complexity
int64 1
139
| fun_name
stringlengths 1
80
| code
stringlengths 101
62.2k
| commit_id
stringlengths 40
40
| ast_errors
stringlengths 0
3.11k
| ast_levels
int64 6
36
| file_name
stringlengths 5
79
| n_ast_nodes
int64 17
19.2k
| commit_message
stringlengths 3
15.3k
| d_id
int64 12
121k
| n_ast_errors
int64 0
9
| n_whitespaces
int64 4
10.8k
| token_counts
int64 5
3.06k
| vocab_size
int64 4
1.11k
| id
int64 20
338k
| n_words
int64 4
4.82k
| repo
stringlengths 3
22
| n_identifiers
int64 2
176
| path
stringlengths 7
134
| language
stringclasses 1
value | nloc
int64 1
413
| documentation
dict | url
stringlengths 31
59
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | test_kivy_log_mode_marker_on | def test_kivy_log_mode_marker_on():
from kivy.logger import previous_stderr
assert sys.stderr == previous_stderr, "Kivy.logging override stderr"
assert logging.root.parent is None, "Kivy.logging override root logger"
| 2d9755ad8a82ba0777299cbc1666bed25278db94 | 8 | test_logger.py | 50 | Support KivyLogMode environment variable for logging testing (#7971)
* Support KivyLogMode for logging testing
Also:
Remove unused imports.
Remove Python 2 only code
Run through Black to canonicalize formatting
* Undo formatting changes
Undo black. | 47,024 | 0 | 33 | 29 | 18 | 194,668 | 21 | kivy | 9 | kivy/tests/test_logger.py | Python | 4 | {
"docstring": "\n This is a test of the pytest marker \"logmodetest\".\n This should only be invoked if the environment variable is properly set\n (before pytest is run).\n\n Also, tests that kivy.logger paid attention to the environment variable\n ",
"language": "en",
"n_whitespaces": 51,
"n_words": 35,
"vocab_size": 27
} | https://github.com/kivy/kivy.git |
|
3 | _get_checkfiles_linux | def _get_checkfiles_linux(self):
chk = os.popen("ldconfig -p | grep -P \"libcudnn.so.\\d+\" | head -n 1").read()
chk = chk.strip().replace("libcudnn.so.", "")
if not chk:
return []
cudnn_vers = chk[0]
header_files = [f"cudnn_v{cudnn_vers}.h"] + self._cudnn_header_files
cudnn_path = os.path.realpath(chk[chk.find("=>") + 3:chk.find("libcudnn") - 1])
cudnn_path = cudnn_path.replace("lib", "include")
cudnn_checkfiles = [os.path.join(cudnn_path, header) for header in header_files]
return cudnn_checkfiles
| c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | 14 | setup.py | 202 | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | 19,893 | 0 | 133 | 114 | 40 | 100,410 | 52 | faceswap | 18 | setup.py | Python | 11 | {
"docstring": " Return the the files to check for cuDNN locations for Linux by querying\n the dynamic link loader.\n\n Returns\n -------\n list\n List of header file locations to scan for cuDNN versions\n ",
"language": "en",
"n_whitespaces": 77,
"n_words": 30,
"vocab_size": 23
} | https://github.com/deepfakes/faceswap.git |
|
1 | set_default_options | def set_default_options(self) -> None:
default = self.cli_opts.get_option_values()
logger.debug(default)
self._gui_objects.default_options = default
self.project.set_default_options()
| dc18c74eea0c7837a820d27628cb12b0824fa30e | 9 | utils.py | 64 | Bugfix: Preview for extract in batch mode | 20,926 | 0 | 47 | 37 | 10 | 101,515 | 12 | faceswap | 10 | lib/gui/utils.py | Python | 12 | {
"docstring": " Set the default options for :mod:`lib.gui.projects`\n\n The Default GUI options are stored on Faceswap startup.\n\n Exposed as the :attr:`_default_opts` for a project cannot be set until after the main\n Command Tabs have been loaded.\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 34,
"vocab_size": 30
} | https://github.com/deepfakes/faceswap.git |
|
5 | do_lint | def do_lint() -> Set[str]:
failures = set()
with monkeypatch_pydantic():
logger.debug("Importing synapse")
try:
# TODO: make "synapse" an argument so we can target this script at
# a subpackage
module = importlib.import_module("synapse")
except ModelCheckerException as e:
logger.warning("Bad annotation found when importing synapse")
failures.add(format_model_checker_exception(e))
return failures
try:
logger.debug("Fetching subpackages")
module_infos = list(
pkgutil.walk_packages(module.__path__, f"{module.__name__}.")
)
except ModelCheckerException as e:
logger.warning("Bad annotation found when looking for modules to import")
failures.add(format_model_checker_exception(e))
return failures
for module_info in module_infos:
logger.debug("Importing %s", module_info.name)
try:
importlib.import_module(module_info.name)
except ModelCheckerException as e:
logger.warning(
f"Bad annotation found when importing {module_info.name}"
)
failures.add(format_model_checker_exception(e))
return failures
| ba8938b090c7e1908cfa4feac75f08f3bc1183e8 | 17 | check_pydantic_models.py | 285 | Reject non-strict types in Pydantic models (#13502) | 72,885 | 0 | 406 | 152 | 61 | 249,389 | 93 | synapse | 24 | scripts-dev/check_pydantic_models.py | Python | 30 | {
"docstring": "Try to import all of Synapse and see if we spot any Pydantic type coercions.",
"language": "en",
"n_whitespaces": 14,
"n_words": 15,
"vocab_size": 15
} | https://github.com/matrix-org/synapse.git |
|
17 | kernS | def kernS(s):
hit = False
quoted = '"' in s or "'" in s
if '(' in s and not quoted:
if s.count('(') != s.count(")"):
raise SympifyError('unmatched left parenthesis')
# strip all space from s
s = ''.join(s.split())
olds = s
# now use space to represent a symbol that
# will
# step 1. turn potential 2-arg Muls into 3-arg versions
# 1a. *( -> * *(
s = s.replace('*(', '* *(')
# 1b. close up exponentials
s = s.replace('** *', '**')
# 2. handle the implied multiplication of a negated
# parenthesized expression in two steps
# 2a: -(...) --> -( *(...)
target = '-( *('
s = s.replace('-(', target)
# 2b: double the matching closing parenthesis
# -( *(...) --> -( *(...))
i = nest = 0
assert target.endswith('(') # assumption below
while True:
j = s.find(target, i)
if j == -1:
break
j += len(target) - 1
for j in range(j, len(s)):
if s[j] == "(":
nest += 1
elif s[j] == ")":
nest -= 1
if nest == 0:
break
s = s[:j] + ")" + s[j:]
i = j + 2 # the first char after 2nd )
if ' ' in s:
# get a unique kern
kern = '_'
while kern in s:
kern += choice(string.ascii_letters + string.digits)
s = s.replace(' ', kern)
hit = kern in s
else:
hit = False
for i in range(2):
try:
expr = sympify(s)
break
except TypeError: # the kern might cause unknown errors...
if hit:
s = olds # maybe it didn't like the kern; use un-kerned s
hit = False
continue
expr = sympify(s) # let original error raise
if not hit:
return expr
from .symbol import Symbol
rep = {Symbol(kern): 1} | 65be461082dda54c8748922f9c29a19af1279fe1 | 16 | sympify.py | 535 | Remove abbreviations in documentation | 48,459 | 0 | 868 | 307 | 166 | 197,316 | 288 | sympy | 29 | sympy/core/sympify.py | Python | 53 | {
"docstring": "Use a hack to try keep autosimplification from distributing a\n a number into an Add; this modification does not\n prevent the 2-arg Mul from becoming an Add, however.\n\n Examples\n ========\n\n >>> from sympy.core.sympify import kernS\n >>> from sympy.abc import x, y\n\n The 2-arg Mul distributes a number (or minus sign) across the terms\n of an expression, but kernS will prevent that:\n\n >>> 2*(x + y), -(x + 1)\n (2*x + 2*y, -x - 1)\n >>> kernS('2*(x + y)')\n 2*(x + y)\n >>> kernS('-(x + 1)')\n -(x + 1)\n\n If use of the hack fails, the un-hacked string will be passed to sympify...\n and you get what you get.\n\n XXX This hack should not be necessary once issue 4596 has been resolved.\n ",
"language": "en",
"n_whitespaces": 175,
"n_words": 121,
"vocab_size": 82
} | https://github.com/sympy/sympy.git |
|
1 | test_install_fail_dnf_try_fileset | def test_install_fail_dnf_try_fileset():
bos_net_fake_error =
dnf_installp_call = MagicMock(
side_effect=[
{"retcode": 1, "stdout": "", "stderr": bos_net_fake_error},
{"retcode": 0, "stdout": ""},
]
)
fileset_pkg_name = "/cecc/repos/aix72/TL3/BASE/installp/ppc/bos.net"
list_pkgs_mock = MagicMock(
side_effect=[
{"bos.net.tcp.tcpdump": "7.1.6.3"},
{"bos.net.tcp.tcpdump": "7.2.4.1"},
]
)
with patch("pathlib.Path.is_file", return_value=True):
with patch.dict(
aixpkg.__salt__,
{
"cmd.run_all": dnf_installp_call,
"config.get": MagicMock(return_value=False),
},
), patch.object(aixpkg, "list_pkgs", list_pkgs_mock):
result = aixpkg.install(fileset_pkg_name)
assert dnf_installp_call.call_count == 2
libpath_env = {"LIBPATH": "/opt/freeware/lib:/usr/lib"}
dnf_installp_call.assert_any_call(
f"/opt/freeware/bin/dnf install --allowerasing --assumeyes {fileset_pkg_name}",
env=libpath_env,
ignore_retcode=True,
python_shell=False,
)
dnf_installp_call.assert_called_with(
"/usr/sbin/installp -acYXg -d /cecc/repos/aix72/TL3/BASE/installp/ppc bos.net",
python_shell=False,
)
expected = {"bos.net.tcp.tcpdump": {"old": "7.1.6.3", "new": "7.2.4.1"}}
assert result == expected
| f1c37893caf90738288e789c3233ab934630254f | 16 | test_aixpkg.py | 331 | Working tests for install | 53,810 | 0 | 453 | 184 | 67 | 215,093 | 89 | salt | 23 | tests/pytests/unit/modules/test_aixpkg.py | Python | 43 | {
"docstring": "\n Test install of non-recognized extension, first dnf then fileset\n AIX generic repository 12 kB/s | 2.6 kB 00:00\nAIX noarch repository 12 kB/s | 2.5 kB 00:00 \nAIX 7.2 specific repository 12 kB/s | 2.5 kB 00:00 \nNo match for argument: bos.net\nError: Unable to find a match: bos.net\n",
"language": "en",
"n_whitespaces": 709,
"n_words": 49,
"vocab_size": 33
} | https://github.com/saltstack/salt.git |
|
10 | plot_resources | def plot_resources(results, palette="Viridis", **kwargs):
bp = import_required("bokeh.plotting", _BOKEH_MISSING_MSG)
from bokeh import palettes
from bokeh.models import LinearAxis, Range1d
defaults = dict(
title="Profile Results",
tools="save,reset,xwheel_zoom,xpan",
toolbar_location="above",
width=800,
height=300,
)
# Support plot_width and plot_height for backwards compatibility
if "plot_width" in kwargs:
kwargs["width"] = kwargs.pop("plot_width")
if BOKEH_VERSION().major >= 3:
warnings.warn("Use width instead of plot_width with Bokeh >= 3")
if "plot_height" in kwargs:
kwargs["height"] = kwargs.pop("plot_height")
if BOKEH_VERSION().major >= 3:
warnings.warn("Use height instead of plot_height with Bokeh >= 3")
# Drop `label_size` to match `plot_cache` and `plot_tasks` kwargs
if "label_size" in kwargs:
kwargs.pop("label_size")
defaults.update(**kwargs)
if results:
t, mem, cpu = zip(*results)
left, right = min(t), max(t)
t = [i - left for i in t]
p = bp.figure(
y_range=fix_bounds(0, max(cpu), 100),
x_range=fix_bounds(0, right - left, 1),
**defaults,
)
else:
t = mem = cpu = []
p = bp.figure(y_range=(0, 100), x_range=(0, 1), **defaults)
colors = palettes.all_palettes[palette][6]
p.line(
t,
cpu,
color=colors[0],
line_width=4,
legend_label="% CPU",
)
p.yaxis.axis_label = "% CPU"
p.extra_y_ranges = {
"memory": Range1d(
*fix_bounds(min(mem) if mem else 0, max(mem) if mem else 100, 100)
)
}
p.line(
t,
mem,
color=colors[2],
y_range_name="memory",
line_width=4,
legend_label="Memory",
)
p.add_layout(LinearAxis(y_range_name="memory", axis_label="Memory (MB)"), "right")
p.xaxis.axis_label = "Time (s)"
return p
| 6193b9de78798fc9b2d934e3317debc9bb5d8af5 | 16 | profile_visualize.py | 615 | Handle plot_width / plot_height deprecations (#8544)
Bokeh 3.0 will finally deprecates `plot_width` and `plot_height` and expose only `width` and `height` (consistent with every other layout-able). | 36,429 | 0 | 541 | 378 | 124 | 155,568 | 190 | dask | 51 | dask/diagnostics/profile_visualize.py | Python | 59 | {
"docstring": "Plot resource usage in a bokeh plot.\n\n Parameters\n ----------\n results : sequence\n Output of ResourceProfiler.results\n palette : string, optional\n Name of the bokeh palette to use, must be a member of\n bokeh.palettes.all_palettes.\n **kwargs\n Other keyword arguments, passed to bokeh.figure. These will override\n all defaults set by plot_resources.\n\n Returns\n -------\n The completed bokeh plot object.\n ",
"language": "en",
"n_whitespaces": 116,
"n_words": 54,
"vocab_size": 46
} | https://github.com/dask/dask.git |
|
9 | get_mode_of_payment_details | def get_mode_of_payment_details(filters):
mode_of_payment_details = {}
invoice_list = get_invoices(filters)
invoice_list_names = ",".join('"' + invoice['name'] + '"' for invoice in invoice_list)
if invoice_list:
inv_mop_detail = frappe.db.sql(.format(invoice_list_names=invoice_list_names), as_dict=1)
inv_change_amount = frappe.db.sql(.format(invoice_list_names=invoice_list_names), as_dict=1)
for d in inv_change_amount:
for det in inv_mop_detail:
if det["owner"] == d["owner"] and det["posting_date"] == d["posting_date"] and det["mode_of_payment"] == d["mode_of_payment"]:
paid_amount = det["paid_amount"] - d["change_amount"]
det["paid_amount"] = paid_amount
for d in inv_mop_detail:
mode_of_payment_details.setdefault(d["owner"]+cstr(d["posting_date"]), []).append((d.mode_of_payment,d.paid_amount))
return mode_of_payment_details
| 3eb5440aa968960528379930cc3c2ba4a4ee544a | 18 | sales_payment_summary.py | 299 | fix: linters erros on report sales payments summary (#30345)
* fix: wrong values for report and get change amout based on payment TYPE.
* charcase for select field.
* fix: linter check erros
* fix: linters errors
Co-authored-by: Ankush Menat <[email protected]> | 13,689 | 0 | 50 | 177 | 41 | 64,660 | 65 | erpnext | 22 | erpnext/accounts/report/sales_payment_summary/sales_payment_summary.py | Python | 55 | {
"docstring": "\n\t\t\tselect t.owner,\n\t\t\t t.posting_date,\n\t\t\t\t t.mode_of_payment,\n\t\t\t\t sum(t.paid_amount) as paid_amount\n\t\t\tfrom (\n\t\t\t\tselect a.owner, a.posting_date,\n\t\t\t\tifnull(b.mode_of_payment, '') as mode_of_payment, sum(b.base_amount) as paid_amount\n\t\t\t\tfrom `tabSales Invoice` a, `tabSales Invoice Payment` b\n\t\t\t\twhere a.name = b.parent\n\t\t\t\tand a.docstatus = 1\n\t\t\t\tand a.name in ({invoice_list_names})\n\t\t\t\tgroup by a.owner, a.posting_date, mode_of_payment\n\t\t\t\tunion\n\t\t\t\tselect a.owner,a.posting_date,\n\t\t\t\tifnull(b.mode_of_payment, '') as mode_of_payment, sum(c.allocated_amount) as paid_amount\n\t\t\t\tfrom `tabSales Invoice` a, `tabPayment Entry` b,`tabPayment Entry Reference` c\n\t\t\t\twhere a.name = c.reference_name\n\t\t\t\tand b.name = c.parent\n\t\t\t\tand b.docstatus = 1\n\t\t\t\tand a.name in ({invoice_list_names})\n\t\t\t\tgroup by a.owner, a.posting_date, mode_of_payment\n\t\t\t\tunion\n\t\t\t\tselect a.owner, a.posting_date,\n\t\t\t\tifnull(a.voucher_type,'') as mode_of_payment, sum(b.credit)\n\t\t\t\tfrom `tabJournal Entry` a, `tabJournal Entry Account` b\n\t\t\t\twhere a.name = b.parent\n\t\t\t\tand a.docstatus = 1\n\t\t\t\tand b.reference_type = \"Sales Invoice\"\n\t\t\t\tand b.reference_name in ({invoice_list_names})\n\t\t\t\tgroup by a.owner, a.posting_date, mode_of_payment\n\t\t\t) t\n\t\t\tgroup by t.owner, t.posting_date, t.mode_of_payment\n\t\t\tselect a.owner, a.posting_date,\n\t\t\tifnull(b.mode_of_payment, '') as mode_of_payment, sum(a.base_change_amount) as change_amount\n\t\t\tfrom `tabSales Invoice` a, `tabSales Invoice Payment` b\n\t\t\twhere a.name = b.parent\n\t\t\tand a.name in ({invoice_list_names})\n\t\t\tand b.type = 'Cash'\n\t\t\tand a.base_change_amount > 0\n\t\t\tgroup by a.owner, a.posting_date, mode_of_payment",
"language": "en",
"n_whitespaces": 142,
"n_words": 169,
"vocab_size": 64
} | https://github.com/frappe/erpnext.git |
|
3 | adv_search_text | def adv_search_text(q, include_inputs, exclude_inputs, data_value):
for inp in include_inputs:
q = q.filter(db.Books.data.any(data_value == inp))
for excl in exclude_inputs:
q = q.filter(not_(db.Books.data.any(data_value == excl)))
return q
| 4545f4a20d9ff90b99bbd4e3e34b6de4441d6367 | ''' | 17 | web.py | 206 | Better epub cover parsing with multiple cover-image items
Code cosmetics
renamed variables
refactored xml page generation
refactored prepare author | 40,820 | 1 | 47 | 64 | 19 | 172,806 | 25 | calibre-web | 19 | cps/web.py | Python | 6 | {
"docstring": "def adv_search_extension(q, include_extension_inputs, exclude_extension_inputs):\n for extension in include_extension_inputs:\n q = q.filter(db.Books.data.any(db.Data.format == extension))\n for extension in exclude_extension_inputs:\n q = q.filter(not_(db.Books.data.any(db.Data.format == extension)))\n return q\n\n",
"language": "en",
"n_whitespaces": 46,
"n_words": 24,
"vocab_size": 17
} | https://github.com/janeczku/calibre-web.git |
1 | test_api_create_invalid_storage_path | def test_api_create_invalid_storage_path(self):
response = self.client.post(
self.ENDPOINT,
json.dumps(
{
"name": "Another storage path",
"path": "Somewhere/{correspdent}",
},
),
content_type="application/json",
)
self.assertEqual(response.status_code, 400)
self.assertEqual(StoragePath.objects.count(), 1)
| d7f7d839f8a6b7d0378dda1e0744739748d71b9c | 13 | test_api.py | 108 | Adds invalid storage path format test | 117,006 | 0 | 169 | 64 | 22 | 319,842 | 22 | paperless-ngx | 14 | src/documents/tests/test_api.py | Python | 13 | {
"docstring": "\n GIVEN:\n - API request to create a storage paths\n - Storage path format is incorrect\n WHEN:\n - API is called\n THEN:\n - Correct HTTP 400 response\n - No storage path is created\n ",
"language": "en",
"n_whitespaces": 116,
"n_words": 32,
"vocab_size": 23
} | https://github.com/paperless-ngx/paperless-ngx.git |
|
14 | resolve_template_files | def resolve_template_files(self) -> None:
if self.template_ext:
for field in self.template_fields:
content = getattr(self, field, None)
if content is None:
continue
elif isinstance(content, str) and any(content.endswith(ext) for ext in self.template_ext):
env = self.get_template_env()
try:
setattr(self, field, env.loader.get_source(env, content)[0]) # type: ignore
except Exception:
self.log.exception("Failed to resolve template field %r", field)
elif isinstance(content, list):
env = self.get_template_env()
for i, item in enumerate(content):
if isinstance(item, str) and any(item.endswith(ext) for ext in self.template_ext):
try:
content[i] = env.loader.get_source(env, item)[0] # type: ignore
except Exception as e:
self.log.exception(e)
self.prepare_template()
| ff3bbc3db24f9f3f4f88033d48859fb08fc3237b | 23 | base.py | 298 | Implement enough interface for MappedOperator to be baggable (#20945) | 8,182 | 0 | 476 | 189 | 54 | 44,163 | 83 | airflow | 26 | airflow/models/base.py | Python | 22 | {
"docstring": "Getting the content of files for template_field / template_ext.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/apache/airflow.git |
|
1 | autocast_box_type | def autocast_box_type(dst_box_type='hbox') -> Callable:
_, box_type_cls = get_box_type(dst_box_type)
| af063a6f25ddae4de90646f86b2db824f3d00138 | 8 | box_type.py | 34 | [Refactor] Refactor pipelines with boxlist. (#8562)
* Refactor pipelines and data_preprocesser by boxlist
* Refactor browse_dataset.py
* Update
* Update
* Update
* Update
* update
* Update
* Change with_box_wrapped to with_boxlist
* Fix comments
* Fix commits
* Update UT | 70,810 | 0 | 14 | 22 | 8 | 245,504 | 8 | mmdetection | 6 | mmdet/structures/bbox/box_type.py | Python | 18 | {
"docstring": "A decorator which automatically casts results['gt_bboxes'] to the\n destination box type.\n\n It commenly used in mmdet.datasets.transforms to make the transforms up-\n compatible with the np.ndarray type of results['gt_bboxes'].\n\n The speed of processing of np.ndarray and BaseBoxes data are the same:\n\n - np.ndarray: 0.0509 img/s\n - BaseBoxes: 0.0551 img/s\n\n Args:\n dst_box_type (str): Destination box type.\n ",
"language": "en",
"n_whitespaces": 85,
"n_words": 54,
"vocab_size": 43
} | https://github.com/open-mmlab/mmdetection.git |
|
2 | __next__ | def __next__(self):
if self._leftover:
output = self._leftover
self._leftover = b""
else:
output = next(self._producer)
self._unget_history = []
self.position += len(output)
return output
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 12 | multipartparser.py | 82 | Refs #33476 -- Reformatted code with Black. | 51,343 | 0 | 101 | 48 | 16 | 206,055 | 22 | django | 9 | django/http/multipartparser.py | Python | 9 | {
"docstring": "\n Used when the exact number of bytes to read is unimportant.\n\n Return whatever chunk is conveniently returned from the iterator.\n Useful to avoid unnecessary bookkeeping if performance is an issue.\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 30,
"vocab_size": 26
} | https://github.com/django/django.git |
|
7 | get_power_utilization | def get_power_utilization(self):
powerfeeds = PowerFeed.objects.filter(rack=self)
available_power_total = sum(pf.available_power for pf in powerfeeds)
print(f'available_power_total: {available_power_total}')
if not available_power_total:
return 0
powerports = []
for powerfeed in powerfeeds:
powerports.extend([
peer for peer in powerfeed.link_peers if isinstance(peer, PowerPort)
])
allocated_draw = 0
for powerport in powerports:
allocated_draw += powerport.get_power_draw()['allocated']
print(f'allocated_draw: {allocated_draw}')
return int(allocated_draw / available_power_total * 100)
| fcd1daaf798d62023f999c3e09e035f7b3f47c8f | 13 | racks.py | 175 | Update power utilization calculations for new cabling model | 78,027 | 0 | 190 | 103 | 39 | 265,205 | 54 | netbox | 23 | netbox/dcim/models/racks.py | Python | 16 | {
"docstring": "\n Determine the utilization rate of power in the rack and return it as a percentage.\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 15,
"vocab_size": 14
} | https://github.com/netbox-community/netbox.git |
|
11 | k_edge_augmentation | def k_edge_augmentation(G, k, avail=None, weight=None, partial=False):
try:
if k <= 0:
raise ValueError(f"k must be a positive integer, not {k}")
elif G.number_of_nodes() < k + 1:
msg = f"impossible to {k} connect in graph with less than {k + 1} nodes"
raise nx.NetworkXUnfeasible(msg)
elif avail is not None and len(avail) == 0:
if not nx.is_k_edge_connected(G, k):
raise nx.NetworkXUnfeasible("no available edges")
aug_edges = []
elif k == 1:
aug_edges = one_edge_augmentation(
G, avail=avail, weight=weight, partial=partial
)
elif k == 2:
aug_edges = bridge_augmentation(G, avail=avail, weight=weight)
else:
# raise NotImplementedError(f'not implemented for k>2. k={k}')
aug_edges = greedy_k_edge_augmentation(
G, k=k, avail=avail, weight=weight, seed=0
)
