ast_errors
stringlengths 0
3.2k
| d_id
int64 44
121k
| id
int64 70
338k
| n_whitespaces
int64 3
14k
| path
stringlengths 8
134
| n_words
int64 4
4.82k
| n_identifiers
int64 1
131
| random_cut
stringlengths 16
15.8k
| commit_message
stringlengths 2
15.3k
| fun_name
stringlengths 1
84
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| file_name
stringlengths 5
79
| ast_levels
int64 6
31
| nloc
int64 1
548
| url
stringlengths 31
59
| complexity
int64 1
66
| token_counts
int64 6
2.13k
| n_ast_errors
int64 0
28
| vocab_size
int64 4
1.11k
| n_ast_nodes
int64 15
19.2k
| language
stringclasses 1
value | documentation
dict | code
stringlengths 101
62.2k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
39,462 | 163,605 | 58 | pandas/core/indexers/utils.py | 34 | 11 | def is_empty_indexer(indexer) -> bool:
if is_list_like(indexer) and not len(indexer):
return True
if not isinstance(indexer, tuple):
indexer = (indexer,)
| REF: simplify Block.setitem (#45403) | is_empty_indexer | 6b43a78f2f1036ebae205d2d35ab96f07549fe96 | pandas | utils.py | 11 | 17 | https://github.com/pandas-dev/pandas.git | 6 | 60 | 0 | 29 | 98 | Python | {
"docstring": "\n Check if we have an empty indexer.\n\n Parameters\n ----------\n indexer : object\n\n Returns\n -------\n bool\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 15,
"vocab_size": 15
} | def is_empty_indexer(indexer) -> bool:
if is_list_like(indexer) and not len(indexer):
return True
if not isinstance(indexer, tuple):
indexer = (indexer,)
return any(isinstance(idx, np.ndarray) and len(idx) == 0 for idx in indexer)
# -----------------------------------------------------------
# Indexer Validation
|
|
22,565 | 107,046 | 510 | lib/matplotlib/_constrained_layout.py | 134 | 29 | def make_layoutgrids_gs(layoutgrids, gs):
if gs in layoutgrids or gs.figure is None:
return layoutgrids
# in order to do constrained_layout there has to be at least *one*
# gridspec in the tree:
layoutgrids['hasgrids'] = True
if not hasattr(gs, '_subplot_spec'):
# normal gridspec
parent = layoutgrids[gs.figure]
layoutgrids[gs] = mlayoutgrid.LayoutGrid(
parent=parent,
parent_inner=True,
name='gridspec',
ncols=gs._ncols, nrows=gs._nrows,
width_ratios=gs.get_width_ratios(),
height_ratios=gs.get_height_ratios())
else:
# this is a gridspecfromsubplotspec:
subplot_spec = g | FIX: better repr for subgridspecs | make_layoutgrids_gs | c682ca40c647770a967b6b8a7615eb91c7cb3fc9 | matplotlib | _constrained_layout.py | 16 | 33 | https://github.com/matplotlib/matplotlib.git | 6 | 230 | 0 | 80 | 361 | Python | {
"docstring": "\n Make the layoutgrid for a gridspec (and anything nested in the gridspec)\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 12,
"vocab_size": 11
} | def make_layoutgrids_gs(layoutgrids, gs):
if gs in layoutgrids or gs.figure is None:
return layoutgrids
# in order to do constrained_layout there has to be at least *one*
# gridspec in the tree:
layoutgrids['hasgrids'] = True
if not hasattr(gs, '_subplot_spec'):
# normal gridspec
parent = layoutgrids[gs.figure]
layoutgrids[gs] = mlayoutgrid.LayoutGrid(
parent=parent,
parent_inner=True,
name='gridspec',
ncols=gs._ncols, nrows=gs._nrows,
width_ratios=gs.get_width_ratios(),
height_ratios=gs.get_height_ratios())
else:
# this is a gridspecfromsubplotspec:
subplot_spec = gs._subplot_spec
parentgs = subplot_spec.get_gridspec()
# if a nested gridspec it is possible the parent is not in there yet:
if parentgs not in layoutgrids:
layoutgrids = make_layoutgrids_gs(layoutgrids, parentgs)
subspeclb = layoutgrids[parentgs]
# get a unique representation:
rep = object.__repr__(gs) + 'top'
# gridspecfromsubplotspec need an outer container:
if rep not in layoutgrids:
layoutgrids[rep] = mlayoutgrid.LayoutGrid(
parent=subspeclb,
name='top',
nrows=1, ncols=1,
parent_pos=(subplot_spec.rowspan, subplot_spec.colspan))
layoutgrids[gs] = mlayoutgrid.LayoutGrid(
parent=layoutgrids[rep],
name='gridspec',
nrows=gs._nrows, ncols=gs._ncols,
width_ratios=gs.get_width_ratios(),
height_ratios=gs.get_height_ratios())
return layoutgrids
|
|
17,396 | 82,430 | 212 | cms/tests/test_sitemap.py | 44 | 22 | def test_sitemap_published_titles(self):
sitemap = CMSSitemap()
locations = []
urlset = sitemap.get_urls()
for item in urlset:
locations.append(item['location'])
for title in Title.objects.public():
page = title.page.get_public_object()
| ci: Added codespell (#7355)
Co-authored-by: Christian Clauss <[email protected]>
* ci: codespell config taken from #7292 | test_sitemap_published_titles | c1290c9ff89cb00caa5469129fd527e9d82cd820 | django-cms | test_sitemap.py | 14 | 16 | https://github.com/django-cms/django-cms.git | 6 | 102 | 0 | 31 | 203 | Python | {
"docstring": "\n Check that published titles are in the urls\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 8
} | def test_sitemap_published_titles(self):
sitemap = CMSSitemap()
locations = []
urlset = sitemap.get_urls()
for item in urlset:
locations.append(item['location'])
for title in Title.objects.public():
page = title.page.get_public_object()
if title.path:
url = f'http://example.com/{title.language}/{title.path}/'
else:
url = f'http://example.com/{title.language}/{title.path}'
if page.is_published('en') and not page.publisher_is_draft:
self.assertTrue(url in locations)
else:
self.assertFalse(url in locations)
|
|
@derived_from(np) | 36,471 | 155,800 | 343 | dask/array/creation.py | 121 | 27 | def eye(N, chunks="auto", M=None, k=0, dtype=float):
eye = {}
if M is None:
M = N
if dtype is None:
dtype = float
if not isinstance(chunks, (int, str)):
raise ValueError("chunks must be an int or string")
vchunks, hchunks = normalize_chunks(chunks, shape=(N, M), dtype=dtype)
chunks = vchunks[0]
token = tokenize(N, chunks, M, k, dtype)
name_eye = "eye-" + token
for i, vchunk in enumerate(vchunks):
for j, hchunk in enumerate(hchunks):
if (j - i - 1) * chunks <= k <= (j - i + 1) * chunks:
eye[name_eye, i, j] = (
np.eye,
vchunk,
hchunk,
k - (j - i) * chunks,
dtype,
)
else:
eye[name_eye, i, j] = (np.zeros, (vchunk, hchunk), dtype)
return Array(eye, name_eye, shape=(N, M), chunks=(chunks, chunks), dtype=dtype)
| Fix eye inconsistency with NumPy for dtype=None (#8669) (#8685) | eye | e25284dced9749f02bd5d8c80b6225153aa282d8 | dask | creation.py | 17 | 25 | https://github.com/dask/dask.git | 7 | 230 | 1 | 80 | 342 | Python | {
"docstring": "\n Return a 2-D Array with ones on the diagonal and zeros elsewhere.\n\n Parameters\n ----------\n N : int\n Number of rows in the output.\n chunks : int, str\n How to chunk the array. Must be one of the following forms:\n\n - A blocksize like 1000.\n - A size in bytes, like \"100 MiB\" which will choose a uniform\n block-like shape\n - The word \"auto\" which acts like the above, but uses a configuration\n value ``array.chunk-size`` for the chunk size\n M : int, optional\n Number of columns in the output. If None, defaults to `N`.\n k : int, optional\n Index of the diagonal: 0 (the default) refers to the main diagonal,\n a positive value refers to an upper diagonal, and a negative value\n to a lower diagonal.\n dtype : data-type, optional\n Data-type of the returned array.\n\n Returns\n -------\n I : Array of shape (N,M)\n An array where all elements are equal to zero, except for the `k`-th\n diagonal, whose values are equal to one.\n ",
"language": "en",
"n_whitespaces": 295,
"n_words": 162,
"vocab_size": 103
} | def eye(N, chunks="auto", M=None, k=0, dtype=float):
eye = {}
if M is None:
M = N
if dtype is None:
dtype = float
if not isinstance(chunks, (int, str)):
raise ValueError("chunks must be an int or string")
vchunks, hchunks = normalize_chunks(chunks, shape=(N, M), dtype=dtype)
chunks = vchunks[0]
token = tokenize(N, chunks, M, k, dtype)
name_eye = "eye-" + token
for i, vchunk in enumerate(vchunks):
for j, hchunk in enumerate(hchunks):
if (j - i - 1) * chunks <= k <= (j - i + 1) * chunks:
eye[name_eye, i, j] = (
np.eye,
vchunk,
hchunk,
k - (j - i) * chunks,
dtype,
)
else:
eye[name_eye, i, j] = (np.zeros, (vchunk, hchunk), dtype)
return Array(eye, name_eye, shape=(N, M), chunks=(chunks, chunks), dtype=dtype)
@derived_from(np) |
80,885 | 271,876 | 93 | keras/engine/training_utils_v1.py | 24 | 11 | def is_composite_or_composite_value(tensor):
# TODO(b/125094323): This sho | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | is_composite_or_composite_value | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | training_utils_v1.py | 12 | 9 | https://github.com/keras-team/keras.git | 1 | 39 | 0 | 23 | 61 | Python | {
"docstring": "Returns true if 'tensor' is a CompositeTensor or a CT Value object.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | def is_composite_or_composite_value(tensor):
# TODO(b/125094323): This should be isinstance(CompositeTensor) or
# isinstance(CompositeTensorValue) once we support that.
return isinstance(
tensor,
(
tf.__internal__.CompositeTensor,
tf.compat.v1.SparseTensorValue,
tf.compat.v1.ragged.RaggedTensorValue,
),
)
|
|
17,125 | 80,990 | 346 | awx/main/utils/common.py | 99 | 28 | def create_partition(tblname, start=None, end=None, partition_label=None, minutely=False):
current_time = now()
if not start:
if minutely:
start = current_time.replace(microsecond=0, second=0)
else:
start = current_time.replace(microsecond=0, second=0, minute=0)
if not end:
if minutely:
end = start.replace(microsecond=0, second=0) + timedelta(minutes=1)
else:
end = start.replace(microsecond=0, second=0, minute=0) + timedelta(hours=1)
start_timestamp = str(start)
end_timestamp = str(end)
if not partition_label:
if minutely:
partition_label = start.strftime('%Y%m%d_%H%M')
else:
partition_label = start.strftime('%Y%m%d_%H')
try:
with transaction.atomic():
with connection.cursor() as cursor:
cursor.execute(
f'CREATE TABLE IF NOT EXISTS {tblname}_{partition_label} '
f'PARTITION OF {tblname} '
f'FOR VALUES FROM (\'{start_timestamp}\') to (\'{end_timestamp}\');'
)
exce | Handle error for create_partition
Occasionally the create_partition will error with,
relation "main_projectupdateevent_20220323_19" already exists
This change wraps the db command into a try except block with its
own transaction | create_partition | 24152555c5d1b52d5024197bcaf80fdb87b8b14e | awx | common.py | 16 | 29 | https://github.com/ansible/awx.git | 8 | 201 | 0 | 67 | 360 | Python | {
"docstring": "Creates new partition table for events.\n - start defaults to beginning of current hour\n - end defaults to end of current hour\n - partition_label defaults to YYYYMMDD_HH\n\n - minutely will create partitions that span _a single minute_ for testing purposes\n ",
"language": "en",
"n_whitespaces": 55,
"n_words": 40,
"vocab_size": 28
} | def create_partition(tblname, start=None, end=None, partition_label=None, minutely=False):
current_time = now()
if not start:
if minutely:
start = current_time.replace(microsecond=0, second=0)
else:
start = current_time.replace(microsecond=0, second=0, minute=0)
if not end:
if minutely:
end = start.replace(microsecond=0, second=0) + timedelta(minutes=1)
else:
end = start.replace(microsecond=0, second=0, minute=0) + timedelta(hours=1)
start_timestamp = str(start)
end_timestamp = str(end)
if not partition_label:
if minutely:
partition_label = start.strftime('%Y%m%d_%H%M')
else:
partition_label = start.strftime('%Y%m%d_%H')
try:
with transaction.atomic():
with connection.cursor() as cursor:
cursor.execute(
f'CREATE TABLE IF NOT EXISTS {tblname}_{partition_label} '
f'PARTITION OF {tblname} '
f'FOR VALUES FROM (\'{start_timestamp}\') to (\'{end_timestamp}\');'
)
except ProgrammingError as e:
logger.debug(f'Caught known error due to existing partition: {e}')
|
|
76,319 | 260,529 | 63 | sklearn/metrics/pairwise.py | 34 | 11 | def rbf_kernel(X, Y=None, gamma=None):
X, Y = check_pairwise_arrays(X, Y)
| DOC Ensure `rbf_kernel` passes numpydoc validation (#23954)
Co-authored-by: Jérémie du Boisberranger <[email protected]> | rbf_kernel | 095e46670a1e21e8c49972b23e75f2d2a48c6c93 | scikit-learn | pairwise.py | 11 | 8 | https://github.com/scikit-learn/scikit-learn.git | 2 | 68 | 0 | 28 | 101 | Python | {
"docstring": "Compute the rbf (gaussian) kernel between X and Y.\n\n K(x, y) = exp(-gamma ||x-y||^2)\n\n for each pair of rows x in X and y in Y.\n\n Read more in the :ref:`User Guide <rbf_kernel>`.\n\n Parameters\n ----------\n X : ndarray of shape (n_samples_X, n_features)\n A feature array.\n\n Y : ndarray of shape (n_samples_Y, n_features), default=None\n An optional second feature array. If `None`, uses `Y=X`.\n\n gamma : float, default=None\n If None, defaults to 1.0 / n_features.\n\n Returns\n -------\n kernel_matrix : ndarray of shape (n_samples_X, n_samples_Y)\n The RBF kernel.\n ",
"language": "en",
"n_whitespaces": 153,
"n_words": 85,
"vocab_size": 63
} | def rbf_kernel(X, Y=None, gamma=None):
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = euclidean_distances(X, Y, squared=True)
K *= -gamma
np.exp(K, K) # exponentiate K in-place
return K
|
|
78,517 | 266,698 | 974 | lib/ansible/module_utils/common/parameters.py | 248 | 35 | def _validate_argument_values(argument_spec, parameters, options_context=None, errors=None):
if errors is None:
errors = AnsibleValidationErrorMultiple()
for param, spec in argument_spec.items():
choices = spec.get('choices')
if choices is None:
continue
if isinstance(choices, (frozenset, KeysView, Sequence)) and not isinstance(choices, (binary_type, text_type)):
if param in parameters:
# Allow one or more when type='list' param with choices
if isinstance(parameters[param], list):
| parameters: handle blank values when argument is a list (#77119)
Fixes: #77108
Signed-off-by: Abhijeet Kasurde <[email protected]> | _validate_argument_values | 4f48f375a0203b0d09c55522a86300a52da5b24a | ansible | parameters.py | 24 | 38 | https://github.com/ansible/ansible.git | 22 | 356 | 0 | 128 | 578 | Python | {
"docstring": "Ensure all arguments have the requested values, and there are no stray arguments",
"language": "en",
"n_whitespaces": 12,
"n_words": 13,
"vocab_size": 12
} | def _validate_argument_values(argument_spec, parameters, options_context=None, errors=None):
if errors is None:
errors = AnsibleValidationErrorMultiple()
for param, spec in argument_spec.items():
choices = spec.get('choices')
if choices is None:
continue
if isinstance(choices, (frozenset, KeysView, Sequence)) and not isinstance(choices, (binary_type, text_type)):
if param in parameters:
# Allow one or more when type='list' param with choices
if isinstance(parameters[param], list):
diff_list = [item for item in parameters[param] if item not in choices]
if diff_list:
choices_str = ", ".join([to_native(c) for c in choices])
diff_str = ", ".join(diff_list)
msg = "value of %s must be one or more of: %s. Got no match for: %s" % (param, choices_str, diff_str)
if options_context:
msg = "{0} found in {1}".format(msg, " -> ".join(options_context))
errors.append(ArgumentValueError(msg))
elif parameters[param] not in choices:
# PyYaml converts certain strings to bools. If we can unambiguously convert back, do so before checking
# the value. If we can't figure this out, module author is responsible.
if parameters[param] == 'False':
overlap = BOOLEANS_FALSE.intersection(choices)
if len(overlap) == 1:
# Extract from a set
(parameters[param],) = overlap
if parameters[param] == 'True':
overlap = BOOLEANS_TRUE.intersection(choices)
if len(overlap) == 1:
(parameters[param],) = overlap
if parameters[param] not in choices:
choices_str = ", ".join([to_native(c) for c in choices])
msg = "value of %s must be one of: %s, got: %s" % (param, choices_str, parameters[param])
if options_context:
msg = "{0} found in {1}".format(msg, " -> ".join(options_context))
errors.append(ArgumentValueError(msg))
else:
msg = "internal error: choices for argument %s are not iterable: %s" % (param, choices)
if options_context:
msg = "{0} found in {1}".format(msg, " -> ".join(options_context))
errors.append(ArgumentTypeError(msg))
|
|
2,892 | 19,145 | 41 | mlflow/models/evaluation/base.py | 9 | 4 | def content(self):
if self._content is None:
self._load()
| Improve evaluation api (#5256)
* init
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update doc
Signed-off-by: Weichen Xu <[email protected]>
* update doc
Signed-off-by: Weichen Xu <[email protected]>
* address comments
Signed-off-by: Weichen Xu <[email protected]>
* update doc
Signed-off-by: Weichen Xu <[email protected]>
* add shap limitation on value type
Signed-off-by: Weichen Xu <[email protected]>
* fix format
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]>
* update
Signed-off-by: Weichen Xu <[email protected]> | content | 4c58179509e6f6047789efb0a95c2b0e20cb6c8f | mlflow | base.py | 9 | 4 | https://github.com/mlflow/mlflow.git | 2 | 22 | 0 | 8 | 39 | Python | {
"docstring": "\n The content of the artifact (representation varies)\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | def content(self):
if self._content is None:
self._load()
return self._content
|
|
@frappe.whitelist(allow_guest=True) | 13,657 | 64,540 | 95 | erpnext/e_commerce/api.py | 143 | 37 | def get_product_filter_data(query_args=None):
if isinstance(query_args, str):
query_args = json.loads(query_args)
query_args = frappe._dict(query_args)
if query_args:
search = query_args.get("search")
field_filters = query_args.get("field_filters", {})
attribute_filters = query_args.get("attribute_filters", {})
start = cint(query_args.start) if query_args.get("start") else 0
item_group = query_args.get("item_group")
from_filters = query_args.get("from_filters")
else:
search, attri | feat: Include child item group products in Item Group Page & cleanup
- Added 'Include descendants' checkbox, which will pull child item group products too
- Build item group filters in query engine file
- Include logic in filter engine
- Clean up Website section of Item Group page (UX)
- Add util to fetch child item groups including self | get_product_filter_data | b2755f6fdddd3e1b0a305b57c18651c98fee8f7e | erpnext | api.py | 13 | 46 | https://github.com/frappe/erpnext.git | 9 | 271 | 1 | 100 | 464 | Python | {
"docstring": "\n\t\tReturns filtered products and discount filters.\n\t\t:param query_args (dict): contains filters to get products list\n\n\t\tQuery Args filters:\n\t\tsearch (str): Search Term.\n\t\tfield_filters (dict): Keys include item_group, brand, etc.\n\t\tattribute_filters(dict): Keys include Color, Size, etc.\n\t\tstart (int): Offset items by\n\t\titem_group (str): Valid Item Group\n\t\tfrom_filters (bool): Set as True to jump to page 1\n\t",
"language": "en",
"n_whitespaces": 46,
"n_words": 55,
"vocab_size": 47
} | def get_product_filter_data(query_args=None):
if isinstance(query_args, str):
query_args = json.loads(query_args)
query_args = frappe._dict(query_args)
if query_args:
search = query_args.get("search")
field_filters = query_args.get("field_filters", {})
attribute_filters = query_args.get("attribute_filters", {})
start = cint(query_args.start) if query_args.get("start") else 0
item_group = query_args.get("item_group")
from_filters = query_args.get("from_filters")
else:
search, attribute_filters, item_group, from_filters = None, None, None, None
field_filters = {}
start = 0
# if new filter is checked, reset start to show filtered items from page 1
if from_filters:
start = 0
sub_categories = []
if item_group:
sub_categories = get_child_groups_for_website(item_group, immediate=True)
engine = ProductQuery()
try:
result = engine.query(
attribute_filters,
field_filters,
search_term=search,
start=start,
item_group=item_group
)
except Exception:
traceback = frappe.get_traceback()
frappe.log_error(traceback, frappe._("Product Engine Error"))
return {"exc": "Something went wrong!"}
# discount filter data
filters = {}
discounts = result["discounts"]
if discounts:
filter_engine = ProductFiltersBuilder()
filters["discount_filters"] = filter_engine.get_discount_filters(discounts)
return {
"items": result["items"] or [],
"filters": filters,
"settings": engine.settings,
"sub_categories": sub_categories,
"items_count": result["items_count"]
}
@frappe.whitelist(allow_guest=True) |
89,421 | 290,303 | 35 | homeassistant/components/mqtt/light/schema_basic.py | 13 | 7 | async def async_turn_on(self, **kwargs): # noqa: C901
should | Use `_attr_` for MQTT light (#81465)
* Schema basic
* Schema json
* Schema template
* add color_mode - follow up comments
* Fix regression
* Follow up comments 2
* Fix mypy errors
* Update homeassistant/components/mqtt/light/schema_template.py
Co-authored-by: epenet <[email protected]>
Co-authored-by: epenet <[email protected]> | async_turn_on | d66d079330b92c02c38fb1c9dca539617161fdbc | core | schema_basic.py | 8 | 126 | https://github.com/home-assistant/core.git | 43 | 909 | 0 | 12 | 36 | Python | {
"docstring": "Turn the device on.\n\n This method is a coroutine.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 9,
"vocab_size": 9
} | async def async_turn_on(self, **kwargs): # noqa: C901
should_update = False
on_command_type = self._config[CONF_ON_COMMAND_TYPE]
|
|
117,683 | 321,374 | 54 | tests/unit/keyinput/test_keyutils.py | 19 | 16 | def test_fake_mac(self, modifiers, expected):
seq = keyutils.KeySequence()
info = keyutils.KeyInfo(key=Qt.K | Run scripts/dev/rewrite_enums.py | test_fake_mac | 0877fb0d78635692e481c8bde224fac5ad0dd430 | qutebrowser | test_keyutils.py | 11 | 5 | https://github.com/qutebrowser/qutebrowser.git | 1 | 65 | 0 | 17 | 102 | Python | {
"docstring": "Make sure Control/Meta are swapped with a simulated Mac.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def test_fake_mac(self, modifiers, expected):
seq = keyutils.KeySequence()
info = keyutils.KeyInfo(key=Qt.Key.Key_A, modifiers=modifiers)
new = seq.append_event(info.to_event())
assert new[0] == keyutils.KeyInfo(Qt.Key.Key_A, expected)
|
|
628 | 4,171 | 25 | airbyte-integrations/connectors/source-recurly/source_recurly/streams.py | 11 | 5 | def default_params(self) -> dict:
return {"order": "asc", "sort": self.sort_key, "limit": self.limit}
| 🎉 Recurly Schema Revamp (#9866)
* Cleanup Recurly connector schemas
* Add more Recurly schemas to the connector
- `billing_infos`
- `shipping_addresses`
- `shipping_methods`
- `subscription_changes`
* Add Recurly `add-on` resouce
* Add Recurly's account notes resource schema
* Add unique coupons to Recurly source
* Add credit payments to Recurly connector
* Add Recurly resources to integration tests configurations
* Bump Recurly source version to `0.4.0`
* Add `line_items` Recurly resource
* Add `line_items` to Recurly documentation
* Add missing `line_items` JSON schema
* Replace Subscription Change Recurly API call with Subscription `pending_changes` field
* Replace Recurly unique coupon codes API call with coupons `unique_coupon` field
To avoid the extra API call to import unique coupon calls
* Revert "Replace Recurly unique coupon codes API call with coupons `unique_coupon` field"
This reverts commit 1c4592d82da3c5e5e0026dda8eb2ed7a896ac5b8.
