract_bucket_name | Create Endpoint and Model Service, Batch Prediction and Hyperparameter Tuning Jobs operators for Vertex AI service (#22088) | https://github.com/apache/airflow.git | def extract_bucket_name(config):
return config["artifact_destination"]["output_uri_prefix"].rpartition("gs://")[-1]
| 23 | vertex_ai.py | Python | airflow/providers/google/cloud/links/vertex_ai.py | ca4b8d1744cd1de9b6af97dacb0e03de0f014006 | airflow | 1 |
|
12,472 | 6 | 10 | 4 | 48 | 9 | 0 | 6 | 22 | export_kubernetes | refactor: rename cli to jina_cli (#4890)
* chore: fix readme
* chore: fix readme
* chore: fix dockerignore
* fix: #4845
* style: fix overload and cli autocomplete
* fix: cicd export cli
Co-authored-by: Jina Dev Bot <[email protected]> | https://github.com/jina-ai/jina.git | def export_kubernetes(args):
Flow.load_config(args.flowpath).to_kubernetes_yaml(
output_base_path=args.outpath, k8s_namespace=args.k8s_namespace
)
| 29 | exporter.py | Python | jina/exporter.py | 16b16b07a66cd5a8fc7cca1d3f1c378a9c63d38c | jina | 1 |
|
86,267 | 50 | 14 | 18 | 272 | 17 | 0 | 87 | 257 | expand_frame | ref(processor): Use symbolic-sourcemapcache for JavaScript Sourcemap processing (#38551)
This PR attempts to replace the currently used `rust-sourcemap` crate
and it's symbolic python bindings, with `symbolic-sourcemapcache` crate.
It makes the whole processing pipeline easier to maintain, as it pushes
some work directly to Symbolic, as well as we get better function names
due to better scope resolution and in some cases better file URLs.
Other than that, we don't use `SourceView` anymore, as it seemed like an
unnecessary layer of abstraction for something that is used only for
`context_lines` extraction. We cache `utf-8` decoded sources directly
now, as this way we can encode them only once for `SmCache` instance
initialization, and use the source directly otherwise for context lines
extraction.
Some tests had to updated to express current behavior.
The notable thing is `useless_fn_names = ["<anonymous>",
"__webpack_require__", "__webpack_modules__"]`, which is mostly for
`production` mode of webpack, that by default trims all the function
names, and we decided to fallback to the minified names in those cases
instead (this was already the old behavior).
It should be possible to extract something better, but we'd need to
parse all `sourceContents` from sourcemap to do that, as the only thing
we can get better function name for the case mentioned above, is if we
look at the right-hand side of default node export, in form of
`module.exports = function foo () {}`. This should give us `foo`, yet
the only thing we can extract is `module.exports`, as minified form of
this expression in webpack production mode is `module.exports = function
() {}`. | https://github.com/getsentry/sentry.git | def expand_frame(self, frame, source_context=None, source=None):
if frame.get("lineno") is None:
return False
if source_context is None:
source = source or self.get_sourceview(frame["abs_path"])
if source is None:
logger.debug("No source found for %s", frame["abs_path"])
return False
(pre_context, context_line, post_context) = source_context or get_raw_source_context(
source=source, lineno=frame["lineno"]
)
if pre_context is not None and len(pre_context) > 0:
frame["pre_context"] = [trim_line(x) for x in pre_context]
if context_line is not None:
frame["context_line"] = trim_line(context_line, frame.get("colno") or 0)
if post_context is not None and len(post_context) > 0:
frame["post_context"] = [trim_line(x) for x in post_context]
return True
| 169 | processor.py | Python | src/sentry/lang/javascript/processor.py | ae9c0d8a33d509d9719a5a03e06c9797741877e9 | sentry | 14 |