# Do eager evaulation so we can catch any exceptions
# Before executing partial code.
yield from list(aug_edges)
except nx.NetworkXUnfeasible:
if partial:
# Return all available edges
if avail is None:
aug_edges = complement_edges(G)
else:
# If we can't k-edge-connect the entire graph, try to
# k-edge-connect as much as possible
aug_edges = partial_k_edge_augmentation(
G, k=k, avail=avail, weight=weight
)
yield from aug_edges
else:
raise
| 26b7de005ac562786f72b24a73af5a59bbab6953 | 17 | edge_augmentation.py | 342 | doc: fix typos in docstring and comment (#5647) | 42,026 | 0 | 566 | 207 | 108 | 176,658 | 165 | networkx | 21 | networkx/algorithms/connectivity/edge_augmentation.py | Python | 33 | {
"docstring": "Finds set of edges to k-edge-connect G.\n\n Adding edges from the augmentation to G make it impossible to disconnect G\n unless k or more edges are removed. This function uses the most efficient\n function available (depending on the value of k and if the problem is\n weighted or unweighted) to search for a minimum weight subset of available\n edges that k-edge-connects G. In general, finding a k-edge-augmentation is\n NP-hard, so solutions are not guaranteed to be minimal. Furthermore, a\n k-edge-augmentation may not exist.\n\n Parameters\n ----------\n G : NetworkX graph\n An undirected graph.\n\n k : integer\n Desired edge connectivity\n\n avail : dict or a set of 2 or 3 tuples\n The available edges that can be used in the augmentation.\n\n If unspecified, then all edges in the complement of G are available.\n Otherwise, each item is an available edge (with an optional weight).\n\n In the unweighted case, each item is an edge ``(u, v)``.\n\n In the weighted case, each item is a 3-tuple ``(u, v, d)`` or a dict\n with items ``(u, v): d``. The third item, ``d``, can be a dictionary\n or a real number. If ``d`` is a dictionary ``d[weight]``\n correspondings to the weight.\n\n weight : string\n key to use to find weights if ``avail`` is a set of 3-tuples where the\n third item in each tuple is a dictionary.\n\n partial : boolean\n If partial is True and no feasible k-edge-augmentation exists, then all\n a partial k-edge-augmentation is generated. Adding the edges in a\n partial augmentation to G, minimizes the number of k-edge-connected\n components and maximizes the edge connectivity between those\n components. For details, see :func:`partial_k_edge_augmentation`.\n\n Yields\n ------\n edge : tuple\n Edges that, once added to G, would cause G to become k-edge-connected.\n If partial is False, an error is raised if this is not possible.\n Otherwise, generated edges form a partial augmentation, which\n k-edge-connects any part of G where it is possible, and maximally\n connects the remaining parts.\n\n Raises\n ------\n NetworkXUnfeasible\n If partial is False and no k-edge-augmentation exists.\n\n NetworkXNotImplemented\n If the input graph is directed or a multigraph.\n\n ValueError:\n If k is less than 1\n\n Notes\n -----\n When k=1 this returns an optimal solution.\n\n When k=2 and ``avail`` is None, this returns an optimal solution.\n Otherwise when k=2, this returns a 2-approximation of the optimal solution.\n\n For k>3, this problem is NP-hard and this uses a randomized algorithm that\n produces a feasible solution, but provides no guarantees on the\n solution weight.\n\n Examples\n --------\n >>> # Unweighted cases\n >>> G = nx.path_graph((1, 2, 3, 4))\n >>> G.add_node(5)\n >>> sorted(nx.k_edge_augmentation(G, k=1))\n [(1, 5)]\n >>> sorted(nx.k_edge_augmentation(G, k=2))\n [(1, 5), (5, 4)]\n >>> sorted(nx.k_edge_augmentation(G, k=3))\n [(1, 4), (1, 5), (2, 5), (3, 5), (4, 5)]\n >>> complement = list(nx.k_edge_augmentation(G, k=5, partial=True))\n >>> G.add_edges_from(complement)\n >>> nx.edge_connectivity(G)\n 4\n\n >>> # Weighted cases\n >>> G = nx.path_graph((1, 2, 3, 4))\n >>> G.add_node(5)\n >>> # avail can be a tuple with a dict\n >>> avail = [(1, 5, {\"weight\": 11}), (2, 5, {\"weight\": 10})]\n >>> sorted(nx.k_edge_augmentation(G, k=1, avail=avail, weight=\"weight\"))\n [(2, 5)]\n >>> # or avail can be a 3-tuple with a real number\n >>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 51)]\n >>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail))\n [(1, 5), (2, 5), (4, 5)]\n >>> # or avail can be a dict\n >>> avail = {(1, 5): 11, (2, 5): 10, (4, 3): 1, (4, 5): 51}\n >>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail))\n [(1, 5), (2, 5), (4, 5)]\n >>> # If augmentation is infeasible, then a partial solution can be found\n >>> avail = {(1, 5): 11}\n >>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail, partial=True))\n [(1, 5)]\n ",
"language": "en",
"n_whitespaces": 971,
"n_words": 592,
"vocab_size": 262
} | https://github.com/networkx/networkx.git |
|
16 | block_parser | def block_parser(part, rgxin, rgxout, fmtin, fmtout):
block = []
lines = part.split('\n')
N = len(lines)
i = 0
decorator = None
while 1:
if i==N:
# nothing left to parse -- the last line
break
line = lines[i]
i += 1
line_stripped = line.strip()
if line_stripped.startswith('#'):
block.append((COMMENT, line))
continue
if any(
line_stripped.startswith('@' + pseudo_decorator) for pseudo_decorator in PSEUDO_DECORATORS
):
if decorator:
raise RuntimeError("Applying multiple pseudo-decorators on one line is not supported")
else:
decorator = line_stripped
continue
# does this look like an input line?
matchin = rgxin.match(line)
if matchin:
lineno, inputline = int(matchin.group(1)), matchin.group(2)
# the ....: continuation string
continuation = ' %s:'%''.join(['.']*(len(str(lineno))+2))
Nc = len(continuation)
# input lines can continue on for more than one line, if
# we have a '\' line continuation char or a function call
# echo line 'print'. The input line can only be
# terminated by the end of the block or an output line, so
# we parse out the rest of the input line if it is
# multiline as well as any echo text
rest = []
while i<N:
# look ahead; if the next line is blank, or a comment, or
# an output line, we're done
nextline = lines[i]
matchout = rgxout.match(nextline)
#print "nextline=%s, continuation=%s, starts=%s"%(nextline, continuation, nextline.startswith(continuation))
if matchout or nextline.startswith('#'):
break
elif nextline.startswith(continuation):
# The default ipython_rgx* treat the space following the colon as optional.
# However, If the space is there we must consume it or code
# employing the cython_magic extension will fail to execute.
#
# This works with the default ipython_rgx* patterns,
# If you modify them, YMMV.
nextline = nextline[Nc:]
if nextline and nextline[0] == ' ':
nextline = nextline[1:]
inputline += '\n' + nextline
else:
rest.append(nextline)
i+= 1
block.append((INPUT, (decorator, inputline, '\n'.join(rest))))
continue
# if it looks like an output line grab all the text to the end
# of the block
matchout = rgxout.match(line)
if matchout:
lineno, output = int(matchout.group(1)), matchout.group(2)
if i<N-1:
output = '\n'.join([output] + lines[i:])
block.append((OUTPUT, output))
break
return block
| a9b523c7047fe12c49373972c6b092ed5fc29e99 | 20 | ipython_directive.py | 598 | match only pseudo-decorators | 52,443 | 0 | 1,178 | 345 | 184 | 208,657 | 334 | ipython | 39 | IPython/sphinxext/ipython_directive.py | Python | 52 | {
"docstring": "\n part is a string of ipython text, comprised of at most one\n input, one output, comments, and blank lines. The block parser\n parses the text into a list of::\n\n blocks = [ (TOKEN0, data0), (TOKEN1, data1), ...]\n\n where TOKEN is one of [COMMENT | INPUT | OUTPUT ] and\n data is, depending on the type of token::\n\n COMMENT : the comment string\n\n INPUT: the (DECORATOR, INPUT_LINE, REST) where\n DECORATOR: the input decorator (or None)\n INPUT_LINE: the input as string (possibly multi-line)\n REST : any stdout generated by the input line (not OUTPUT)\n\n OUTPUT: the output string, possibly multi-line\n\n ",
"language": "en",
"n_whitespaces": 162,
"n_words": 98,
"vocab_size": 76
} | https://github.com/ipython/ipython.git |
|
6 | update_direct_sparsity | def update_direct_sparsity(self, node):
# this name is consistent with the name returned by named_modules()
module_name = node.name
_logger.info('Update mask for %s', module_name)
unique_name = node.unique_name
dummy_input, input_debugname = self._prepare_dummy_input(node)
# get the input mask from self.masks
# Note: the input mask of the successor nodes are
# already created by the predecessor node
in_masks = [self.masks[debugname] for debugname in input_debugname]
in_constants = [self.constant[debugname]
for debugname in input_debugname]
if node.type == 'func':
# we cannot get the runable function directly from the jit traced
# graph, so we translate it back to python function, Note: the function
# is appliable to both cpu/gpu devices, the output tensors will be on the
# same device of the input tensors
func = jit_to_python_function(node, self)
if func is None:
# no need to infer the sparsity for this node
self.auto_inferences[unique_name] = None
return
# function doesn't have weights
_auto_infer = AutoMaskInference(
func, dummy_input, self, in_masks, in_constants=in_constants)
else:
weight_mask = None
if module_name in self.masks:
weight_mask = self.masks[module_name]
_, module = get_module_by_name(self.bound_model, module_name)
_auto_infer = AutoMaskInference(
module, dummy_input, self, in_masks, weight_mask, in_constants=in_constants,
state_dict=copy.deepcopy(module.state_dict()))
self.auto_inferences[unique_name] = _auto_infer
_auto_infer.name = node.unique_name
_auto_infer.update_direct_sparsity()
# also save the input debug names into the auto_infer
_auto_infer.input_debugname = input_debugname
# update the mask tensor and the internal output of the submodules
# after manually unpack the tuple/list of tensors, the number of the outputs
# of each node should always be one(Except for the TupleUnpack node at the end
# of the whole model)
assert len(
node.outputs) == 1, 'The number of the output should be one after the Tuple unpacked manually'
out_debugname = node.outputs[0]
# update the output mask into self.masks
self.masks[out_debugname] = _auto_infer.output_mask
self.constant[out_debugname] = _auto_infer.out_constant
# update the output result into self.internal_result, so that
# the successor nodes can take these output tensors as inputs.
self.internal_result[out_debugname] = _auto_infer.output
# update the parameter mask of the node
self.masks[module_name] = _auto_infer.weight_mask
| 97d067e614243f06ed1f8e2d389512977fff8828 | 16 | compressor.py | 411 | Speedup enhancement (#4925) | 24,873 | 0 | 806 | 256 | 164 | 113,264 | 311 | nni | 37 | nni/compression/pytorch/speedup/compressor.py | Python | 34 | {
"docstring": "\n Update the direct sparsity for the target node. Here the direct sparsity\n means that the sparsity in the output tensor that caused by the sparsity\n in the input tensors/weight tensors.\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 30,
"vocab_size": 18
} | https://github.com/microsoft/nni.git |
|
4 | read_graph6 | def read_graph6(path):
glist = []
for line in path:
line = line.strip()
if not len(line):
continue
glist.append(from_graph6_bytes(line))
if len(glist) == 1:
return glist[0]
else:
return glist
@not_implemented_for("directed")
@not_implemented_for("multigraph")
@open_file(1, mode="wb") | 9b63ca1a0d46a1f50bcc59eda52be02721a134db | @not_implemented_for("directed")
@not_implemented_for("multigraph")
@open_file(1, mode="wb") | 11 | graph6.py | 133 | Remove old Appveyor cruft (#5924)
* Remove old Appveyor cruft
* Fix Windows issue | 42,277 | 1 | 88 | 56 | 25 | 177,122 | 30 | networkx | 11 | networkx/readwrite/graph6.py | Python | 11 | {
"docstring": "Read simple undirected graphs in graph6 format from path.\n\n Parameters\n ----------\n path : file or string\n File or filename to write.\n\n Returns\n -------\n G : Graph or list of Graphs\n If the file contains multiple lines then a list of graphs is returned\n\n Raises\n ------\n NetworkXError\n If the string is unable to be parsed in graph6 format\n\n Examples\n --------\n You can read a graph6 file by giving the path to the file::\n\n >>> import tempfile\n >>> with tempfile.NamedTemporaryFile(delete=False) as f:\n ... _ = f.write(b\">>graph6<<A_\\\\n\")\n ... _ = f.seek(0)\n ... G = nx.read_graph6(f.name)\n >>> list(G.edges())\n [(0, 1)]\n\n You can also read a graph6 file by giving an open file-like object::\n\n >>> import tempfile\n >>> with tempfile.NamedTemporaryFile() as f:\n ... _ = f.write(b\">>graph6<<A_\\\\n\")\n ... _ = f.seek(0)\n ... G = nx.read_graph6(f)\n >>> list(G.edges())\n [(0, 1)]\n\n See Also\n --------\n from_graph6_bytes, write_graph6\n\n References\n ----------\n .. [1] Graph6 specification\n <http://users.cecs.anu.edu.au/~bdm/data/formats.html>\n\n ",
"language": "en",
"n_whitespaces": 356,
"n_words": 145,
"vocab_size": 83
} | https://github.com/networkx/networkx.git |
7 | split_ref_from_uri | def split_ref_from_uri(uri):
# type: (AnyStr) -> Tuple[AnyStr, Optional[AnyStr]]
if not isinstance(uri, str):
raise TypeError("Expected a string, received {0!r}".format(uri))
parsed = _get_parsed_url(uri)
path = parsed.path if parsed.path else ""
scheme = parsed.scheme if parsed.scheme else ""
ref = None
if scheme != "file" and (re.match("^.*@[^/@]*$", path) or path.count("@") >= 2):
path, _, ref = path.rpartition("@")
parsed = parsed._replace(path=path)
return (parsed.url, ref)
| 2f6a04b89a70879f40a42d7d2ce662468f6e87ca | 12 | utils.py | 188 | 5132 Vendor in latest requirementslib. (#5151)
* 5132 Vendor in latest requirementslib. | 3,737 | 0 | 104 | 111 | 45 | 21,253 | 60 | pipenv | 18 | pipenv/vendor/requirementslib/models/utils.py | Python | 11 | {
"docstring": "Given a path or URI, check for a ref and split it from the path if it is\n present, returning a tuple of the original input and the ref or None.\n\n :param AnyStr uri: The path or URI to split\n :returns: A 2-tuple of the path or URI and the ref\n :rtype: Tuple[AnyStr, Optional[AnyStr]]\n ",
"language": "en",
"n_whitespaces": 69,
"n_words": 54,
"vocab_size": 34
} | https://github.com/pypa/pipenv.git |
|
1 | mock_update_duration_fixture | def mock_update_duration_fixture(mock_update):
mock_update.return_value = {
"rows": [
{
"elements": [
{
"duration": {
"value": 1560,
"text": "26 mins",
},
"distance": {"text": "21.3 km"},
}
]
}
]
}
yield mock_update
@pytest.fixture(name="mock_update_empty") | beb30a1ff199596163c655e8ae745a0f1649b78a | @pytest.fixture(name="mock_update_empty") | 17 | test_sensor.py | 108 | Add google_travel_time sensor tests (#66568)
Co-authored-by: Paulus Schoutsen <[email protected]> | 91,329 | 1 | 269 | 47 | 24 | 292,229 | 31 | core | 6 | tests/components/google_travel_time/test_sensor.py | Python | 17 | {
"docstring": "Mock an update to the sensor returning no duration_in_traffic.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/home-assistant/core.git |
1 | async_process_entity_map | async def async_process_entity_map(self) -> None:
# Ensure the Pairing object has access to the latest version of the entity map. This
# is especially important for BLE, as the Pairing instance relies on the entity map
# to map aid/iid to GATT characteristics. So push it to there as well.
self.async_detect_workarounds()
# Migrate to new device ids
self.async_migrate_devices()
# Remove any of the legacy serial numbers from the device registry
self.async_remove_legacy_device_serial_numbers()
self.async_create_devices()
# Load any triggers for this config entry
await async_setup_triggers_for_entry(self.hass, self.config_entry)
| f23b1750e85f07091eb896a0b12b8f95e5646338 | 9 | connection.py | 76 | Migrate HomeKit Controller to use stable identifiers (#80064) | 87,991 | 0 | 167 | 39 | 60 | 288,842 | 83 | core | 9 | homeassistant/components/homekit_controller/connection.py | Python | 12 | {
"docstring": "\n Process the entity map and load any platforms or entities that need adding.\n\n This is idempotent and will be called at startup and when we detect metadata changes\n via the c# counter on the zeroconf record.\n ",
"language": "en",
"n_whitespaces": 65,
"n_words": 36,
"vocab_size": 32
} | https://github.com/home-assistant/core.git |
|
4 | patch_mac_app | def patch_mac_app() -> None:
dist_path = pathlib.Path('dist')
app_path = dist_path / 'qutebrowser.app'
contents_path = app_path / 'Contents'
macos_path = contents_path / 'MacOS'
resources_path = contents_path / 'Resources'
pyqt_path = macos_path / 'PyQt5'
# Replace some duplicate files by symlinks
framework_path = pyqt_path / 'Qt5' / 'lib' / 'QtWebEngineCore.framework'
core_lib = framework_path / 'Versions' / '5' / 'QtWebEngineCore'
core_lib.unlink()
core_target = pathlib.Path(*[os.pardir] * 7, 'MacOS', 'QtWebEngineCore')
core_lib.symlink_to(core_target)
framework_resource_path = framework_path / 'Resources'
for file_path in framework_resource_path.iterdir():
target = pathlib.Path(*[os.pardir] * 5, file_path.name)
if file_path.is_dir():
shutil.rmtree(file_path)
else:
file_path.unlink()
file_path.symlink_to(target)
# Move stuff around to make things signable on macOS
# See https://github.com/pyinstaller/pyinstaller/issues/6612
pyqt_path_dest = resources_path / pyqt_path.name
shutil.move(pyqt_path, pyqt_path_dest)
pyqt_path_target = pathlib.Path("..") / pyqt_path_dest.relative_to(contents_path)
pyqt_path.symlink_to(pyqt_path_target)
for path in macos_path.glob("Qt*"):
link_path = resources_path / path.name
target_path = pathlib.Path("..") / path.relative_to(contents_path)
link_path.symlink_to(target_path)
| 660e776a15c02f5577d7aca075bb0e3f8b142831 | 14 | build_release.py | 395 | build-release: Sign macOS .app properly
Based on https://github.com/pyinstaller/pyinstaller/issues/6612
Might help with #6771. | 117,462 | 0 | 265 | 221 | 81 | 320,956 | 128 | qutebrowser | 32 | scripts/dev/build_release.py | Python | 29 | {
"docstring": "Patch .app to save some space and make it signable.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | https://github.com/qutebrowser/qutebrowser.git |
|
5 | expand | def expand(image, border=0, fill=0):
left, top, right, bottom = _border(border)
width = left + image.size[0] + right
height = top + image.size[1] + bottom
color = _color(fill, image.mode)
if image.mode == "P" and image.palette:
palette = ImagePalette.ImagePalette(palette=image.getpalette())
if isinstance(color, tuple):
color = palette.getcolor(color)
else:
palette = None
out = Image.new(image.mode, (width, height), color)
if palette:
out.putpalette(palette.palette)
out.paste(image, (left, top))
return out
| 279ddf4ce6c76498ac29df2552a3023b9aaa76c1 | 13 | ImageOps.py | 230 | Use getpalette() in ImageOps | 70,030 | 0 | 133 | 149 | 45 | 243,427 | 61 | Pillow | 26 | src/PIL/ImageOps.py | Python | 16 | {
"docstring": "\n Add border to the image\n\n :param image: The image to expand.\n :param border: Border width, in pixels.\n :param fill: Pixel fill value (a color value). Default is 0 (black).\n :return: An image.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 32,
"vocab_size": 28
} | https://github.com/python-pillow/Pillow.git |
|
8 | get_policy_data_from_agent_data | def get_policy_data_from_agent_data(agent_data, policy_map_fn):
policy_data = {}
for agent_id, data in agent_data.items():
policy_id = policy_map_fn(agent_id)
policy_data.setdefault(policy_id, {})
policy_data[policy_id].setdefault("agent_id", [])
if data["obs"].ndim == 1:
policy_data[policy_id]["agent_id"].append(agent_id)
else:
policy_data[policy_id]["agent_id"] += [agent_id] * len(data["obs"])
for k, v in data.items():
policy_data[policy_id].setdefault(k, [])
if v.ndim == 1:
v = v[None]
policy_data[policy_id][k].append(v)
for policy_id in policy_data:
policy_data[policy_id] = {
k: np.concatenate(v) if k != "agent_id" else v
for k, v in policy_data[policy_id].items()
}
return policy_data
| 30058267363b8de16b809c987bb1f7d7befad24d | 16 | test_torch_marl_module.py | 291 | [RLlib] MARLModule, RLModule PR 4/N (N=4) (#29449)
Signed-off-by: Kourosh Hakhamaneshi <[email protected]> | 30,625 | 0 | 230 | 182 | 47 | 135,458 | 67 | ray | 16 | rllib/core/rl_module/torch/tests/test_torch_marl_module.py | Python | 21 | {
"docstring": "Utility function to get policy data from agent data and policy map function.\n\n It also keeps track of agent_id for each row so that we can retreive the agent\n level information after the forward pass.\n\n Returns:\n dict of module_id to module data\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 42,
"vocab_size": 35
} | https://github.com/ray-project/ray.git |
|
1 | cli | def cli():
...
option_verbose = click.option(
"--verbose",
is_flag=True,
help="Print verbose information about performed steps",
)
option_assume_yes = click.option(
"--assume-yes",
is_flag=True,
help="Assume yes answer to question",
)
option_previous_release = click.option(
"--previous-release",
type=str,
required=True,
help="commit reference (for example hash or tag) of the previous release.",
)
option_current_release = click.option(
"--current-release",
type=str,
required=True,
help="commit reference (for example hash or tag) of the current release.",
)
option_github_token = click.option(
"--github-token",
type=str,
required=True,
help=textwrap.dedent(
),
envvar='GITHUB_TOKEN',
)
option_limit_pr_count = click.option(
"--limit-pr-count",
type=int,
default=None,
help="Limit PR count processes (useful for testing small subset of PRs).",
)
option_dry_run = click.option(
"--dry-run",
is_flag=True,
help="Do not make any changes, just show what would have been done",
)
option_skip_assigned = click.option(
"--skip-assigned",
is_flag=True,
help="Skip PRs already correctly assigned to the right milestone",
)
option_milestone_number = click.option(
"--milestone-number",
type=int,
required=True,
help="Milestone number to set. See https://github.com/apache/airflow/milestones to find milestone id",
)
option_print_summary = click.option(
"--print-summary",
is_flag=True,
help="Produce summary of the changes cherry-picked in the file specified. Implies --skip-assigned",
)
option_output_folder = click.option(
"--output-folder",
type=str,
help="Folder where files with commit hashes will be store. Implies --print-summary and --skip-assigned",
)
| bc1f062bdebd5a92b650e2316d4d98d2097388ca | 10 | assign_cherry_picked_prs_with_milestone.py | 358 | Add dev tool to review and classify cherry-picked commits (#21032)
Until we have Towncrier, this is a useful tool to classify commits
to one of three categories (in v*-test) branches
1) a/add - add to milestone
2) d/doc - doc-only change
3) e/excluded - change that is skipped from changelog (dev tools)
This is done via label and milestone assignment.
We can also skip the PR or quit.
Information about the PR is nicely printed including its current
labels and URL that allows to quickly review the PR in question. | 8,197 | 0 | 285 | 5 | 116 | 44,213 | 177 | airflow | 24 | dev/assign_cherry_picked_prs_with_milestone.py | Python | 2 | {
"docstring": "\n Github token used to authenticate.\n You can set omit it if you have GITHUB_TOKEN env variable set\n Can be generated with:\n https://github.com/settings/tokens/new?description=Read%20Write%20isssues&scopes=repo",
"language": "en",
"n_whitespaces": 50,
"n_words": 22,
"vocab_size": 21
} | https://github.com/apache/airflow.git |
|
4 | delete_systemd_cgroup_v1 | def delete_systemd_cgroup_v1(self) -> None:
# Privileged mode is required to remove the cgroup directories on some hosts, such as Fedora 36 and RHEL 9.0.
# The BusyBox find utility will report "Permission denied" otherwise, although it still exits with a status code of 0.
options = ['--volume', '/sys/fs/cgroup/systemd:/sys/fs/cgroup/systemd:rw', '--privileged']
cmd = ['sh', '-c', f'>&2 echo {shlex.quote(self.MARKER)} && {shlex.join(self.delete_systemd_cgroup_v1_command)}']
try:
run_utility_container(self.args, f'ansible-test-cgroup-delete-{self.label}', cmd, options)
except SubprocessError as ex:
if error := self.extract_error(ex.stderr):
if error.endswith(': No such file or directory'):
return
display.error(str(ex))
| cda16cc5e9aa8703fb4e1ac0a0be6b631d9076cc | 13 | host_profiles.py | 173 | ansible-test - Improve container management. (#78550)
See changelogs/fragments/ansible-test-container-management.yml for details. | 79,632 | 0 | 196 | 77 | 75 | 268,732 | 80 | ansible | 20 | test/lib/ansible_test/_internal/host_profiles.py | Python | 11 | {
"docstring": "Delete a previously created ansible-test cgroup in the v1 systemd hierarchy.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | https://github.com/ansible/ansible.git |
|
3 | iterate_tree_cache_items | def iterate_tree_cache_items(key, value):
if isinstance(value, TreeCacheNode):
for sub_key, sub_value in value.items():
yield from iterate_tree_cache_items((*key, sub_key), sub_value)
else:
# we've reached a leaf of the tree.
yield key, value
| 0b87eb8e0c8e2dd4a426005dce53dfdd57282475 | 14 | treecache.py | 75 | Make DictionaryCache have better expiry properties (#13292) | 72,514 | 0 | 69 | 46 | 27 | 248,927 | 28 | synapse | 8 | synapse/util/caches/treecache.py | Python | 6 | {
"docstring": "Helper function to iterate over the leaves of a tree, i.e. a dict of that\n can contain dicts.\n\n The provided key is a tuple that will get prepended to the returned keys.\n\n Example:\n\n cache = TreeCache()\n cache[(1, 1)] = \"a\"\n cache[(1, 2)] = \"b\"\n cache[(2, 1)] = \"c\"\n\n tree_node = cache.get((1,))\n\n items = iterate_tree_cache_items((1,), tree_node)\n assert list(items) == [((1, 1), \"a\"), ((1, 2), \"b\")]\n\n Returns:\n A generator yielding key/value pairs.\n ",
"language": "en",
"n_whitespaces": 141,
"n_words": 70,
"vocab_size": 57
} | https://github.com/matrix-org/synapse.git |
|
1 | deserialize | def deserialize(config, custom_objects=None):
return deserialize_keras_object(
config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name='metric function')
@keras_export('keras.metrics.get') | b4dca51d0558e788f62a96d1009a07f773a202f4 | @keras_export('keras.metrics.get') | 10 | __init__.py | 58 | Refactor disparate metrics-related files into a single metrics folder.
Further work may be needed to split up the long file with individual metric definitions. However having a single file per metric may be too granular. TBD.
PiperOrigin-RevId: 425248502 | 79,747 | 1 | 32 | 29 | 11 | 268,880 | 11 | keras | 8 | keras/metrics/__init__.py | Python | 6 | {
"docstring": "Deserializes a serialized metric class/function instance.\n\n Args:\n config: Metric configuration.\n custom_objects: Optional dictionary mapping names (strings) to custom\n objects (classes and functions) to be considered during deserialization.\n\n Returns:\n A Keras `Metric` instance or a metric function.\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 36,
"vocab_size": 33
} | https://github.com/keras-team/keras.git |
4 | get_top_k_scored_items | def get_top_k_scored_items(scores, top_k, sort_top_k=False):
# ensure we're working with a dense ndarray
if isinstance(scores, sparse.spmatrix):
scores = scores.todense()
if scores.shape[1] < top_k:
logger.warning(
"Number of items is less than top_k, limiting top_k to number of items"
)
k = min(top_k, scores.shape[1])
test_user_idx = np.arange(scores.shape[0])[:, None]
# get top K items and scores
# this determines the un-ordered top-k item indices for each user
top_items = np.argpartition(scores, -k, axis=1)[:, -k:]
top_scores = scores[test_user_idx, top_items]
if sort_top_k:
sort_ind = np.argsort(-top_scores)
top_items = top_items[test_user_idx, sort_ind]
top_scores = top_scores[test_user_idx, sort_ind]
return np.array(top_items), np.array(top_scores)
| 1d7341e93d1f03387699fb3c6ae0b6c0e464296f | 11 | python_utils.py | 231 | Add new item similarity metrics for SAR (#1754)
* Add mutual information similarity in SAR
* Add lexicographers mutual information similarity for SAR
* Add cosine similarity for SAR
* Add inclusion index for SAR
* Typos
* Change SARSingleNode to SAR
* Convert item similarity matrix to np.array
* Update
* Update SAR tests
* Remove unused imports
* Add explanations for new similarity metrics | 7,236 | 0 | 178 | 148 | 71 | 39,444 | 89 | recommenders | 23 | recommenders/utils/python_utils.py | Python | 16 | {
"docstring": "Extract top K items from a matrix of scores for each user-item pair, optionally sort results per user.\n\n Args:\n scores (numpy.ndarray): Score matrix (users x items).\n top_k (int): Number of top items to recommend.\n sort_top_k (bool): Flag to sort top k results.\n\n Returns:\n numpy.ndarray, numpy.ndarray:\n - Indices into score matrix for each user's top items.\n - Scores corresponding to top items.\n\n ",
"language": "en",
"n_whitespaces": 112,
"n_words": 61,
"vocab_size": 45
} | https://github.com/microsoft/recommenders.git |
|
19 | curse_add_stat | def curse_add_stat(self, key, width=None, header='', display_key=True, separator='', trailer=''):
if key not in self.stats:
return []
# Check if a shortname is defined
if key in self.fields_description and 'short_name' in self.fields_description[key]:
key_name = self.fields_description[key]['short_name']
else:
key_name = key
if not display_key:
key_name = ''
# Check if unit is defined and get the short unit char in the unit_sort dict
if (
key in self.fields_description
and 'unit' in self.fields_description[key]
and self.fields_description[key]['unit'] in fields_unit_short
):
# Get the shortname
unit_short = fields_unit_short[self.fields_description[key]['unit']]
else:
unit_short = ''
# Check if unit is defined and get the unit type unit_type dict
if (
key in self.fields_description
and 'unit' in self.fields_description[key]
and self.fields_description[key]['unit'] in fields_unit_type
):
# Get the shortname
unit_type = fields_unit_type[self.fields_description[key]['unit']]
else:
unit_type = 'float'
# Is it a rate ? Yes, compute it thanks to the time_since_update key
if (
key in self.fields_description
and 'rate' in self.fields_description[key]
and self.fields_description[key]['rate'] is True
):
value = self.stats[key] // self.stats['time_since_update']
else:
value = self.stats[key]
if width is None:
msg_item = header + '{}'.format(key_name) + separator
if unit_type == 'float':
msg_value = '{:.1f}{}'.format(value, unit_short) + trailer
elif 'min_symbol' in self.fields_description[key]:
msg_value = (
'{}{}'.format(
self.auto_unit(int(value), min_symbol=self.fields_description[key]['min_symbol']), unit_short
)
+ trailer
)
else:
msg_value = '{}{}'.format(int(value), unit_short) + trailer
else:
# Define the size of the message
# item will be on the left
# value will be on the right
msg_item = header + '{:{width}}'.format(key_name, width=width - 7) + separator
if unit_type == 'float':
msg_value = '{:5.1f}{}'.format(value, unit_short) + trailer
elif 'min_symbol' in self.fields_description[key]:
msg_value = (
'{:>5}{}'.format(
self.auto_unit(int(value), min_symbol=self.fields_description[key]['min_symbol']), unit_short
)
+ trailer
)
else:
msg_value = '{:>5}{}'.format(int(value), unit_short) + trailer
decoration = self.get_views(key=key, option='decoration')
optional = self.get_views(key=key, option='optional')
return [
self.curse_add_line(msg_item, optional=optional),
self.curse_add_line(msg_value, decoration=decoration, optional=optional),
]
| 586ebd7099fb6fca47cf04f632c8cbf7f0450500 | 22 | glances_plugin.py | 797 | Refactor comment | 15,223 | 0 | 1,104 | 475 | 116 | 69,984 | 282 | glances | 27 | glances/plugins/glances_plugin.py | Python | 65 | {
"docstring": "Return a list of dict messages with the 'key: value' result\n\n <=== width ===>\n __key : 80.5%__\n | | | | |_ trailer\n | | | |_ self.stats[key]\n | | |_ separator\n | |_ key (if display_key is True)\n |_ header\n\n Instead of:\n msg = ' {:8}'.format('idle:')\n ret.append(self.curse_add_line(msg, optional=self.get_views(key='idle', option='optional')))\n msg = '{:5.1f}%'.format(self.stats['idle'])\n ret.append(self.curse_add_line(msg, optional=self.get_views(key='idle', option='optional')))\n\n Use:\n ret.extend(self.curse_add_stat('idle', width=15, header=' '))\n\n ",
"language": "en",
"n_whitespaces": 215,
"n_words": 61,
"vocab_size": 43
} | https://github.com/nicolargo/glances.git |
|
3 | loss_labels | def loss_labels(self, outputs, targets, indices, num_boxes):
if "logits" not in outputs:
raise KeyError("No logits were found in the outputs")
src_logits = outputs["logits"]
idx = self._get_src_permutation_idx(indices)
target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)])
target_classes = torch.full(
src_logits.shape[:2], self.num_classes, dtype=torch.int64, device=src_logits.device
)
target_classes[idx] = target_classes_o
loss_ce = nn.functional.cross_entropy(src_logits.transpose(1, 2), target_classes, self.empty_weight)
losses = {"loss_ce": loss_ce}
return losses
| cc034f72eb6137f4c550e911fba67f8a0e1e98fa | 12 | modeling_detr.py | 213 | Replace assertion with exception (#16720)
* Updated assertions to exceptions
* updated assertions to exceptions
* bug fixes
* fix-copies
* Update modeling_ctrl.py
* Update src/transformers/models/ctrl/modeling_tf_ctrl.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/gpt_neo/modeling_gpt_neo.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/gptj/modeling_gptj.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update src/transformers/models/gptj/modeling_tf_gptj.py
Co-authored-by: Sylvain Gugger <[email protected]>
* Update modeling_led.py
* Update modeling_led.py
* Update modeling_led.py
Co-authored-by: Sylvain Gugger <[email protected]> | 6,726 | 0 | 157 | 138 | 48 | 37,071 | 58 | transformers | 31 | src/transformers/models/detr/modeling_detr.py | Python | 13 | {
"docstring": "\n Classification loss (NLL) targets dicts must contain the key \"class_labels\" containing a tensor of dim\n [nb_target_boxes]\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 16
} | https://github.com/huggingface/transformers.git |
|
3 | get_func | def get_func(cls, key, **kwargs):
if "agg_func" in kwargs:
return cls.inplace_applyier_builder(key, kwargs["agg_func"])
elif "func_dict" in kwargs:
return cls.inplace_applyier_builder(key, kwargs["func_dict"])
else:
return cls.inplace_applyier_builder(key)
| 1e65a4afd191cf61ba05b80545d23f9b88962f41 | 12 | groupby.py | 92 | FIX-#3197: do not pass lambdas to the backend in GroupBy (#3373)
Signed-off-by: Dmitry Chigarev <[email protected]> | 35,257 | 0 | 82 | 54 | 16 | 153,097 | 21 | modin | 5 | modin/core/dataframe/algebra/default2pandas/groupby.py | Python | 7 | {
"docstring": "\n Extract aggregation function from groupby arguments.\n\n Parameters\n ----------\n key : callable or str\n Default aggregation function. If aggregation function is not specified\n via groupby arguments, then `key` function is used.\n **kwargs : dict\n GroupBy arguments that may contain aggregation function.\n\n Returns\n -------\n callable\n Aggregation function.\n\n Notes\n -----\n There are two ways of how groupby aggregation can be invoked:\n 1. Explicitly with query compiler method: `qc.groupby_sum()`.\n 2. By passing aggregation function as an argument: `qc.groupby_agg(\"sum\")`.\n Both are going to produce the same result, however in the first case actual aggregation\n function can be extracted from the method name, while for the second only from the method arguments.\n ",
"language": "en",
"n_whitespaces": 271,
"n_words": 106,
"vocab_size": 78
} | https://github.com/modin-project/modin.git |
|
11 | check_validation_split_arg | def check_validation_split_arg(validation_split, subset, shuffle, seed):
if validation_split and not 0 < validation_split < 1:
raise ValueError(
'`validation_split` must be between 0 and 1, received: %s' %
(validation_split,))
if (validation_split or subset) and not (validation_split and subset):
raise ValueError(
'If `subset` is set, `validation_split` must be set, and inversely.')