* Add `end_time` parameter to Recurly connector
* Order Recurly specs
* Set the Recurly `begin_time` and `end_time` to be optional
* Add `order` to Recurly `source_spec.yaml`
* Add `maxLength` to Recurly source schemas
* Set `maxLength` for Recurly Subscription and Transaction `uuid`
* Fix Recurly `export_dates` acceptance tests | default_params | 63af98e3b999d4b223237b51472a819915c5a558 | airbyte | streams.py | 8 | 5 | https://github.com/airbytehq/airbyte.git | 1 | 26 | 0 | 11 | 49 | Python | {
"docstring": "\n Returns the parameters to be sent together with the API call to Recurly\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 11
} | def default_params(self) -> dict:
return {"order": "asc", "sort": self.sort_key, "limit": self.limit}
|
|
33,312 | 144,810 | 154 | python/ray/serve/deployment_state.py | 69 | 11 | def _should_start_new_health_check(self) -> bool:
if self._health_check_ref is not None:
# There's already an active health check.
return False
# If there's no active health check, kick off another and reset
# the timer if it's been long enough since the last health
# check. Add some randomness to avo | [serve] Improve health check failure semantics (#22297) | _should_start_new_health_check | 610930ae6aeafb37be75851a8c1b9ff39d5f7d22 | ray | deployment_state.py | 9 | 16 | https://github.com/ray-project/ray.git | 2 | 51 | 0 | 55 | 81 | Python | {
"docstring": "Determines if a new health check should be kicked off.\n\n A health check will be started if:\n 1) There is not already an active health check.\n 2) It has been more than self._health_check_period_s since the\n previous health check was *started*.\n\n This assumes that self._health_check_ref is reset to `None` when an\n active health check succeeds or fails (due to returning or timeout).\n ",
"language": "en",
"n_whitespaces": 125,
"n_words": 61,
"vocab_size": 48
} | def _should_start_new_health_check(self) -> bool:
if self._health_check_ref is not None:
# There's already an active health check.
return False
# If there's no active health check, kick off another and reset
# the timer if it's been long enough since the last health
# check. Add some randomness to avoid synchronizing across all
# replicas.
time_since_last = time.time() - self._last_health_check_time
randomized_period = self._health_check_period_s * random.uniform(0.9, 1.1)
return time_since_last > randomized_period
|
|
6,885 | 37,910 | 104 | src/transformers/trainer_pt_utils.py | 64 | 14 | def numpy_pad_and_concatenate(array1, array2, padding_index=-100):
array1 = atleas | Ensure tensors are at least 1d for pad and concat (#17179)
* Ensure tensors are at least 1d for pad and concat
* Compatibility
* Fix
* Fix
* Add test
* Retrigger CI
* Consistency with master
* Retrigger CI | numpy_pad_and_concatenate | 47412c7d434f6ddfc02a9b7ecd6182b86ae0a164 | transformers | trainer_pt_utils.py | 12 | 10 | https://github.com/huggingface/transformers.git | 3 | 162 | 0 | 49 | 242 | Python | {
"docstring": "Concatenates `array1` and `array2` on first axis, applying padding on the second if necessary.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 13
} | def numpy_pad_and_concatenate(array1, array2, padding_index=-100):
array1 = atleast_1d(array1)
array2 = atleast_1d(array2)
if len(array1.shape) == 1 or array1.shape[1] == array2.shape[1]:
return np.concatenate((array1, array2), axis=0)
# Let's figure out the new shape
new_shape = (array1.shape[0] + array2.shape[0], max(array1.shape[1], array2.shape[1])) + array1.shape[2:]
# Now let's fill the result tensor
result = np.full_like(array1, padding_index, shape=new_shape)
result[: array1.shape[0], : array1.shape[1]] = array1
result[array1.shape[0] :, : array2.shape[1]] = array2
return result
|
|
10,926 | 53,859 | 146 | src/prefect/task_runners.py | 32 | 6 | def _ray(self) -> "ray":
global ray
if r | First draft `RayTaskRunner` implementation | _ray | f97603bba836c215e153d7d3d5b3b9de4d0ae822 | prefect | task_runners.py | 13 | 14 | https://github.com/PrefectHQ/prefect.git | 3 | 33 | 0 | 29 | 61 | Python | {
"docstring": "\n Delayed import of `ray` allowing configuration of the task runner\n without the extra installed and improves `prefect` import times.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 16
} | def _ray(self) -> "ray":
global ray
if ray is None:
try:
import ray
except ImportError as exc:
raise RuntimeError(
"Using the `RayTaskRunner` requires `ray` to be installed."
) from exc
return ray
|
|
89,349 | 290,231 | 90 | homeassistant/components/zwave_js/climate.py | 18 | 10 | def temperature_unit(self) -> str:
if (
self._unit_value
and self._unit_v | Use enums instead of deprecated constants (#81591) | temperature_unit | 9a747bafa398185eb3d4fe041c52acfbb8264372 | core | climate.py | 13 | 9 | https://github.com/home-assistant/core.git | 4 | 45 | 0 | 16 | 75 | Python | {
"docstring": "Return the unit of measurement used by the platform.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 8
} | def temperature_unit(self) -> str:
if (
self._unit_value
and self._unit_value.metadata.unit
and "f" in self._unit_value.metadata.unit.lower()
):
return UnitOfTemperature.FAHRENHEIT
return UnitOfTemperature.CELSIUS
|
|
23,870 | 109,993 | 544 | examples/text_labels_and_annotations/angles_on_bracket_arrows.py | 221 | 48 | def get_point_of_rotated_vertical(origin, line_length, degrees):
rad = np.deg2rad(-degrees)
return [origin[0] + line_length * np.sin(rad),
origin[1] + line_length * np.cos(rad)]
fig, ax = plt.subplots(figsize=(8, 7))
ax.set(xlim=(0, 6), ylim=(-1, 4))
ax.set_title("Orientation of the bracket arrows relative to angleA and angleB")
for i, style in enumerate(["]-[", "|-|"]):
for j, angle in enumerate([-40, 60]):
y = 2*i + j
arrow_centers = ((1, y), (5, y))
vlines = ((1, y + 0.5), (5, y + 0.5))
anglesAB = (angle, -angle)
bracketstyle = f"{style}, angleA={anglesAB[0]}, angleB={anglesAB[1]}"
bracket = FancyArrowPatch(*arrow_centers, arrowstyle=bracketstyle,
mutation_scale=42)
ax.add_patch(bracket)
ax.text(3, y + 0.05, bracketstyle, ha="center", va="bottom")
ax.vlines([i[0] for i in vlines], [y, y], [i[1] for i in vlines],
linestyles="--", color="C0")
# Get the top coordinates for the drawn patches at A and B
patch_tops = [get_point_of_rotated_vertical(center, 0.5, angle)
for center, angle in zip(arrow_centers, anglesAB)]
# Define the connection directions for the annotation arrows
connection_dirs = (1, -1) if angle > 0 else (-1, 1)
# Add arrows and annotation text
arrowstyle = "Simple, tail_width=0.5, head_width=4, head_length=8"
for vline, dir, patch_top, angle in zip(vlines, connection_dirs,
patch_tops, anglesAB):
kw = dict(connectionstyle=f"arc3,rad={dir * 0.5}",
arrowst | Updated Angles on Bracket arrow styles example to make angles clear #23176 (#24145)
* removed AngleAnnotation from angle_on_bracket_arrow example
* Fixes indentation mistake.
* rebase to main, remove conflicting commit | get_point_of_rotated_vertical | f15aeee5e8d380c2ea04bcbed202a8940a7db1d0 | matplotlib | angles_on_bracket_arrows.py | 16 | 4 | https://github.com/matplotlib/matplotlib.git | 1 | 49 | 0 | 150 | 608 | Python | {
"docstring": "Return xy coordinates of the vertical line end rotated by degrees.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def get_point_of_rotated_vertical(origin, line_length, degrees):
rad = np.deg2rad(-degrees)
return [origin[0] + line_length * np.sin(rad),
origin[1] + line_length * np.cos(rad)]
fig, ax = plt.subplots(figsize=(8, 7))
ax.set(xlim=(0, 6), ylim=(-1, 4))
ax.set_title("Orientation of the bracket arrows relative to angleA and angleB")
for i, style in enumerate(["]-[", "|-|"]):
for j, angle in enumerate([-40, 60]):
y = 2*i + j
arrow_centers = ((1, y), (5, y))
vlines = ((1, y + 0.5), (5, y + 0.5))
anglesAB = (angle, -angle)
bracketstyle = f"{style}, angleA={anglesAB[0]}, angleB={anglesAB[1]}"
bracket = FancyArrowPatch(*arrow_centers, arrowstyle=bracketstyle,
mutation_scale=42)
ax.add_patch(bracket)
ax.text(3, y + 0.05, bracketstyle, ha="center", va="bottom")
ax.vlines([i[0] for i in vlines], [y, y], [i[1] for i in vlines],
linestyles="--", color="C0")
# Get the top coordinates for the drawn patches at A and B
patch_tops = [get_point_of_rotated_vertical(center, 0.5, angle)
for center, angle in zip(arrow_centers, anglesAB)]
# Define the connection directions for the annotation arrows
connection_dirs = (1, -1) if angle > 0 else (-1, 1)
# Add arrows and annotation text
arrowstyle = "Simple, tail_width=0.5, head_width=4, head_length=8"
for vline, dir, patch_top, angle in zip(vlines, connection_dirs,
patch_tops, anglesAB):
kw = dict(connectionstyle=f"arc3,rad={dir * 0.5}",
arrowstyle=arrowstyle, color="C0")
ax.add_patch(FancyArrowPatch(vline, patch_top, **kw))
ax.text(vline[0] - dir * 0.15, y + 0.3, f'{angle}°', ha="center",
va="center")
#############################################################################
#
# .. admonition:: References
#
# The use of the following functions, methods, classes and modules is shown
# in this example:
#
# - `matplotlib.patches.ArrowStyle`
|
|
12,977 | 62,436 | 19 | .venv/lib/python3.8/site-packages/pip/_vendor/html5lib/_tokenizer.py | 5 | 5 | def processEntityInAttribute(self, allowedChar):
self.consumeEntity(allowedChar=allowedChar, fromAttribute=True)
| upd; format | processEntityInAttribute | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | _tokenizer.py | 8 | 2 | https://github.com/jindongwang/transferlearning.git | 1 | 20 | 0 | 5 | 33 | Python | {
"docstring": "This method replaces the need for \"entityInAttributeValueState\".\n ",
"language": "en",
"n_whitespaces": 14,
"n_words": 7,
"vocab_size": 7
} | def processEntityInAttribute(self, allowedChar):
self.consumeEntity(allowedChar=allowedChar, fromAttribute=True)
|
|
49,638 | 200,424 | 148 | sympy/physics/secondquant.py | 67 | 21 | def _get_ordered_dummies(mul, verbose=False):
# setup dicts to avoid repeated calculations in key()
args = Mul.make_args(mul)
fac_dum = { fac: fac.atoms(Dummy) for fac in args }
fac_repr = { fac: __kprint(fac) for fac in args }
all_dums = set().union(*fac_dum.values())
mask = {}
for d in all_dums:
if d.assumptions0.get('below_fermi'):
mask[d] = '0'
elif d.assumptions0.get('above_fermi'):
mask[d] = '1'
else:
mask[d] = '2'
d | Fix various typos
Found via `codespell -q 3 -L aboves,aline,ans,aother,arithmetics,assum,atleast,braket,clen,declar,declars,dorder,dum,enew,fo,fro,inout,iself,ist,ket,lamda,lightyear,lightyears,nd,numer,numers,orderd,ot,pring,rcall,rever,ro,ser,siz,splitted,sring,supercedes,te,tht,unequality,upto,vas,versin,whet` | _get_ordered_dummies | 24f1e7730119fe958cc8e28411f790c9a5ec04eb | sympy | secondquant.py | 12 | 26 | https://github.com/sympy/sympy.git | 13 | 258 | 0 | 43 | 211 | Python | {
"docstring": "Returns all dummies in the mul sorted in canonical order.\n\n Explanation\n ===========\n\n The purpose of the canonical ordering is that dummies can be substituted\n consistently across terms with the result that equivalent terms can be\n simplified.\n\n It is not possible to determine if two terms are equivalent based solely on\n the dummy order. However, a consistent substitution guided by the ordered\n dummies should lead to trivially (non-)equivalent terms, thereby revealing\n the equivalence. This also means that if two terms have identical sequences of\n dummies, the (non-)equivalence should already be apparent.\n\n Strategy\n --------\n\n The canonical order is given by an arbitrary sorting rule. A sort key\n is determined for each dummy as a tuple that depends on all factors where\n the index is present. The dummies are thereby sorted according to the\n contraction structure of the term, instead of sorting based solely on the\n dummy symbol itself.\n\n After all dummies in the term has been assigned a key, we check for identical\n keys, i.e. unorderable dummies. If any are found, we call a specialized\n method, _determine_ambiguous(), that will determine a unique order based\n on recursive calls to _get_ordered_dummies().\n\n Key description\n ---------------\n\n A high level description of the sort key:\n\n 1. Range of the dummy index\n 2. Relation to external (non-dummy) indices\n 3. Position of the index in the first factor\n 4. Position of the index in the second factor\n\n The sort key is a tuple with the following components:\n\n 1. A single character indicating the range of the dummy (above, below\n or general.)\n 2. A list of strings with fully masked string representations of all\n factors where the dummy is present. By masked, we mean that dummies\n are represented by a symbol to indicate either below fermi, above or\n general. No other information is displayed about the dummies at\n this point. The list is sorted stringwise.\n 3. An integer number indicating the position of the index, in the first\n factor as sorted in 2.\n 4. An integer number indicating the position of the index, in the second\n factor as sorted in 2.\n\n If a factor is either of type AntiSymmetricTensor or SqOperator, the index\n position in items 3 and 4 is indicated as 'upper' or 'lower' only.\n (Creation operators are considered upper and annihilation operators lower.)\n\n If the masked factors are identical, the two factors cannot be ordered\n unambiguously in item 2. In this case, items 3, 4 are left out. If several\n indices are contracted between the unorderable factors, it will be handled by\n _determine_ambiguous()\n\n\n ",
"language": "en",
"n_whitespaces": 650,
"n_words": 415,
"vocab_size": 207
} | def _get_ordered_dummies(mul, verbose=False):
# setup dicts to avoid repeated calculations in key()
args = Mul.make_args(mul)
fac_dum = { fac: fac.atoms(Dummy) for fac in args }
fac_repr = { fac: __kprint(fac) for fac in args }
all_dums = set().union(*fac_dum.values())
mask = {}
for d in all_dums:
if d.assumptions0.get('below_fermi'):
mask[d] = '0'
elif d.assumptions0.get('above_fermi'):
mask[d] = '1'
else:
mask[d] = '2'
dum_repr = {d: __kprint(d) for d in all_dums}
|
|
9,378 | 48,153 | 385 | airflow/providers/amazon/aws/example_dags/example_athena.py | 107 | 51 | def read_results_from_s3(query_execution_id):
s3_hook = S3Hook()
file_obj = s3_hook.get_conn().get_object(Bucket=S3_BUCKET, Key=f'{S3_KEY}/{query_execution_id}.csv')
file_content = file_obj['Body'].read().decode('utf-8')
print(file_content)
QUERY_CREATE_TABLE = f
QUERY_READ_TABLE = f
QUERY_DROP_TABLE = f
with DAG(
dag_id='example_athena',
schedule_interval=None,
start_date=datetime(2021, 1, 1),
tags=['example'],
catchup=False,
) as dag:
upload_sample_data = S3CreateObjectOperator(
task_id='upload_sample_data',
s3_bucket=S3_BUCKET,
s3_key=f'{S3_KEY}/{ATHENA_TABLE}/{SAMPLE_FILENAME}',
data=SAMPLE_DATA,
replace=True,
)
create_table = AthenaOperator(
task_id='create_table',
query=QUERY_CREATE_TABLE,
database=ATHENA_DATABASE,
output_location=f's3://{S3_BUCKET}/{S3_KEY}',
)
# [START howto_athena_operator]
read_table = AthenaOperator(
task_id='read_table',
query=QUERY_READ_TABLE,
database=ATHENA_DATABASE,
output_location=f's3://{S3_BUCKET}/{ | Update the Athena Sample DAG and Docs (#23428)
* Update the Athena Sample DAG and Docs | read_results_from_s3 | 46af5baba810a07eec395e89db08fc5dab175e23 | airflow | example_athena.py | 12 | 5 | https://github.com/apache/airflow.git | 1 | 48 | 0 | 63 | 462 | Python | {
"docstring": "\nCREATE EXTERNAL TABLE IF NOT EXISTS {ATHENA_DATABASE}.{ATHENA_TABLE} ( `name` string, `age` int )\nROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.lazy.LazySimpleSerDe'\nWITH SERDEPROPERTIES ( 'serialization.format' = ',', 'field.delim' = ','\n) LOCATION 's3://{S3_BUCKET}/{S3_KEY}/{ATHENA_TABLE}'\nTBLPROPERTIES ('has_encrypted_data'='false')\n\nSELECT * from {ATHENA_DATABASE}.{ATHENA_TABLE}\n\nDROP TABLE IF EXISTS {ATHENA_DATABASE}.{ATHENA_TABLE}\n",
"language": "en",
"n_whitespaces": 33,
"n_words": 40,
"vocab_size": 32
} | def read_results_from_s3(query_execution_id):
s3_hook = S3Hook()
file_obj = s3_hook.get_conn().get_object(Bucket=S3_BUCKET, Key=f'{S3_KEY}/{query_execution_id}.csv')
file_content = file_obj['Body'].read().decode('utf-8')
print(file_content)
QUERY_CREATE_TABLE = f
QUERY_READ_TABLE = f
QUERY_DROP_TABLE = f
with DAG(
dag_id='example_athena',
schedule_interval=None,
start_date=datetime(2021, 1, 1),
tags=['example'],
catchup=False,
) as dag:
upload_sample_data = S3CreateObjectOperator(
task_id='upload_sample_data',
s3_bucket=S3_BUCKET,
s3_key=f'{S3_KEY}/{ATHENA_TABLE}/{SAMPLE_FILENAME}',
data=SAMPLE_DATA,
replace=True,
)
create_table = AthenaOperator(
task_id='create_table',
query=QUERY_CREATE_TABLE,
database=ATHENA_DATABASE,
output_location=f's3://{S3_BUCKET}/{S3_KEY}',
)
# [START howto_athena_operator]
read_table = AthenaOperator(
task_id='read_table',
query=QUERY_READ_TABLE,
database=ATHENA_DATABASE,
output_location=f's3://{S3_BUCKET}/{S3_KEY}',
)
# [END howto_athena_operator]
# [START howto_athena_sensor]
await_query = AthenaSensor(
task_id='await_query',
query_execution_id=read_table.output,
)
# [END howto_athena_sensor]
drop_table = AthenaOperator(
task_id='drop_table',
query=QUERY_DROP_TABLE,
database=ATHENA_DATABASE,
output_location=f's3://{S3_BUCKET}/{S3_KEY}',
)
remove_s3_files = S3DeleteObjectsOperator(
task_id='remove_s3_files',
bucket=S3_BUCKET,
prefix=S3_KEY,
)
(
upload_sample_data
>> create_table
>> read_table
>> await_query
>> read_results_from_s3(read_table.output)
>> drop_table
>> remove_s3_files
)
|
|
40,074 | 167,667 | 112 | pandas/core/dtypes/common.py | 37 | 12 | def is_datetime64_ns_dtype(arr_or_dtype) -> bool:
if arr_or_dtype is None:
return False
try:
tipo = get_dtype(arr_or_dtype)
except TypeError:
| ENH: DTI/DTA.astype support non-nano (#47579)
* ENH: DTI/DTA.astype support non-nano
* whatsnew
* GH ref
* pyright fixup | is_datetime64_ns_dtype | 67e8c4c3761ab1da4b0a341a472c0fe2ea393e8b | pandas | common.py | 14 | 47 | https://github.com/pandas-dev/pandas.git | 6 | 63 | 0 | 29 | 106 | Python | {
"docstring": "\n Check whether the provided array or dtype is of the datetime64[ns] dtype.\n\n Parameters\n ----------\n arr_or_dtype : array-like or dtype\n The array or dtype to check.\n\n Returns\n -------\n bool\n Whether or not the array or dtype is of the datetime64[ns] dtype.\n\n Examples\n --------\n >>> is_datetime64_ns_dtype(str)\n False\n >>> is_datetime64_ns_dtype(int)\n False\n >>> is_datetime64_ns_dtype(np.datetime64) # no unit\n False\n >>> is_datetime64_ns_dtype(DatetimeTZDtype(\"ns\", \"US/Eastern\"))\n True\n >>> is_datetime64_ns_dtype(np.array(['a', 'b']))\n False\n >>> is_datetime64_ns_dtype(np.array([1, 2]))\n False\n >>> is_datetime64_ns_dtype(np.array([], dtype=\"datetime64\")) # no unit\n False\n >>> is_datetime64_ns_dtype(np.array([], dtype=\"datetime64[ps]\")) # wrong unit\n False\n >>> is_datetime64_ns_dtype(pd.DatetimeIndex([1, 2, 3], dtype=\"datetime64[ns]\"))\n True\n ",
"language": "en",
"n_whitespaces": 188,
"n_words": 86,
"vocab_size": 49
} | def is_datetime64_ns_dtype(arr_or_dtype) -> bool:
if arr_or_dtype is None:
return False
try:
tipo = get_dtype(arr_or_dtype)
except TypeError:
if is_datetime64tz_dtype(arr_or_dtype):
tipo = get_dtype(arr_or_dtype.dtype)
else:
return False
return tipo == DT64NS_DTYPE or (
isinstance(tipo, DatetimeTZDtype) and tipo._unit == "ns"
)
|
|
@register.tag | 50,267 | 203,239 | 290 | django/template/defaulttags.py | 131 | 15 | def regroup(parser, token):
bits = token.split_contents()
if len(bits) != 6:
raise TemplateSyntaxError("'regroup' tag takes five arguments")
target = parser.compile_filter(bits[1])
if bits[2] != 'by':
raise TemplateSyntaxError("second argument to 'regroup' tag must be 'by'")
if bits[4] != 'as':
raise Template | Refs #33476 -- Refactored problematic code before reformatting by Black.