if subset not in ('training', 'validation', 'both', None):
raise ValueError('`subset` must be either "training", '
'"validation" or "both", received: %s' % (subset,))
if validation_split and shuffle and seed is None:
raise ValueError(
'If using `validation_split` and shuffling the data, you must provide '
'a `seed` argument, to make sure that there is no overlap between the '
'training and validation subset.')
| c52c11968b096580577c75b169f51c5b39002106 | 12 | dataset_utils.py | 159 | Updated tests for subset="both" | 79,952 | 0 | 188 | 92 | 68 | 269,208 | 109 | keras | 6 | keras/utils/dataset_utils.py | Python | 16 | {
"docstring": "Raise errors in case of invalid argument values.\n\n Args:\n validation_split: float between 0 and 1, fraction of data to reserve for\n validation.\n subset: One of \"training\", \"validation\" or \"both\". Only used if `validation_split`\n is set.\n shuffle: Whether to shuffle the data. Either True or False.\n seed: random seed for shuffling and transformations.\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 52,
"vocab_size": 46
} | https://github.com/keras-team/keras.git |
|
2 | prepare_test_img | def prepare_test_img(self, idx):
img_info = self.data_infos[idx]
results = dict(img_info=img_info)
if self.proposals is not None:
results['proposals'] = self.proposals[idx]
self.pre_pipeline(results)
return self.pipeline(results)
| 1516986a616fee8bb741d0ab2be40683045efccd | 10 | custom.py | 92 | [Feature] Support OpenImages Dataset (#6331)
* [Feature] support openimage group of eval
* [Feature] support openimage group of eval
* support openimage dataset
* support openimage challenge dataset
* fully support OpenImages-V6 and OpenImages Challenge 2019
* Fix some logic error
* update config file
* fix get data_infos error
* fully support OpenImages evaluation
* update OpenImages config files
* [Feature] support OpenImages datasets
* fix bug
* support load image metas from pipeline
* fix bug
* fix get classes logic error
* update code
* support get image metas
* support openimags
* support collect image metas
* support Open Images
* fix openimages logic
* minor fix
* add a new function to compute openimages tpfp
* minor fix
* fix ci error
* minor fix
* fix indication
* minor fix
* fix returns
* fix returns
* fix returns
* fix returns
* fix returns
* minor fix
* update readme
* support loading image level labels and fix some logic
* minor fix
* minor fix
* add class names
* minor fix
* minor fix
* minor fix
* add openimages test unit
* minor fix
* minor fix
* fix test unit
* minor fix
* fix logic error
* minor fix
* fully support openimages
* minor fix
* fix docstring
* fix docstrings in readthedocs
* update get image metas script
* label_description_file -> label_file
* update openimages readme
* fix test unit
* fix test unit
* minor fix
* update readme file
* Update get_image_metas.py | 70,180 | 0 | 73 | 56 | 18 | 243,990 | 20 | mmdetection | 10 | mmdet/datasets/custom.py | Python | 7 | {
"docstring": "Get testing data after pipeline.\n\n Args:\n idx (int): Index of data.\n\n Returns:\n dict: Testing data after pipeline with new keys introduced by \\\n pipeline.\n ",
"language": "en",
"n_whitespaces": 82,
"n_words": 24,
"vocab_size": 21
} | https://github.com/open-mmlab/mmdetection.git |
|
2 | get_redirect_target | def get_redirect_target(self, resp):
# Due to the nature of how requests processes redirects this method will
# be called at least once upon the original response and at least twice
# on each subsequent redirect response (if any).
# If a custom mixin is used to handle this logic, it may be advantageous
# to cache the redirect location onto the response object as a private
# attribute.
if resp.is_redirect:
location = resp.headers["location"]
# Currently the underlying http module on py3 decode headers
# in latin1, but empirical evidence suggests that latin1 is very
# rarely used with non-ASCII characters in HTTP headers.
# It is more likely to get UTF8 header rather than latin1.
# This causes incorrect handling of UTF8 encoded location headers.
# To solve this, we re-encode the location in latin1.
location = location.encode("latin1")
return to_native_string(location, "utf8")
return None
| cd5a9683be69c86c8f3adcd13385a9bc5db198ec | 11 | sessions.py | 79 | Rename notpip to pip. Vendor in pip-22.2.1 and latest requirementslib and vistir. | 4,187 | 0 | 305 | 38 | 100 | 22,111 | 143 | pipenv | 8 | pipenv/patched/pip/_vendor/requests/sessions.py | Python | 6 | {
"docstring": "Receives a Response. Returns a redirect URI or ``None``",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | https://github.com/pypa/pipenv.git |
|
4 | get_type_hints | def get_type_hints(obj, globalns=None, localns=None, include_extras=False):
if hasattr(typing, "Annotated"):
hint = typing.get_type_hints(
obj, globalns=globalns, localns=localns, include_extras=True
)
else:
hint = typing.get_type_hints(obj, globalns=globalns, localns=localns)
if include_extras:
return hint
return {k: _strip_extras(t) for k, t in hint.items()}
# Python 3.9+ has PEP 593 (Annotated)
if hasattr(typing, 'Annotated'):
Annotated = typing.Annotated
# Not exported and not a public API, but needed for get_origin() and get_args()
# to work.
_AnnotatedAlias = typing._AnnotatedAlias
# 3.7-3.8
else: | c69d55f7c82d5ae2cce542bcfb98d043ca4836a0 | 12 | typing_extensions.py | 172 | Vendor in pip 22.1.2 | 3,948 | 0 | 172 | 88 | 54 | 21,600 | 70 | pipenv | 14 | pipenv/patched/notpip/_vendor/typing_extensions.py | Python | 10 | {
"docstring": "Return type hints for an object.\n\n This is often the same as obj.__annotations__, but it handles\n forward references encoded as string literals, adds Optional[t] if a\n default value equal to None is set and recursively replaces all\n 'Annotated[T, ...]', 'Required[T]' or 'NotRequired[T]' with 'T'\n (unless 'include_extras=True').\n\n The argument may be a module, class, method, or function. The annotations\n are returned as a dictionary. For classes, annotations include also\n inherited members.\n\n TypeError is raised if the argument is not of a type that can contain\n annotations, and an empty dictionary is returned if no annotations are\n present.\n\n BEWARE -- the behavior of globalns and localns is counterintuitive\n (unless you are familiar with how eval() and exec() work). The\n search order is locals first, then globals.\n\n - If no dict arguments are passed, an attempt is made to use the\n globals from obj (or the respective module's globals for classes),\n and these are also used as the locals. If the object does not appear\n to have globals, an empty dictionary is used.\n\n - If one dict argument is passed, it is used for both globals and\n locals.\n\n - If two dict arguments are passed, they specify globals and\n locals, respectively.\n ",
"language": "en",
"n_whitespaces": 371,
"n_words": 198,
"vocab_size": 123
} | https://github.com/pypa/pipenv.git |
|
3 | color_temp_supported | def color_temp_supported(self) -> bool:
return (
self.color_capabilities is not None
and lighting.Color.ColorCapabilities.Color_temperature
in self.color_capabilities
) or self.color_temperature is not None
| df67a8cd4f8df91a153778009a74be1e3876ca53 | 12 | lighting.py | 57 | Fix ZHA light color temp support (#76305) | 102,289 | 0 | 74 | 36 | 16 | 303,469 | 20 | core | 9 | homeassistant/components/zha/core/channels/lighting.py | Python | 7 | {
"docstring": "Return True if the channel supports color temperature.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | https://github.com/home-assistant/core.git |
|
8 | partial_fit | def partial_fit(self, X, y, classes=None):
if _check_partial_fit_first_call(self, classes):
self._validate_params()
if not hasattr(self.estimator, "partial_fit"):
raise ValueError(
("Base estimator {0}, doesn't have partial_fit method").format(
self.estimator
)
)
self.estimators_ = [clone(self.estimator) for _ in range(self.n_classes_)]
# A sparse LabelBinarizer, with sparse_output=True, has been
# shown to outperform or match a dense label binarizer in all
# cases and has also resulted in less or equal memory consumption
# in the fit_ovr function overall.
self.label_binarizer_ = LabelBinarizer(sparse_output=True)
self.label_binarizer_.fit(self.classes_)
if len(np.setdiff1d(y, self.classes_)):
raise ValueError(
(
"Mini-batch contains {0} while classes " + "must be subset of {1}"
).format(np.unique(y), self.classes_)
)
Y = self.label_binarizer_.transform(y)
Y = Y.tocsc()
columns = (col.toarray().ravel() for col in Y.T)
self.estimators_ = Parallel(n_jobs=self.n_jobs)(
delayed(_partial_fit_binary)(estimator, X, column)
for estimator, column in zip(self.estimators_, columns)
)
if hasattr(self.estimators_[0], "n_features_in_"):
self.n_features_in_ = self.estimators_[0].n_features_in_
return self
| 1aa38c44f60cb729faf217ef85f5cb7d1dd30b46 | 15 | multiclass.py | 372 | MAINT Parameters validation for OneVsRest estimator (#24290)
Co-authored-by: Jérémie du Boisberranger <[email protected]> | 76,491 | 0 | 493 | 232 | 100 | 260,786 | 129 | scikit-learn | 40 | sklearn/multiclass.py | Python | 28 | {
"docstring": "Partially fit underlying estimators.\n\n Should be used when memory is inefficient to train all data.\n Chunks of data can be passed in several iteration.\n\n Parameters\n ----------\n X : (sparse) array-like of shape (n_samples, n_features)\n Data.\n\n y : (sparse) array-like of shape (n_samples,) or (n_samples, n_classes)\n Multi-class targets. An indicator matrix turns on multilabel\n classification.\n\n classes : array, shape (n_classes, )\n Classes across all calls to partial_fit.\n Can be obtained via `np.unique(y_all)`, where y_all is the\n target vector of the entire dataset.\n This argument is only required in the first call of partial_fit\n and can be omitted in the subsequent calls.\n\n Returns\n -------\n self : object\n Instance of partially fitted estimator.\n ",
"language": "en",
"n_whitespaces": 286,
"n_words": 110,
"vocab_size": 84
} | https://github.com/scikit-learn/scikit-learn.git |
|
12 | _get_items | def _get_items(self):
postprocess_items = {}
# Debug Landmarks
if (hasattr(self._args, 'debug_landmarks') and self._args.debug_landmarks):
postprocess_items["DebugLandmarks"] = None
# Face Filter post processing
if ((hasattr(self._args, "filter") and self._args.filter is not None) or
(hasattr(self._args, "nfilter") and
self._args.nfilter is not None)):
if hasattr(self._args, "detector"):
detector = self._args.detector.replace("-", "_").lower()
else:
detector = "cv2_dnn"
if hasattr(self._args, "aligner"):
aligner = self._args.aligner.replace("-", "_").lower()
else:
aligner = "cv2_dnn"
face_filter = dict(detector=detector,
aligner=aligner,
multiprocess=not self._args.singleprocess)
filter_lists = {}
if hasattr(self._args, "ref_threshold"):
face_filter["ref_threshold"] = self._args.ref_threshold
for filter_type in ('filter', 'nfilter'):
filter_args = getattr(self._args, filter_type, None)
filter_args = None if not filter_args else filter_args
filter_lists[filter_type] = filter_args
face_filter["filter_lists"] = filter_lists
postprocess_items["FaceFilter"] = {"kwargs": face_filter}
logger.debug("Postprocess Items: %s", postprocess_items)
return postprocess_items
| 9e503bdaa2bfe2baaea50ad2e4bf742f309d9d10 | 16 | fsmedia.py | 422 | bugfix: debug landmarks | 20,730 | 0 | 496 | 249 | 67 | 101,311 | 108 | faceswap | 23 | scripts/fsmedia.py | Python | 29 | {
"docstring": " Check the passed in command line arguments for requested actions,\n\n For any requested actions, add the item to the actions list along with\n any relevant arguments and keyword arguments.\n\n Returns\n -------\n dict\n The name of the action to be performed as the key. Any action specific\n arguments and keyword arguments as the value.\n ",
"language": "en",
"n_whitespaces": 118,
"n_words": 53,
"vocab_size": 37
} | https://github.com/deepfakes/faceswap.git |
|
3 | _apply_media_retention_rules | async def _apply_media_retention_rules(self) -> None:
# Purge remote media
if self._media_retention_remote_media_lifetime_ms is not None:
# Calculate a threshold timestamp derived from the configured lifetime. Any
# media that has not been accessed since this timestamp will be removed.
remote_media_threshold_timestamp_ms = (
self.clock.time_msec() - self._media_retention_remote_media_lifetime_ms
)
logger.info(
"Purging remote media last accessed before"
f" {remote_media_threshold_timestamp_ms}"
)
await self.delete_old_remote_media(
before_ts=remote_media_threshold_timestamp_ms
)
# And now do the same for local media
if self._media_retention_local_media_lifetime_ms is not None:
# This works the same as the remote media threshold
local_media_threshold_timestamp_ms = (
self.clock.time_msec() - self._media_retention_local_media_lifetime_ms
)
logger.info(
"Purging local media last accessed before"
f" {local_media_threshold_timestamp_ms}"
)
await self.delete_old_local_media(
before_ts=local_media_threshold_timestamp_ms,
keep_profiles=True,
)
| 2fc787c341ff540e5880932f116498ec0ed7a2c2 | 13 | media_repository.py | 170 | Add config options for media retention (#12732) | 72,294 | 0 | 440 | 93 | 62 | 248,466 | 105 | synapse | 14 | synapse/rest/media/v1/media_repository.py | Python | 28 | {
"docstring": "\n Purge old local and remote media according to the media retention rules\n defined in the homeserver config.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 15
} | https://github.com/matrix-org/synapse.git |
|
11 | _url | def _url(self, hashed_name_func, name, force=False, hashed_files=None):
if settings.DEBUG and not force:
hashed_name, fragment = name, ""
else:
clean_name, fragment = urldefrag(name)
if urlsplit(clean_name).path.endswith("/"): # don't hash paths
hashed_name = name
else:
args = (clean_name,)
if hashed_files is not None:
args += (hashed_files,)
hashed_name = hashed_name_func(*args)
final_url = super().url(hashed_name)
# Special casing for a @font-face hack, like url(myfont.eot?#iefix")
# http://www.fontspring.com/blog/the-new-bulletproof-font-face-syntax
query_fragment = "?#" in name # [sic!]
if fragment or query_fragment:
urlparts = list(urlsplit(final_url))
if fragment and not urlparts[4]:
urlparts[4] = fragment
if query_fragment and not urlparts[3]:
urlparts[2] += "?"
final_url = urlunsplit(urlparts)
return unquote(final_url)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 15 | storage.py | 261 | Refs #33476 -- Reformatted code with Black. | 50,711 | 0 | 356 | 156 | 60 | 204,364 | 94 | django | 24 | django/contrib/staticfiles/storage.py | Python | 22 | {
"docstring": "\n Return the non-hashed URL in DEBUG mode.\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | https://github.com/django/django.git |
|
8 | parseString | def parseString(self, instring, parseAll=False):
ParserElement.resetCache()
if not self.streamlined:
self.streamline()
# ~ self.saveAsList = True
for e in self.ignoreExprs:
e.streamline()
if not self.keepTabs:
instring = instring.expandtabs()
try:
loc, tokens = self._parse(instring, 0)
if parseAll:
loc = self.preParse(instring, loc)
se = Empty() + StringEnd()
se._parse(instring, loc)
except ParseBaseException as exc:
if ParserElement.verbose_stacktrace:
raise
else:
# catch and re-raise exception from here, clearing out pyparsing internal stack trace
if getattr(exc, '__traceback__', None) is not None:
exc.__traceback__ = self._trim_traceback(exc.__traceback__)
raise exc
else:
return tokens
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 17 | pyparsing.py | 233 | upd; format | 13,288 | 0 | 359 | 141 | 64 | 63,403 | 80 | transferlearning | 25 | .venv/lib/python3.8/site-packages/pip/_vendor/pyparsing.py | Python | 23 | {
"docstring": "\n Execute the parse expression with the given string.\n This is the main interface to the client code, once the complete\n expression has been built.\n\n Returns the parsed data as a :class:`ParseResults` object, which may be\n accessed as a list, or as a dict or object with attributes if the given parser\n includes results names.\n\n If you want the grammar to require that the entire input string be\n successfully parsed, then set ``parseAll`` to True (equivalent to ending\n the grammar with ``StringEnd()``).\n\n Note: ``parseString`` implicitly calls ``expandtabs()`` on the input string,\n in order to report proper column numbers in parse actions.\n If the input string contains tabs and\n the grammar uses parse actions that use the ``loc`` argument to index into the\n string being parsed, you can ensure you have a consistent view of the input\n string by:\n\n - calling ``parseWithTabs`` on your grammar before calling ``parseString``\n (see :class:`parseWithTabs`)\n - define your parse action using the full ``(s, loc, toks)`` signature, and\n reference the input string using the parse action's ``s`` argument\n - explictly expand the tabs in your input string before calling\n ``parseString``\n\n Example::\n\n Word('a').parseString('aaaaabaaa') # -> ['aaaaa']\n Word('a').parseString('aaaaabaaa', parseAll=True) # -> Exception: Expected end of text\n ",
"language": "en",
"n_whitespaces": 389,
"n_words": 197,
"vocab_size": 121
} | https://github.com/jindongwang/transferlearning.git |
|
4 | show_actual_vendor_versions | def show_actual_vendor_versions(vendor_txt_versions):
# type: (Dict[str, str]) -> None
for module_name, expected_version in vendor_txt_versions.items():
extra_message = ''
actual_version = get_vendor_version_from_module(module_name)
if not actual_version:
extra_message = ' (Unable to locate actual module version, using'\
' vendor.txt specified version)'
actual_version = expected_version
elif parse_version(actual_version) != parse_version(expected_version):
extra_message = ' (CONFLICT: vendor.txt suggests version should'\
' be {})'.format(expected_version)
logger.info('%s==%s%s', module_name, actual_version, extra_message)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 15 | debug.py | 126 | upd; format | 12,219 | 0 | 189 | 71 | 45 | 60,607 | 58 | transferlearning | 12 | .venv/lib/python3.8/site-packages/pip/_internal/commands/debug.py | Python | 12 | {
"docstring": "Log the actual version and print extra info if there is\n a conflict or if the actual version could not be imported.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 22,
"vocab_size": 18
} | https://github.com/jindongwang/transferlearning.git |
|
1 | test_sends_resolution_notification | def test_sends_resolution_notification(self, record_analytics):
url = f"/api/0/issues/{self.group.id}/"
with self.tasks():
response = self.client.put(url, format="json", data={"status": "resolved"})
assert response.status_code == 200, response.content
msg = mail.outbox[0]
# check the txt version
assert f"{self.user.username} marked {self.short_id} as resolved" in msg.body
# check the html version
assert f"{self.short_id}</a> as resolved</p>" in msg.alternatives[0][0]
attachment, text = get_attachment()
assert (
text
== f"{self.name} marked <http://testserver/organizations/{self.organization.slug}/issues/{self.group.id}/?referrer=activity_notification|{self.short_id}> as resolved"
)
assert attachment["title"] == self.group.title
assert (
attachment["footer"]
== f"{self.project.slug} | <http://testserver/settings/account/notifications/workflow/?referrer=resolved_activity-slack-user|Notification Settings>"
)
assert analytics_called_with_args(
record_analytics,
"integrations.email.notification_sent",
user_id=self.user.id,
actor_id=self.user.actor_id,
organization_id=self.organization.id,
)
assert analytics_called_with_args(
record_analytics,
"integrations.slack.notification_sent",
user_id=self.user.id,
actor_id=self.user.actor_id,
organization_id=self.organization.id,
)
| afbf9a3334ce9cad1a62fced372d7fcee40a3133 | 14 | test_notifications.py | 360 | chore(notification): Pass User ID into notification analytics (#38924)
We pass in the actor_id to notification analytics events but we should
also include a user_id if the recipient is a user | 18,056 | 0 | 387 | 178 | 57 | 85,881 | 89 | sentry | 34 | tests/sentry/notifications/test_notifications.py | Python | 32 | {
"docstring": "\n Test that an email AND Slack notification are sent with\n the expected values when an issue is resolved.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 17
} | https://github.com/getsentry/sentry.git |
|
1 | get | def get(self):
raise NotImplementedError
@keras_export("keras.utils.OrderedEnqueuer") | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | @keras_export("keras.utils.OrderedEnqueuer") | 7 | data_utils.py | 27 | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | 81,716 | 1 | 18 | 8 | 5 | 276,742 | 5 | keras | 4 | keras/utils/data_utils.py | Python | 2 | {
"docstring": "Creates a generator to extract data from the queue.\n\n Skip the data if it is `None`.\n # Returns\n Generator yielding tuples `(inputs, targets)`\n or `(inputs, targets, sample_weights)`.\n ",
"language": "en",
"n_whitespaces": 74,
"n_words": 27,
"vocab_size": 24
} | https://github.com/keras-team/keras.git |
2 | _check_data | def _check_data(self, xp, rs):
xp_lines = xp.get_lines()
rs_lines = rs.get_lines()
assert len(xp_lines) == len(rs_lines)
for xpl, rsl in zip(xp_lines, rs_lines):
xpdata = xpl.get_xydata()
rsdata = rsl.get_xydata()
tm.assert_almost_equal(xpdata, rsdata)
tm.close()
| 03fef5f0e35200aa5828975b62782bcf11faa0d2 | 10 | common.py | 119 | TST: Clean tests/plotting (#45992) | 39,621 | 0 | 104 | 73 | 26 | 164,924 | 29 | pandas | 17 | pandas/tests/plotting/common.py | Python | 9 | {
"docstring": "\n Check each axes has identical lines\n\n Parameters\n ----------\n xp : matplotlib Axes object\n rs : matplotlib Axes object\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 18,
"vocab_size": 14
} | https://github.com/pandas-dev/pandas.git |
|
4 | get_1x_lr_params | def get_1x_lr_params(model):
b = [model.xception_features]
for i in range(len(b)):
for k in b[i].parameters():
if k.requires_grad:
yield k
| 2e5d23ee0e7fc1fdd7ad2e615fd651655aeb0f5b | 12 | deeplab_xception.py | 71 | Graphonomy Face/Hair Segmentation added | 1,642 | 0 | 59 | 43 | 14 | 9,617 | 17 | insightface | 10 | reconstruction/ostec/external/graphonomy/FaceHairMask/deeplab_xception.py | Python | 6 | {
"docstring": "\n This generator returns all the parameters of the net except for\n the last classification layer. Note that for each batchnorm layer,\n requires_grad is set to False in deeplab_resnet.py, therefore this function does not return\n any batchnorm parameter\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 37,
"vocab_size": 33
} | https://github.com/deepinsight/insightface.git |
|
2 | parse_sysconfig_var | def parse_sysconfig_var(self) -> None:
defines = apache_util.parse_define_file(self.sysconfig_filep, "OPTIONS")
for k, v in defines.items():
self.variables[k] = v
| 7d9e9a49005de7961e84d2a7c608db57dbab3046 | 10 | override_centos.py | 65 | Add typing to certbot.apache (#9071)
* Add typing to certbot.apache
Co-authored-by: Adrien Ferrand <[email protected]> | 45,572 | 0 | 48 | 39 | 14 | 186,664 | 16 | certbot | 10 | certbot-apache/certbot_apache/_internal/override_centos.py | Python | 5 | {
"docstring": " Parses Apache CLI options from CentOS configuration file ",
"language": "en",
"n_whitespaces": 9,
"n_words": 8,
"vocab_size": 8
} | https://github.com/certbot/certbot.git |
|
69 | max_weight_matching | def max_weight_matching(G, maxcardinality=False, weight="weight"):
#
# The algorithm is taken from "Efficient Algorithms for Finding Maximum
# Matching in Graphs" by Zvi Galil, ACM Computing Surveys, 1986.
# It is based on the "blossom" method for finding augmenting paths and
# the "primal-dual" method for finding a matching of maximum weight, both
# methods invented by Jack Edmonds.
#
# A C program for maximum weight matching by Ed Rothberg was used
# extensively to validate this new code.
#
# Many terms used in the code comments are explained in the paper
# by Galil. You will probably need the paper to make sense of this code.
#
| 853fb4b27b547bf11761d73c1a62648701f3679f | 6 | matching.py | 38 | Added docstring examples to matching functions (#5617)
Co-authored-by: Dan Schult <[email protected]>
Co-authored-by: Ross Barnowski <[email protected]> | 42,021 | 0 | 151 | 1,118 | 74 | 176,653 | 109 | networkx | 4 | networkx/algorithms/matching.py | Python | 165 | {
"docstring": "Compute a maximum-weighted matching of G.\n\n A matching is a subset of edges in which no node occurs more than once.\n The weight of a matching is the sum of the weights of its edges.\n A maximal matching cannot add more edges and still be a matching.\n The cardinality of a matching is the number of matched edges.\n\n Parameters\n ----------\n G : NetworkX graph\n Undirected graph\n\n maxcardinality: bool, optional (default=False)\n If maxcardinality is True, compute the maximum-cardinality matching\n with maximum weight among all maximum-cardinality matchings.\n\n weight: string, optional (default='weight')\n Edge data key corresponding to the edge weight.\n If key not found, uses 1 as weight.\n\n\n Returns\n -------\n matching : set\n A maximal matching of the graph.\n\n Examples\n --------\n >>> G = nx.Graph()\n >>> edges = [(1, 2, 6), (1, 3, 2), (2, 3, 1), (2, 4, 7), (3, 5, 9), (4, 5, 3)]\n >>> G.add_weighted_edges_from(edges)\n >>> sorted(nx.max_weight_matching(G))\n [(2, 4), (5, 3)]\n\n Notes\n -----\n If G has edges with weight attributes the edge data are used as\n weight values else the weights are assumed to be 1.\n\n This function takes time O(number_of_nodes ** 3).\n\n If all edge weights are integers, the algorithm uses only integer\n computations. If floating point weights are used, the algorithm\n could return a slightly suboptimal matching due to numeric\n precision errors.\n\n This method is based on the \"blossom\" method for finding augmenting\n paths and the \"primal-dual\" method for finding a matching of maximum\n weight, both methods invented by Jack Edmonds [1]_.\n\n Bipartite graphs can also be matched using the functions present in\n :mod:`networkx.algorithms.bipartite.matching`.\n\n References\n ----------\n .. [1] \"Efficient Algorithms for Finding Maximum Matching in Graphs\",\n Zvi Galil, ACM Computing Surveys, 1986.\n ",
"language": "en",
"n_whitespaces": 429,
"n_words": 274,
"vocab_size": 173
} | https://github.com/networkx/networkx.git |
|
4 | make_action_immutable | def make_action_immutable(obj):
if isinstance(obj, np.ndarray):
obj.setflags(write=False)
return obj
elif isinstance(obj, OrderedDict):
return MappingProxyType(dict(obj))
elif isinstance(obj, dict):
return MappingProxyType(obj)
else:
return obj
| 242706922b44d4ba4e395deaf6e98b745474863b | 12 | numpy.py | 96 | [rllib] Fix linting (#24335)
#24262 broke linting. This fixes this. | 31,541 | 0 | 71 | 59 | 14 | 138,874 | 21 | ray | 10 | rllib/utils/numpy.py | Python | 10 | {
"docstring": "Flags actions immutable to notify users when trying to change\n them.\n\n Can also be used with any tree-like structure containing either\n dictionaries, numpy arrays or already immutable objects per se.\n Note, however that `tree.map_structure()` will in general not\n include the shallow object containing all others and therefore\n immutability will hold only for all objects contained in it.\n Use `tree.traverse(fun, action, top_down=False)` to include\n also the containing object.\n\n Args:\n obj: The object to be made immutable.\n\n Returns:\n The immutable object.\n\n Examples:\n >>> import tree\n >>> import numpy as np\n >>> arr = np.arange(1,10)\n >>> d = dict(a = 1, b = (arr, arr))\n >>> tree.traverse(make_action_immutable, d, top_down=False)\n ",
"language": "en",
"n_whitespaces": 191,
"n_words": 106,
"vocab_size": 79
} | https://github.com/ray-project/ray.git |
|
13 | execute_list_role | def execute_list_role(self):
path_found = False
role_found = False
warnings = []
roles_search_paths = context.CLIARGS['roles_path']
role_name = context.CLIARGS['role']
for path in roles_search_paths:
role_path = GalaxyCLI._resolve_path(path)
if os.path.isdir(path):
path_found = True
else:
warnings.append("- the configured path {0} does not exist.".format(path))
continue
if role_name:
# show the requested role, if it exists
gr = GalaxyRole(self.galaxy, self.lazy_role_api, role_name, path=os.path.join(role_path, role_name))
if os.path.isdir(gr.path):
role_found = True
display.display('# %s' % os.path.dirname(gr.path))
_display_role(gr)
break
warnings.append("- the role %s was not found" % role_name)
else:
if not os.path.exists(role_path):
warnings.append("- the configured path %s does not exist." % role_path)
continue
if not os.path.isdir(role_path):
warnings.append("- the configured path %s, exists, but it is not a directory." % role_path)
continue
display.display('# %s' % role_path)
path_files = os.listdir(role_path)
for path_file in path_files:
gr = GalaxyRole(self.galaxy, self.lazy_role_api, path_file, path=path)
if gr.metadata:
_display_role(gr)
# Do not warn if the role was found in any of the search paths
if role_found and role_name:
warnings = []
for w in warnings:
display.warning(w)
if not path_found:
raise AnsibleOptionsError("- None of the provided paths were usable. Please specify a valid path with --{0}s-path".format(context.CLIARGS['type']))
return 0
| cb2e434dd2359a9fe1c00e75431f4abeff7381e8 | 17 | galaxy.py | 465 | ansible-galaxy install - fix unnecessary api check when installing a role from git repo (#79090)
* delay server api evaluation until a GalaxyRole needs to make an api call for info, list, and install | 79,564 | 0 | 742 | 278 | 97 | 268,616 | 177 | ansible | 33 | lib/ansible/cli/galaxy.py | Python | 41 | {
"docstring": "\n List all roles installed on the local system or a specific role\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 12
} | https://github.com/ansible/ansible.git |
|
10 | localize_input | def localize_input(value, default=None):
if isinstance(value, str): # Handle strings first for performance reasons.
return value
elif isinstance(value, bool): # Don't treat booleans as numbers.
return str(value)
elif isinstance(value, (decimal.Decimal, float, int)):
return number_format(value)
elif isinstance(value, datetime.datetime):
format = default or get_format("DATETIME_INPUT_FORMATS")[0]
format = sanitize_strftime_format(format)
return value.strftime(format)
elif isinstance(value, datetime.date):
format = default or get_format("DATE_INPUT_FORMATS")[0]
format = sanitize_strftime_format(format)
return value.strftime(format)
elif isinstance(value, datetime.time):
format = default or get_format("TIME_INPUT_FORMATS")[0]
return value.strftime(format)
return value
@functools.lru_cache | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | @functools.lru_cache | 14 | formats.py | 250 | Refs #33476 -- Reformatted code with Black. | 51,614 | 1 | 174 | 152 | 40 | 206,662 | 72 | django | 20 | django/utils/formats.py | Python | 19 | {
"docstring": "\n Check if an input value is a localizable type and return it\n formatted with the appropriate formatting string of the current locale.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 22,
"vocab_size": 21
} | https://github.com/django/django.git |
3 | _process_state | def _process_state(self, entity_observation):
entity = entity_observation.entity_id
try:
if condition.state(self.hass, entity, [STATE_UNKNOWN, STATE_UNAVAILABLE]):
return None
return condition.state(self.hass, entity, entity_observation.to_state)
except ConditionError:
return None
| dd1463da287f591652e47b00eee0c5b77f5f5b7c | 10 | binary_sensor.py | 84 | Refactor bayesian observations using dataclass (#79590)
* refactor
* remove some changes
* remove typehint
* improve codestyle
* move docstring to comment
* < 88 chars
* avoid short var names
* more readable
* fix rename
* Update homeassistant/components/bayesian/helpers.py
Co-authored-by: epenet <[email protected]>
* Update homeassistant/components/bayesian/binary_sensor.py
Co-authored-by: epenet <[email protected]>
* Update homeassistant/components/bayesian/binary_sensor.py
Co-authored-by: epenet <[email protected]>
* no intermediate
* comment why set before list
Co-authored-by: epenet <[email protected]> | 87,639 | 0 | 98 | 55 | 17 | 288,481 | 22 | core | 12 | homeassistant/components/bayesian/binary_sensor.py | Python | 8 | {
"docstring": "Return True if state conditions are met, return False if they are not.\n\n Returns None if the state is unavailable.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 20,
"vocab_size": 16
} | https://github.com/home-assistant/core.git |
|
3 | pi | def pi(self):
total = 0.0
label_freqs = FreqDist(x["labels"] for x in self.data)
for k, f in label_freqs.items():
total += f**2
Ae = total / ((len(self.I) * len(self.C)) ** 2)
return (self.avg_Ao() - Ae) / (1 - Ae)
| 0fac0c0f8e4618c2bdd3d2137d5fb8a80f581246 | 14 | agreement.py | 128 | Update black to 22.3.0
The most recent release of Click (8.1.0) was breaking Black. See psf/black#2964 | 7,551 | 0 | 90 | 81 | 28 | 42,462 | 37 | nltk | 15 | nltk/metrics/agreement.py | Python | 7 | {
"docstring": "Scott 1955; here, multi-pi.\n Equivalent to K from Siegel and Castellan (1988).\n\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 12,
"vocab_size": 12
} | https://github.com/nltk/nltk.git |
|
1 | test_user_logout_all | def test_user_logout_all(self) -> None:
# Login in as the user
puppet_token = self._get_token()
# Test that we can successfully make a request
channel = self.make_request("GET", "devices", b"{}", access_token=puppet_token)
self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body)
# Logout all with the real user token
channel = self.make_request(
"POST", "logout/all", b"{}", access_token=self.other_user_tok
)
self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body)
# The puppet token should still work
channel = self.make_request("GET", "devices", b"{}", access_token=puppet_token)
self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body)
# .. but the real user's tokens shouldn't
channel = self.make_request(
"GET", "devices", b"{}", access_token=self.other_user_tok
)
self.assertEqual(HTTPStatus.UNAUTHORIZED, channel.code, msg=channel.json_body)
| 901b264c0c88f39cbfb8b2229e0dc57968882658 | 10 | test_user.py | 255 | Add type hints to `tests/rest/admin` (#11851) | 71,059 | 0 | 226 | 159 | 51 | 246,165 | 85 | synapse | 15 | tests/rest/admin/test_user.py | Python | 17 | {
"docstring": "Tests that the target user calling `/logout/all` does *not* expire\n the token.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 12,
"vocab_size": 11
} | https://github.com/matrix-org/synapse.git |
|
2 | create_vae_diffusers_config | def create_vae_diffusers_config(original_config):
vae_params = original_config.model.params.first_stage_config.params.ddconfig
_ = original_config.model.params.first_stage_config.params.embed_dim
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult]
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels)
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels)
config = dict(
sample_size=vae_params.resolution,
in_channels=vae_params.in_channels,
out_channels=vae_params.out_ch,
down_block_types=tuple(down_block_types),
up_block_types=tuple(up_block_types),
block_out_channels=tuple(block_out_channels),
latent_channels=vae_params.z_channels,
layers_per_block=vae_params.num_res_blocks,
)
return config
| 039958eae55ff0700cfb42a7e72739575ab341f1 | 11 | convert_original_stable_diffusion_to_diffusers.py | 193 | Stable diffusion text2img conversion script. (#154)
* begin text2img conversion script
* add fn to convert config
* create config if not provided
* update imports and use UNet2DConditionModel
* fix imports, layer names
* fix unet coversion
* add function to convert VAE
* fix vae conversion
* update main
* create text model
* update config creating logic for unet
* fix config creation
* update script to create and save pipeline
* remove unused imports
* fix checkpoint loading
* better name
* save progress
* finish
* up
* up
Co-authored-by: Patrick von Platen <[email protected]> | 120,913 | 0 | 124 | 125 | 31 | 336,767 | 41 | diffusers | 28 | scripts/convert_original_stable_diffusion_to_diffusers.py | Python | 17 | {
"docstring": "\n Creates a config for the diffusers based on the config of the LDM model.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 14,
"vocab_size": 11
} | https://github.com/huggingface/diffusers.git |
|
5 | __isub__ | def __isub__(self, other):
m = getmask(other)
if self._mask is nomask:
if m is not nomask and m.any():
self._mask = make_mask_none(self.shape, self.dtype)
self._mask += m
elif m is not nomask:
self._mask += m
other_data = getdata(other)
other_data = np.where(self._mask, other_data.dtype.type(0), other_data)
self._data.__isub__(other_data)
return self
| 8fced79a8c60d86aaaaf997aa861589336f7899c | 13 | core.py | 158 | MAINT: Fortify masked in-place ops against promotion warnings
These warnings are probably optional in the future. They should
not matter much (since the following is an in-place op), but
the `np.where` could upcast currently! | 38,627 | 0 | 151 | 100 | 26 | 160,410 | 43 | numpy | 17 | numpy/ma/core.py | Python | 12 | {
"docstring": "\n Subtract other from self in-place.\n\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 5,
"vocab_size": 5
} | https://github.com/numpy/numpy.git |
|
1 | mixin_head_parser | def mixin_head_parser(parser):
gp = add_arg_group(parser, title='Head')
gp.add_argument(
'--uses-before-address',
type=str,
help='The address of the uses-before runtime',
)
gp.add_argument(
'--uses-after-address',
type=str,
help='The address of the uses-before runtime',
)
gp.add_argument(
'--connection-list',
type=str,
help='dictionary JSON with a list of connections to configure',
)
gp.add_argument(
'--disable-reduce',
action='store_true',
default=False,
help='Disable the built-in reduce mechanism, set this if the reduction is to be handled by the Executor connected to this Head',
)
| c7ad27e5614dfb2b1684f4718c5508840cd55de0 | 10 | head.py | 137 | refactor: add disable_reduce args (#4424) | 2,054 | 0 | 186 | 80 | 44 | 11,483 | 65 | jina | 11 | jina/parsers/orchestrate/runtimes/head.py | Python | 23 | {
"docstring": "Mixing in arguments required by head pods and runtimes into the given parser.\n :param parser: the parser instance to which we add arguments\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 23,
"vocab_size": 21
} | https://github.com/jina-ai/jina.git |
|
3 | get_pe_matching_query | def get_pe_matching_query(amount_condition, account_from_to, transaction):
# get matching payment entries query
from_date = frappe.db.get_single_value('Bank Reconciliation Tool','bank_statement_from_date')
to_date = frappe.db.get_single_value('Bank Reconciliation Tool','bank_statement_to_date')
from_reference_date = frappe.db.get_single_value('Bank Reconciliation Tool','from_reference_date')
to_reference_date = frappe.db.get_single_value('Bank Reconciliation Tool','to_reference_date')
filtered_by_reference_date = frappe.db.get_single_value('Bank Reconciliation Tool','filtered_by_reference_date')
if transaction.deposit > 0:
currency_field = "paid_to_account_currency as currency"
else:
currency_field = "paid_from_account_currency as currency"
if (filtered_by_reference_date):
pe_data= f
else:
pe_data= f
return pe_data
| e5a1189becad071f54c727bc6c0dba16bea2a12f | 11 | bank_reconciliation_tool.py | 222 | Update bank_reconciliation_tool.py
Applying date filter on transactions and all the bank entries and also gives the filter the bank entries as per reference date. Sorted all transactions and entries as per date in ascending order.