In these cases Black produces unexpected results, e.g.
def make_random_password(
self,
length=10,
allowed_chars='abcdefghjkmnpqrstuvwxyz' 'ABCDEFGHJKLMNPQRSTUVWXYZ' '23456789',
):
or
cursor.execute("""
SELECT ...
""",
[table name],
) | regroup | c5cd8783825b5f6384417dac5f3889b4210b7d08 | django | defaulttags.py | 10 | 16 | https://github.com/django/django.git | 4 | 95 | 1 | 95 | 172 | Python | {
"docstring": "\n Regroup a list of alike objects by a common attribute.\n\n This complex tag is best illustrated by use of an example: say that\n ``musicians`` is a list of ``Musician`` objects that have ``name`` and\n ``instrument`` attributes, and you'd like to display a list that\n looks like:\n\n * Guitar:\n * Django Reinhardt\n * Emily Remler\n * Piano:\n * Lovie Austin\n * Bud Powell\n * Trumpet:\n * Duke Ellington\n\n The following snippet of template code would accomplish this dubious task::\n\n {% regroup musicians by instrument as grouped %}\n <ul>\n {% for group in grouped %}\n <li>{{ group.grouper }}\n <ul>\n {% for musician in group.list %}\n <li>{{ musician.name }}</li>\n {% endfor %}\n </ul>\n {% endfor %}\n </ul>\n\n As you can see, ``{% regroup %}`` populates a variable with a list of\n objects with ``grouper`` and ``list`` attributes. ``grouper`` contains the\n item that was grouped by; ``list`` contains the list of objects that share\n that ``grouper``. In this case, ``grouper`` would be ``Guitar``, ``Piano``\n and ``Trumpet``, and ``list`` is the list of musicians who play this\n instrument.\n\n Note that ``{% regroup %}`` does not work when the list to be grouped is not\n sorted by the key you are grouping by! This means that if your list of\n musicians was not sorted by instrument, you'd need to make sure it is sorted\n before using it, i.e.::\n\n {% regroup musicians|dictsort:\"instrument\" by instrument as grouped %}\n ",
"language": "en",
"n_whitespaces": 478,
"n_words": 230,
"vocab_size": 128
} | def regroup(parser, token):
bits = token.split_contents()
if len(bits) != 6:
raise TemplateSyntaxError("'regroup' tag takes five arguments")
target = parser.compile_filter(bits[1])
if bits[2] != 'by':
raise TemplateSyntaxError("second argument to 'regroup' tag must be 'by'")
if bits[4] != 'as':
raise TemplateSyntaxError(
"next-to-last argument to 'regroup' tag must be 'as'"
)
var_name = bits[5]
# RegroupNode will take each item in 'target', put it in the context under
# 'var_name', evaluate 'var_name'.'expression' in the current context, and
# group by the resulting value. After all items are processed, it will
# save the final result in the context under 'var_name', thus clearing the
# temporary values. This hack is necessary because the template engine
# doesn't provide a context-aware equivalent of Python's getattr.
expression = parser.compile_filter(var_name +
VARIABLE_ATTRIBUTE_SEPARATOR +
bits[3])
return RegroupNode(target, expression, var_name)
@register.tag |
5,427 | 30,242 | 42 | spotdl/types/saved.py | 14 | 7 | def create_basic_list(cls) -> "Saved":
metadata | fixed arguments for frozen env
fixed pylint errors
fixed arguments
black
fixed argument parser for all scenarios
black
docs
black | create_basic_list | 773398048b7990ab58e2998fe4d15355f7998774 | spotify-downloader | saved.py | 9 | 10 | https://github.com/spotDL/spotify-downloader.git | 1 | 39 | 0 | 13 | 70 | Python | {
"docstring": "\n Create a basic list with only the required metadata and urls.\n\n ### Returns\n - The Saved object.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 17,
"vocab_size": 17
} | def create_basic_list(cls) -> "Saved":
metadata = cls.get_metadata("saved")
urls = cls.get_urls("saved")
return cls(**metadata, urls=urls, songs=[])
|
|
95,675 | 296,701 | 49 | tests/common.py | 23 | 5 | def assert_lists_same(a, b):
assert len(a) == len(b)
for i in a:
assert i in b
for i in b:
assert i in a
| Mark device actions from hidden or auxiliary entities as secondary (#70278) | assert_lists_same | 64381acbaf2930cda5dfa538d00bfa9f5172e690 | core | common.py | 8 | 6 | https://github.com/home-assistant/core.git | 3 | 36 | 0 | 14 | 57 | Python | {
"docstring": "Compare two lists, ignoring order.\n\n Check both that all items in a are in b and that all items in b are in a,\n otherwise assert_lists_same([\"1\", \"1\"], [\"1\", \"2\"]) could be True.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 32,
"vocab_size": 24
} | def assert_lists_same(a, b):
assert len(a) == len(b)
for i in a:
assert i in b
for i in b:
assert i in a
|
|
36,771 | 156,780 | 453 | dask/dataframe/tests/test_format.py | 100 | 20 | def test_dataframe_format_with_index():
pytest.importorskip("jinja2")
df = pd.DataFrame(
{
"A": [1, 2, 3, 4, 5, 6, 7, 8],
"B": list("ABCDEFGH"),
"C": pd.Categorical(list("AAABBBCC")),
},
index=list("ABCDEFGH"),
)
ddf = dd.from_pandas(df, 3)
exp = (
"Dask DataFrame Structure:\n"
" A B C\n"
"npartitions=3 \n"
"A int64 object category[known]\n"
"D ... ... ...\n"
"G ... ... ...\n"
"H ... ... ...\n"
"Dask Name: from_pandas, 1 graph layer"
)
assert repr(ddf) == exp
assert str(ddf) == exp
exp_table =
exp = .format(
exp_table=exp_table
)
assert ddf.to_html() == exp
# table is boxed with div and has style
exp = .format(
style=style, exp_table=exp_table
)
assert ddf._repr_html_() == exp
| Change repr methods to avoid Layer materialization (#9289)
* change task count to layer count in DataFrame and Array reprs
* add test
* address doctest failure
* simplify test
* support pluralization
* use 'graph layers' instead of 'layers' to be more explicit | test_dataframe_format_with_index | ddcb841903f8f180aa359bd8db0054aa3b5964e3 | dask | test_format.py | 15 | 79 | https://github.com/dask/dask.git | 1 | 145 | 0 | 70 | 259 | Python | {
"docstring": "<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>A</th>\n <th>B</th>\n <th>C</th>\n </tr>\n <tr>\n <th>npartitions=3</th>\n <th></th>\n <th></th>\n <th></th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>A</th>\n <td>int64</td>\n <td>object</td>\n <td>category[known]</td>\n </tr>\n <tr>\n <th>D</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>G</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n <tr>\n <th>H</th>\n <td>...</td>\n <td>...</td>\n <td>...</td>\n </tr>\n </tbody>\n</table><div><strong>Dask DataFrame Structure:</strong></div>\n{exp_table}\n<div>Dask Name: from_pandas, 1 graph layer</div><div><strong>Dask DataFrame Structure:</strong></div>\n<div>\n{style}{exp_table}\n</div>\n<div>Dask Name: from_pandas, 1 graph layer</div>",
"language": "en",
"n_whitespaces": 218,
"n_words": 66,
"vocab_size": 38
} | def test_dataframe_format_with_index():
pytest.importorskip("jinja2")
df = pd.DataFrame(
{
"A": [1, 2, 3, 4, 5, 6, 7, 8],
"B": list("ABCDEFGH"),
"C": pd.Categorical(list("AAABBBCC")),
},
index=list("ABCDEFGH"),
)
ddf = dd.from_pandas(df, 3)
exp = (
"Dask DataFrame Structure:\n"
" A B C\n"
"npartitions=3 \n"
"A int64 object category[known]\n"
"D ... ... ...\n"
"G ... ... ...\n"
"H ... ... ...\n"
"Dask Name: from_pandas, 1 graph layer"
)
assert repr(ddf) == exp
assert str(ddf) == exp
exp_table =
exp = .format(
exp_table=exp_table
)
assert ddf.to_html() == exp
# table is boxed with div and has style
exp = .format(
style=style, exp_table=exp_table
)
assert ddf._repr_html_() == exp
|
|
51,942 | 207,372 | 88 | tests/admin_scripts/tests.py | 28 | 15 | def test_run_from_argv_closes_connections(self):
| Refs #33476 -- Reformatted code with Black. | test_run_from_argv_closes_connections | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | tests.py | 11 | 7 | https://github.com/django/django.git | 1 | 61 | 0 | 26 | 111 | Python | {
"docstring": "\n A command called from the command line should close connections after\n being executed (#21255).\n ",
"language": "en",
"n_whitespaces": 36,
"n_words": 14,
"vocab_size": 13
} | def test_run_from_argv_closes_connections(self):
command = BaseCommand()
command.check = lambda: []
command.handle = lambda *args, **kwargs: args
with mock.patch("django.core.management.base.connections") as mock_connections:
command.run_from_argv(["", ""])
# Test connections have been closed
self.assertTrue(mock_connections.close_all.called)
|
|
26,025 | 117,547 | 1,445 | tests/unit/test_project_structure.py | 536 | 31 | def test_version_managing(self, data_handler):
# set up
df = pd.DataFrame([
{'a': 1, 'b': dt.datetime(2020, 1, 1)},
{'a': 2, 'b': dt.datetime(2020, 1, 2)},
{'a': 1, 'b': dt.datetime(2020, 1, 3)},
])
self.set_handler(data_handler, name='pg', tables={'tasks': df})
# ================= retrain cycles =====================
# create folder
self.run_sql('create database proj')
# -- create model --
self.run_sql(
)
self.wait_predictor('proj', 'task_model')
assert data_handler().native_query.call_args[0][0] == 'select * from tasks'
# tag works in create model
ret = self.run_sql('select * from proj.models')
assert ret['TAG'][0] == 'first'
# use model
ret = self.run_sql()
assert len(ret) == 3
assert ret.predicted[0] == 42
# -- retrain predictor with tag --
data_handler.reset_mock()
self.run_sql(
)
self.wait_predictor('proj', 'task_model', {'tag': 'second'})
# get current model
ret = self.run_sql('select * from proj.models')
# check target
assert ret['PREDICT'][0] == 'b'
# check label
a | update and delete model version
renaming (predictor->model) | test_version_managing | 3f1a5c30c2ccbd78b21f1f41b7dfdfca87bb7135 | mindsdb | test_project_structure.py | 13 | 130 | https://github.com/mindsdb/mindsdb.git | 5 | 716 | 0 | 173 | 1,293 | Python | {
"docstring": "\n CREATE PREDICTOR proj.task_model\n from pg (select * from tasks)\n PREDICT a\n using engine='dummy_ml', tag = 'first'\n \n SELECT m.*\n FROM pg.tasks as t\n JOIN proj.task_model as m\n \n retrain proj.task_model\n from pg (select * from tasks where a=2)\n PREDICT b\n using tag = 'second'\n \n SELECT m.*\n FROM pg.tasks as t\n JOIN proj.task_model as m\n \n retrain proj.task_model\n from pg (select * from tasks where a=2)\n PREDICT a\n using tag='third', active=0\n \n SELECT m.*\n FROM pg.tasks as t\n JOIN proj.task_model as m\n \n SELECT m.*\n FROM pg.tasks as t\n JOIN proj.task_model.3 as m\n \n update proj.models_versions \n set active=1\n where version=1 and name='task_model' \n \n delete from proj.models_versions \n where version=2 \n and name='task_model'\n \n delete from proj.models_versions \n where version=3 \n and model='task_model'\n ",
"language": "en",
"n_whitespaces": 654,
"n_words": 109,
"vocab_size": 43
} | def test_version_managing(self, data_handler):
# set up
df = pd.DataFrame([
{'a': 1, 'b': dt.datetime(2020, 1, 1)},
{'a': 2, 'b': dt.datetime(2020, 1, 2)},
{'a': 1, 'b': dt.datetime(2020, 1, 3)},
])
self.set_handler(data_handler, name='pg', tables={'tasks': df})
# ================= retrain cycles =====================
# create folder
self.run_sql('create database proj')
# -- create model --
self.run_sql(
)
self.wait_predictor('proj', 'task_model')
assert data_handler().native_query.call_args[0][0] == 'select * from tasks'
# tag works in create model
ret = self.run_sql('select * from proj.models')
assert ret['TAG'][0] == 'first'
# use model
ret = self.run_sql()
assert len(ret) == 3
assert ret.predicted[0] == 42
# -- retrain predictor with tag --
data_handler.reset_mock()
self.run_sql(
)
self.wait_predictor('proj', 'task_model', {'tag': 'second'})
# get current model
ret = self.run_sql('select * from proj.models')
# check target
assert ret['PREDICT'][0] == 'b'
# check label
assert ret['TAG'][0] == 'second'
# check integration sql
assert data_handler().native_query.call_args[0][0] == 'select * from tasks where a=2'
# use model
ret = self.run_sql()
assert ret.predicted[0] == 42
# used model has tag 'second'
models = self.get_models()
model_id = ret.predictor_id[0]
assert models[model_id].label == 'second'
# -- retrain again with active=0 --
data_handler.reset_mock()
self.run_sql(
)
self.wait_predictor('proj', 'task_model', {'tag': 'third'})
ret = self.run_sql('select * from proj.models')
# check target is from previous retrain
assert ret['PREDICT'][0] == 'b'
# use model
ret = self.run_sql()
# used model has tag 'second' (previous)
models = self.get_models()
model_id = ret.predictor_id[0]
assert models[model_id].label == 'second'
# ================ working with inactive versions =================
# run 3st version model and check used model version
ret = self.run_sql()
models = self.get_models()
model_id = ret.predictor_id[0]
assert models[model_id].label == 'third'
# one-line query model by version
ret = self.run_sql('SELECT * from proj.task_model.3 where a=1 and b=2')
model_id = ret.predictor_id[0]
assert models[model_id].label == 'third'
# not existing version
with pytest.raises(Exception) as exc_info:
self.run_sql(
'SELECT * from proj.task_model.4 where a=1 and b=2',
)
assert 'does not exists' in str(exc_info.value)
# ================== managing versions =========================
# show models command
# Show models <from | in> <project> where <expr>
ret = self.run_sql('Show models')
assert len(ret) == 1 and ret['NAME'][0] == 'task_model'
ret = self.run_sql('Show models from proj')
assert len(ret) == 1 and ret['NAME'][0] == 'task_model'
ret = self.run_sql('Show models in proj')
assert len(ret) == 1 and ret['NAME'][0] == 'task_model'
ret = self.run_sql("Show models where name='task_model'")
assert len(ret) == 1 and ret['NAME'][0] == 'task_model'
ret = self.run_sql("Show models from proj where name='xxx'")
assert len(ret) == 0
# ----------------
# See all versions
ret = self.run_sql('select * from proj.models_versions')
# we have all tags in versions
assert set(ret['TAG']) == {'first', 'second', 'third'}
# Set active selected version
self.run_sql()
# get active version
ret = self.run_sql('select * from proj.models_versions where active = 1')
assert ret['TAG'][0] == 'first'
# use active version ?
# Delete specific version
self.run_sql()
# deleted version not in list
ret = self.run_sql('select * from proj.models_versions')
assert len(ret) == 2
assert 'second' not in ret['TAG']
# try to use deleted version
with pytest.raises(Exception) as exc_info:
self.run_sql(
'SELECT * from proj.task_model.2 where a=1',
)
assert 'does not exists' in str(exc_info.value)
# exception with deleting active version
with pytest.raises(Exception) as exc_info:
self.run_sql()
assert 'is not found' in str(exc_info.value)
# drop predictor and check model is deleted and no versions
self.run_sql('drop predictor proj.task_model')
ret = self.run_sql('select * from proj.models')
assert len(ret) == 0
ret = self.run_sql('select * from proj.models_versions')
assert len(ret) == 0
|
|
@functools.lru_cache(maxsize=None) | 2,979 | 19,462 | 58 | pipenv/patched/notpip/_internal/locations/__init__.py | 25 | 12 | def _looks_like_red_hat_lib() -> bool:
from distutils.command.install import INSTALL_SCHEMES # type: ignore
return all(
k in INSTALL_SCHEMES
and _looks_like_red_hat_patched_platlib | Vendor in pip 21.2.4 release (from pip 21.2.2 prior). (#5009)
* Vendor in pip 21.2.4 release (from pip 21.2.2 prior).
* Add news fragment for pip 21.2.4 vendor update.
* Add potentially missing LICENSE files | _looks_like_red_hat_lib | 7e33fcae4384563b4c927fd44318c29dd524a097 | pipenv | __init__.py | 11 | 11 | https://github.com/pypa/pipenv.git | 3 | 38 | 1 | 22 | 79 | Python | {
"docstring": "Red Hat patches platlib in unix_prefix and unix_home, but not purelib.\n\n This is the only way I can see to tell a Red Hat-patched Python.\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 25,
"vocab_size": 24
} | def _looks_like_red_hat_lib() -> bool:
from distutils.command.install import INSTALL_SCHEMES # type: ignore
return all(
k in INSTALL_SCHEMES
and _looks_like_red_hat_patched_platlib_purelib(INSTALL_SCHEMES[k])
for k in ("unix_prefix", "unix_home")
)
@functools.lru_cache(maxsize=None) |
15,958 | 73,144 | 331 | wagtail/contrib/modeladmin/helpers/permission.py | 83 | 27 | def get_valid_parent_pages(self, user):
# Get queryset of pages where this page type can be added
allowed_parent_page_content_types = list(
ContentType.objects.get_for_models(
*self.model.allowed_parent_page_models()
).values()
)
allowed_parent_pages = Page.objects.filter(
content_type__in=allowed_parent_page_content_types
)
# Get queryset of pages where the user has permission to add subpages
if user.is_superuser:
pages_where_user_can_add = Page.objects.all()
else:
pages_where_user_can_add = Page.objects.none()
user_perms = UserPagePermissionsProxy(user)
| Reformat with black | get_valid_parent_pages | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | permission.py | 16 | 19 | https://github.com/wagtail/wagtail.git | 3 | 109 | 0 | 58 | 184 | Python | {
"docstring": "\n Identifies possible parent pages for the current user by first looking\n at allowed_parent_page_models() on self.model to limit options to the\n correct type of page, then checking permissions on those individual\n pages to make sure we have permission to add a subpage to it.\n ",
"language": "en",
"n_whitespaces": 79,
"n_words": 43,
"vocab_size": 36
} | def get_valid_parent_pages(self, user):
# Get queryset of pages where this page type can be added
allowed_parent_page_content_types = list(
ContentType.objects.get_for_models(
*self.model.allowed_parent_page_models()
).values()
)
allowed_parent_pages = Page.objects.filter(
content_type__in=allowed_parent_page_content_types
)
# Get queryset of pages where the user has permission to add subpages
if user.is_superuser:
pages_where_user_can_add = Page.objects.all()
else:
pages_where_user_can_add = Page.objects.none()
user_perms = UserPagePermissionsProxy(user)
for perm in user_perms.permissions.filter(permission_type="add"):
# user has add permission on any subpage of perm.page
# (including perm.page itself)
pages_where_user_can_add |= Page.objects.descendant_of(
perm.page, inclusive=True
)
# Combine them
return allowed_parent_pages & pages_where_user_can_add
|
|
14,149 | 66,255 | 22 | erpnext/hr/report/monthly_attendance_sheet/monthly_attendance_sheet.py | 35 | 19 | def get_attendance_list(conditions, filters):
attendance_list = frapp | style: format code with black | get_attendance_list | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | monthly_attendance_sheet.py | 13 | 15 | https://github.com/frappe/erpnext.git | 3 | 94 | 0 | 31 | 149 | Python | {
"docstring": "select employee, day(attendance_date) as day_of_month,\n\t\tstatus from tabAttendance where docstatus = 1 %s order by employee, attendance_date",
"language": "en",
"n_whitespaces": 15,
"n_words": 17,
"vocab_size": 16
} | def get_attendance_list(conditions, filters):
attendance_list = frappe.db.sql(
% conditions,
filters,
as_dict=1,
)
if not attendance_list:
msgprint(_("No attendance record found"), alert=True, indicator="orange")
att_map = {}
for d in attendance_list:
att_map.setdefault(d.employee, frappe._dict()).setdefault(d.day_of_month, "")
att_map[d.employee][d.day_of_month] = d.status
return att_map
|
|
@add_start_docstrings(
"""
RemBERT Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks.
""",
REMBERT_START_DOCSTRING,
) | 6,559 | 35,987 | 60 | src/transformers/models/rembert/modeling_tf_rembert.py | 25 | 12 | def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(tf.gather(past_state, bea | TF generate refactor - past without encoder outputs (#15944)
* Remove packed past from generation_tf_utils
* update models with the new past format
* update template accordingly | _reorder_cache | 70203b59379b1841013980b6941bddfd34bfe816 | transformers | modeling_tf_rembert.py | 14 | 5 | https://github.com/huggingface/transformers.git | 3 | 42 | 1 | 21 | 76 | Python | {
"docstring": "\n RemBERT Model transformer with a sequence classification/regression head on top e.g., for GLUE tasks.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 14,
"vocab_size": 14
} | def _reorder_cache(past, beam_idx):
reordered_past = ()
for layer_past in past:
reordered_past += (tuple(tf.gather(past_state, beam_idx, axis=0) for past_state in layer_past),)
return reordered_past
@add_start_docstrings(
,
REMBERT_START_DOCSTRING,
) |
19,756 | 100,089 | 223 | tests/sentry/api/endpoints/test_team_details.py | 66 | 27 | def test_remove_as_admin_not_in_team(self):
# an org with closed membership (byproduct of flags=0)
org = self.create_organization(owner=self.user, flags=0)
team = self.create_team(organization=org)
admin_user = self.create_user(email="[email protected]", is_superuser=False)
self.create_member(
organization=org,
user=admin_user,
role="admin",
teams=[], # note that admin_user isn't a member of `team`
)
self.login_as(admin_user)
# first, try deleting the team with open membership off
self.get_error_response(team.organization.slug, team.slug, status_code=403)
self.assert_team_not_deleted( | ref(tests): Remove `get_valid_response()` (#34822) | test_remove_as_admin_not_in_team | 096b5511e244eecd8799b2a0324655207ce8985e | sentry | test_team_details.py | 10 | 17 | https://github.com/getsentry/sentry.git | 1 | 138 | 0 | 49 | 221 | Python | {
"docstring": "Admins can't remove teams of which they're not a part, unless\n open membership is on.",
"language": "en",
"n_whitespaces": 21,
"n_words": 15,
"vocab_size": 15
} | def test_remove_as_admin_not_in_team(self):
# an org with closed membership (byproduct of flags=0)
org = self.create_organization(owner=self.user, flags=0)
team = self.create_team(organization=org)
admin_user = self.create_user(email="[email protected]", is_superuser=False)
self.create_member(
organization=org,
user=admin_user,
role="admin",
teams=[], # note that admin_user isn't a member of `team`
)
self.login_as(admin_user)
# first, try deleting the team with open membership off
self.get_error_response(team.organization.slug, team.slug, status_code=403)
self.assert_team_not_deleted(team.id)
# now, with open membership on
org.flags.allow_joinleave = True
org.save()
self.get_success_response(team.organization.slug, team.slug, status_code=204)
self.assert_team_deleted(team.id)
|
|
29,474 | 131,087 | 239 | python/ray/tests/aws/test_aws_batch_tag_update.py | 61 | 29 | def batch_test(num_threads, delay):
with mock.patch(
"ray.autoscaler._private.aws.node_provider.make_ec2_client"
), mock.patch.object(AWSNodeProvider, "_create_tags", mock_create_tags):
provider = AWSNodeProvider(
provider_config={"region": "nowhere"}, cluster_name="default"
)
provider.batch_counter = 0
provider.tag_update_count | [CI] Format Python code with Black (#21975)
See #21316 and #21311 for the motivation behind these changes. | batch_test | 7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065 | ray | test_aws_batch_tag_update.py | 17 | 22 | https://github.com/ray-project/ray.git | 5 | 154 | 0 | 43 | 256 | Python | {
"docstring": "Run AWSNodeProvider.set_node_tags in several threads, with a\n specified delay between thread launches.\n\n Return the number of batches of tag updates and the number of tags\n updated.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 26,
"vocab_size": 22
} | def batch_test(num_threads, delay):
with mock.patch(
"ray.autoscaler._private.aws.node_provider.make_ec2_client"
), mock.patch.object(AWSNodeProvider, "_create_tags", mock_create_tags):
provider = AWSNodeProvider(
provider_config={"region": "nowhere"}, cluster_name="default"
)
provider.batch_counter = 0
provider.tag_update_counter = 0
provider.tag_cache = {str(x): {} for x in range(num_threads)}
threads = []
for x in range(num_threads):
thread = threading.Thread(
target=provider.set_node_tags, args=(str(x), {"foo": "bar"})
)
threads.append(thread)
for thread in threads:
thread.start()
time.sleep(delay)
for thread in threads:
thread.join()
return provider.batch_counter, provider.tag_update_counter
|
|
@PLUGIN_LAYERS.register_module() | 70,215 | 244,048 | 142 | mmdet/models/plugins/pixel_decoder.py | 42 | 22 | def forward(self, feats, img_metas):
y = self.last_feat_conv(feats[-1])
for i in range(self.num_inputs - 2, -1, -1):
x = feats[i]
cur_fpn = self.lateral_convs[i](x)
y = cur_fpn + \
F.interpolate(y, size=cur_fpn.shape[-2:], mode='nearest')
y = self.output_convs[i](y)
mask_feature = self.mask_feature(y)
memory = feats[-1]
return mask_feature, memory
@PLUGIN_LAYERS.register_module() | [Feature] Add Maskformer to mmdet (#7212)
* first commit
* add README
* move model description from config to readme
add description for binary_input
add description for dice loss
add a independent panoptic gt processing function
add a independent panoptic gt processing function
remove compatibility of pretrain in maskformer
* update comments in maskformer_head
* update docs format | forward | cac356380d505bf15587f07c0529218cc36b9652 | mmdetection | pixel_decoder.py | 15 | 11 | https://github.com/open-mmlab/mmdetection.git | 2 | 113 | 1 | 32 | 186 | Python | {
"docstring": "\n Args:\n feats (list[Tensor]): Feature maps of each level. Each has\n shape of (batch_size, c, h, w).\n img_metas (list[dict]): List of image information. Pass in\n for creating more accurate padding mask. Not used here.\n\n Returns:\n tuple: a tuple containing the following:\n\n - mask_feature (Tensor): Shape (batch_size, c, h, w).\n - memory (Tensor): Output of last stage of backbone.\\\n Shape (batch_size, c, h, w).\n ",
"language": "en",
"n_whitespaces": 196,
"n_words": 62,
"vocab_size": 47
} | def forward(self, feats, img_metas):
y = self.last_feat_conv(feats[-1])
for i in range(self.num_inputs - 2, -1, -1):
x = feats[i]
cur_fpn = self.lateral_convs[i](x)
y = cur_fpn + \
F.interpolate(y, size=cur_fpn.shape[-2:], mode='nearest')
y = self.output_convs[i](y)
mask_feature = self.mask_feature(y)
memory = feats[-1]
return mask_feature, memory
@PLUGIN_LAYERS.register_module() |
89,709 | 290,594 | 97 | tests/components/bluetooth/test_models.py | 23 | 12 | async def test_remote_scanner_expires_non_connectable(hass):
manager = _get_manager()
switchbot_device = BLEDevice(
| Move bluetooth remote scanner implementation into a base class (#82012) | test_remote_scanner_expires_non_connectable | f584efa0c24df19ef1f805ecf95a95cecec5ff99 | core | test_models.py | 12 | 64 | https://github.com/home-assistant/core.git | 1 | 301 | 0 | 19 | 95 | Python | {
"docstring": "Test the remote scanner expires stale non connectable data.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | async def test_remote_scanner_expires_non_connectable(hass):
manager = _get_manager()
switchbot_device = BLEDevice(
"44:44:33:11:23:45",
"wohand",
{},
rssi=-100,
)
switchbot_device_adv = generate_advertisement_data(
local_name="wohand",
service_uuids=[],
manufacturer_data={1: b"\x01"},
rssi=-100,
)
|
|
78,972 | 267,605 | 73 | lib/ansible/plugins/inventory/toml.py | 30 | 9 | def convert_yaml_objects_to_native(obj):
if isinstance(obj, dict):
| Support for Python 3.11+ tomllib for inventory (#77435) | convert_yaml_objects_to_native | bcdc2e167af61cf978e589c753764f76e301a6fa | ansible | toml.py | 12 | 9 | https://github.com/ansible/ansible.git | 6 | 72 | 0 | 21 | 113 | Python | {
"docstring": "Older versions of the ``toml`` python library, and tomllib, don't have\n a pluggable way to tell the encoder about custom types, so we need to\n ensure objects that we pass are native types.\n\n Used with:\n - ``toml<0.10.0`` where ``toml.TomlEncoder`` is missing\n - ``tomli`` or ``tomllib``\n\n This function recurses an object and ensures we cast any of the types from\n ``ansible.parsing.yaml.objects`` into their native types, effectively cleansing\n the data before we hand it over to the toml library.\n\n This function doesn't directly check for the types from ``ansible.parsing.yaml.objects``\n but instead checks for the types those objects inherit from, to offer more flexibility.\n ",
"language": "en",
"n_whitespaces": 138,
"n_words": 101,
"vocab_size": 76
} | def convert_yaml_objects_to_native(obj):
if isinstance(obj, dict):
return dict((k, convert_yaml_objects_to_native(v)) for k, v in obj.items())
elif isinstance(obj, list):
return [convert_yaml_objects_to_native(v) for v in obj]
elif isinstance(obj, text_type):
return text_type(obj)
else:
return obj
|
|
437 | 3,302 | 274 | python/prophet/forecaster.py | 94 | 19 | def make_future_dataframe(self, periods, freq='D', include_history=True):
if self.history_dates is None:
raise Exception('Model has not been fit.')
if freq is None:
# taking the tail makes freq inference more reliable
freq = pd.infer_freq(self.history_dates.tail(5))
# returns None if inference failed
if freq is None:
raise Exception('Unable to infer `freq`')
last_date = self.history_dates.max()
dates = pd.date_range(
start=last_date,
periods=periods + 1, # An extra in case we include start
freq=freq)
dates = dates[dates > last_date] # Drop start if equals last_date
dates = dates[:per | Speed Up Uncertainty Predictions (#2186) | make_future_dataframe | 8fbf8ba2a5bfcdb892e8ca596e338894614000b5 | prophet | forecaster.py | 14 | 17 | https://github.com/facebook/prophet.git | 5 | 135 | 0 | 66 | 223 | Python | {
"docstring": "Simulate the trend using the extrapolated generative model.\n\n Parameters\n ----------\n periods: Int number of periods to forecast forward.\n freq: Any valid frequency for pd.date_range, such as 'D' or 'M'.\n include_history: Boolean to include the historical dates in the data\n frame for predictions.\n\n Returns\n -------\n pd.Dataframe that extends forward from the end of self.history for the\n requested number of periods.\n ",
"language": "en",
"n_whitespaces": 140,
"n_words": 59,
"vocab_size": 48
} | def make_future_dataframe(self, periods, freq='D', include_history=True):
if self.history_dates is None:
raise Exception('Model has not been fit.')
if freq is None:
# taking the tail makes freq inference more reliable
freq = pd.infer_freq(self.history_dates.tail(5))
# returns None if inference failed
if freq is None:
raise Exception('Unable to infer `freq`')
last_date = self.history_dates.max()
dates = pd.date_range(
start=last_date,
periods=periods + 1, # An extra in case we include start
freq=freq)
dates = dates[dates > last_date] # Drop start if equals last_date
dates = dates[:periods] # Return correct number of periods
if include_history:
dates = np.concatenate((np.array(self.history_dates), dates))
return pd.DataFrame({'ds': dates})
|
|
12,044 | 60,251 | 41 | code/deep/BJMMD/caffe/python/caffe/io.py | 16 | 13 | def array_to_blobproto(arr, diff=None):
blob = caffe_pb2.BlobProt | Balanced joint maximum mean discrepancy for deep transfer learning | array_to_blobproto | cc4d0564756ca067516f71718a3d135996525909 | transferlearning | io.py | 12 | 7 | https://github.com/jindongwang/transferlearning.git | 2 | 67 | 0 | 15 | 109 | Python | {
"docstring": "Converts a N-dimensional array to blob proto. If diff is given, also\n convert the diff. You need to make sure that arr and diff have the same\n shape, and this function does not do sanity check.\n ",
"language": "en",
"n_whitespaces": 45,
"n_words": 36,
"vocab_size": 32
} | def array_to_blobproto(arr, diff=None):
blob = caffe_pb2.BlobProto()
blob.shape.dim.extend(arr.shape)
blob.data.extend(arr.astype(float).flat)
if diff is not None:
blob.diff.extend(diff.astype(float).flat)
return blob
|
|
72,114 | 248,122 | 767 | tests/test_federation.py | 145 | 27 | def test_cross_signing_keys_retry(self):
remote_user_id = "@john:test_remote"
remote_master_key = "85T7JXPFBAySB/jwby4S3lBPTqY3+Zg53nYuGmu1ggY"
remote_self_signing_key = "QeIiFEjluPBtI7WQdG365QKZcFs9kqmHir6RBD0//nQ"
# Register mock device list retrieval on the federation client.
federation_client = self.homeserver.get_federation_client()
federation_client.query_user_devices = Mock(
return_value=make_awaitable(
{
"user_id": remote_user_id,
"stream_id": 1,
"devices": [],
"master_key": {
"user_id": remote_user_id,
"usage": ["master"],
"keys": {"ed25519:" + remote_master_key: remote_master_key},
},
"self_signing_key": {
"user_id": remote_user_id,
"usage": ["self_signing"],
"keys": {
"ed25 | Prefer `make_awaitable` over `defer.succeed` in tests (#12505)
When configuring the return values of mocks, prefer awaitables from
`make_awaitable` over `defer.succeed`. `Deferred`s are only awaitable
once, so it is inappropriate for a mock to return the same `Deferred`
multiple times.
Also update `run_in_background` to support functions that return
arbitrary awaitables.
Signed-off-by: Sean Quah <[email protected]> | test_cross_signing_keys_retry | 78b99de7c206b106340e12cdee0af9aa246bd5ad | synapse | test_federation.py | 19 | 45 | https://github.com/matrix-org/synapse.git | 1 | 263 | 0 | 87 | 464 | Python | {
"docstring": "Tests that resyncing a device list correctly processes cross-signing keys from\n the remote server.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 14,
"vocab_size": 14
} | def test_cross_signing_keys_retry(self):
remote_user_id = "@john:test_remote"
remote_master_key = "85T7JXPFBAySB/jwby4S3lBPTqY3+Zg53nYuGmu1ggY"
remote_self_signing_key = "QeIiFEjluPBtI7WQdG365QKZcFs9kqmHir6RBD0//nQ"
# Register mock device list retrieval on the federation client.
federation_client = self.homeserver.get_federation_client()
federation_client.query_user_devices = Mock(
return_value=make_awaitable(
{
"user_id": remote_user_id,
"stream_id": 1,
"devices": [],
"master_key": {
"user_id": remote_user_id,
"usage": ["master"],
"keys": {"ed25519:" + remote_master_key: remote_master_key},
},
"self_signing_key": {
"user_id": remote_user_id,
"usage": ["self_signing"],
"keys": {
"ed25519:"
+ remote_self_signing_key: remote_self_signing_key
},
},
}
)
)
# Resync the device list.
device_handler = self.homeserver.get_device_handler()
self.get_success(
device_handler.device_list_updater.user_device_resync(remote_user_id),
)
# Retrieve the cross-signing keys for this user.
keys = self.get_success(
self.store.get_e2e_cross_signing_keys_bulk(user_ids=[remote_user_id]),
)
self.assertTrue(remote_user_id in keys)
# Check that the master key is the one returned by the mock.
master_key = keys[remote_user_id]["master"]
self.assertEqual(len(master_key["keys"]), 1)
self.assertTrue("ed25519:" + remote_master_key in master_key["keys"].keys())
self.assertTrue(remote_master_key in master_key["keys"].values())
# Check that the self-signing key is the one returned by the mock.
self_signing_key = keys[remote_user_id]["self_signing"]
self.assertEqual(len(self_signing_key["keys"]), 1)
self.assertTrue(
"ed25519:" + remote_self_signing_key in self_signing_key["keys"].keys(),
)
self.assertTrue(remote_self_signing_key in self_signing_key["keys"].values())
|
|
8,783 | 46,113 | 239 | tests/providers/databricks/operators/test_databricks.py | 50 | 30 | def test_exec_success(self, db_mock_class):
run = {
'new_cluster': NEW_CLUSTER,
'notebook_task': NOTEBOOK_TASK,
}
op = DatabricksSubmitRunOperator(task_id=TASK_ID, json=run)
db_mock = db_mock_class.return_value
db_mock.submit_run.return_value = 1
db_mock.get_run_state.return_value = RunState('TERMINATED', 'SUCCESS', '')
op.execute(None)
expected = databricks_operator._deep_string_coerce(
{'new_cluster': NEW_CLUSTER, 'notebook_task': NOTEBOOK_TASK, 'run_name': TASK_ID}
)
db_mock_class.assert_called_once_with(
DEFAULT_CONN_ID,
retry_limit=op.databricks_retry_limit,
retry_delay=op.databricks_retry_delay,
retry_args=None,
)
db_mock.submit_run.assert_called_once_with(expected)
db_mock.get_run_page_url.assert_called_once_with(RUN_ID)
db_mock.get_run_state.assert_called_once_with(RUN_ID)
assert RUN_ID == op.run_ | Databricks hook - retry on HTTP Status 429 as well (#21852)
* Databricks hook - retry on HTTP Status 429 as well
this fixes #21559
* Reimplement retries using tenacity
it's now uses exponential backoff by default | test_exec_success | 12e9e2c695f9ebb9d3dde9c0f7dfaa112654f0d6 | airflow | test_databricks.py | 11 | 23 | https://github.com/apache/airflow.git | 1 | 137 | 0 | 41 | 224 | Python | {
"docstring": "\n Test the execute function in case where the run is successful.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 10
} | def test_exec_success(self, db_mock_class):
run = {
'new_cluster': NEW_CLUSTER,
'notebook_task': NOTEBOOK_TASK,
}
op = DatabricksSubmitRunOperator(task_id=TASK_ID, json=run)
db_mock = db_mock_class.return_value
db_mock.submit_run.return_value = 1
db_mock.get_run_state.return_value = RunState('TERMINATED', 'SUCCESS', '')
op.execute(None)
expected = databricks_operator._deep_string_coerce(
{'new_cluster': NEW_CLUSTER, 'notebook_task': NOTEBOOK_TASK, 'run_name': TASK_ID}
)
db_mock_class.assert_called_once_with(
DEFAULT_CONN_ID,
retry_limit=op.databricks_retry_limit,
retry_delay=op.databricks_retry_delay,
retry_args=None,
)
db_mock.submit_run.assert_called_once_with(expected)
db_mock.get_run_page_url.assert_called_once_with(RUN_ID)
db_mock.get_run_state.assert_called_once_with(RUN_ID)
assert RUN_ID == op.run_id
|
|
7,513 | 42,253 | 62 | seaborn/palettes.py | 41 | 18 | def dark_palette(color, n_colors=6, reverse=False, as_cmap=False, input="rgb"):
rgb = _color_to_rgb(color, input)
h, s, l = husl.rgb_to_husl(*rgb)
gray_s, gray_l = .15 * s, 15
gray = _color_to_rgb | Convert color palette docstrings to notebooks (#3034)
* Convert color palette docstrings to notebooks and rerun all with py310 kernel
* Add v0.12.1 release notes to index
* Improve failure mode when ipywidgets is not involved
* Update palettes docstrings
* Remove all other doctest-style examples
* Remove doctest-oriented testing infrastructure
* Mention in release notes
* Skip colormap patch test on matplotlib's where it's not relevant
* Use more robust approach to mpl backcompat | dark_palette | e644793f0ac2b1be178425f20f529121f37f29de | seaborn | palettes.py | 10 | 7 | https://github.com/mwaskom/seaborn.git | 2 | 93 | 0 | 35 | 137 | Python | {
"docstring": "Make a sequential palette that blends from dark to ``color``.\n\n This kind of palette is good for data that range between relatively\n uninteresting low values and interesting high values.\n\n The ``color`` parameter can be specified in a number of ways, including\n all options for defining a color in matplotlib and several additional\n color spaces that are handled by seaborn. You can also use the database\n of named colors from the XKCD color survey.\n\n If you are using the IPython notebook, you can also choose this palette\n interactively with the :func:`choose_dark_palette` function.\n\n Parameters\n ----------\n color : base color for high values\n hex, rgb-tuple, or html color name\n n_colors : int, optional\n number of colors in the palette\n reverse : bool, optional\n if True, reverse the direction of the blend\n as_cmap : bool, optional\n If True, return a :class:`matplotlib.colors.ListedColormap`.\n input : {'rgb', 'hls', 'husl', xkcd'}\n Color space to interpret the input color. The first three options\n apply to tuple inputs and the latter applies to string inputs.\n\n Returns\n -------\n palette\n list of RGB tuples or :class:`matplotlib.colors.ListedColormap`\n\n See Also\n --------\n light_palette : Create a sequential palette with bright low values.\n diverging_palette : Create a diverging palette with two colors.\n\n Examples\n --------\n .. include:: ../docstrings/dark_palette.rst\n\n ",
"language": "en",
"n_whitespaces": 328,
"n_words": 201,
"vocab_size": 128
} | def dark_palette(color, n_colors=6, reverse=False, as_cmap=False, input="rgb"):
rgb = _color_to_rgb(color, input)
h, s, l = husl.rgb_to_husl(*rgb)
gray_s, gray_l = .15 * s, 15
gray = _color_to_rgb((h, gray_s, gray_l), input="husl")
colors = [rgb, gray] if reverse else [gray, rgb]
return blend_palette(colors, n_colors, as_cmap)
|
|
22,462 | 106,834 | 26 | py/visdom/__init__.py | 12 | 8 | def contour(self, X, win=None, env=None, opts=None):
return self._surface(X=X, stype="contour", opts=opts, win=win, env=env | apply black py to all python files | contour | 5b8b7f267cfaf76a2a39a727ef31a62b3909a093 | visdom | __init__.py | 9 | 2 | https://github.com/fossasia/visdom.git | 1 | 45 | 0 | 12 | 66 | Python | {
"docstring": "\n This function draws a contour plot. It takes as input an `NxM` tensor\n `X` that specifies the value at each location in the contour plot.\n\n The following `opts` are supported:\n\n - `opts.colormap`: colormap (`string`; default = `'Viridis'`)\n - `opts.xmin` : clip minimum value (`number`; default = `X:min()`)\n - `opts.xmax` : clip maximum value (`number`; default = `X:max()`)\n ",
"language": "en",
"n_whitespaces": 113,
"n_words": 57,
"vocab_size": 43
} | def contour(self, X, win=None, env=None, opts=None):
return self._surface(X=X, stype="contour", opts=opts, win=win, env=env)
|
|
57,207 | 224,060 | 230 | mkdocs/utils/__init__.py | 87 | 16 | def get_themes():
themes = {}
eps = set(importlib_metadata.entry_points(group='mkdocs.themes'))
builtins = {ep.name for ep in eps if ep.dist.name == 'mkdocs'}
for theme in eps:
if theme.name in builtins and | Remove spaces at the ends of docstrings, normalize quotes | get_themes | e7f07cc82ab2be920ab426ba07456d8b2592714d | mkdocs | __init__.py | 19 | 17 | https://github.com/mkdocs/mkdocs.git | 7 | 96 | 0 | 60 | 224 | Python | {
"docstring": "Return a dict of all installed themes as {name: EntryPoint}.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def get_themes():
themes = {}
eps = set(importlib_metadata.entry_points(group='mkdocs.themes'))
builtins = {ep.name for ep in eps if ep.dist.name == 'mkdocs'}
for theme in eps:
if theme.name in builtins and theme.dist.name != 'mkdocs':
raise exceptions.ConfigurationError(
f"The theme '{theme.name}' is a builtin theme but the package '{theme.dist.name}' "
"attempts to provide a theme with the same name."
)
elif theme.name in themes:
log.warning(
f"A theme named '{theme.name}' is provided by the Python packages '{theme.dist.name}' "
f"and '{themes[theme.name].dist.name}'. The one in '{theme.dist.name}' will be used."
)
themes[theme.name] = theme
return themes
|
|
19,757 | 100,127 | 94 | tests/sentry/api/endpoints/test_user_notification_details.py | 15 | 16 | def test_subscribe_by_default(self):
NotificationSetting | ref(tests): Remove `get_valid_response()` (#34822) | test_subscribe_by_default | 096b5511e244eecd8799b2a0324655207ce8985e | sentry | test_user_notification_details.py | 9 | 9 | https://github.com/getsentry/sentry.git | 1 | 50 | 0 | 15 | 82 | Python | {
"docstring": "\n Test that we expect project-independent issue alert preferences to be\n returned as `subscribe_by_default`.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 13,
"vocab_size": 13
} | def test_subscribe_by_default(self):
NotificationSetting.objects.update_settings(
ExternalProviders.EMAIL,
NotificationSettingTypes.ISSUE_ALERTS,
NotificationSettingOptionValues.NEVER,
user=self.user,
)
response = self.get_success_response("me")
assert response.data.get("subscribeByDefault") is False
|
|
16,175 | 73,918 | 98 | wagtail/core/permission_policies/base.py | 19 | 15 | def _get_users_with_any_permission_codenames_filter(self, permission_codenames):
permissions = Permission.objects.filter(
content_type=self._content_type, codename__in=permission_codenames
)
return (
Q(is_superuser=True)
| Reformat with black | _get_users_with_any_permission_codenames_filter | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | base.py | 12 | 9 | https://github.com/wagtail/wagtail.git | 1 | 56 | 0 | 17 | 89 | Python | {
"docstring": "\n Given a list of permission codenames, return a filter expression which\n will find all users which have any of those permissions - either\n through group permissions, user permissions, or implicitly through\n being a superuser.\n ",
"language": "en",
"n_whitespaces": 70,
"n_words": 34,
"vocab_size": 28
} | def _get_users_with_any_permission_codenames_filter(self, permission_codenames):
permissions = Permission.objects.filter(
content_type=self._content_type, codename__in=permission_codenames
)
return (
Q(is_superuser=True)
| Q(user_permissions__in=permissions)
| Q(groups__permissions__in=permissions)
) & Q(is_active=True)
|
|
88,977 | 289,847 | 541 | homeassistant/components/ibeacon/coordinator.py | 56 | 21 | def _async_update_rssi_and_transients(self) -> None:
for (
unique_id,
ibeacon_advert | Update ibeacon-ble to 1.0.1 (#80785) | _async_update_rssi_and_transients | e15f2e050e7afadbb19d32973104e4e2f5a172ae | core | coordinator.py | 14 | 40 | https://github.com/home-assistant/core.git | 6 | 139 | 0 | 39 | 213 | Python | {
"docstring": "Check to see if the rssi has changed and update any devices.\n\n We don't callback on RSSI changes so we need to check them\n here and send them over the dispatcher periodically to\n ensure the distance calculation is update.\n\n If the transient flag is set we also need to check to see\n if the device is still transmitting and increment the counter\n ",
"language": "en",
"n_whitespaces": 104,
"n_words": 62,
"vocab_size": 43
} | def _async_update_rssi_and_transients(self) -> None:
for (
unique_id,
ibeacon_advertisement,
) in self._last_ibeacon_advertisement_by_unique_id.items():
address = unique_id.split("_")[-1]
service_info = bluetooth.async_last_service_info(
self.hass, address, connectable=False
)
if not service_info:
continue
if address in self._transient_seen_count:
self._transient_seen_count[address] += 1
if self._transient_seen_count[address] == MIN_SEEN_TRANSIENT_NEW:
self._transient_seen_count.pop(address)
_async_dispatch_update(
self.hass,
unique_id,
service_info,
ibeacon_advertisement,
True,
True,
)
continue
if service_info.rssi != ibeacon_advertisement.rssi:
ibeacon_advertisement.update_rssi(service_info.rssi)
async_dispatcher_send(
self.hass,
signal_seen(unique_id),
ibeacon_advertisement,
)
|
|
52,162 | 207,935 | 43 | celery/contrib/testing/worker.py | 22 | 11 | def setup_app_for_worker(app, loglevel, logfile) -> None:
# type: (Celery, Union[str, int], str) -> None
app.finalize()
app.set_current()
app.set_default()
type(app.log)._setup = False
app.log.setup(loglevel=loglevel, logfile=logfile)
| Add `mypy` to the pipeline (#7383)
* Add typing to Celery
This is a simple bootstrap of the process, adding some types to a
few selected functions, based on comment annotations. MyPy is chosen as the
default static analyzer for the types.