Also added posting date columns in all bank entries and default checkbox tick of journal entry, hide the sales invoice and purchase invoice checkbox. | 15,082 | 0 | 45 | 101 | 38 | 69,682 | 59 | erpnext | 15 | erpnext/accounts/doctype/bank_reconciliation_tool/bank_reconciliation_tool.py | Python | 65 | {
"docstring": "\n\t\t\tSELECT\n\t\t\t\t(CASE WHEN reference_no=%(reference_no)s THEN 1 ELSE 0 END\n\t\t\t\t+ CASE WHEN (party_type = %(party_type)s AND party = %(party)s ) THEN 1 ELSE 0 END\n\t\t\t\t+ 1 ) AS rank,\n\t\t\t\t'Payment Entry' as doctype,\n\t\t\t\tname,\n\t\t\t\tpaid_amount,\n\t\t\t\treference_no,\n\t\t\t\treference_date,\n\t\t\t\tparty,\n\t\t\t\tparty_type,\n\t\t\t\tposting_date,\n\t\t\t\t{currency_field}\n\t\t\tFROM\n\t\t\t\t`tabPayment Entry`\n\t\t\tWHERE\n\t\t\t\tpaid_amount {amount_condition} %(amount)s\n\t\t\t\tAND docstatus = 1\n\t\t\t\tAND payment_type IN (%(payment_type)s, 'Internal Transfer')\n\t\t\t\tAND ifnull(clearance_date, '') = \"\"\n\t\t\t\tAND {account_from_to} = %(bank_account)s\n\t\t\t\tAND reference_date >= '{from_reference_date}'\n\t\t\t\tAND reference_date <= '{to_reference_date}'\t \n\t\t\t\t\n\t\t\t\n\t\t\tSELECT\n\t\t\t\t(CASE WHEN reference_no=%(reference_no)s THEN 1 ELSE 0 END\n\t\t\t\t+ CASE WHEN (party_type = %(party_type)s AND party = %(party)s ) THEN 1 ELSE 0 END\n\t\t\t\t+ 1 ) AS rank,\n\t\t\t\t'Payment Entry' as doctype,\n\t\t\t\tname,\n\t\t\t\tpaid_amount,\n\t\t\t\treference_no,\n\t\t\t\treference_date,\n\t\t\t\tparty,\n\t\t\t\tparty_type,\n\t\t\t\tposting_date,\n\t\t\t\t{currency_field}\n\t\t\tFROM\n\t\t\t\t`tabPayment Entry`\n\t\t\tWHERE\n\t\t\t\tpaid_amount {amount_condition} %(amount)s\n\t\t\t\tAND docstatus = 1\n\t\t\t\tAND payment_type IN (%(payment_type)s, 'Internal Transfer')\n\t\t\t\tAND ifnull(clearance_date, '') = \"\"\n\t\t\t\tAND {account_from_to} = %(bank_account)s\n\t\t\t\tAND posting_date >= '{from_date}'\n\t\t\t\tAND posting_date <= '{to_date}'\t \n\t\t\t\t\n\t\t\t",
"language": "en",
"n_whitespaces": 110,
"n_words": 152,
"vocab_size": 58
} | https://github.com/frappe/erpnext.git |
|
2 | set_client_cli_parser | def set_client_cli_parser(parser=None):
if not parser:
from jina.parsers.base import set_base_parser
parser = set_base_parser()
from jina.parsers.peapods.runtimes.remote import mixin_client_gateway_parser
from jina.parsers.client import (
mixin_client_features_parser,
mixin_comm_protocol_parser,
)
mixin_client_gateway_parser(parser)
mixin_client_features_parser(parser)
mixin_comm_protocol_parser(parser)
return parser
| cea300655ed8be70d74c390ca12e8b09fb741665 | 10 | __init__.py | 99 | refactor: use absolute imports (#4167) | 1,853 | 0 | 83 | 64 | 23 | 10,563 | 28 | jina | 13 | jina/parsers/__init__.py | Python | 13 | {
"docstring": "Set the parser for the cli client\n\n :param parser: an optional existing parser to build upon\n :return: the parser\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 19,
"vocab_size": 15
} | https://github.com/jina-ai/jina.git |
|
3 | get_delivered_items_cost | def get_delivered_items_cost():
dn_items = frappe.db.sql(
,
as_dict=1,
)
si_items = frappe.db.sql(
,
as_dict=1,
)
dn_item_map = {}
for item in dn_items:
dn_item_map.setdefault(item.project, item.amount)
for item in si_items:
dn_item_map.setdefault(item.project, item.amount)
return dn_item_map
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 10 | project_wise_stock_tracking.py | 116 | style: format code with black | 14,413 | 0 | 16 | 74 | 19 | 67,035 | 31 | erpnext | 12 | erpnext/projects/report/project_wise_stock_tracking/project_wise_stock_tracking.py | Python | 22 | {
"docstring": "select dn.project, sum(dn_item.base_net_amount) as amount\n\t\tfrom `tabDelivery Note` dn, `tabDelivery Note Item` dn_item\n\t\twhere dn.name = dn_item.parent and dn.docstatus = 1 and ifnull(dn.project, '') != ''\n\t\tgroup by dn.projectselect si.project, sum(si_item.base_net_amount) as amount\n\t\tfrom `tabSales Invoice` si, `tabSales Invoice Item` si_item\n\t\twhere si.name = si_item.parent and si.docstatus = 1 and si.update_stock = 1\n\t\tand si.is_pos = 1 and ifnull(si.project, '') != ''\n\t\tgroup by si.project",
"language": "en",
"n_whitespaces": 57,
"n_words": 65,
"vocab_size": 40
} | https://github.com/frappe/erpnext.git |
|
5 | set_location | def set_location(self, location):
# This puts the rectangle into figure-relative coordinates.
if isinstance(location, str):
_api.check_in_list(self._locstrings, location=location)
self._pos = 1. if location in ('top', 'right') else 0.
elif isinstance(location, numbers.Real):
self._pos = location
else:
raise ValueError(
f"location must be {self._locstrings[0]!r}, "
f"{self._locstrings[1]!r}, or a float, not {location!r}")
self._loc = location
if self._orientation == 'x':
# An x-secondary axes is like an inset axes from x = 0 to x = 1 and
# from y = pos to y = pos + eps, in the parent's transAxes coords.
bounds = [0, self._pos, 1., 1e-10]
else: # 'y'
bounds = [self._pos, 0, 1e-10, 1]
# this locator lets the axes move in the parent axes coordinates.
# so it never needs to know where the parent is explicitly in
# figure coordinates.
# it gets called in ax.apply_aspect() (of all places)
self.set_axes_locator(
_TransformedBoundsLocator(bounds, self._parent.transAxes))
| 8387676bc049d7b3e071846730c632e6ced137ed | 15 | _secondary_axes.py | 230 | Clean up code in SecondaryAxis | 23,720 | 0 | 363 | 130 | 97 | 109,724 | 142 | matplotlib | 19 | lib/matplotlib/axes/_secondary_axes.py | Python | 17 | {
"docstring": "\n Set the vertical or horizontal location of the axes in\n parent-normalized coordinates.\n\n Parameters\n ----------\n location : {'top', 'bottom', 'left', 'right'} or float\n The position to put the secondary axis. Strings can be 'top' or\n 'bottom' for orientation='x' and 'right' or 'left' for\n orientation='y'. A float indicates the relative position on the\n parent axes to put the new axes, 0.0 being the bottom (or left)\n and 1.0 being the top (or right).\n ",
"language": "en",
"n_whitespaces": 170,
"n_words": 71,
"vocab_size": 51
} | https://github.com/matplotlib/matplotlib.git |
|
8 | load_and_dump | def load_and_dump(self) -> None:
with ExitStack() as stack:
# set env vars
stack.enter_context(change_env('JINA_FULL_CLI', 'true'))
# change directory to `workspace`
stack.enter_context(change_cwd(get_workspace_path(self.workspace_id)))
# load and build
f: Flow = Flow.load_config(
str(self.localpath()), substitute=True, context=self.envs
).build()
# get & set the ports mapping, set `runs_in_docker`
port_mapping = []
port_mapping.append(
PortMapping(
deployment_name='gateway',
pod_name='gateway',
ports=Ports(port_expose=f.port_expose),
)
)
for deployment_name, deployment in f._deployment_nodes.items():
runtime_cls = update_runtime_cls(deployment.args, copy=True).runtime_cls
if runtime_cls in ['WorkerRuntime'] + list(
GATEWAY_RUNTIME_DICT.values()
):
current_ports = Ports()
for port_name in Ports.__fields__:
setattr(
current_ports,
port_name,
getattr(deployment.args, port_name, None),
)
port_mapping.append(
PortMapping(
deployment_name=deployment_name,
pod_name='',
ports=current_ports,
)
)
elif (
runtime_cls in ['ContainerRuntime']
and hasattr(deployment.args, 'replicas')
and deployment.args.replicas > 1
):
for pod_args in [deployment.pod_args['head']]:
self._update_port_mapping(
pod_args, deployment_name, port_mapping
)
self.ports = port_mapping
# save to a new file & set it for partial-daemon
f.save_config(filename=self.newfile)
self.params.uses = self.newname
| 13edc16d806fb5d77a6849551178ccc75937f25f | 18 | dependencies.py | 436 | refactor: rename pod to deployment (#4230)
* refactor: rename pod to deployment
* style: fix overload and cli autocomplete
* fix: undo daemon mistake
* refactor: leftover cleanup
* fix: more test fixes
* fix: more fixes
* fix: more fixes
* fix: more fixes
* fix: more tests
* fix: fix more tests
* refactor: fix more tests
* refactor: more tests fixes
* refactor: rename pea to pod
* refactor: adjust docs
* refactor: complete pea renaming
* refactor: more fixes
* fix: pea_type in k8s yamls
* fix: adjust pod args name
* refactor: rename peapods parser folder
* fix: da init
Co-authored-by: Jina Dev Bot <[email protected]> | 1,916 | 0 | 994 | 267 | 92 | 10,804 | 129 | jina | 51 | daemon/api/dependencies.py | Python | 63 | {
"docstring": "\n every Flow created inside JinaD lives inside a container. It is important to know the\n list of ports to be published with localhost before actually starting the container.\n\n 1. `load` the flow yaml here.\n - yaml is stored in `workspace` directory, so we'll `cd` there\n - yaml might include env vars. so we'll set them (passed via query params)\n 2. `build` the Flow so that `gateway` gets added.\n - get the list of ports to be published (port_expose, port_in, port_out, port_ctrl)\n - ports need to be published for gateway & executors that are not `ContainerRuntime` or `JinadRuntime` based\n - Deployment level args for ports are enough, as we don't need to publish Pod ports\n 3. `save` the Flow config.\n - saves port configs of all `executors` into the new yaml.\n - set `JINA_FULL_CLI` envvar, so that `gateway` args are also added.\n - save the config into a new file.\n 4. pass this new file as filename to `partial-daemon` to start the Flow\n ",
"language": "en",
"n_whitespaces": 300,
"n_words": 162,
"vocab_size": 103
} | https://github.com/jina-ai/jina.git |
|
7 | search | def search(self, content):
result = []
length = len(content)
for start in range(length):
for end in range(start + 1, length + 1):
pos = self.tree.get(content[start:end], -1)
if pos == -1:
break
if pos and (len(result) == 0 or end > result[-1][1]):
result.append((start, end))
return result
| 621357338437ee420eabbbf5ab19065bc85e73a5 | 16 | utils.py | 156 | Update neural search readme and Add Paddle Serving Support (#1558)
* add recall inference similarity
* update examples
* updatea readme
* update dir name
* update neural search readme
* update milvus readme
* update domain adaptive pretraining readme
* fix the mistakes
* update readme
* add recall Paddle Serving Support
* update readme
* update readme and format the code
* reformat the files
* move the files
* reformat the code
* remove redundant code
Co-authored-by: Zeyu Chen <[email protected]>
Co-authored-by: tianxin <[email protected]> | 118,098 | 0 | 174 | 100 | 33 | 322,216 | 45 | PaddleNLP | 13 | paddlenlp/taskflow/utils.py | Python | 11 | {
"docstring": "Backward maximum matching\n\n Args:\n content (str): string to be searched\n Returns:\n List[Tuple]: list of maximum matching words, each element represents \n the starting and ending position of the matching string.\n ",
"language": "en",
"n_whitespaces": 88,
"n_words": 29,
"vocab_size": 24
} | https://github.com/PaddlePaddle/PaddleNLP.git |
|
2 | send_gstin_reminder | def send_gstin_reminder(party_type, party):
frappe.has_permission(party_type, throw=True)
email = _send_gstin_reminder(party_type, party)
if email:
frappe.msgprint(_("Reminder to update GSTIN Sent"), title="Reminder sent", indicator="green")
| 494bd9ef78313436f0424b918f200dab8fc7c20b | 12 | gst_settings.py | 78 | style: format code with black | 14,421 | 0 | 14 | 46 | 19 | 67,056 | 19 | erpnext | 12 | erpnext/regional/doctype/gst_settings/gst_settings.py | Python | 5 | {
"docstring": "Send GSTIN reminder to one party (called from Customer, Supplier form)",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | https://github.com/frappe/erpnext.git |
|
7 | serialize | def serialize(items):
data = QByteArray()
stream = QDataStream(data, QIODevice.OpenModeFlag.ReadWrite)
cur_user_data = None
current_idx = None
for i, item in enumerate(items):
if item.active:
if current_idx is not None:
raise ValueError("Multiple active items ({} and {}) "
"found!".format(current_idx, i))
current_idx = i
cur_user_data = item.user_data
if items:
if current_idx is None:
raise ValueError("No active item found!")
else:
current_idx = -1
### src/core/web_contents_adapter.cpp serializeNavigationHistory
# sample data:
# kHistoryStreamVersion
stream.writeInt(HISTORY_STREAM_VERSION) # \x00\x00\x00\x03
# count
stream.writeInt(len(items)) # \x00\x00\x00\x01
# currentIndex
stream.writeInt(current_idx) # \x00\x00\x00\x00
for item in items:
_serialize_item(item, stream)
stream.device().reset()
qtutils.check_qdatastream(stream)
return stream, data, cur_user_data
| 0877fb0d78635692e481c8bde224fac5ad0dd430 | 17 | tabhistory.py | 246 | Run scripts/dev/rewrite_enums.py | 117,553 | 0 | 337 | 143 | 60 | 321,126 | 91 | qutebrowser | 26 | qutebrowser/browser/webengine/tabhistory.py | Python | 25 | {
"docstring": "Serialize a list of TabHistoryItems to a data stream.\n\n Args:\n items: An iterable of TabHistoryItems.\n\n Return:\n A (stream, data, user_data) tuple.\n stream: The reset QDataStream.\n data: The QByteArray with the raw data.\n cur_user_data: The user data for the current item or None.\n\n Warning:\n If 'data' goes out of scope, reading from 'stream' will result in a\n segfault!\n ",
"language": "en",
"n_whitespaces": 130,
"n_words": 57,
"vocab_size": 49
} | https://github.com/qutebrowser/qutebrowser.git |
|
2 | check_query_parameters | def check_query_parameters(self, queryset):
query_parameters = set(self.request.GET.keys())
# All query parameters must be either a database field or an operation
allowed_query_parameters = set(
self.get_available_fields(queryset.model, db_fields_only=True)
).union(self.known_query_parameters)
unknown_parameters = query_parameters - allowed_query_parameters
if unknown_parameters:
raise BadRequestError(
"query parameter is not an operation or a recognised field: %s"
% ", ".join(sorted(unknown_parameters))
)
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 14 | views.py | 117 | Reformat with black | 15,918 | 0 | 161 | 69 | 41 | 72,960 | 49 | wagtail | 18 | wagtail/api/v2/views.py | Python | 11 | {
"docstring": "\n Ensure that only valid query parameters are included in the URL.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | https://github.com/wagtail/wagtail.git |
|
2 | request | def request(self, method, path, data=None, params=None, **kwargs):
request_spec = self.request_hook(method, path, data, params, **kwargs)
if "headers" not in request_spec:
request_spec["headers"] = {}
# Force adherence to the GDPR compliant API conventions.
# See
# https://developer.atlassian.com/cloud/jira/platform/deprecation-notice-user-privacy-api-migration-guide
request_spec["headers"]["x-atlassian-force-account-id"] = "true"
return self._request(**request_spec)
| 2fbf550ec05c8501cbc9eca62e73526e717dcbdf | 10 | client.py | 113 | ref(Jira): Split Jira Cloud and Jira Server (#37034)
* Split Jira Cloud and Jira Server | 19,008 | 0 | 107 | 68 | 35 | 93,686 | 40 | sentry | 10 | src/sentry/integrations/jira/client.py | Python | 6 | {
"docstring": "\n Use the request_hook method for our specific style of Jira to\n add authentication data and transform parameters.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 17
} | https://github.com/getsentry/sentry.git |
|
1 | nullify_connected_endpoints | def nullify_connected_endpoints(instance, **kwargs):
model = instance.termination_type.model_class()
model.objects.filter(pk=instance.termination_id).update(_link_peer_type=None, _link_peer_id=None)
| 8bc6d8cb231ad45cd8b97ffb26cc3d989c60c277 | 11 | signals.py | 67 | Introduce CablePath.retrace() to handle deleted cables | 77,858 | 0 | 17 | 41 | 8 | 264,840 | 8 | netbox | 13 | netbox/dcim/signals.py | Python | 3 | {
"docstring": "\n Disassociate the Cable from the termination object.\n ",
"language": "en",
"n_whitespaces": 14,
"n_words": 7,
"vocab_size": 6
} | https://github.com/netbox-community/netbox.git |
|
7 | getModuleImportableFilesHash | def getModuleImportableFilesHash(full_name):
package_name = full_name.getPackageName()
paths = getPackageSearchPath(None)
if package_name is not None:
paths += getPackageSearchPath(package_name)
all_suffixes = getAllModuleSuffixes()
result_hash = Hash()
for path in paths:
if not os.path.isdir(path):
continue
for fullname, filename in listDir(path):
if isPackageDir(fullname) or filename.endswith(all_suffixes):
result_hash.updateFromValues(filename, b"\0")
return result_hash.asHexDigest()
| 840959fbec6d897aa7e51f63e1c34e46402ced8b | 14 | Caching.py | 159 | Optimization: Make experimental caching bytecode demotion work. | 42,780 | 0 | 125 | 96 | 33 | 178,646 | 43 | Nuitka | 20 | nuitka/Caching.py | Python | 14 | {
"docstring": "Calculate hash value of packages importable for a module of this name.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | https://github.com/Nuitka/Nuitka.git |
|
2 | get_summary_stats | def get_summary_stats(self) -> List[dict]:
logger.debug("Compiling sessions summary data")
self._get_time_stats()
self._get_per_session_stats()
if not self._per_session_stats:
return self._per_session_stats
total_stats = self._total_stats()
retval = self._per_session_stats + [total_stats]
retval = self._format_stats(retval)
logger.debug("Final stats: %s", retval)
return retval
| afec52309326304f4323029039e49bfcf928ef43 | 8 | stats.py | 122 | Bugfixes:
- Stats graph - Handle NaNs in data
- logger - de-elevate matplotlib font messages | 20,168 | 0 | 113 | 71 | 26 | 100,713 | 32 | faceswap | 13 | lib/gui/analysis/stats.py | Python | 22 | {
"docstring": " Compile the individual session statistics and calculate the total.\n\n Format the stats for display\n\n Returns\n -------\n list\n A list of summary statistics dictionaries containing the Session ID, start time, end\n time, elapsed time, rate, batch size and number of iterations for each session id\n within the loaded data as well as the totals.\n ",
"language": "en",
"n_whitespaces": 122,
"n_words": 53,
"vocab_size": 39
} | https://github.com/deepfakes/faceswap.git |
|
2 | zero_module | def zero_module(module):
for p in module.parameters():
p.detach().zero_()
return module
| f4d6e64cdc132ae868699a0ba442f4ab1d304a14 | 11 | nn.py | 46 | add disco_diffusion_cnclip_vitb16 module | 9,933 | 0 | 25 | 26 | 9 | 49,823 | 9 | PaddleHub | 6 | modules/image/text_to_image/disco_diffusion_cnclip_vitb16/reverse_diffusion/model/nn.py | Python | 4 | {
"docstring": "\n Zero out the parameters of a module and return it.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 10
} | https://github.com/PaddlePaddle/PaddleHub.git |
|
6 | normalize_drive | def normalize_drive(path):
if os.name != "nt" or not isinstance(path, str):
return path
drive, tail = os.path.splitdrive(path)
# Only match (lower cased) local drives (e.g. 'c:'), not UNC mounts.
if drive.islower() and len(drive) == 2 and drive[1] == ":":
return f"{drive.upper()}{tail}"
return path
@contextmanager | 3387881a6d4fc2d8bdc0f05c484cb2f7222acfb8 | @contextmanager | 11 | shell.py | 123 | Code reorg utils into utils module reduces complexity (#4990)
* Split apart the massive utils.py into a utils module | 3,025 | 1 | 74 | 61 | 36 | 19,569 | 43 | pipenv | 13 | pipenv/utils/shell.py | Python | 7 | {
"docstring": "Normalize drive in path so they stay consistent.\n\n This currently only affects local drives on Windows, which can be\n identified with either upper or lower cased drive names. The case is\n always converted to uppercase because it seems to be preferred.\n\n See: <https://github.com/pypa/pipenv/issues/1218>\n ",
"language": "en",
"n_whitespaces": 58,
"n_words": 43,
"vocab_size": 40
} | https://github.com/pypa/pipenv.git |
6 | check_models_are_tested | def check_models_are_tested(module, test_file):
# XxxPreTrainedModel are not tested
defined_models = get_models(module)
tested_models = find_tested_models(test_file)
if tested_models is None:
if test_file.replace(os.path.sep, "/") in TEST_FILES_WITH_NO_COMMON_TESTS:
return
return [
f"{test_file} should define `all_model_classes` to apply common tests to the models it tests. "
+ "If this intentional, add the test filename to `TEST_FILES_WITH_NO_COMMON_TESTS` in the file "
+ "`utils/check_repo.py`."
]
failures = []
for model_name, _ in defined_models:
if model_name not in tested_models and model_name not in IGNORE_NON_TESTED:
failures.append(
f"{model_name} is defined in {module.__name__} but is not tested in "
+ f"{os.path.join(PATH_TO_TESTS, test_file)}. Add it to the all_model_classes in that file."
+ "If common tests should not applied to that model, add its name to `IGNORE_NON_TESTED`"
+ "in the file `utils/check_repo.py`."
)
return failures
| 1f9e862507704774334dc22a84724e74f52232b7 | 19 | check_repo.py | 185 | Update check_models_are_tested to deal with Windows path (#16973)
* fix
* Apply suggestions from code review
Co-authored-by: ydshieh <[email protected]>
Co-authored-by: Sylvain Gugger <[email protected]> | 6,780 | 0 | 299 | 89 | 74 | 37,451 | 121 | transformers | 20 | utils/check_repo.py | Python | 21 | {
"docstring": "Check models defined in module are tested in test_file.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | https://github.com/huggingface/transformers.git |
|
3 | test_with_slicing | def test_with_slicing(metrics_message, setup_slicing) -> None:
org_id = metrics_message.payload.routing_header.get("org_id")
router = SlicingRouter("sliceable")
route = router.get_route_for_message(metrics_message)
if int(org_id) % SENTRY_SLICING_LOGICAL_PARTITION_COUNT < 128:
assert route.topic.name == "sliced_topic_0"
elif int(org_id) % SENTRY_SLICING_LOGICAL_PARTITION_COUNT < 256:
assert route.topic.name == "sliced_topic_1"
else:
assert False, "unexpected org_id"
router.shutdown()
| e1c5b9ca3bdeadcfdb328dc42740923038d6eb94 | 11 | test_slicing_router.py | 144 | feat(indexer): Allow routing of messages (#40776)
### Context
In order to support slicing in Snuba, the upstream dependency of Snuba
i.e. Sentry metrics indexer needs to route messages to different slices.
The current implementation is hardcoded to send messages on a single
destination topic.
### Implementation
The way to support sending messages to different slices is by creating a
new abstraction called RoutingProducer. The routing producer handles all
the kafka specifics and delegates the routing decision to an abstract
`MessageRouter`. The `MessageRouter` returns a route which encapsulates
the producer and topic on which the data would be sent.
The `SlicingRouter` will use information about slicing from config and
populate all the sliced producers and topics. It will then rely on the
presence of `org_id` in the Kafkapayload header to make decisions on how
to route the message. The routing decision is similar to what is made in
Snuba.
**The current PR does not plug in the code with the consumer. There
would be a separate PR which would handle that.**
Co-authored-by: getsantry[bot] <66042841+getsantry[bot]@users.noreply.github.com> | 18,423 | 0 | 85 | 83 | 30 | 88,664 | 40 | sentry | 16 | tests/sentry/sentry_metrics/consumers/test_slicing_router.py | Python | 15 | {
"docstring": "\n With partitioning settings, the SlicingRouter should route to the correct topic\n based on the org_id header.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 16,
"vocab_size": 14
} | https://github.com/getsentry/sentry.git |
|
3 | get_dependencies | def get_dependencies(dsk, key=None, task=no_default, as_list=False):
if key is not None:
arg = dsk[key]
elif task is not no_default:
arg = task
else:
raise ValueError("Provide either key or task")
return keys_in_tasks(dsk, [arg], as_list=as_list)
| cccb9d8d8e33a891396b1275c2448c352ef40c27 | 11 | core.py | 92 | absolufy-imports - No relative - PEP8 (#8796)
Conversation in https://github.com/dask/distributed/issues/5889 | 36,541 | 0 | 68 | 59 | 26 | 156,079 | 32 | dask | 9 | dask/core.py | Python | 8 | {
"docstring": "Get the immediate tasks on which this task depends\n\n Examples\n --------\n >>> inc = lambda x: x + 1\n >>> add = lambda x, y: x + y\n >>> dsk = {'x': 1,\n ... 'y': (inc, 'x'),\n ... 'z': (add, 'x', 'y'),\n ... 'w': (inc, 'z'),\n ... 'a': (add, (inc, 'x'), 1)}\n\n >>> get_dependencies(dsk, 'x')\n set()\n\n >>> get_dependencies(dsk, 'y')\n {'x'}\n\n >>> get_dependencies(dsk, 'z') # doctest: +SKIP\n {'x', 'y'}\n\n >>> get_dependencies(dsk, 'w') # Only direct dependencies\n {'z'}\n\n >>> get_dependencies(dsk, 'a') # Ignore non-keys\n {'x'}\n\n >>> get_dependencies(dsk, task=(inc, 'x')) # provide tasks directly\n {'x'}\n ",
"language": "en",
"n_whitespaces": 190,
"n_words": 92,
"vocab_size": 61
} | https://github.com/dask/dask.git |
|
3 | start | def start(self, page, user):
state = WorkflowState(
page=page,
workflow=self,
status=WorkflowState.STATUS_IN_PROGRESS,
requested_by=user,
)
state.save()
state.update(user=user)
workflow_submitted.send(sender=state.__class__, instance=state, user=user)
next_task_data = None
if state.current_task_state:
next_task_data = {
"id": state.current_task_state.task.id,
"title": state.current_task_state.task.name,
}
log(
instance=page,
action="wagtail.workflow.start",
data={
"workflow": {
"id": self.id,
"title": self.name,
"status": state.status,
"next": next_task_data,
"task_state_id": state.current_task_state.id
if state.current_task_state
else None,
}
},
revision=page.get_latest_revision(),
user=user,
)
return state
| d10f15e55806c6944827d801cd9c2d53f5da4186 | 15 | __init__.py | 260 | Reformat with black | 16,126 | 0 | 459 | 166 | 47 | 73,815 | 57 | wagtail | 27 | wagtail/core/models/__init__.py | Python | 34 | {
"docstring": "Initiates a workflow by creating an instance of ``WorkflowState``",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/wagtail/wagtail.git |
|
2 | unpack | def unpack(self, location, url):
# type: (str, HiddenText) -> None
if os.path.exists(location):
rmtree(location)
self.obtain(location, url=url)
| f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | 9 | versioncontrol.py | 56 | upd; format | 12,546 | 0 | 54 | 34 | 15 | 61,400 | 15 | transferlearning | 9 | .venv/lib/python3.8/site-packages/pip/_internal/vcs/versioncontrol.py | Python | 4 | {
"docstring": "\n Clean up current location and download the url repository\n (and vcs infos) into location\n\n :param url: the repository URL starting with a vcs prefix.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 24,
"vocab_size": 20
} | https://github.com/jindongwang/transferlearning.git |
|
5 | mutual_info_score | def mutual_info_score(labels_true, labels_pred, *, contingency=None):
if contingency is None:
labels_true, labels_pred = check_clusterings(labels_true, labels_pred)
contingency = contingency_matrix(labels_true, labels_pred, sparse=True)
else:
contingency = check_array(
contingency,
accept_sparse=["csr", "csc", "coo"],
dtype=[int, np.int32, np.int64],
)
if isinstance(contingency, np.ndarray):
# For an array
nzx, nzy = np.nonzero(contingency)
nz_val = contingency[nzx, nzy]
else:
# For a sparse matrix
nzx, nzy, nz_val = sp.find(contingency)
contingency_sum = contingency.sum()
pi = np.ravel(contingency.sum(axis=1))
pj = np.ravel(contingency.sum(axis=0))
# Since MI <= min(H(X), H(Y)), any labelling with zero entropy, i.e. containing a
# single cluster, implies MI = 0
if pi.size == 1 or pj.size == 1:
return 0.0
log_contingency_nm = np.log(nz_val)
contingency_nm = nz_val / contingency_sum
# Don't need to calculate the full outer product, just for non-zeroes
outer = pi.take(nzx).astype(np.int64, copy=False) * pj.take(nzy).astype(
np.int64, copy=False
)
log_outer = -np.log(outer) + log(pi.sum()) + log(pj.sum())
mi = (
contingency_nm * (log_contingency_nm - log(contingency_sum))
+ contingency_nm * log_outer
)
mi = np.where(np.abs(mi) < np.finfo(mi.dtype).eps, 0.0, mi)
return np.clip(mi.sum(), 0.0, None)
| 8256a48519b7ff0a29c46862de533cefa9ad7f48 | 14 | _supervised.py | 488 | MAINT Parameters validation for metrics.mutual_info_score (#25243) | 77,010 | 0 | 344 | 312 | 111 | 261,808 | 157 | scikit-learn | 43 | sklearn/metrics/cluster/_supervised.py | Python | 32 | {
"docstring": "Mutual Information between two clusterings.\n\n The Mutual Information is a measure of the similarity between two labels\n of the same data. Where :math:`|U_i|` is the number of the samples\n in cluster :math:`U_i` and :math:`|V_j|` is the number of the\n samples in cluster :math:`V_j`, the Mutual Information\n between clusterings :math:`U` and :math:`V` is given as:\n\n .. math::\n\n MI(U,V)=\\\\sum_{i=1}^{|U|} \\\\sum_{j=1}^{|V|} \\\\frac{|U_i\\\\cap V_j|}{N}\n \\\\log\\\\frac{N|U_i \\\\cap V_j|}{|U_i||V_j|}\n\n This metric is independent of the absolute values of the labels:\n a permutation of the class or cluster label values won't change the\n score value in any way.\n\n This metric is furthermore symmetric: switching :math:`U` (i.e\n ``label_true``) with :math:`V` (i.e. ``label_pred``) will return the\n same score value. This can be useful to measure the agreement of two\n independent label assignments strategies on the same dataset when the\n real ground truth is not known.\n\n Read more in the :ref:`User Guide <mutual_info_score>`.\n\n Parameters\n ----------\n labels_true : array-like of shape (n_samples,), dtype=integral\n A clustering of the data into disjoint subsets, called :math:`U` in\n the above formula.\n\n labels_pred : array-like of shape (n_samples,), dtype=integral\n A clustering of the data into disjoint subsets, called :math:`V` in\n the above formula.\n\n contingency : {array-like, sparse matrix} of shape \\\n (n_classes_true, n_classes_pred), default=None\n A contingency matrix given by the :func:`contingency_matrix` function.\n If value is ``None``, it will be computed, otherwise the given value is\n used, with ``labels_true`` and ``labels_pred`` ignored.\n\n Returns\n -------\n mi : float\n Mutual information, a non-negative value, measured in nats using the\n natural logarithm.\n\n See Also\n --------\n adjusted_mutual_info_score : Adjusted against chance Mutual Information.\n normalized_mutual_info_score : Normalized Mutual Information.\n\n Notes\n -----\n The logarithm used is the natural logarithm (base-e).\n ",
"language": "en",
"n_whitespaces": 446,
"n_words": 267,
"vocab_size": 152
} | https://github.com/scikit-learn/scikit-learn.git |
|
2 | _load_own_variables | def _load_own_variables(self, store):
for i, variable in enumerate(self.variables()):
variable.assign(store[str(i)])
base_optimizer_keyword_args =
@keras_export(
"keras.optimizers.Optimizer",
"keras.optimizers.experimental.Optimizer",
v1=[],
) | 2851235d5bc1c6603a97d7efffc7649b0a84b826 | @keras_export(
"keras.optimizers.Optimizer",
"keras.optimizers.experimental.Optimizer",
v1=[],
) | 12 | optimizer.py | 86 | Use a single h5 file for all numerical state in the model.
The modular design enables us to easily swap out the h5 file storage with any other form of storage (e.g. npz or tensorstore) in the future. Just implement a new IOHandler for the new storage system.
PiperOrigin-RevId: 479718541 | 83,263 | 1 | 48 | 34 | 16 | 280,118 | 16 | keras | 12 | keras/optimizers/optimizer_experimental/optimizer.py | Python | 3 | {
"docstring": "Set the state of this optimizer object.name: String. The name to use\n for momentum accumulator weights created by\n the optimizer.\n weight_decay: Float, defaults to None. If set, weight decay is applied.\n clipnorm: Float. If set, the gradient of each weight is individually\n clipped so that its norm is no higher than this value.\n clipvalue: Float. If set, the gradient of each weight is clipped to be no\n higher than this value.\n global_clipnorm: Float. If set, the gradient of all weights is clipped so\n that their global norm is no higher than this value.\n use_ema: Boolean, defaults to False. If True, exponential moving average\n (EMA) is applied. EMA consists of computing an exponential moving\n average of the weights of the model (as the weight values change after\n each training batch), and periodically overwriting the weights with\n their moving average.\n ema_momentum: Float, defaults to 0.99. Only used if `use_ema=True`. This is # noqa: E501\n the momentum to use when computing the EMA of the model's weights:\n `new_average = ema_momentum * old_average + (1 - ema_momentum) *\n current_variable_value`.\n ema_overwrite_frequency: Int or None, defaults to None. Only used if\n `use_ema=True`. Every `ema_overwrite_frequency` steps of iterations, we\n overwrite the model variable by its moving average. If None, the optimizer # noqa: E501\n does not overwrite model variables in the middle of training, and you\n need to explicitly overwrite the variables at the end of training\n by calling `optimizer.finalize_variable_values()` (which updates the model # noqa: E501\n variables in-place). When using the built-in `fit()` training loop, this\n happens automatically after the last epoch, and you don't need to do\n anything.\n jit_compile: Boolean, defaults to True. If True, the optimizer will use XLA # noqa: E501\n compilation. If no GPU device is found, this flag will be ignored.\n **kwargs: keyword arguments only used for backward compatibility.",
"language": "en",
"n_whitespaces": 494,
"n_words": 298,
"vocab_size": 151
} | https://github.com/keras-team/keras.git |
2 | test_sessions_metrics_equal_num_keys | def test_sessions_metrics_equal_num_keys(self):
empty_groupbyes = ["project", "release", "environment", "session.status"]
interval_days = "1d"
for groupby in empty_groupbyes:
with patch(
"sentry.api.endpoints.organization_sessions.release_health",
SessionsReleaseHealthBackend(),
):
sessions_data = result_sorted(self.get_sessions_data(groupby, interval_days))
with patch(
"sentry.release_health.metrics_sessions_v2.indexer.resolve", MockIndexer().resolve
), patch(
"sentry.api.endpoints.organization_sessions.release_health",
MetricsReleaseHealthBackend(),
):
metrics_data = result_sorted(self.get_sessions_data(groupby, interval_days))
errors = compare_results(
sessions=sessions_data,
metrics=metrics_data,
rollup=interval_days * 24 * 60 * 60, # days to seconds
)
assert len(errors) == 0
| cfdb7fdc1fef7f8a364bbfef050cdcfc66c82371 | 14 | test_metrics_sessions_v2.py | 195 | fix(metrics): Zero-fill response when there's no data [INGEST-941] (#32157)
When there isn't any metrics data, the `groups` of the response is empty.
However, the absence of data must be represented with an appropriate value.
For example, `count_unique(user)` must return `0` when there aren't any
users, instead of returning no data. The value representing the absence of
data is `0` for sums and counts, and `None` for everything else
(such as `p50`). | 19,338 | 0 | 325 | 114 | 45 | 96,684 | 58 | sentry | 20 | tests/sentry/release_health/test_metrics_sessions_v2.py | Python | 22 | {
"docstring": "\n Tests whether the number of keys in the metrics implementation of\n sessions data is the same as in the sessions implementation.\n\n Runs twice. Firstly, against sessions implementation to populate the\n cache. Then, against the metrics implementation, and compares with\n cached results.\n ",
"language": "en",
"n_whitespaces": 84,
"n_words": 41,
"vocab_size": 29
} | https://github.com/getsentry/sentry.git |
|
1 | get_linear_schedule_with_warmup | def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
| 71289ba06ea897270ad6de0ea7ff641f4a7b246c | 6 | optimization.py | 24 | add lr schedule utils | 120,727 | 0 | 8 | 26 | 5 | 335,246 | 5 | diffusers | 5 | src/diffusers/optimization.py | Python | 3 | {
"docstring": "\n Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after\n a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.\n\n Args:\n optimizer ([`~torch.optim.Optimizer`]):\n The optimizer for which to schedule the learning rate.\n num_warmup_steps (`int`):\n The number of steps for the warmup phase.\n num_training_steps (`int`):\n The total number of training steps.\n last_epoch (`int`, *optional*, defaults to -1):\n The index of the last epoch when resuming training.\n\n Return:\n `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.\n ",
"language": "en",
"n_whitespaces": 185,
"n_words": 90,
"vocab_size": 57
} | https://github.com/huggingface/diffusers.git |
|
6 | _dedupe_indices | def _dedupe_indices(new, exclude):
exclude = set(exclude)
dums_new = set(get_dummy_indices(new))
conflicts = dums_new.intersection(exclude)
if len(conflicts) == 0:
return None
exclude.update(dums_new)
self_args_free = [(i, None) for i in exclude]
gen = _IndexStructure._get_generator_for_dummy_indices(self_args_free)
repl = {}
for d in conflicts:
if -d in repl.keys():
continue
newname = gen(d.tensor_index_type)
new_d = d.func(newname, *d.args[1:])
repl[d] = new_d
repl[-d] = -new_d
if len(repl) == 0:
return None
new_renamed = new._replace_indices(repl)
return new_renamed
| 22174995eac1f437c5f4abe0232760877daf586f | 13 | tensor.py | 240 | TensMul._dedupe_indices: remove index_structure arg
_get_generator_for_dummy_indices is a staticmethod, and so I can just
call _IndexStructure._get_generator_for_dummy_indices | 49,714 | 0 | 257 | 148 | 44 | 200,579 | 66 | sympy | 25 | sympy/tensor/tensor.py | Python | 26 | {
"docstring": "\n exclude: set\n new: TensExpr\n\n If ``new`` has any dummy indices that are in ``exclude``, return a version\n of new with those indices replaced. If no replacements are needed,\n return None\n\n \n ``self_args_free`` is to be passed to ``_IndexStructure._get_generator_for_dummy_indices()``.\n Since the latter does not use the index position for anything, we just\n set it as ``None`` here.\n ",
"language": "en",
"n_whitespaces": 127,
"n_words": 55,
"vocab_size": 48
} | https://github.com/sympy/sympy.git |
|
9 | tls_session_update | def tls_session_update(self, msg_str):
super(TLS13ClientHello, self).tls_session_update(msg_str)
s = self.tls_session
if self.sidlen and self.sidlen > 0:
s.sid = self.sid
s.middlebox_compatibility = True
self.random_bytes = msg_str[6:38]
s.client_random = self.random_bytes
if self.ext:
for e in self.ext:
if isinstance(e, TLS_Ext_SupportedVersion_CH):
for ver in sorted(e.versions, reverse=True):
# RFC 8701: GREASE of TLS will send unknown versions
# here. We have to ignore them
if ver in _tls_version:
self.tls_session.advertised_tls_version = ver
break
if isinstance(e, TLS_Ext_SignatureAlgorithms):
s.advertised_sig_algs = e.sig_algs
###############################################################################
# ServerHello #
###############################################################################
| eb1e56d676c78ccbd5a3c820b931ac50f6a5a4f8 | 18 | handshake.py | 201 | TLS1.3: wrong parsing size of random_bytes (#3539)
Co-authored-by: dim0x69 <[email protected]> | 52,590 | 0 | 410 | 126 | 53 | 209,068 | 76 | scapy | 25 | scapy/layers/tls/handshake.py | Python | 17 | {
"docstring": "\n Either for parsing or building, we store the client_random\n along with the raw string representing this handshake message.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 17
} | https://github.com/secdev/scapy.git |
|
1 | _reshape_tensor | def _reshape_tensor(self, new_len, tensor, indices):
reshaped_tensor = torch.zeros(new_len, device=tensor.device, dtype=tensor.dtype)
reshaped_tensor[indices] = tensor
return reshaped_tensor
| b1acb681207559da56a787ba96e16f0e23697d92 | 10 | director_bb2.py | 60 | Patch 8322 (#4709)
* add dafetymix teacher
* safety_mix teacher
* safety_mix teacher pos and neg teachers
* add tests for teacher
* add license info
* improvement
* add task list
* add task list and lint
* add init.py
* adding some patch to director
* seeker changes
* th
* 3
* jing
* changes
* z and r
* remove .opts
* fix docs
* add contrractions
* lint
Co-authored-by: Dexter Ju <[email protected]>
Co-authored-by: Jing Xu <[email protected]> | 47,242 | 0 | 43 | 40 | 13 | 195,279 | 15 | ParlAI | 10 | projects/fits/agents/director_bb2.py | Python | 4 | {
"docstring": "\n This method reshapes the tensor back to the batch size.\n\n Args:\n batch: batch being processed in this iteration.\n tensor: vector (shape: b' X 1), where b' <= b.\n indices: indices of (either classification or generation) exs for which the loss was computed.\n\n Returns:\n reshaped tensor of shape: b X 1.\n ",
"language": "en",
"n_whitespaces": 123,
"n_words": 50,
"vocab_size": 43
} | https://github.com/facebookresearch/ParlAI.git |
|
6 | getphraselist | def getphraselist(self):
plist = []
while self.pos < len(self.field):
if self.field[self.pos] in self.FWS:
self.pos += 1
elif self.field[self.pos] == '"':
plist.append(self.getquote())
elif self.field[self.pos] == '(':
self.commentlist.append(self.getcomment())
elif self.field[self.pos] in self.phraseends:
break
else:
plist.append(self.getatom(self.phraseends))
return plist
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 15 | _parseaddr.py | 196 | add python 3.10.4 for windows | 57,004 | 0 | 193 | 119 | 26 | 223,611 | 35 | XX-Net | 13 | python3.10.4/Lib/email/_parseaddr.py | Python | 14 | {
"docstring": "Parse a sequence of RFC 2822 phrases.\n\n A phrase is a sequence of words, which are in turn either RFC 2822\n atoms or quoted-strings. Phrases are canonicalized by squeezing all\n runs of continuous whitespace into one space.\n ",
"language": "en",
"n_whitespaces": 66,
"n_words": 37,
"vocab_size": 30
} | https://github.com/XX-net/XX-Net.git |
|
1 | test_login_appservice_wrong_as | def test_login_appservice_wrong_as(self) -> None:
self.register_appservice_user(AS_USER, self.service.token)
params = {
"type": login.LoginRestServlet.APPSERVICE_TYPE,
"identifier": {"type": "m.id.user", "user": AS_USER},
}
channel = self.make_request(
b"POST", LOGIN_URL, params, access_token=self.another_service.token
)
self.assertEquals(channel.result["code"], b"403", channel.result)
| 64c73c6ac88a740ee480a0ad1f9afc8596bccfa4 | 11 | test_login.py | 136 | Add type hints to `tests/rest/client` (#12066) | 71,281 | 0 | 110 | 83 | 27 | 246,588 | 28 | synapse | 17 | tests/rest/client/test_login.py | Python | 11 | {
"docstring": "Test that as users cannot login with wrong as token",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | https://github.com/matrix-org/synapse.git |
|
19 | __exit__ | def __exit__(self, exc_type, exc_val, traceback):
if exc_type == ModuleNotFoundError:
missing_module = self._pkg_name or exc_val.name
with open(os.path.join(__resources_path__, 'extra-requirements.txt')) as fp:
for v in fp:
if (
v.strip()
and not v.startswith('#')
and v.startswith(missing_module)
and ':' in v
):
missing_module, install_tags = v.split(':')
self._tags.append(missing_module)
self._tags.extend(vv.strip() for vv in install_tags.split(','))
break
if self._tags:
from jina.helper import colored
req_msg = colored('fallback to default behavior', color='yellow')
if self._required:
req_msg = colored('and it is required', color='red')
err_msg = f
avail_tags = ' '.join(
colored(f'[{tag}]', attrs='bold') for tag in self._tags
)
err_msg += (
f'\n\nTo enable this feature, use {colored("pip install jina[TAG]", attrs="bold")}, '
f'where {colored("[TAG]", attrs="bold")} is one of {avail_tags}.\n'
)
else:
err_msg = f'{exc_val.msg}'
if self._required:
if self._verbose:
if self._logger:
self._logger.critical(err_msg)
if self._help_text:
self._logger.error(self._help_text)
else:
warnings.warn(err_msg, RuntimeWarning, stacklevel=2)
raise exc_val
else:
if self._verbose:
if self._logger:
self._logger.warning(err_msg)
if self._help_text:
self._logger.info(self._help_text)
else:
warnings.warn(err_msg, RuntimeWarning, stacklevel=2)
return True # suppress the error
| cea300655ed8be70d74c390ca12e8b09fb741665 | 19 | importer.py | 565 | refactor: use absolute imports (#4167) | 1,848 | 0 | 992 | 296 | 101 | 10,555 | 143 | jina | 46 | jina/importer.py | Python | 49 | {
"docstring": "Python package \"{colored(missing_module, attrs='bold')}\" is not installed, {req_msg}.\n You are trying to use a feature not enabled by your current Jina installation.",
"language": "en",
"n_whitespaces": 40,
"n_words": 22,
"vocab_size": 21
} | https://github.com/jina-ai/jina.git |
|
1 | _patch_app_session | def _patch_app_session(self):