* Add mypy to the pipeline
* [pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
* Remove unused command from tox
* Install mypy only on CPython
* Remove wrong annotations
* Update celery/utils/saferepr.py
Co-authored-by: Mads Jensen <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> | setup_app_for_worker | fbda0089f08d7f2a8f00925dbc0b6e10bd779251 | celery | worker.py | 10 | 7 | https://github.com/celery/celery.git | 1 | 51 | 0 | 21 | 85 | Python | {
"docstring": "Setup the app to be used for starting an embedded worker.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def setup_app_for_worker(app, loglevel, logfile) -> None:
# type: (Celery, Union[str, int], str) -> None
app.finalize()
app.set_current()
app.set_default()
type(app.log)._setup = False
app.log.setup(loglevel=loglevel, logfile=logfile)
|
|
47,598 | 196,098 | 44 | sympy/combinatorics/graycode.py | 12 | 6 | def rank(self):
if self._rank is None:
self._rank | Updated import locations | rank | 498015021131af4dbb07eb110e5badaba8250c7b | sympy | graycode.py | 13 | 4 | https://github.com/sympy/sympy.git | 2 | 32 | 0 | 10 | 53 | Python | {
"docstring": "\n Ranks the Gray code.\n\n A ranking algorithm determines the position (or rank)\n of a combinatorial object among all the objects w.r.t.\n a given order. For example, the 4 bit binary reflected\n Gray code (BRGC) '0101' has a rank of 6 as it appears in\n the 6th position in the canonical ordering of the family\n of 4 bit Gray codes.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import GrayCode\n >>> a = GrayCode(3)\n >>> list(a.generate_gray())\n ['000', '001', '011', '010', '110', '111', '101', '100']\n >>> GrayCode(3, start='100').rank\n 7\n >>> GrayCode(3, rank=7).current\n '100'\n\n See Also\n ========\n\n unrank\n\n References\n ==========\n\n .. [1] http://statweb.stanford.edu/~susan/courses/s208/node12.html\n\n ",
"language": "en",
"n_whitespaces": 266,
"n_words": 97,
"vocab_size": 73
} | def rank(self):
if self._rank is None:
self._rank = int(gray_to_bin(self.current), 2)
return self._rank
|
|
88,457 | 289,315 | 500 | homeassistant/components/rest/data.py | 91 | 38 | async def async_update(self, log_errors=True):
if not self._async_client:
self._async_client = get_async_client(
self._hass, verify_ssl=self._verify_ssl
)
rendered_headers = template.render_complex(self._headers, parse_result=False)
rendered_params = template.render_complex(self._params)
_LOGGER.debug("Updating from %s", self._resource)
try:
response = await self._async_client.request(
self._method,
self._resource,
headers=rendered_headers,
params=rendered_params,
auth=self._auth,
content=self._request_data,
timeout=self._timeout,
follow_redirects=True,
)
self.data = response.text
self.headers = response.headers
except httpx.TimeoutException as ex:
if log_errors:
_LOGGER.error("Timeout while fetching data: %s", self._resource)
self.last_exception = ex
self.data = None
self.headers = None
except httpx.RequestError as ex:
| Fix payload in rest (#80544) | async_update | 599d61a4da096227ce4d5ba1dc0eaabceea56f49 | core | data.py | 13 | 35 | https://github.com/home-assistant/core.git | 6 | 202 | 0 | 56 | 317 | Python | {
"docstring": "Get the latest data from REST service with provided method.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | async def async_update(self, log_errors=True):
if not self._async_client:
self._async_client = get_async_client(
self._hass, verify_ssl=self._verify_ssl
)
rendered_headers = template.render_complex(self._headers, parse_result=False)
rendered_params = template.render_complex(self._params)
_LOGGER.debug("Updating from %s", self._resource)
try:
response = await self._async_client.request(
self._method,
self._resource,
headers=rendered_headers,
params=rendered_params,
auth=self._auth,
content=self._request_data,
timeout=self._timeout,
follow_redirects=True,
)
self.data = response.text
self.headers = response.headers
except httpx.TimeoutException as ex:
if log_errors:
_LOGGER.error("Timeout while fetching data: %s", self._resource)
self.last_exception = ex
self.data = None
self.headers = None
except httpx.RequestError as ex:
if log_errors:
_LOGGER.error(
"Error fetching data: %s failed with %s", self._resource, ex
)
self.last_exception = ex
self.data = None
self.headers = None
|
|
85,683 | 286,285 | 33 | openbb_terminal/helper_funcs.py | 14 | 8 | def set_default_timezone() -> None:
dotenv.load_dotenv(USER_ENV_FILE)
user_tz = os.ge | [SDK] Allow silencing verbose output in commands that use stocks/load (#3180)
* remove verbose on load
* Revert implementation of the verbosity setting in stocks controller
* Edit docstrings to comply with pydocstyle linting rules
* Fix typos in variable names and help text
* Add verbosity setting to forex load helper as it uses the stocks helper
* Update docstrings to comply with pydocstyle linting rules
* Update tests
* Fix test relying on local sources settings
* Remove old test cassettes
* Add new test data
* WIP: Fix futures tests
* Clean up test file
* Fix futures tests having a time component
* Fix futures model tests
Co-authored-by: James Maslek <[email protected]>
Co-authored-by: Theodore Aptekarev <[email protected]> | set_default_timezone | 47549cbd9f52a436c06b040fda5b88a7d2bf700a | OpenBBTerminal | helper_funcs.py | 10 | 6 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 2 | 35 | 0 | 14 | 65 | Python | {
"docstring": "Set a default (America/New_York) timezone if one doesn't exist.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def set_default_timezone() -> None:
dotenv.load_dotenv(USER_ENV_FILE)
user_tz = os.getenv("OPENBB_TIMEZONE")
if not user_tz:
dotenv.set_key(USER_ENV_FILE, "OPENBB_TIMEZONE", "America/New_York")
|
|
46,839 | 191,733 | 30 | langchain/agents/agent.py | 16 | 5 | def return_stopped_response(self) -> dict:
return {k: "Agent stopped due to max iterations." for k in self.return_values}
| add logic for agent stopping (#420) | return_stopped_response | d0f194de73c942cb89d731dbfa5ae809111fb07a | langchain | agent.py | 8 | 3 | https://github.com/hwchase17/langchain.git | 2 | 20 | 0 | 16 | 35 | Python | {
"docstring": "Return response when agent has been stopped due to max iterations.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def return_stopped_response(self) -> dict:
return {k: "Agent stopped due to max iterations." for k in self.return_values}
|
|
77,696 | 264,354 | 48 | netbox/utilities/forms/fields/dynamic.py | 16 | 7 | def clean(self, value):
if self.null_option is not None and value == settings.FILTERS_NULL_CHOICE_VALUE:
return Non | Refactor & document supported form fields | clean | cf3ca5a661cc015baf4ef462be07e91c09db0ede | netbox | dynamic.py | 9 | 4 | https://github.com/netbox-community/netbox.git | 3 | 33 | 0 | 14 | 54 | Python | {
"docstring": "\n When null option is enabled and \"None\" is sent as part of a form to be submitted, it is sent as the\n string 'null'. This will check for that condition and gracefully handle the conversion to a NoneType.\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 38,
"vocab_size": 30
} | def clean(self, value):
if self.null_option is not None and value == settings.FILTERS_NULL_CHOICE_VALUE:
return None
return super().clean(value)
|
|
72,397 | 248,647 | 320 | tests/test_event_auth.py | 76 | 24 | def test_unexpected_auth_events(self):
creator = "@creator:example.com"
create_event = _create_event(RoomVersions.V9, creator)
join_event = _join_event(RoomVersions.V9, creator)
pl_event = _power_levels_event(
RoomVersions.V9,
creator,
{"state_default": 30, "users": {"creator": 100}},
)
join_rules_event = _join_rules_event(RoomVersions.V9, creator, "public")
event_store = _StubEventSourceStore()
event_store.add_events([create_event, join_event, pl_event, join_rules_event])
good_event = _random_state_event(
RoomVersions.V9, creator, [create_event, join_event, pl_event]
)
# join rules | Fix inconsistencies in event validation (#13088) | test_unexpected_auth_events | d4b1c0d800eaa83c4d56a9cf17881ad362b9194b | synapse | test_event_auth.py | 13 | 27 | https://github.com/matrix-org/synapse.git | 1 | 154 | 0 | 52 | 239 | Python | {
"docstring": "Events with excess auth_events should be rejected\n\n https://spec.matrix.org/v1.3/rooms/v9/#authorization-rules\n 2. Reject if event has auth_events that:\n 2. have entries whose type and state_key don’t match those specified by the\n auth events selection algorithm described in the server specification.\n ",
"language": "en",
"n_whitespaces": 81,
"n_words": 37,
"vocab_size": 34
} | def test_unexpected_auth_events(self):
creator = "@creator:example.com"
create_event = _create_event(RoomVersions.V9, creator)
join_event = _join_event(RoomVersions.V9, creator)
pl_event = _power_levels_event(
RoomVersions.V9,
creator,
{"state_default": 30, "users": {"creator": 100}},
)
join_rules_event = _join_rules_event(RoomVersions.V9, creator, "public")
event_store = _StubEventSourceStore()
event_store.add_events([create_event, join_event, pl_event, join_rules_event])
good_event = _random_state_event(
RoomVersions.V9, creator, [create_event, join_event, pl_event]
)
# join rules should *not* be included in the auth events.
bad_event = _random_state_event(
RoomVersions.V9,
creator,
[create_event, join_event, pl_event, join_rules_event],
)
get_awaitable_result(
event_auth.check_state_independent_auth_rules(event_store, good_event)
)
with self.assertRaises(AuthError):
get_awaitable_result(
event_auth.check_state_independent_auth_rules(event_store, bad_event)
)
|
|
44,000 | 182,900 | 506 | src/textual/devtools/service.py | 67 | 27 | async def _consume_incoming(self) -> None:
while True:
message_json = await self.incoming_queue.get()
if message_json is None:
self.incoming_queue.task_done()
break
type = message_json["type"]
if type == "client_log":
path = message_json["payload"]["path"]
line_number = message_json["payload"]["line_number"]
timestamp = message_json["payload"]["timestamp"]
encoded_segments = message_json["payload"]["encoded_segments"]
decoded_segments = base64.b64decode(encoded_segments)
segments = pickle.loads(decoded_segments)
self.service.console.print(
DevtoolsLogMessage(
segments=segments,
path=path,
line_number=line_number,
unix_timestamp=timestamp,
)
)
elif type == "client_spillover":
| Seperate server and client handling logic into classes for devtools | _consume_incoming | a72e347ed99333a090377ee438eaf63477cbf98b | textual | service.py | 16 | 32 | https://github.com/Textualize/textual.git | 5 | 170 | 0 | 49 | 299 | Python | {
"docstring": "Consume messages from the incoming (client -> server) Queue, and print\n the corresponding renderables to the console for each message.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 20,
"vocab_size": 18
} | async def _consume_incoming(self) -> None:
while True:
message_json = await self.incoming_queue.get()
if message_json is None:
self.incoming_queue.task_done()
break
type = message_json["type"]
if type == "client_log":
path = message_json["payload"]["path"]
line_number = message_json["payload"]["line_number"]
timestamp = message_json["payload"]["timestamp"]
encoded_segments = message_json["payload"]["encoded_segments"]
decoded_segments = base64.b64decode(encoded_segments)
segments = pickle.loads(decoded_segments)
self.service.console.print(
DevtoolsLogMessage(
segments=segments,
path=path,
line_number=line_number,
unix_timestamp=timestamp,
)
)
elif type == "client_spillover":
spillover = int(message_json["payload"]["spillover"])
info_renderable = DevtoolsInternalMessage(
f"Discarded {spillover} messages", level="warning"
)
self.service.console.print(info_renderable)
self.incoming_queue.task_done()
|
|
33,397 | 145,231 | 75 | docker/kuberay-autoscaler/test_autoscaling_config.py | 21 | 12 | def _get_basic_ray_cr() -> dict:
cr_path = str(
Path(__file__).resolve().paren | [KubeRay] Format autoscaling config based on RayCluster CR (#22348)
Closes #21655. At the start of each autoscaler iteration, we read the Ray Cluster CR from K8s and use it to extract the autoscaling config. | _get_basic_ray_cr | a402e956a4e1ebe9bc4e2b404536466967c497af | ray | test_autoscaling_config.py | 19 | 11 | https://github.com/ray-project/ray.git | 1 | 49 | 0 | 17 | 92 | Python | {
"docstring": "Returns the example Ray CR included in the Ray documentation.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 8
} | def _get_basic_ray_cr() -> dict:
cr_path = str(
Path(__file__).resolve().parents[2]
/ "python"
/ "ray"
/ "autoscaler"
/ "kuberay"
/ "ray-cluster.complete.yaml"
)
return yaml.safe_load(open(cr_path).read())
|
|
41,994 | 176,595 | 293 | networkx/generators/spectral_graph_forge.py | 169 | 45 | def spectral_graph_forge(G, alpha, transformation="identity", seed=None):
import numpy as np
import scipy as sp
import scipy.stats # call as sp.stats
available_transformations = ["identity", "modularity"]
alpha = np.clip(alpha, 0, 1)
A = nx.to_numpy_array(G)
n = A.shape[1]
level = int(round(n * alpha))
if transformation not in available_transformations:
msg = f"{transformation!r} is not a valid transformation. "
msg += f"Transformations: {available_transformations}"
raise nx.NetworkXError(msg)
K = np.ones((1, n)) @ A
B = A
if transformation == "modularity":
B -= K.T @ K / K.sum()
# Compute low-rank approximation of B
evals, evecs = np. | Remove `_mat_spect_approx` in favor of simpler procedure (#5624)
* Replace _mat_spect_approx func internal usage.
* Rm _mat_spect_approx helper function. | spectral_graph_forge | 8bea55e3071ed71eab4fb6650a45f0cdf5c911d4 | networkx | spectral_graph_forge.py | 13 | 30 | https://github.com/networkx/networkx.git | 5 | 306 | 0 | 105 | 494 | Python | {
"docstring": "Returns a random simple graph with spectrum resembling that of `G`\n\n This algorithm, called Spectral Graph Forge (SGF), computes the\n eigenvectors of a given graph adjacency matrix, filters them and\n builds a random graph with a similar eigenstructure.\n SGF has been proved to be particularly useful for synthesizing\n realistic social networks and it can also be used to anonymize\n graph sensitive data.\n\n Parameters\n ----------\n G : Graph\n alpha : float\n Ratio representing the percentage of eigenvectors of G to consider,\n values in [0,1].\n transformation : string, optional\n Represents the intended matrix linear transformation, possible values\n are 'identity' and 'modularity'\n seed : integer, random_state, or None (default)\n Indicator of numpy random number generation state.\n See :ref:`Randomness<randomness>`.\n\n Returns\n -------\n H : Graph\n A graph with a similar eigenvector structure of the input one.\n\n Raises\n ------\n NetworkXError\n If transformation has a value different from 'identity' or 'modularity'\n\n Notes\n -----\n Spectral Graph Forge (SGF) generates a random simple graph resembling the\n global properties of the given one.\n It leverages the low-rank approximation of the associated adjacency matrix\n driven by the *alpha* precision parameter.\n SGF preserves the number of nodes of the input graph and their ordering.\n This way, nodes of output graphs resemble the properties of the input one\n and attributes can be directly mapped.\n\n It considers the graph adjacency matrices which can optionally be\n transformed to other symmetric real matrices (currently transformation\n options include *identity* and *modularity*).\n The *modularity* transformation, in the sense of Newman's modularity matrix\n allows the focusing on community structure related properties of the graph.\n\n SGF applies a low-rank approximation whose fixed rank is computed from the\n ratio *alpha* of the input graph adjacency matrix dimension.\n This step performs a filtering on the input eigenvectors similar to the low\n pass filtering common in telecommunications.\n\n The filtered values (after truncation) are used as input to a Bernoulli\n sampling for constructing a random adjacency matrix.\n\n References\n ----------\n .. [1] L. Baldesi, C. T. Butts, A. Markopoulou, \"Spectral Graph Forge:\n Graph Generation Targeting Modularity\", IEEE Infocom, '18.\n https://arxiv.org/abs/1801.01715\n .. [2] M. Newman, \"Networks: an introduction\", Oxford university press,\n 2010\n\n Examples\n --------\n >>> G = nx.karate_club_graph()\n >>> H = nx.spectral_graph_forge(G, 0.3)\n >>>\n ",
"language": "en",
"n_whitespaces": 582,
"n_words": 358,
"vocab_size": 213
} | def spectral_graph_forge(G, alpha, transformation="identity", seed=None):
import numpy as np
import scipy as sp
import scipy.stats # call as sp.stats
available_transformations = ["identity", "modularity"]
alpha = np.clip(alpha, 0, 1)
A = nx.to_numpy_array(G)
n = A.shape[1]
level = int(round(n * alpha))
if transformation not in available_transformations:
msg = f"{transformation!r} is not a valid transformation. "
msg += f"Transformations: {available_transformations}"
raise nx.NetworkXError(msg)
K = np.ones((1, n)) @ A
B = A
if transformation == "modularity":
B -= K.T @ K / K.sum()
# Compute low-rank approximation of B
evals, evecs = np.linalg.eigh(B)
k = np.argsort(np.abs(evals))[::-1] # indices of evals in descending order
evecs[:, k[np.arange(level, n)]] = 0 # set smallest eigenvectors to 0
B = evecs @ np.diag(evals) @ evecs.T
if transformation == "modularity":
B += K.T @ K / K.sum()
B = np.clip(B, 0, 1)
np.fill_diagonal(B, 0)
for i in range(n - 1):
B[i, i + 1 :] = sp.stats.bernoulli.rvs(B[i, i + 1 :], random_state=seed)
B[i + 1 :, i] = np.transpose(B[i, i + 1 :])
H = nx.from_numpy_array(B)
return H
|
|
22,260 | 106,051 | 30 | src/datasets/features/features.py | 9 | 5 | def encode_example(self, example):
example = cast_to_python_objects(example)
return encode_nested_exa | Clean up remaining Main Classes docstrings (#5349)
clean up docstrings | encode_example | c78559cacbb0ca6e0bc8bfc313cc0359f8c23ead | datasets | features.py | 8 | 3 | https://github.com/huggingface/datasets.git | 1 | 21 | 0 | 9 | 35 | Python | {
"docstring": "\n Encode example into a format for Arrow.\n\n Args:\n example (`dict[str, Any]`):\n Data in a Dataset row.\n\n Returns:\n `dict[str, Any]`\n ",
"language": "en",
"n_whitespaces": 85,
"n_words": 19,
"vocab_size": 17
} | def encode_example(self, example):
example = cast_to_python_objects(example)
return encode_nested_example(self, example)
|
|
80,920 | 271,980 | 333 | keras/engine/training_v1.py | 117 | 11 | def _add_unique_metric_name(self, metric_name, metric_fn, output_index):
# For multi-output models, prepend the output names to the metric name.
if len(self.output_names) > 1:
# If we're loading from an already-serialized model, we've already
# prepended the output name, and we don't want to do it again.
#
# Alternatively, we may be receiving a stateless metric (e.g. the string
# "accuracy") rather than a `Metric` object, in which case we want to
# prepend the output name even if we are loading a serialized model.
if not getattr(metric_fn | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | _add_unique_metric_name | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | training_v1.py | 14 | 13 | https://github.com/keras-team/keras.git | 4 | 75 | 0 | 80 | 127 | Python | {
"docstring": "Makes the metric name unique.\n\n If there are multiple outputs for which the metrics are calculated, the\n metric names have to be made unique by appending an integer.\n\n Args:\n metric_name: Metric name that corresponds to the metric specified by the\n user. For example: 'acc'.\n metric_fn: The Metric object.\n output_index: The index of the model output for which the metric name is\n being added.\n\n Returns:\n string, name of the model's unique metric name\n ",
"language": "en",
"n_whitespaces": 171,
"n_words": 72,
"vocab_size": 48
} | def _add_unique_metric_name(self, metric_name, metric_fn, output_index):
# For multi-output models, prepend the output names to the metric name.
if len(self.output_names) > 1:
# If we're loading from an already-serialized model, we've already
# prepended the output name, and we don't want to do it again.
#
# Alternatively, we may be receiving a stateless metric (e.g. the string
# "accuracy") rather than a `Metric` object, in which case we want to
# prepend the output name even if we are loading a serialized model.
if not getattr(metric_fn, "_from_serialized", False):
metric_name = "%s_%s" % (
self.output_names[output_index],
metric_name,
)
j = 1
base_metric_name = metric_name
while metric_name in self.metrics_names:
metric_name = "%s_%d" % (base_metric_name, j)
j += 1
return metric_name
|
|
@not_implemented_for("undirected") | 41,793 | 176,253 | 783 | networkx/algorithms/components/strongly_connected.py | 126 | 23 | def strongly_connected_components(G):
preorder = {}
lowlink = {}
scc_found = set()
scc_queue = []
i = 0 # Preorder counter
neighbors = {v: iter(G[v]) for v in G}
for source in G:
if source not in scc_found:
queue = [source]
while queue:
v = queue[-1]
if v not in preorder:
i = i + 1
preorder[v] = i
done = True
for w in neighbors[v]:
if w not in preorder:
queue.append(w)
done = False
break
if done:
lowlink[v] = preorder[v]
for w in G[v]:
if w not in scc_found:
if preorder[w] > preorder[v]:
lowlink[v] = min([lowlink[v], lowlink[w]])
else:
| Fixing Tarjan's strongly connected components algorithm implementation to have O(|E|+|V|) time complexity instead of O(|V|^3). (#5288)
Prevent unnecessary traversal of edges multiple times | strongly_connected_components | 77c49c16e10693dbe566d20601b28dd2b1e8df03 | networkx | strongly_connected.py | 25 | 39 | https://github.com/networkx/networkx.git | 15 | 257 | 1 | 66 | 413 | Python | {
"docstring": "Generate nodes in strongly connected components of graph.\n\n Parameters\n ----------\n G : NetworkX Graph\n A directed graph.\n\n Returns\n -------\n comp : generator of sets\n A generator of sets of nodes, one for each strongly connected\n component of G.\n\n Raises\n ------\n NetworkXNotImplemented\n If G is undirected.\n\n Examples\n --------\n Generate a sorted list of strongly connected components, largest first.\n\n >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())\n >>> nx.add_cycle(G, [10, 11, 12])\n >>> [\n ... len(c)\n ... for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)\n ... ]\n [4, 3]\n\n If you only want the largest component, it's more efficient to\n use max instead of sort.\n\n >>> largest = max(nx.strongly_connected_components(G), key=len)\n\n See Also\n --------\n connected_components\n weakly_connected_components\n kosaraju_strongly_connected_components\n\n Notes\n -----\n Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_.\n Nonrecursive version of algorithm.\n\n References\n ----------\n .. [1] Depth-first search and linear graph algorithms, R. Tarjan\n SIAM Journal of Computing 1(2):146-160, (1972).\n\n .. [2] On finding the strongly connected components in a directed graph.\n E. Nuutila and E. Soisalon-Soinen\n Information Processing Letters 49(1): 9-14, (1994)..\n\n ",
"language": "en",
"n_whitespaces": 324,
"n_words": 162,
"vocab_size": 118
} | def strongly_connected_components(G):
preorder = {}
lowlink = {}
scc_found = set()
scc_queue = []
i = 0 # Preorder counter
neighbors = {v: iter(G[v]) for v in G}
for source in G:
if source not in scc_found:
queue = [source]
while queue:
v = queue[-1]
if v not in preorder:
i = i + 1
preorder[v] = i
done = True
for w in neighbors[v]:
if w not in preorder:
queue.append(w)
done = False
break
if done:
lowlink[v] = preorder[v]
for w in G[v]:
if w not in scc_found:
if preorder[w] > preorder[v]:
lowlink[v] = min([lowlink[v], lowlink[w]])
else:
lowlink[v] = min([lowlink[v], preorder[w]])
queue.pop()
if lowlink[v] == preorder[v]:
scc = {v}
while scc_queue and preorder[scc_queue[-1]] > preorder[v]:
k = scc_queue.pop()
scc.add(k)
scc_found.update(scc)
yield scc
else:
scc_queue.append(v)
@not_implemented_for("undirected") |
75,771 | 259,437 | 524 | sklearn/linear_model/_glm/glm.py | 172 | 33 | def score(self, X, y, sample_weight=None):
# TODO: Adapt link to User Guide in the docstring, once
# https://github.com/scikit-learn/scikit-learn/pull/22118 is merged.
#
# Note, default score defined in RegressorMixin is R^2 score.
# TODO: make D^2 a score function in module metrics (and thereby get
# input validation and so on)
raw_prediction = self._linear_predictor(X) # validates X
# required by losses
y = check_array(y, dtype=raw_prediction.dtype, order="C", ensure_2d=False)
if sample_weight is not None:
# Note that _check_sample_weight calls check_array(order="C") required by
# losses.
sample_weight = _check_sample_weight(sample_weight, X, dtype=y.dtype)
base_loss = self._linear_loss.base_loss
if not base_loss.in_y_true_range(y):
raise ValueError(
"Some value(s) of y are out of the valid range of the loss"
f" {self._base_loss.__name__}."