return mock.patch(
"streamlit.server.server.AppSession",
# new_callable must return a function, not an object, or else
# there will only be a single AppSession mock. Hence the lambda.
new_callable=lambda: self._create_mock_app_session,
)
| 704eab3478cf69847825b23dabf15813a8ac9fa2 | 10 | server_test_case.py | 40 | Rename and refactor `Report` machinery (#4141)
This refactor renames (almost) everything related to the outdated "report" concept with more precise concepts that we use throughout our code, primarily "script run", "session", and "app". | 26,307 | 0 | 96 | 22 | 28 | 118,584 | 31 | streamlit | 6 | lib/tests/server_test_case.py | Python | 5 | {
"docstring": "Mock the Server's AppSession import. We don't want\n actual sessions to be instantiated, or scripts to be run.\n ",
"language": "en",
"n_whitespaces": 32,
"n_words": 18,
"vocab_size": 16
} | https://github.com/streamlit/streamlit.git |
|
9 | get_sales_orders | def get_sales_orders(self):
so_filter = item_filter = ""
bom_item = "bom.item = so_item.item_code"
date_field_mapper = {
"from_date": (">=", "so.transaction_date"),
"to_date": ("<=", "so.transaction_date"),
"from_delivery_date": (">=", "so_item.delivery_date"),
"to_delivery_date": ("<=", "so_item.delivery_date"),
}
for field, value in date_field_mapper.items():
if self.get(field):
so_filter += f" and {value[1]} {value[0]} %({field})s"
for field in ["customer", "project", "sales_order_status"]:
if self.get(field):
so_field = "status" if field == "sales_order_status" else field
so_filter += f" and so.{so_field} = %({field})s"
if self.item_code and frappe.db.exists("Item", self.item_code):
bom_item = self.get_bom_item() or bom_item
item_filter += " and so_item.item_code = %(item_code)s"
open_so = frappe.db.sql(
f,
self.as_dict(),
as_dict=1,
)
return open_so
@frappe.whitelist() | 494bd9ef78313436f0424b918f200dab8fc7c20b | @frappe.whitelist() | 13 | production_plan.py | 329 | style: format code with black | 14,183 | 1 | 67 | 158 | 59 | 66,418 | 93 | erpnext | 20 | erpnext/manufacturing/doctype/production_plan/production_plan.py | Python | 38 | {
"docstring": "\n\t\tselect distinct so.name, so.transaction_date, so.customer, so.base_grand_total\n\t\tfrom `tabSales Order` so, `tabSales Order Item` so_item\n\t\twhere so_item.parent = so.name\n\t\t\tand so.docstatus = 1 and so.status not in (\"Stopped\", \"Closed\")\n\t\t\tand so.company = %(company)s\n\t\t\tand so_item.qty > so_item.work_order_qty {so_filter} {item_filter}\n\t\t\tand (exists (select name from `tabBOM` bom where {bom_item}\n\t\t\t\t\tand bom.is_active = 1)\n\t\t\t\tor exists (select name from `tabPacked Item` pi\n\t\t\t\t\twhere pi.parent = so.name and pi.parent_item = so_item.item_code\n\t\t\t\t\t\tand exists (select name from `tabBOM` bom where bom.item=pi.item_code\n\t\t\t\t\t\t\tand bom.is_active = 1)))\n\t\t",
"language": "en",
"n_whitespaces": 68,
"n_words": 80,
"vocab_size": 49
} | https://github.com/frappe/erpnext.git |
4 | _create_examples | def _create_examples(self, lines, set_type):
examples = []
for i, line in enumerate(lines):
if i == 0:
continue
guid = f"{set_type}-{i}"
text_a = line[3]
text_b = line[4]
label = None if set_type == "test" else line[0]
examples.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
return examples
| afe5d42d8d1d80af911ed980c2936bfe887078f6 | 12 | glue.py | 137 | Black preview (#17217)
* Black preview
* Fixup too!
* Fix check copies
* Use the same version as the CI
* Bump black | 6,924 | 0 | 150 | 83 | 34 | 38,166 | 41 | transformers | 14 | src/transformers/data/processors/glue.py | Python | 11 | {
"docstring": "Creates examples for the training, dev and test sets.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | https://github.com/huggingface/transformers.git |
|
8 | _wait | async def _wait(fs, timeout, return_when, loop):
assert fs, 'Set of Futures is empty.'
waiter = loop.create_future()
timeout_handle = None
if timeout is not None:
timeout_handle = loop.call_later(timeout, _release_waiter, waiter)
counter = len(fs)
| 8198943edd73a363c266633e1aa5b2a9e9c9f526 | 10 | tasks.py | 80 | add python 3.10.4 for windows | 56,138 | 0 | 57 | 132 | 27 | 220,831 | 32 | XX-Net | 12 | python3.10.4/Lib/asyncio/tasks.py | Python | 24 | {
"docstring": "Internal helper for wait().\n\n The fs argument must be a collection of Futures.\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 13,
"vocab_size": 13
} | https://github.com/XX-net/XX-Net.git |
|
5 | get_timestamps | def get_timestamps(self, session_id=None):
logger.debug("Getting timestamps: (session_id: %s, is_training: %s)",
session_id, self._is_training)
retval = {}
for idx in [session_id] if session_id else self.session_ids:
self._check_cache(idx)
data = self._cache.get_data(idx, "timestamps")
if not data:
continue
retval[idx] = data[idx]["timestamps"]
logger.debug({k: v.shape for k, v in retval.items()})
return retval
| c1512fd41d86ef47a5d1ce618d6d755ef7cbacdf | 11 | event_reader.py | 157 | Update code to support Tensorflow versions up to 2.8 (#1213)
* Update maximum tf version in setup + requirements
* - bump max version of tf version in launcher
- standardise tf version check
* update keras get_custom_objects for tf>2.6
* bugfix: force black text in GUI file dialogs (linux)
* dssim loss - Move to stock tf.ssim function
* Update optimizer imports for compatibility
* fix logging for tf2.8
* Fix GUI graphing for TF2.8
* update tests
* bump requirements.txt versions
* Remove limit on nvidia-ml-py
* Graphing bugfixes
- Prevent live graph from displaying if data not yet available
* bugfix: Live graph. Collect loss labels correctly
* fix: live graph - swallow inconsistent loss errors
* Bugfix: Prevent live graph from clearing during training
* Fix graphing for AMD | 19,800 | 0 | 164 | 98 | 37 | 100,303 | 43 | faceswap | 17 | lib/gui/analysis/event_reader.py | Python | 12 | {
"docstring": " Read the timestamps from the TensorBoard logs.\n\n As loss timestamps are slightly different for each loss, we collect the timestamp from the\n `batch_loss` key.\n\n Parameters\n ----------\n session_id: int, optional\n The Session ID to return the timestamps for. Set to ``None`` to return all session\n timestamps. Default ``None``\n\n Returns\n -------\n dict\n The session id(s) as key with list of timestamps per step as value\n ",
"language": "en",
"n_whitespaces": 160,
"n_words": 63,
"vocab_size": 48
} | https://github.com/deepfakes/faceswap.git |
|
1 | test_querysets_related_name | def test_querysets_related_name(self):
self.assertQuerysetEqual(
self.business.employees.all(),
[
"Fran Bones",
"Dan Jones",
],
str,
)
self.assertQuerysetEqual(
self.fran.business_set.all(),
[
"Sears",
],
lambda b: b.name,
)
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 11 | tests.py | 93 | Refs #33476 -- Reformatted code with Black. | 50,147 | 0 | 189 | 57 | 17 | 202,528 | 21 | django | 11 | tests/custom_pk/tests.py | Python | 16 | {
"docstring": "\n Custom pk doesn't affect related_name based lookups\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | https://github.com/django/django.git |
|
2 | draw_bboxes | def draw_bboxes(ax, bboxes, color='g', alpha=0.8, thickness=2):
polygons = []
for i, bbox in enumerate(bboxes):
bbox_int = bbox.astype(np.int32)
poly = [[bbox_int[0], bbox_int[1]], [bbox_int[0], bbox_int[3]],
[bbox_int[2], bbox_int[3]], [bbox_int[2], bbox_int[1]]]
np_poly = np.array(poly).reshape((4, 2))
polygons.append(Polygon(np_poly))
p = PatchCollection(
polygons,
facecolor='none',
edgecolors=color,
linewidths=thickness,
alpha=alpha)
ax.add_collection(p)
return ax
| 301d4a2d4cfe1cdb62608e2892924be3e67e3098 | 12 | image.py | 222 | [Feature] Support visualization for Panoptic Segmentation (#7041)
* First commit of v2
* split the functions
* Support to show panoptic result
* temp
* Support to show gt
* support show gt
* fix lint
* Support to browse datasets
* Fix unit tests
* Fix findContours
* fix comments
* Fix pre-commit
* fix lint
* Add the type of an argument | 70,168 | 0 | 139 | 153 | 37 | 243,966 | 43 | mmdetection | 26 | mmdet/core/visualization/image.py | Python | 16 | {
"docstring": "Draw bounding boxes on the axes.\n\n Args:\n ax (matplotlib.Axes): The input axes.\n bboxes (ndarray): The input bounding boxes with the shape\n of (n, 4).\n color (list[tuple] | matplotlib.color): the colors for each\n bounding boxes.\n alpha (float): Transparency of bounding boxes. Default: 0.8.\n thickness (int): Thickness of lines. Default: 2.\n\n Returns:\n matplotlib.Axes: The result axes.\n ",
"language": "en",
"n_whitespaces": 127,
"n_words": 54,
"vocab_size": 39
} | https://github.com/open-mmlab/mmdetection.git |
|
19 | prepare_coco_detection | def prepare_coco_detection(self, image, target, return_segmentation_masks=False):
w, h = image.size
image_id = target["image_id"]
image_id = np.asarray([image_id], dtype=np.int64)
# get all COCO annotations for the given image
anno = target["annotations"]
anno = [obj for obj in anno if "iscrowd" not in obj or obj["iscrowd"] == 0]
boxes = [obj["bbox"] for obj in anno]
# guard against no boxes via resizing
boxes = np.asarray(boxes, dtype=np.float32).reshape(-1, 4)
boxes[:, 2:] += boxes[:, :2]
boxes[:, 0::2] = boxes[:, 0::2].clip(min=0, max=w)
boxes[:, 1::2] = boxes[:, 1::2].clip(min=0, max=h)
classes = [obj["category_id"] for obj in anno]
classes = np.asarray(classes, dtype=np.int64)
if return_segmentation_masks:
segmentations = [obj["segmentation"] for obj in anno]
masks = self.convert_coco_poly_to_mask(segmentations, h, w)
keypoints = None
if anno and "keypoints" in anno[0]:
keypoints = [obj["keypoints"] for obj in anno]
keypoints = np.asarray(keypoints, dtype=np.float32)
num_keypoints = keypoints.shape[0]
if num_keypoints:
keypoints = keypoints.reshape((-1, 3))
keep = (boxes[:, 3] > boxes[:, 1]) & (boxes[:, 2] > boxes[:, 0])
boxes = boxes[keep]
classes = classes[keep]
if return_segmentation_masks:
masks = masks[keep]
if keypoints is not None:
keypoints = keypoints[keep]
target = {}
target["boxes"] = boxes
target["class_labels"] = classes
if return_segmentation_masks:
target["masks"] = masks
target["image_id"] = image_id
if keypoints is not None:
target["keypoints"] = keypoints
# for conversion to coco api
area = np.asarray([obj["area"] for obj in anno], dtype=np.float32)
iscrowd = np.asarray([obj["iscrowd"] if "iscrowd" in obj else 0 for obj in anno], dtype=np.int64)
target["area"] = area[keep]
target["iscrowd"] = iscrowd[keep]
target["orig_size"] = np.asarray([int(h), int(w)], dtype=np.int64)
target["size"] = np.asarray([int(h), int(w)], dtype=np.int64)
return image, target
# Copied from transformers.models.detr.feature_extraction_detr.DetrFeatureExtractor.prepare_coco_panoptic | 1ac698744c4dbdf1495d303246d08ffacdf4f5b8 | 14 | feature_extraction_yolos.py | 832 | Add YOLOS (#16848)
* First draft
* Add YolosForObjectDetection
* Make forward pass work
* Add mid position embeddings
* Add interpolation of position encodings
* Add expected values
* Add YOLOS to tests
* Add integration test
* Support tiny model as well
* Support all models in conversion script
* Remove mid_pe_size attribute
* Make more tests pass
* Add model to README and fix config
* Add copied from statements
* Rename base_model_prefix to vit
* Add missing YOLOS_PRETRAINED_CONFIG_ARCHIVE_MAP
* Apply suggestions from code review
* Apply more suggestions from code review
* Convert remaining checkpoints
* Improve docstrings
* Add YolosFeatureExtractor
* Add feature extractor to docs
* Add corresponding tests
* Fix style
* Fix docs
* Apply suggestion from code review
* Fix bad rebase
* Fix some more bad rebase
* Fix missing character
* Improve docs and variable names
Co-authored-by: Niels Rogge <[email protected]> | 6,843 | 0 | 629 | 528 | 121 | 37,637 | 242 | transformers | 32 | src/transformers/models/yolos/feature_extraction_yolos.py | Python | 45 | {
"docstring": "\n Convert the target in COCO format into the format expected by DETR.\n ",
"language": "en",
"n_whitespaces": 27,
"n_words": 12,
"vocab_size": 10
} | https://github.com/huggingface/transformers.git |
|
2 | secure_popen | def secure_popen(cmd):
ret = ''
# Split by multiple commands '&&'
for c in cmd.split('&&'):
ret += __secure_popen(c)
return ret
| 4046fbb18cf16be684ada228314c1f328779a3c1 | 10 | secure.py | 51 | Fix typos
Found via `codespell -S ./venv,./glances/outputs,*.svg -L hart,bu,te,statics` | 15,402 | 0 | 42 | 27 | 18 | 70,176 | 20 | glances | 6 | glances/secure.py | Python | 5 | {
"docstring": "A more or less secure way to execute system commands\n\n Multiple command should be separated with a &&\n\n :return: the result of the commands\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 24,
"vocab_size": 22
} | https://github.com/nicolargo/glances.git |
|
1 | at | def at(self, axis=None): # noqa: PR01, RT01, D200
from .indexing import _LocIndexer
return _LocIndexer(self)
| 605efa618e7994681f57b11d04d417f353ef8d50 | 7 | base.py | 37 | DOCS-#3099: Fix `BasePandasDataSet` docstrings warnings (#4333)
Co-authored-by: Yaroslav Igoshev <[email protected]>
Signed-off-by: Alexander Myskov <[email protected]> | 35,484 | 0 | 36 | 20 | 14 | 153,603 | 14 | modin | 5 | modin/pandas/base.py | Python | 3 | {
"docstring": "\n Get a single value for a row/column label pair.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 8
} | https://github.com/modin-project/modin.git |
|
2 | update | def update(self, **kwargs):
self._not_support_combined_queries("update")
if self.query.is_sliced:
raise TypeError("Cannot update a query once a slice has been taken.")
self._for_write = True
query = self.query.chain(sql.UpdateQuery)
query.add_update_values(kwargs)
# Clear any annotations so that they won't be present in subqueries.
query.annotations = {}
with transaction.mark_for_rollback_on_error(using=self.db):
rows = query.get_compiler(self.db).execute_sql(CURSOR)
self._result_cache = None
return rows
update.alters_data = True
| 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | 13 | query.py | 162 | Refs #33476 -- Reformatted code with Black. | 51,201 | 0 | 154 | 90 | 43 | 205,763 | 52 | django | 23 | django/db/models/query.py | Python | 12 | {
"docstring": "\n Update all elements in the current QuerySet, setting all the given\n fields to the appropriate values.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 13
} | https://github.com/django/django.git |
|
6 | _identity_from_extracted | def _identity_from_extracted(cls, filename) -> Tuple[np.ndarray, bool]:
if os.path.splitext(filename)[-1].lower() != ".png":
logger.info("'%s' not a png. Returning empty array", filename)
return np.array([]), False
meta = read_image_meta(filename)
if "itxt" not in meta or "alignments" not in meta["itxt"]:
logger.debug("'%s' does not contain faceswap data. Returning empty array", filename)
return np.array([]), False
align: "PNGHeaderAlignmentsDict" = meta["itxt"]["alignments"]
if "identity" not in align or "vggface2" not in align["identity"]:
logger.debug("'%s' does not contain identity data. Returning empty array", filename)
return np.array([]), True
retval = np.array(align["identity"]["vggface2"])
logger.debug("Obtained identity for '%s'. Shape: %s", filename, retval.shape)
return retval, True
| 1d1face00d9476896e7857d3976afce383585d1b | 12 | extract.py | 285 | Update Face Filter
- Remove old face filter
- plugins.extract.pipeline: Expose plugins directly
- Change `is_aligned` from plugin level to ExtractMedia level
- Allow extract pipeline to take faceswap aligned images
- Add ability for recognition plugins to accept aligned faces as input
- Add face filter to recognition plugin
- Move extractor pipeline IO ops to own class | 21,385 | 0 | 217 | 166 | 52 | 102,011 | 88 | faceswap | 20 | scripts/extract.py | Python | 31 | {
"docstring": " Test whether the given image is a faceswap extracted face and contains identity\n information. If so, return the identity embedding\n\n Parameters\n ----------\n filename: str\n Full path to the image file to load\n\n Returns\n -------\n :class:`numpy.ndarray`\n The identity embeddings, if they can be obtained from the image header, otherwise an\n empty array\n bool\n ``True`` if the image is a faceswap extracted image otherwise ``False``\n ",
"language": "en",
"n_whitespaces": 171,
"n_words": 63,
"vocab_size": 46
} | https://github.com/deepfakes/faceswap.git |