)
# Note that constant_to_optimal_zero is already multiplied by sample_weight.
constant = np.mean(base_loss.constant_to_optimal_zero(y_true=y))
if sample_weight is not None:
constant *= sample_weight.shape[0] / np.sum(sample_weight)
# Missing factor of 2 in deviance cancels out.
deviance = base_loss(
y_true=y,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
n_threads=1,
)
y_mean = base_loss.link.link(np.average(y, weights=sample_weight))
deviance_null = base_loss(
| ENH migrate GLMs / TweedieRegressor to linear loss (#22548)
Co-authored-by: Olivier Grisel <[email protected]>
Co-authored-by: Thomas J. Fan <[email protected]> | score | 75a94f518f7bd7d0bf581ffb67d9f961e3c4efbc | scikit-learn | glm.py | 14 | 28 | https://github.com/scikit-learn/scikit-learn.git | 4 | 209 | 0 | 115 | 340 | Python | {
"docstring": "Compute D^2, the percentage of deviance explained.\n\n D^2 is a generalization of the coefficient of determination R^2.\n R^2 uses squared error and D^2 uses the deviance of this GLM, see the\n :ref:`User Guide <regression_metrics>`.\n\n D^2 is defined as\n :math:`D^2 = 1-\\\\frac{D(y_{true},y_{pred})}{D_{null}}`,\n :math:`D_{null}` is the null deviance, i.e. the deviance of a model\n with intercept alone, which corresponds to :math:`y_{pred} = \\\\bar{y}`.\n The mean :math:`\\\\bar{y}` is averaged by sample_weight.\n Best possible score is 1.0 and it can be negative (because the model\n can be arbitrarily worse).\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n Test samples.\n\n y : array-like of shape (n_samples,)\n True values of target.\n\n sample_weight : array-like of shape (n_samples,), default=None\n Sample weights.\n\n Returns\n -------\n score : float\n D^2 of self.predict(X) w.r.t. y.\n ",
"language": "en",
"n_whitespaces": 304,
"n_words": 127,
"vocab_size": 89
} | def score(self, X, y, sample_weight=None):
# TODO: Adapt link to User Guide in the docstring, once
# https://github.com/scikit-learn/scikit-learn/pull/22118 is merged.
#
# Note, default score defined in RegressorMixin is R^2 score.
# TODO: make D^2 a score function in module metrics (and thereby get
# input validation and so on)
raw_prediction = self._linear_predictor(X) # validates X
# required by losses
y = check_array(y, dtype=raw_prediction.dtype, order="C", ensure_2d=False)
if sample_weight is not None:
# Note that _check_sample_weight calls check_array(order="C") required by
# losses.
sample_weight = _check_sample_weight(sample_weight, X, dtype=y.dtype)
base_loss = self._linear_loss.base_loss
if not base_loss.in_y_true_range(y):
raise ValueError(
"Some value(s) of y are out of the valid range of the loss"
f" {self._base_loss.__name__}."
)
# Note that constant_to_optimal_zero is already multiplied by sample_weight.
constant = np.mean(base_loss.constant_to_optimal_zero(y_true=y))
if sample_weight is not None:
constant *= sample_weight.shape[0] / np.sum(sample_weight)
# Missing factor of 2 in deviance cancels out.
deviance = base_loss(
y_true=y,
raw_prediction=raw_prediction,
sample_weight=sample_weight,
n_threads=1,
)
y_mean = base_loss.link.link(np.average(y, weights=sample_weight))
deviance_null = base_loss(
y_true=y,
raw_prediction=np.tile(y_mean, y.shape[0]),
sample_weight=sample_weight,
n_threads=1,
)
return 1 - (deviance + constant) / (deviance_null + constant)
|
|
1,607 | 9,407 | 317 | reconstruction/ostec/external/stylegan2/dnnlib/tflib/ops/upfirdn_2d.py | 198 | 34 | def upsample_conv_2d(x, w, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
r
assert isinstance(factor, int) and factor >= 1
# Check weight shape. | initialize ostec | upsample_conv_2d | 7375ee364e0df2a417f92593e09557f1b2a3575a | insightface | upfirdn_2d.py | 16 | 48 | https://github.com/deepinsight/insightface.git | 4 | 387 | 0 | 110 | 602 | Python | {
"docstring": "Fused `upsample_2d()` followed by `tf.nn.conv2d()`.\n\n Padding is performed only once at the beginning, not between the operations.\n The fused op is considerably more efficient than performing the same calculation\n using standard TensorFlow ops. It supports gradients of arbitrary order.\n\n Args:\n x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.\n w: Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`.\n Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.\n k: FIR filter of the shape `[firH, firW]` or `[firN]` (separable).\n The default is `[1] * factor`, which corresponds to nearest-neighbor\n upsampling.\n factor: Integer upsampling factor (default: 2).\n gain: Scaling factor for signal magnitude (default: 1.0).\n data_format: `'NCHW'` or `'NHWC'` (default: `'NCHW'`).\n impl: Name of the implementation to use. Can be `\"ref\"` or `\"cuda\"` (default).\n\n Returns:\n Tensor of the shape `[N, C, H * factor, W * factor]` or\n `[N, H * factor, W * factor, C]`, and same datatype as `x`.\n ",
"language": "en",
"n_whitespaces": 358,
"n_words": 158,
"vocab_size": 114
} | def upsample_conv_2d(x, w, k=None, factor=2, gain=1, data_format='NCHW', impl='cuda'):
r
assert isinstance(factor, int) and factor >= 1
# Check weight shape.
w = tf.convert_to_tensor(w)
assert w.shape.rank == 4
convH = w.shape[0].value
convW = w.shape[1].value
inC = _shape(w, 2)
outC = _shape(w, 3)
assert convW == convH
# Setup filter kernel.
if k is None:
k = [1] * factor
k = _setup_kernel(k) * (gain * (factor ** 2))
p = (k.shape[0] - factor) - (convW - 1)
# Determine data dimensions.
if data_format == 'NCHW':
stride = [1, 1, factor, factor]
output_shape = [_shape(x, 0), outC, (_shape(x, 2) - 1) * factor + convH, (_shape(x, 3) - 1) * factor + convW]
num_groups = _shape(x, 1) // inC
else:
stride = [1, factor, factor, 1]
output_shape = [_shape(x, 0), (_shape(x, 1) - 1) * factor + convH, (_shape(x, 2) - 1) * factor + convW, outC]
num_groups = _shape(x, 3) // inC
# Transpose weights.
w = tf.reshape(w, [convH, convW, inC, num_groups, -1])
w = tf.transpose(w[::-1, ::-1], [0, 1, 4, 3, 2])
w = tf.reshape(w, [convH, convW, -1, num_groups * inC])
# Execute.
x = tf.nn.conv2d_transpose(x, w, output_shape=output_shape, strides=stride, padding='VALID', data_format=data_format)
return _simple_upfirdn_2d(x, k, pad0=(p+1)//2+factor-1, pad1=p//2+1, data_format=data_format, impl=impl)
#----------------------------------------------------------------------------
|
|
1,218 | 7,491 | 19 | ludwig/contribs/aim.py | 5 | 7 | def normalize_config(config):
return json.loads(json.dumps(config, cls=NumpyEn | Fixes to serialization, and update to allow set repo location. (#2367)
* Updating AimCallback to add init for optional repo.
* Fixed numpy serialization for config objects.
* Removed print statements, added logging for progress tracker. | normalize_config | 7ec0cd13cf5e77d6fe68acbbeef9a7c694fc83c2 | ludwig | aim.py | 10 | 2 | https://github.com/ludwig-ai/ludwig.git | 1 | 22 | 0 | 5 | 37 | Python | {
"docstring": "Convert to json string and back again to remove numpy types.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | def normalize_config(config):
return json.loads(json.dumps(config, cls=NumpyEncoder))
|
|
46,467 | 191,243 | 487 | thumbor/utils.py | 203 | 42 | def ensure_srgb(img, srgb_profile=None):
img_info = dict(img.info)
icc = img_info.pop("icc_profile", None)
if not icc:
return img
if ImageCms is None:
raise RuntimeError("ImageCms is required for color profile utilities")
if srgb_profile is not None:
srgb_profile = ImageCms.ImageCmsProfile(srgb_profile)
else:
srgb_profile = DEFAULT_SRGB_PROFILE
buf = BytesIO(icc)
try:
orig_profile = ImageCms.ImageCmsProfile(buf)
color_space = orig_profile.profile.xcolor_space
except (AttributeError, OSError, TypeError, ValueError):
return None
finally:
buf.close()
if color_space == "RGB ":
logger.debug("Returning img (RGB)")
return img
if color_space not in ("GRAY", "CMYK | feat: Support AVIF format encoding (#1476)
* feat: Support AVIF format encoding
* Increase test coverage
* test coverage for remaining uncovered lines
* Add simple integration test
* Add "filters:format(avif)" integration test
* Gracefully handle AVIF encoding when codec unavailable
* Don't pass quality="keep" to AVIF save
* Fix no-member pylint error | ensure_srgb | 1d9deef4e99f52a08eed9aa973572c4567754f5a | thumbor | utils.py | 12 | 51 | https://github.com/thumbor/thumbor.git | 10 | 268 | 0 | 126 | 452 | Python | {
"docstring": "\n Ensures that an image either has no ICC profile (and so is implicitly\n sRGB) or has an sRGB color profile. If the image is sRGB, it is returned\n unchanged. If it has a CMYK or Gray color profile, this function will\n return an image converted to sRGB. Any color profiles in other color\n spaces will return None.\n ",
"language": "en",
"n_whitespaces": 76,
"n_words": 57,
"vocab_size": 41
} | def ensure_srgb(img, srgb_profile=None):
img_info = dict(img.info)
icc = img_info.pop("icc_profile", None)
if not icc:
return img
if ImageCms is None:
raise RuntimeError("ImageCms is required for color profile utilities")
if srgb_profile is not None:
srgb_profile = ImageCms.ImageCmsProfile(srgb_profile)
else:
srgb_profile = DEFAULT_SRGB_PROFILE
buf = BytesIO(icc)
try:
orig_profile = ImageCms.ImageCmsProfile(buf)
color_space = orig_profile.profile.xcolor_space
except (AttributeError, OSError, TypeError, ValueError):
return None
finally:
buf.close()
if color_space == "RGB ":
logger.debug("Returning img (RGB)")
return img
if color_space not in ("GRAY", "CMYK"):
# Other color spaces are rare, but best not to try to convert them.
# Upstream understands a None return as meaning it should not
# use it for the target encoder.
logger.debug(
"Cannot convert to sRGB; color space = %s",
(color_space.strip()),
)
return None
# Probably not possible to have an animated image with CMYK or GRAY icc
# profile, but best leave it alone if we have one
if getattr(img, "is_animated", False):
return None
if color_space == "GRAY":
pil_mode = "L"
else:
pil_mode = "CMYK"
logger.debug("Converting from %s to sRGB", color_space)
transform = ImageCms.ImageCmsTransform(
orig_profile,
srgb_profile,
pil_mode,
"RGBA",
intent=ImageCms.INTENT_RELATIVE_COLORIMETRIC,
flags=TRANSFORM_FLAGS,
)
src_im = Image.new(pil_mode, img.size, "white")
src_im.paste(img)
dst_im = Image.new("RGBA", img.size, "white")
dst_im.info = img_info
dst_im = transform.apply(src_im, dst_im)
dst_im = dst_im.convert("RGB")
dst_im.info = img_info
return dst_im
|
|
80,550 | 270,733 | 93 | keras/engine/base_layer.py | 41 | 7 | def _cast_single_input(self, x):
if self._should_cast_single_input(x):
return tf.cast(x, self._compute_dtype_obje | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | _cast_single_input | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | base_layer.py | 10 | 5 | https://github.com/keras-team/keras.git | 2 | 31 | 0 | 35 | 54 | Python | {
"docstring": "Cast a single Tensor or TensorSpec to the compute dtype.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def _cast_single_input(self, x):
if self._should_cast_single_input(x):
return tf.cast(x, self._compute_dtype_object)
else:
return x
# _dtype used to be an attribute set in the constructor. We still expose it
# because some clients still use it.
# TODO(reedwm): Deprecate, then remove the _dtype property. |
|
4,915 | 25,698 | 78 | saleor/csv/utils/export.py | 23 | 11 | def queryset_in_batches(queryset):
start_pk = 0
while True:
qs = queryset.filter(pk__gt=start_pk)[:BATCH_SIZE]
pks = list(qs.values_list("pk", flat=True))
if not pks:
break
yield pks
| Feature/gift cards post mvp (#7977)
* Add giftCardBulkCreate mutation
* Extend OrderFilter with giftCardUsed and giftCardBought fields
* Allow exporting gift cards
* Update the name of the email template for export
* Add exportGiftCards muttaion
* Add used gift card filter
* Export only unused gift cards
* Block mutations for expired gift cards (#8115)
* Block mutations for expired gift cards
* Block only resending and activating expired gift cards
* Add celery schedule task for deactivate expired cards (#8100)
* Add gift card section to invoice (#8148)
* Add filtering on gift card events (#8090)
* Add filtering on gift card events
* Filter gift card events by orders instead of order_id
* Update populatedb with gift card data (#8016)
* Generate gift cards with events in populate db
* Set product types kinds and add placeholder for gift card product
* Add dedicated gift card product images
* Change order of order emails (#8168)
* Drop duplicated kind field from producttype in populatedb (#8224)
* Change gift card display_code field to last_4 (#8445)
* Change gift card display_code field to last_4
* Change last4 to last4CodeChars
* Fix github test env action configuration
* Drop filtering gift cards by tag
* Fix export gift card tags test
* Re-add gift card tags query (#8412)
* Update populatedb with gift card data (#8016)
* Generate gift cards with events in populate db
* Set product types kinds and add placeholder for gift card product
* Add dedicated gift card product images
* Add giftCardTags model
* Add giftCardTags query
Co-authored-by: Iga Karbowiak <[email protected]>
Co-authored-by: IKarbowiak <[email protected]>
* Do not create EXPIRY_DATE_UPDATED gift card event when expiry date is not changed (#8882)
Co-authored-by: Marcin Gębala <[email protected]> | queryset_in_batches | f5a45de4a22fecacfcd5b2cd18c07e5cf95ce27c | saleor | export.py | 13 | 9 | https://github.com/saleor/saleor.git | 3 | 55 | 0 | 18 | 94 | Python | {
"docstring": "Slice a queryset into batches.\n\n Input queryset should be sorted be pk.\n ",
"language": "en",
"n_whitespaces": 18,
"n_words": 12,
"vocab_size": 10
} | def queryset_in_batches(queryset):
start_pk = 0
while True:
qs = queryset.filter(pk__gt=start_pk)[:BATCH_SIZE]
pks = list(qs.values_list("pk", flat=True))
if not pks:
break
yield pks
start_pk = pks[-1]
|
|
14,353 | 66,831 | 56 | erpnext/patches/v13_0/update_returned_qty_in_pr_dn.py | 81 | 19 | def execute():
frappe.reload_doc("stock", "doctype", "purchase_receipt")
frappe.reload_doc("stock", "doctype", "purchase_receipt_item")
frappe.reload_doc("stock", "doctype", "delivery_note")
frappe.reload_doc("stock", "doctype", "delivery_note_item")
frappe.reload_doc("stock", "doctype", "stock_settings")
def update_from_return_docs(doctype):
for return_doc in frappe.get_all(
doctype, filters={"is_return": 1, "docstatus": | style: format code with black | execute | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | update_returned_qty_in_pr_dn.py | 15 | 14 | https://github.com/frappe/erpnext.git | 2 | 77 | 0 | 63 | 297 | Python | {
"docstring": " update `tabPurchase Receipt Item`\n\t\tset received_stock_qty = received_qty * conversion_factor\n\t\twhere docstatus = 1 ",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 13
} | def execute():
frappe.reload_doc("stock", "doctype", "purchase_receipt")
frappe.reload_doc("stock", "doctype", "purchase_receipt_item")
frappe.reload_doc("stock", "doctype", "delivery_note")
frappe.reload_doc("stock", "doctype", "delivery_note_item")
frappe.reload_doc("stock", "doctype", "stock_settings")
def update_from_return_docs(doctype):
for return_doc in frappe.get_all(
doctype, filters={"is_return": 1, "docstatus": 1, "return_against": ("!=", "")}
):
# Update original receipt/delivery document from return
return_doc = frappe.get_cached_doc(doctype, return_doc.name)
try:
return_doc.update_prevdoc_status()
except OverAllowanceError:
frappe.db.rollback()
continue
return_against = frappe.get_doc(doctype, return_doc.return_against)
return_against.update_billing_status()
frappe.db.commit()
# Set received qty in stock uom in PR, as returned qty is checked against it
frappe.db.sql(
)
for doctype in ("Purchase Receipt", "Delivery Note"):
update_from_return_docs(doctype)
|
|
85,618 | 286,204 | 379 | openbb_terminal/cryptocurrency/discovery/discovery_controller.py | 55 | 27 | def call_dex(self, other_args):
parser = argparse.ArgumentParser(
prog="dex",
add_help=False,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=,
)
parser.add_argument(
"-l",
"--limit",
dest="limit",
type=check_positive,
help="Number of records to display",
default=15,
)
parser.add_argument(
"-s",
"--sort",
dest="sortby",
nargs="+",
help="Sort by given column. Default: Daily Volume [$]",
default="Daily Volume [ | Combining commands and renaming others (#3000)
* Combining commands and renaming others
Combining commands with different sources but the same functionality. I also removed indications of source from command names
* Fix tests and hugo
* Test fixes
Co-authored-by: james <[email protected]> | call_dex | 38a53e5f43bccb716e6a6494605f97293077a679 | OpenBBTerminal | discovery_controller.py | 13 | 36 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 2 | 126 | 0 | 47 | 205 | Python | {
"docstring": "Process dex command\n Shows top decentralized exchanges [Source: https://dappradar.com/]\n Accepts --sort {Name,Daily Users,Daily Volume [$]}\n to sort by column\n ",
"language": "en",
"n_whitespaces": 63,
"n_words": 19,
"vocab_size": 19
} | def call_dex(self, other_args):
parser = argparse.ArgumentParser(
prog="dex",
add_help=False,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=,
)
parser.add_argument(
"-l",
"--limit",
dest="limit",
type=check_positive,
help="Number of records to display",
default=15,
)
parser.add_argument(
"-s",
"--sort",
dest="sortby",
nargs="+",
help="Sort by given column. Default: Daily Volume [$]",
default="Daily Volume [$]",
)
ns_parser = self.parse_known_args_and_warn(
parser, other_args, EXPORT_ONLY_RAW_DATA_ALLOWED
)
if ns_parser:
dappradar_view.display_top_dexes(
sortby=" ".join(ns_parser.sortby),
limit=ns_parser.limit,
export=ns_parser.export,
)
|
|
12,562 | 61,419 | 257 | .venv/lib/python3.8/site-packages/pip/_internal/vcs/versioncontrol.py | 86 | 16 | def get_backend_for_dir(self, location):
# type: (str) -> Optional[VersionControl]
vcs_backends = {}
for vcs_backend in self._registry.values():
repo_path = vcs_backend.get_repository_root(location)
if not repo_path:
continue
logger.debug('Determine that %s uses VCS: %s',
location, vcs_backend.name)
vcs_backends[repo_path] = vcs_backend
if not vcs_backends:
return None
# Choose the VCS in the inner-most directory. Since all repository
# roots found here would be eith | upd; format | get_backend_for_dir | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | versioncontrol.py | 10 | 13 | https://github.com/jindongwang/transferlearning.git | 4 | 75 | 0 | 67 | 126 | Python | {
"docstring": "\n Return a VersionControl object if a repository of that type is found\n at the given directory.\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 15
} | def get_backend_for_dir(self, location):
# type: (str) -> Optional[VersionControl]
vcs_backends = {}
for vcs_backend in self._registry.values():
repo_path = vcs_backend.get_repository_root(location)
if not repo_path:
continue
logger.debug('Determine that %s uses VCS: %s',
location, vcs_backend.name)
vcs_backends[repo_path] = vcs_backend
if not vcs_backends:
return None
# Choose the VCS in the inner-most directory. Since all repository
# roots found here would be either `location` or one of its
# parents, the longest path should have the most path components,
# i.e. the backend representing the inner-most repository.
inner_most_repo_path = max(vcs_backends, key=len)
return vcs_backends[inner_most_repo_path]
|
|
8,173 | 44,123 | 177 | airflow/www/security.py | 54 | 17 | def has_access(self, action_name, resource_name, user=None) -> bool:
if not user:
user = g.user
if | Remove `:type` lines now sphinx-autoapi supports typehints (#20951)
* Remove `:type` lines now sphinx-autoapi supports typehints
Since we have no updated sphinx-autoapi to a more recent version it
supports showing type hints in the documentation, so we don't need to
have the type hints _and_ the `:type` lines -- which is good, as the
ones in the doc strings are easy to get out of date!
The following settings have been set:
`autodoc_typehints = 'description'` -- show types in description (where
previous `:type` used to show up)
`autodoc_typehints_description_target = 'documented'` -- only link to
types that are documented. (Without this we have some missing return
types that aren't documented, and aren't linked to in our current python
API docs, so this caused a build failure)
`autodoc_typehints_format = 'short'` -- Shorten type hints where
possible, i.e. `StringIO` instead of `io.StringIO`
* Add argument type names to local spelling dictionary
Now that we are using the type hints in the docs, sphinxcontrib-spelling
picks them up as words to be checked, so we have to ignore them.
I've chosen to add the provider specific ones to local dictionary files
rather than the global, as for example, `mgmt` is an error in most
places, but not in some of the Azure provider. | has_access | 602abe8394fafe7de54df7e73af56de848cdf617 | airflow | security.py | 13 | 25 | https://github.com/apache/airflow.git | 6 | 96 | 0 | 41 | 150 | Python | {
"docstring": "\n Verify whether a given user could perform a certain action\n (e.g can_read, can_write) on the given resource.\n\n :param action_name: action_name on resource (e.g can_read, can_edit).\n :param resource_name: name of view-menu or resource.\n :param user: user name\n :return: Whether user could perform certain action on the resource.\n :rtype bool\n ",
"language": "en",
"n_whitespaces": 105,
"n_words": 48,
"vocab_size": 30
} | def has_access(self, action_name, resource_name, user=None) -> bool:
if not user:
user = g.user
if user.is_anonymous:
user.roles = self.get_user_roles(user)
has_access = self._has_access(user, action_name, resource_name)
# FAB built-in view access method. Won't work for AllDag access.
if self.is_dag_resource(resource_name):
if action_name == permissions.ACTION_CAN_READ:
has_access |= self.can_read_dag(resource_name, user)
elif action_name == permissions.ACTION_CAN_EDIT:
has_access |= self.can_edit_dag(resource_name, user)
return has_access
|
|
26,290 | 118,557 | 30 | lib/streamlit/forward_msg_cache.py | 8 | 5 | def has_refs(self) -> bool:
return len(self._session_report_run_counts) > 0
| Rename and refactor `Report` machinery (#4141)
This refactor renames (almost) everything related to the outdated "report" concept with more precise concepts that we use throughout our code, primarily "script run", "session", and "app". | has_refs | 704eab3478cf69847825b23dabf15813a8ac9fa2 | streamlit | forward_msg_cache.py | 9 | 6 | https://github.com/streamlit/streamlit.git | 1 | 17 | 0 | 8 | 30 | Python | {
"docstring": "True if this Entry has references from any AppSession.\n\n If not, it can be removed from the cache.\n ",
"language": "en",
"n_whitespaces": 40,
"n_words": 18,
"vocab_size": 17
} | def has_refs(self) -> bool:
return len(self._session_report_run_counts) > 0
|
|
47,191 | 195,092 | 117 | projects/director/director_agent.py | 32 | 15 | def _reshape_to_record_metrics(self, batch, losses, num_target_tokens, indices):
val_id_shape = batch. | Added director agent and safety experiment commands. (#4602)
* Added director agent and safety.
* ran autoformat.sh | _reshape_to_record_metrics | 2ef5586ed0d644abe18cd3ff45ef9fa01981e87c | ParlAI | director_agent.py | 10 | 11 | https://github.com/facebookresearch/ParlAI.git | 1 | 79 | 0 | 25 | 116 | Python | {
"docstring": "\n MultitaskAgent shuffles and combines examples from both classifier and the\n generator tasks in a single batch. We compute losses only for those exs in the\n batch resulting in losses and num_target_tokens vectors that are smaller than\n the.\n\n This method reshapes the losses and num_target_tokens vectors back to the batch size. This is needed to record local metrics as the metrics need to be of batch size.\n\n Args:\n batch: batch being processed in this iteration.\n losses: classifier or generator loss vector (shape: b' X 1), where b' <= b.\n num_target_tokens: number of tokens in each examples for classification or generation tasks. (shape: b' X 1), where b' <= b.\n indices: indices of (either classification or generation) exs for which the loss was computed.\n\n Returns:\n A tuple of reshaped losses and num_target_tokens, both of shape: b X 1.\n ",
"language": "en",
"n_whitespaces": 248,
"n_words": 136,
"vocab_size": 85
} | def _reshape_to_record_metrics(self, batch, losses, num_target_tokens, indices):
val_id_shape = batch.valid_indices.shape
reshaped_losses = torch.zeros(
val_id_shape, device=losses.device, dtype=losses.dtype
)
reshaped_num_target_tokens = torch.zeros(
val_id_shape, device=num_target_tokens.device, dtype=num_target_tokens.dtype
)
reshaped_losses[indices] = losses
reshaped_num_target_tokens[indices] = num_target_tokens
return (reshaped_losses, reshaped_num_target_tokens)
|
|
48,805 | 198,126 | 65 | sympy/physics/continuum_mechanics/truss.py | 22 | 7 | def add_support(self, location, type):
if location not in s | Truss class initialized and documentation added | add_support | 158f441d4fae4bd406597a41ba8af142e5eeb593 | sympy | truss.py | 11 | 5 | https://github.com/sympy/sympy.git | 2 | 33 | 0 | 22 | 55 | Python | {
"docstring": "\n This method adds a pinned or roller support at a particular node\n\n Parameters\n ==========\n\n location: String or Symbol\n Label of the Node at which support is added.\n\n type: String\n Type of the support being provided at the node.\n\n Examples\n ========\n\n >>> from sympy.physics.continuum_mechanics.truss import Truss\n >>> from sympy import symbols\n >>> t = Truss()\n >>> t.add_node('A', 0, 0)\n >>> t.add_node('B', 3, 0)\n >>> t.add_support('A', 'pinned')\n >>> t.supports\n {'A': 'pinned', 'B': 'none'}\n ",
"language": "en",
"n_whitespaces": 206,
"n_words": 71,
"vocab_size": 52
} | def add_support(self, location, type):
if location not in self._node_labels:
raise ValueError("Support must be added on a known node")
else:
self._supports[location] = type
|
|
54,789 | 217,444 | 132 | python3.10.4/Lib/ftplib.py | 43 | 18 | def makeport(self):
sock = socket.create_server(("", 0), family=self.af, backlog=1)
port = sock.getsockname()[1] # Get proper port
host = | add python 3.10.4 for windows | makeport | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | ftplib.py | 11 | 11 | https://github.com/XX-net/XX-Net.git | 3 | 99 | 0 | 30 | 159 | Python | {
"docstring": "Create a new socket and send a PORT command for it.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | def makeport(self):
sock = socket.create_server(("", 0), family=self.af, backlog=1)
port = sock.getsockname()[1] # Get proper port
host = self.sock.getsockname()[0] # Get proper host
if self.af == socket.AF_INET:
resp = self.sendport(host, port)
else:
resp = self.sendeprt(host, port)
if self.timeout is not _GLOBAL_DEFAULT_TIMEOUT:
sock.settimeout(self.timeout)
return sock
|
|
@pytest.mark.parametrize("url, expected_matches", [
# included
('http://trolol.com/', 1),
# neither included nor excluded
('http://aaaaaaaaaa.com/', 0),
# excluded
('https://badhost.xxx/', 0),
]) | 117,470 | 320,967 | 69 | tests/unit/javascript/test_greasemonkey.py | 30 | 10 | def test_all(gm_manager):
_save_script(test_gm_script, 'test.user.js')
gm_manager.load_scripts()
assert (gm_manager.all_scripts()[0].name ==
"qutebrowser test userscript")
@pytest.mark.parametrize("url, expected_matches", [
# included
('http://trolol.com/', 1),
# neither included nor excluded
('http://aaaaaaaaaa.com/', 0) | greasemonkey: Don't implicitly load scripts
Needed for #7245 and also seems like cleaner code. | test_all | 21419c9ef5a90ea36a27afaf2503a57f8f9f8536 | qutebrowser | test_greasemonkey.py | 11 | 5 | https://github.com/qutebrowser/qutebrowser.git | 1 | 32 | 1 | 25 | 109 | Python | {
"docstring": "Test that a script gets read from file, parsed and returned.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def test_all(gm_manager):
_save_script(test_gm_script, 'test.user.js')
gm_manager.load_scripts()
assert (gm_manager.all_scripts()[0].name ==
"qutebrowser test userscript")
@pytest.mark.parametrize("url, expected_matches", [
# included
('http://trolol.com/', 1),
# neither included nor excluded
('http://aaaaaaaaaa.com/', 0),
# excluded
('https://badhost.xxx/', 0),
]) |
77,443 | 263,700 | 130 | bootloader/waflib/Utils.py | 59 | 24 | def split_path_msys(path):
if path.startswith(('/', '\\')) and not path.startswith(('//', '\\\\')):
global msysroot
if not msysroot:
msysroot = subprocess.check_output(['cygpath', '-w', '/']).decode(sys.stdout.encoding or 'latin-1')
msysroot = msysroot.strip()
path = os.path.normpath(msysroot + os.sep + path)
return split_path_win32(path)
if sys.platform == 'cygwin':
split_path = split_path | Bootloader: Building: Unpack waf's lib archive.
Doing so makes it easier to modify. This is a temporary measure until the next
waf version is released (although I'm tempted to keep it since it's much more
IDE completion friendly). | split_path_msys | 64ccb7aea824fbec57f7ed1bbe483ec486183c13 | pyinstaller | Utils.py | 16 | 8 | https://github.com/pyinstaller/pyinstaller.git | 5 | 88 | 0 | 40 | 247 | Python | {
"docstring": "\nSplits a path by / or \\\\; do not confuse this function with with ``os.path.split``\n\n:type path: string\n:param path: path to split\n:return: list of string\n",
"language": "en",
"n_whitespaces": 28,
"n_words": 27,
"vocab_size": 23
} | def split_path_msys(path):
if path.startswith(('/', '\\')) and not path.startswith(('//', '\\\\')):
global msysroot
if not msysroot:
msysroot = subprocess.check_output(['cygpath', '-w', '/']).decode(sys.stdout.encoding or 'latin-1')
msysroot = msysroot.strip()
path = os.path.normpath(msysroot + os.sep + path)
return split_path_win32(path)
if sys.platform == 'cygwin':
split_path = split_path_cygwin
elif is_win32:
if os.environ.get('MSYSTEM') and sys.executable.startswith('/'):
split_path = split_path_msys
else:
split_path = split_path_win32
else:
split_path = split_path_unix
split_path.__doc__ =
|
|
16,631 | 77,104 | 19 | wagtail/images/utils.py | 10 | 10 | def find_image_duplicates(image, user, permission_policy):
instances = permi | Add duplicate detection to multiple image upload view
Add utility function to find an image's potential duplicates
Add logic to detect duplicates on multiple images upload view
Add template shown when a user is prompted to confirm a duplicate upload
Add client-side logic to confirm a duplicate upload
Add/update styles
Add tests for duplicate image uploads
Index Image file_hash field
Ensure that a user can choose an image from duplicates returned by find_image_duplicates
Use CSS classes instead of HTML elements to hide edit form on duplicate upload
Add ImagesPermissionPolicy helper to retrieve the permission policy dynamically
This allows test cases that override the base image model to pick up the corresponding permission policy, should they need it.
Remove usage of sibling selector
Use wagtail image templatetag to generate image
Renamed ImagesPermissionPolicy to ImagesPermissionPolicyGetter
Fail loudly when setting permission policy and a wromg image model is provided
Add decorator to disconnect a signal's receiver during a test execution and use it in get_image_model tests
Improve warning message on duplicate upload in multiple upload view
Show matching form when confirming a duplicate upload | find_image_duplicates | c136f461bc052cef362991458e1bd1fca37a3da9 | wagtail | utils.py | 11 | 3 | https://github.com/wagtail/wagtail.git | 1 | 40 | 0 | 10 | 65 | Python | {
"docstring": "\n Finds all the duplicates of a given image.\n To keep things simple, two images are considered to be duplicates if they have the same `file_hash` value.\n This function also ensures that the `user` can choose one of the duplicate images returned (if any).\n ",
"language": "en",
"n_whitespaces": 56,
"n_words": 43,
"vocab_size": 37
} | def find_image_duplicates(image, user, permission_policy):
instances = permission_policy.instances_user_has_permission_for(user, "choose")
return instances.exclude(pk=image.pk).filter(file_hash=image.file_hash)
|
|
3,427 | 20,562 | 43 | pipenv/patched/notpip/_vendor/pyparsing/core.py | 21 | 10 | def _trim_arity(func, maxargs=2):
global _trim_arity_call_line
if f | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | _trim_arity | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | core.py | 10 | 19 | https://github.com/pypa/pipenv.git | 3 | 100 | 0 | 20 | 56 | Python | {
"docstring": "decorator to trim function calls to match the arity of the target",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 10
} | def _trim_arity(func, maxargs=2):
global _trim_arity_call_line
if func in _single_arg_builtins:
return lambda s, l, t: func(t)
limit = 0
found_arity = False
|
|
85,794 | 286,407 | 728 | openbb_terminal/cryptocurrency/overview/overview_controller.py | 101 | 36 | def call_exmarkets(self, other_args):
parser = argparse.ArgumentParser(
prog="exmarkets",
add_help=False,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=,
)
parser.add_argument(
"-e",
"--exchange",
help="Identifier of exchange e.g for Binance Exchange -> binance",
dest="exchange",
default="binance",
type=str,
)
parser.add_argument(
"-l",
"--limit",
dest="limit",
type=check_positive,
help="display N number records",
default=10,
)
parser.add_argument(
"-s",
"--sortby",
dest="sortby",
type=str,
help="Sort by given column. Default: reported_volume_24h_share",
default="reported_volume_24h_share",
choices=coinpaprika_model.EXMARKETS_FILTERS,
)
parser.add_argument(
"--descend",
action="store_false",
help="Flag to sort in descending order (lowest first)",
dest="descend",
default=False,
)
parser.add_argument(
"-u",
"--urls",
dest="urls",
action="store_true",
help=,
default=False,
)
if other_args and "-" not in other_args[0][0]:
other_args.insert(0, "-e")
ns_pa | More Fixes to Crypto + key sort (#3244)
* fix #3095 - autocomplete and command working + key sort
* fix #3056
* fix [Bug] bugs #3048
* fix [Bug] bug #3017
* sort -> sortby, not ascend, tests
* fix my goof ups
Co-authored-by: james <[email protected]> | call_exmarkets | 09f753da1c2a2f03c41fe6a3ca2eb79f6ea58995 | OpenBBTerminal | overview_controller.py | 12 | 69 | https://github.com/OpenBB-finance/OpenBBTerminal.git | 4 | 241 | 0 | 85 | 388 | Python | {
"docstring": "Process exmarkets commandGet all exchange markets found for given exchange\n You can display only N number of records with --limit parameter.\n You can sort data by pair, base_currency_name, quote_currency_name, market_url, category,\n reported_volume_24h_share, trust_score --sortby parameter and also with --descend flag to sort descending.\n You can use additional flag --urls to see urls for each market\n Displays:\n exchange_id, pair, base_currency_name, quote_currency_name, market_url,\n category, reported_volume_24h_share, trust_score,Flag to show urls. If you will use that flag you will see only:\n exchange, pair, trust_score, market_url columns",
"language": "en",
"n_whitespaces": 209,
"n_words": 82,
"vocab_size": 59
} | def call_exmarkets(self, other_args):
parser = argparse.ArgumentParser(
prog="exmarkets",
add_help=False,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
description=,
)
parser.add_argument(
"-e",
"--exchange",
help="Identifier of exchange e.g for Binance Exchange -> binance",
dest="exchange",
default="binance",
type=str,
)
parser.add_argument(
"-l",
"--limit",
dest="limit",
type=check_positive,
help="display N number records",
default=10,
)
parser.add_argument(
"-s",
"--sortby",
dest="sortby",
type=str,
help="Sort by given column. Default: reported_volume_24h_share",
default="reported_volume_24h_share",
choices=coinpaprika_model.EXMARKETS_FILTERS,
)
parser.add_argument(
"--descend",
action="store_false",
help="Flag to sort in descending order (lowest first)",
dest="descend",
default=False,
)
parser.add_argument(
"-u",
"--urls",
dest="urls",
action="store_true",
help=,
default=False,
)
if other_args and "-" not in other_args[0][0]:
other_args.insert(0, "-e")
ns_parser = self.parse_known_args_and_warn(
parser, other_args, EXPORT_ONLY_RAW_DATA_ALLOWED
)
if ns_parser:
coinpaprika_view.display_exchange_markets(
exchange=ns_parser.exchange,
limit=ns_parser.limit,
export=ns_parser.export,
sortby=ns_parser.sortby,
ascend=not ns_parser.descend,
links=ns_parser.urls,
)
|
|
91,872 | 292,803 | 27 | tests/components/lcn/test_cover.py | 15 | 11 | async def test_unload_config_entry(hass, entry, lcn_connection):
await hass.config_entries.async_unload(entry.entry_id)
assert hass.states.get("cover.cover_outputs").state == STATE_UNAVAILABLE
assert hass.s | Add tests for LCN cover platform (#64832) | test_unload_config_entry | 684f01f4664ad490a314ae983194c0f439445a16 | core | test_cover.py | 10 | 4 | https://github.com/home-assistant/core.git | 1 | 47 | 0 | 12 | 80 | Python | {
"docstring": "Test the cover is removed when the config entry is unloaded.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 9
} | async def test_unload_config_entry(hass, entry, lcn_connection):
await hass.config_entries.async_unload(entry.entry_id)
assert hass.states.get("cover.cover_outputs").state == STATE_UNAVAILABLE
assert hass.states.get("cover.cover_relays").state == STATE_UNAVAILABLE
|
|
36,511 | 156,029 | 35 | dask/array/core.py | 14 | 8 | def topk(self, k, axis=-1, split_every=None):
from dask.array.reductions import topk
return topk(self, k, axis=axis, split_every | absolufy-imports - No relative - PEP8 (#8796)
Conversation in https://github.com/dask/distributed/issues/5889 | topk | cccb9d8d8e33a891396b1275c2448c352ef40c27 | dask | core.py | 8 | 3 | https://github.com/dask/dask.git | 1 | 40 | 0 | 12 | 58 | Python | {
"docstring": "The top k elements of an array.\n\n See :func:`dask.array.topk` for docstring.\n\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 11,
"vocab_size": 11
} | def topk(self, k, axis=-1, split_every=None):
from dask.array.reductions import topk
return topk(self, k, axis=axis, split_every=split_every)
|
|
68,398 | 240,287 | 49 | packages/python/plotly/plotly/graph_objs/_figure.py | 17 | 8 | def for_each_ternary(self, fn, selector=None, row=None, col=None) -> "Figure":
for obj in self.select_ternaries(selector=selector, row=row, col=col):
fn(obj)
r | type annotations for chainable Figure methods | for_each_ternary | c95b4fa4388f29e50b6966e45c94c5980013a01d | plotly.py | _figure.py | 9 | 32 | https://github.com/plotly/plotly.py.git | 2 | 48 | 0 | 17 | 73 | Python | {
"docstring": "\n Apply a function to all ternary objects that satisfy the\n specified selection criteria\n\n Parameters\n ----------\n fn:\n Function that inputs a single ternary object.\n selector: dict, function, or None (default None)\n Dict to use as selection criteria.\n ternary objects will be selected if they contain\n properties corresponding to all of the dictionary's keys, with\n values that exactly match the supplied values. If None\n (the default), all ternary objects are selected. If a\n function, it must be a function accepting a single argument and\n returning a boolean. The function will be called on each\n ternary and those for which the function returned True will\n be in the selection.\n row, col: int or None (default None)\n Subplot row and column index of ternary objects to select.\n To select ternary objects by row and column, the Figure\n must have been created using plotly.subplots.make_subplots.\n If None (the default), all ternary objects are selected.\n Returns\n -------\n self\n Returns the Figure object that the method was called on\n ",
"language": "en",
"n_whitespaces": 404,
"n_words": 161,
"vocab_size": 95
} | def for_each_ternary(self, fn, selector=None, row=None, col=None) -> "Figure":
for obj in self.select_ternaries(selector=selector, row=row, col=col):
fn(obj)
return self
|
|
13,507 | 63,798 | 69 | .venv/lib/python3.8/site-packages/pip/_vendor/tenacity/__init__.py | 19 | 8 | def call(self, *args, **kwargs):
warnings.warn(
| upd; format | call | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | __init__.py | 9 | 6 | https://github.com/jindongwang/transferlearning.git | 1 | 34 | 0 | 19 | 58 | Python | {
"docstring": "Use ``__call__`` instead because this method is deprecated.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | def call(self, *args, **kwargs):
warnings.warn(
"'call()' method is deprecated. " + "Use '__call__()' instead",
DeprecationWarning,
)
return self.__call__(*args, **kwargs)
|
|
79,913 | 269,121 | 156 | keras/distribute/distributed_training_utils_v1.py | 86 | 19 | def validate_per_replica_inputs(distribution_strategy, x):
# Convert the inputs and targets into a list of PerReplica objects.
per_replica_list = tf.nest.flatten(x)
x_values_list = []
for x in per_replica_list:
# At this point x should contain only tensors.
x_values = distribution_strategy.unwrap(x)
for value in x_values:
if not tf.is_tensor(value):
raise ValueError('Dataset input to the model should be tensors instead '
'they are of type {}'.format(type(value)))
if not tf.executing_eagerly():
# Validate that the shape and dtype of all the elements in x are | Rework a test to avoid instantiating DistributedValues directly.
PiperOrigin-RevId: 438824819 | validate_per_replica_inputs | 2d7dc6080f0824200e317f255e3290da60e0f98a | keras | distributed_training_utils_v1.py | 17 | 14 | https://github.com/keras-team/keras.git | 5 | 94 | 0 | 64 | 159 | Python | {
"docstring": "Validates PerReplica dataset input list.\n\n Args:\n distribution_strategy: The current DistributionStrategy used to call\n `fit`, `evaluate` and `predict`.\n x: A list of PerReplica objects that represent the input or\n target values.\n\n Returns:\n List containing the first element of each of the PerReplica objects in\n the input list.\n\n Raises:\n ValueError: If any of the objects in the `per_replica_list` is not a tensor.\n\n ",
"language": "en",
"n_whitespaces": 89,
"n_words": 60,
"vocab_size": 44
} | def validate_per_replica_inputs(distribution_strategy, x):
# Convert the inputs and targets into a list of PerReplica objects.
per_replica_list = tf.nest.flatten(x)
x_values_list = []
for x in per_replica_list:
# At this point x should contain only tensors.
x_values = distribution_strategy.unwrap(x)
for value in x_values:
if not tf.is_tensor(value):
raise ValueError('Dataset input to the model should be tensors instead '
'they are of type {}'.format(type(value)))
if not tf.executing_eagerly():
# Validate that the shape and dtype of all the elements in x are the same.
validate_all_tensor_shapes(x, x_values)
validate_all_tensor_types(x, x_values)
x_values_list.append(x_values[0])
return x_values_list
|
|
112,213 | 313,595 | 116 | homeassistant/components/lifx/light.py | 33 | 12 | def get_mac_addr(self):
if (
self.bulb.host_firmware_version
and AwesomeVersion(self.bulb.host_firmware_version) >= FIX_MAC_FW
):
octets = [int(octet, 16) for octet in self.mac_addr.split(":")]
octets[5] = (octets[5] + 1) % 256
return ":".join(f"{octet:02x}" for octet in octets)
return self.ma | Refactor LIFX discovery to prevent duplicate discovery response handling (#72213)
* Partially revert #70458 and allow duplicate LIFX discoveries
Signed-off-by: Avi Miller <[email protected]>
* Only process one discovery at a time
* Revert all LIFX duplicate/inflight discovery checks
Also remember LIFX Switches and do as little processing for them
as possible.
Signed-off-by: Avi Miller <[email protected]>
* Bump aiolifx version to support the latest LIFX devices
LIFX added 22 new product definitions to their public product
list at the end of January and those new products are defined in
aiolifx v0.8.1, so bump the dependency version.
Also switched to testing for relays instead of maintaining a
seperate list of switch product IDs.
Fixes #72894.
Signed-off-by: Avi Miller <[email protected]>
* Refactor LIFX discovery to better handle duplicate responses
Signed-off-by: Avi Miller <[email protected]>
* Update clear_inflight_discovery with review suggestion
Signed-off-by: Avi Miller <[email protected]>
* Move the existing entity check to before the asyncio lock
Signed-off-by: Avi Miller <[email protected]>
* Bail out of discovery early and if an entity was created
Also ensure that the entity always has a unique ID even if the bulb was
not successfully discovered.
Signed-off-by: Avi Miller <[email protected]>
Co-authored-by: J. Nick Koston <[email protected]> | get_mac_addr | a0974e0c7297537149985f93544dd6f8ed8cfded | core | light.py | 13 | 9 | https://github.com/home-assistant/core.git | 5 | 78 | 0 | 28 | 131 | Python | {
"docstring": "Increment the last byte of the mac address by one for FW>3.70.",
"language": "en",
"n_whitespaces": 11,
"n_words": 12,
"vocab_size": 11
} | def get_mac_addr(self):
if (
self.bulb.host_firmware_version
and AwesomeVersion(self.bulb.host_firmware_version) >= FIX_MAC_FW
):
octets = [int(octet, 16) for octet in self.mac_addr.split(":")]
octets[5] = (octets[5] + 1) % 256
return ":".join(f"{octet:02x}" for octet in octets)
return self.mac_addr
|
|
43,384 | 181,595 | 19 | tests/driver_tests.py | 10 | 2 | def test_positive_integer_or_none_4():
assert positive_integer_or_none('none') is None | Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | test_positive_integer_or_none_4 | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | driver_tests.py | 9 | 3 | https://github.com/EpistasisLab/tpot.git | 1 | 19 | 0 | 7 | 38 | Python | {
"docstring": "Assert that the TPOT CLI interface's positive_integer_or_none parsing return None when value is string 'None' or 'none'.",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 17
} | def test_positive_integer_or_none_4():
assert positive_integer_or_none('none') is None
assert positive_integer_or_none('None') is None
|
|
56,941 | 223,511 | 361 | python3.10.4/Lib/email/_header_value_parser.py | 112 | 26 | def get_local_part(value):
local_part = LocalPart()
leader = None
if value[0] in CFWS_LEADER:
leader, value = get_cfws(value)
if not value:
raise errors.HeaderParseError(
"expected local-part but found '{}'".format(value))
try:
token, value = get_dot_atom(value)
except errors.HeaderParseError:
try:
token, value = get_word(value)
except errors.HeaderParseError:
if value[0] != '\\' and value[0] in PHRASE_ENDS:
raise
token = TokenList()
if leader is not None:
token[:0] = [leader]
local_part.append(token)
if value and (value[0]=='\\' or value[0] not in PHRASE_ENDS):
obs_local_part, value = get | add python 3.10.4 for windows | get_local_part | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | _header_value_parser.py | 15 | 35 | https://github.com/XX-net/XX-Net.git | 13 | 222 | 0 | 71 | 377 | Python | {
"docstring": " local-part = dot-atom / quoted-string / obs-local-part\n\n ",
"language": "en",
"n_whitespaces": 11,
"n_words": 7,
"vocab_size": 6
} | def get_local_part(value):
local_part = LocalPart()
leader = None
if value[0] in CFWS_LEADER:
leader, value = get_cfws(value)
if not value:
raise errors.HeaderParseError(
"expected local-part but found '{}'".format(value))
try:
token, value = get_dot_atom(value)
except errors.HeaderParseError:
try:
token, value = get_word(value)
except errors.HeaderParseError:
if value[0] != '\\' and value[0] in PHRASE_ENDS:
raise
token = TokenList()
if leader is not None:
token[:0] = [leader]
local_part.append(token)
if value and (value[0]=='\\' or value[0] not in PHRASE_ENDS):
obs_local_part, value = get_obs_local_part(str(local_part) + value)
if obs_local_part.token_type == 'invalid-obs-local-part':
local_part.defects.append(errors.InvalidHeaderDefect(
"local-part is not dot-atom, quoted-string, or obs-local-part"))
else:
local_part.defects.append(errors.ObsoleteHeaderDefect(
"local-part is not a dot-atom (contains CFWS)"))
local_part[0] = obs_local_part
try:
local_part.value.encode('ascii')
except UnicodeEncodeError:
local_part.defects.append(errors.NonASCIILocalPartDefect(
"local-part contains non-ASCII characters)"))
return local_part, value
|
|
5,984 | 32,803 | 238 | tests/test_feature_extraction_common.py | 57 | 20 | def prepare_video_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
video_inputs = []
for i in range(feature_extract_te | Add VideoMAE (#17821)
* First draft
* Add VideoMAEForVideoClassification
* Improve conversion script
* Add VideoMAEForPreTraining
* Add VideoMAEFeatureExtractor
* Improve VideoMAEFeatureExtractor
* Improve docs
* Add first draft of model tests
* Improve VideoMAEForPreTraining
* Fix base_model_prefix
* Make model take pixel_values of shape (B, T, C, H, W)
* Add loss computation of VideoMAEForPreTraining
* Improve tests
* Improve model testsé
* Make all tests pass
* Add VideoMAE to main README
* Add tests for VideoMAEFeatureExtractor
* Add integration test
* Improve conversion script
* Rename patch embedding class
* Remove VideoMAELayer from init
* Update design of patch embeddings
* Improve comments
* Improve conversion script
* Improve conversion script
* Add conversion of pretrained model
* Add loss verification of pretrained model
* Add loss verification of unnormalized targets
* Add integration test for pretraining model
* Apply suggestions from code review
* Fix bug to make feature extractor resize only shorter edge
* Address more comments
* Improve normalization of videos
* Add doc examples
* Move constants to dedicated script
* Remove scripts
* Transfer checkpoints, fix docs
* Update script
* Update image mean and std
* Fix doc tests
* Set return_tensors to NumPy by default
* Revert the previous change
Co-authored-by: Niels Rogge <[email protected]> | prepare_video_inputs | f9a0008d2d3082a665f711b24f5314e4a8205fab | transformers | test_feature_extraction_common.py | 16 | 19 | https://github.com/huggingface/transformers.git | 4 | 111 | 0 | 49 | 169 | Python | {
"docstring": "This function prepares a batch of videos: a list of list of PIL images, or a list of list of numpy arrays if\n one specifies numpify=True, or a list of list of PyTorch tensors if one specifies torchify=True.\n\n One can specify whether the videos are of the same resolution or not.\n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 51,
"vocab_size": 30
} | def prepare_video_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
video_inputs = []
for i in range(feature_extract_tester.batch_size):
if equal_resolution:
width = height = feature_extract_tester.max_resolution
else:
width, height = np.random.choice(
np.arange(feature_extract_tester.min_resolution, feature_extract_tester.max_resolution), 2
)
video = prepare_video(
feature_extract_tester=feature_extract_tester,
width=width,
height=height,
numpify=numpify,
torchify=torchify,
)
video_inputs.append(video)
return video_inputs
|
|
45,468 | 186,372 | 191 | certbot-apache/certbot_apache/_internal/configurator.py | 38 | 18 | def _verify_no_matching_http_header(self, ssl_vhost, header_substring):
header_path = self.parser.find_dir("Header", None,
start=ssl_vhost.path)
if header_path:
# "Existing Header directive for virtualhost"
pat = '(?:[ "]|^)(%s)(?:[ "]|$)' % (header_substring.lower())
for match in header_path:
if re.search(pat, self.parser.aug.get(matc | Various clean-ups in certbot-apache. Use f-strings. (#9132)
* Various clean-ups in certbot-apache. Use f-strings.
* Smaller tweaks | _verify_no_matching_http_header | eeca208c8f57304590ac1af80b496e61021aaa45 | certbot | configurator.py | 17 | 9 | https://github.com/certbot/certbot.git | 4 | 79 | 0 | 32 | 130 | Python | {
"docstring": "Checks to see if there is an existing Header directive that\n contains the string header_substring.\n\n :param ssl_vhost: vhost to check\n :type vhost: :class:`~certbot_apache._internal.obj.VirtualHost`\n\n :param header_substring: string that uniquely identifies a header.\n e.g: Strict-Transport-Security, Upgrade-Insecure-Requests.\n :type str\n\n :returns: boolean\n :rtype: (bool)\n\n :raises errors.PluginEnhancementAlreadyPresent When header\n header_substring exists\n\n ",
"language": "en",
"n_whitespaces": 139,
"n_words": 46,
"vocab_size": 41
} | def _verify_no_matching_http_header(self, ssl_vhost, header_substring):
header_path = self.parser.find_dir("Header", None,
start=ssl_vhost.path)
if header_path:
# "Existing Header directive for virtualhost"
pat = '(?:[ "]|^)(%s)(?:[ "]|$)' % (header_substring.lower())
for match in header_path:
if re.search(pat, self.parser.aug.get(match).lower()):
raise errors.PluginEnhancementAlreadyPresent(
"Existing %s header" % header_substring)
|
|
@_wraps(np.repeat, lax_description=_TOTAL_REPEAT_LENGTH_DOC) | 26,809 | 120,281 | 99 | jax/_src/numpy/lax_numpy.py | 67 | 30 | def indices(dimensions, dtype=int32, sparse=False):
dimensions = tuple(
core.concrete_or_error(operator.index, d, "dimensions argument of jnp.indices")
for d in dimensions)
N = len(dimensions)
output = []
s = dimensio | replace int with operator.index part2
This change align the behavior of `ravel_multi_index`, `split` and `indices` to their `numpy` counterparts.
Also ensure size argument of `nonzero` should be integer.
The changes with `*space` are only simplification | indices | 667d63aa2d4fbf7c9da73aab0e24c5c4c33cb5ba | jax | lax_numpy.py | 15 | 15 | https://github.com/google/jax.git | 6 | 141 | 1 | 50 | 237 | Python | {
"docstring": "\\\nJax adds the optional `total_repeat_length` parameter which specifies the total\nnumber of repeat, and defaults to sum(repeats). It must be specified for repeat\nto be compilable. If `sum(repeats)` is larger than the specified\n`total_repeat_length` the remaining values will be discarded. In the case of\n`sum(repeats)` being smaller than the specified target length, the final value\nwill be repeated.\n",
"language": "en",
"n_whitespaces": 52,
"n_words": 59,
"vocab_size": 42
} | def indices(dimensions, dtype=int32, sparse=False):
dimensions = tuple(
core.concrete_or_error(operator.index, d, "dimensions argument of jnp.indices")
for d in dimensions)
N = len(dimensions)
output = []
s = dimensions
for i, dim in enumerate(dimensions):
idx = lax.iota(dtype, dim)
if sparse:
s = (1,)*i + (dim,) + (1,)*(N - i - 1)
output.append(lax.broadcast_in_dim(idx, s, (i,)))
if sparse:
return tuple(output)
return stack(output, 0) if output else array([], dtype=dtype)
_TOTAL_REPEAT_LENGTH_DOC =
@_wraps(np.repeat, lax_description=_TOTAL_REPEAT_LENGTH_DOC) |
73,887 | 251,914 | 27 | test/mitmproxy/proxy/layers/test_tcp.py | 15 | 8 | def test_open_connection(tctx):
assert Playbook(tcp.TCPLayer(tctx, | make it black! | test_open_connection | b3587b52b25077f68116b9852b041d33e7fc6601 | mitmproxy | test_tcp.py | 10 | 4 | https://github.com/mitmproxy/mitmproxy.git | 1 | 48 | 0 | 11 | 74 | Python | {
"docstring": "\n If there is no server connection yet, establish one,\n because the server may send data first.\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 16,
"vocab_size": 15
} | def test_open_connection(tctx):
assert Playbook(tcp.TCPLayer(tctx, True)) << OpenConnection(tctx.server)
tctx.server.timestamp_start = 1624544785
assert Playbook(tcp.TCPLayer(tctx, True)) << None
|
|
77,903 | 264,900 | 74 | netbox/dcim/api/serializers.py | 20 | 11 | def get_connected_endpoints(self, obj):
endpoints = obj.connected_endpoints
if endpoints:
serializer = get_serializer_for_model(endpoints[0], prefix='Nested')
context = {'request': self.context['request']}
| Update connected_endpoint serializer field to support multiple objects | get_connected_endpoints | 4c51dbba809b6b199a96da30f32f4dd3cd6ea6ed | netbox | serializers.py | 12 | 6 | https://github.com/netbox-community/netbox.git | 2 | 56 | 0 | 18 | 92 | Python | {
"docstring": "\n Return the appropriate serializer for the type of connected object.\n ",
"language": "en",
"n_whitespaces": 25,
"n_words": 10,
"vocab_size": 9
} | def get_connected_endpoints(self, obj):
endpoints = obj.connected_endpoints
if endpoints:
serializer = get_serializer_for_model(endpoints[0], prefix='Nested')
context = {'request': self.context['request']}
return serializer(endpoints, many=True, context=context).data
|
|
41,930 | 176,485 | 60 | networkx/algorithms/tree/tests/test_operations.py | 25 | 11 | def test_basic(self):
trees = [(nx.full_rary_tree(2, 2**2 - 1), 0) for i in range(2)]
actual = nx.join(trees)
expected = nx.full_rary_tree(2, 2**3 - 1)
| Update black (#5438)
* CI: sync up black dev requirements version with precommit
* Run black
Co-authored-by: Jarrod Millman <[email protected]> | test_basic | f6755ffa00211b523c6c0bec5398bc6c3c43c8b1 | networkx | test_operations.py | 12 | 5 | https://github.com/networkx/networkx.git | 2 | 64 | 0 | 22 | 99 | Python | {
"docstring": "Tests for joining multiple subtrees at a root node.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def test_basic(self):
trees = [(nx.full_rary_tree(2, 2**2 - 1), 0) for i in range(2)]
actual = nx.join(trees)
expected = nx.full_rary_tree(2, 2**3 - 1)
assert nx.is_isomorphic(actual, expected)
|
|
51,805 | 206,949 | 251 | tests/admin_changelist/tests.py | 77 | 36 | def test_result_list_html(self):
new_parent = Parent.objects.create(name="parent")
new_child = Child.objects.create(name="name", parent=new_parent)
request = self.factory.get("/child/")
request.user = self.superuser
m = ChildAdmin(Child, custom_site)
cl = m.get_changelist_instance(request)
cl.formset = None
template = Template(
"{% load admin_list %}{% spaceless %}{% result_list cl %}{% endspaceless %} | Refs #33476 -- Reformatted code with Black. | test_result_list_html | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | tests.py | 11 | 22 | https://github.com/django/django.git | 1 | 150 | 0 | 59 | 251 | Python | {
"docstring": "\n Inclusion tag result_list generates a table when with default\n ModelAdmin settings.\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 11,
"vocab_size": 11
} | def test_result_list_html(self):
new_parent = Parent.objects.create(name="parent")
new_child = Child.objects.create(name="name", parent=new_parent)
request = self.factory.get("/child/")
request.user = self.superuser
m = ChildAdmin(Child, custom_site)
cl = m.get_changelist_instance(request)
cl.formset = None
template = Template(
"{% load admin_list %}{% spaceless %}{% result_list cl %}{% endspaceless %}"
)
context = Context({"cl": cl, "opts": Child._meta})
table_output = template.render(context)
link = reverse("admin:admin_changelist_child_change", args=(new_child.id,))
row_html = build_tbody_html(
new_child.id, link, '<td class="field-parent nowrap">%s</td>' % new_parent
)
self.assertNotEqual(
table_output.find(row_html),
-1,
"Failed to find expected row element: %s" % table_output,
)
|
|
16,376 | 75,179 | 176 | wagtail/images/tests/test_admin_views.py | 37 | 22 | def test_delete_uploaded_image(self):
# Send request
response = self.client.post(
reverse(
"wagtailimages:delete_upload_multiple", args=(self.uploaded_image.id,)
)
)
| Reformat with black | test_delete_uploaded_image | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | test_admin_views.py | 14 | 13 | https://github.com/wagtail/wagtail.git | 1 | 97 | 0 | 29 | 166 | Python | {
"docstring": "\n This tests that a POST request to the delete view deletes the UploadedImage\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 13,
"vocab_size": 12
} | def test_delete_uploaded_image(self):
# Send request
response = self.client.post(
reverse(
"wagtailimages:delete_upload_multiple", args=(self.uploaded_image.id,)
)
)
# Check response
self.assertEqual(response.status_code, 200)
self.assertEqual(response["Content-Type"], "application/json")
# Make sure the image is deleted
self.assertFalse(
UploadedImage.objects.filter(id=self.uploaded_image.id).exists()
)
# Check JSON
response_json = json.loads(response.content.decode())
self.assertTrue(response_json["success"])
|
|
20,625 | 101,204 | 120 | lib/align/aligned_face.py | 30 | 12 | def matrix(self) -> np.ndarray:
| lib.align.aligned_face updates
- Typing
- Legacy support for pre-aligned faces
- Coverage support for pre-aligned faces
- Standardized retrieval of sub-crops | matrix | a2de4a97985dc62db3b140a924aeac2be733abf8 | faceswap | aligned_face.py | 12 | 11 | https://github.com/deepfakes/faceswap.git | 2 | 89 | 0 | 26 | 144 | Python | {
"docstring": " :class:`numpy.ndarray`: The 3x2 transformation matrix for extracting and aligning the\n core face area out of the original frame, with no padding or sizing applied. The returned\n matrix is offset for the given :attr:`centering`. ",
"language": "en",
"n_whitespaces": 48,
"n_words": 33,
"vocab_size": 28
} | def matrix(self) -> np.ndarray:
if not np.any(self._matrices[self._centering]):
matrix = self._matrices["legacy"].copy()
matrix[:, 2] -= self.pose.offset[self._centering]
self._matrices[self._centering] = matrix
logger.trace("original matrix: %s, new matrix: %s", # type: ignore
self._matrices["legacy"], matrix)
return self._matrices[self._centering]
|
|
78,755 | 267,137 | 364 | lib/ansible/parsing/plugin_docs.py | 100 | 21 | def read_docstub(filename):
in_documentation = False
capturing = False
indent_detection = ''
doc_stub = []
with open(filename, 'r') as t_module_data:
for line in t_module_data:
if in_documentation:
| expand ansible-doc coverage (#74963)
* Expand ansible-doc to tests/filters and fix existing issues
enable filter/test docs if in single file or companion yaml
add docs for several filters/tests plugins
allow .yml companion for docs for other plugins, must be colocated
verify plugins are valid (not modules, cannot)
fix 'per collection' filtering
limit old style deprecation (_ prefix) to builtin/legacy
start move to pathlib for saner path handling
moved some funcitons, kept backwards compat shims with deprecation notice
Co-authored-by: Abhijeet Kasurde <[email protected]>
Co-authored-by: Felix Fontein <[email protected]>
Co-authored-by: Sandra McCann <[email protected]> | read_docstub | b439e41a915ccec0ccbabecc966919ea406db74e | ansible | plugin_docs.py | 23 | 21 | https://github.com/ansible/ansible.git | 11 | 162 | 0 | 63 | 287 | Python | {
"docstring": "\n Quickly find short_description using string methods instead of node parsing.\n This does not return a full set of documentation strings and is intended for\n operations like ansible-doc -l.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 28,
"vocab_size": 27
} | def read_docstub(filename):
in_documentation = False
capturing = False
indent_detection = ''
doc_stub = []
with open(filename, 'r') as t_module_data:
for line in t_module_data:
if in_documentation:
# start capturing the stub until indentation returns
if capturing and line.startswith(indent_detection):
doc_stub.append(line)
elif capturing and not line.startswith(indent_detection):
break
elif line.lstrip().startswith('short_description:'):
capturing = True
# Detect that the short_description continues on the next line if it's indented more
# than short_description itself.
indent_detection = ' ' * (len(line) - len(line.lstrip()) + 1)
doc_stub.append(line)
elif line.startswith('DOCUMENTATION') and ('=' in line or ':' in line):
in_documentation = True
short_description = r''.join(doc_stub).strip().rstrip('.')
data = AnsibleLoader(short_description, file_name=filename).get_single_data()
return data
|
|
25,535 | 115,740 | 71 | mindsdb/integrations/handlers/lightwood_handler/tests/test_lightwood_handler.py | 27 | 12 | def test_02_train_predictor(self):
query = f
response = self.handler.native_query(query)
self.assertTrue(response.type == R | lw handler tests | test_02_train_predictor | 91e73cdd2402a12373379b85ef1934d8ecfa364e | mindsdb | test_lightwood_handler.py | 9 | 8 | https://github.com/mindsdb/mindsdb.git | 1 | 31 | 0 | 14 | 66 | Python | {
"docstring": "\n CREATE PREDICTOR {self.test_model_name_1}\n FROM {PG_HANDLER_NAME} (SELECT * FROM demo_data.home_rentals limit 50)\n PREDICT rental_price\n ",
"language": "en",
"n_whitespaces": 54,
"n_words": 13,
"vocab_size": 12
} | def test_02_train_predictor(self):
query = f
response = self.handler.native_query(query)
self.assertTrue(response.type == RESPONSE_TYPE.OK)
# def test_03_retrain_predictor(self):
# query = f"RETRAIN {self.test_model_name_1}"
# response = self.handler.native_query(query)
# self.assertTrue(response.type == RESPONSE_TYPE.OK)
|
|
36,541 | 156,079 | 68 | dask/core.py | 32 | 9 | def get_dependencies(dsk, key=None, task=no_default, as_list=False):
if key is not None:
arg = dsk[key]
elif task is not no_default:
arg = task
else:
raise ValueError("Provide either key or task")
return keys_in_tasks(dsk, [arg], as_list=as_list)
| absolufy-imports - No relative - PEP8 (#8796)
Conversation in https://github.com/dask/distributed/issues/5889 | get_dependencies | cccb9d8d8e33a891396b1275c2448c352ef40c27 | dask | core.py | 11 | 8 | https://github.com/dask/dask.git | 3 | 59 | 0 | 26 | 92 | Python | {
"docstring": "Get the immediate tasks on which this task depends\n\n Examples\n --------\n >>> inc = lambda x: x + 1\n >>> add = lambda x, y: x + y\n >>> dsk = {'x': 1,\n ... 'y': (inc, 'x'),\n ... 'z': (add, 'x', 'y'),\n ... 'w': (inc, 'z'),\n ... 'a': (add, (inc, 'x'), 1)}\n\n >>> get_dependencies(dsk, 'x')\n set()\n\n >>> get_dependencies(dsk, 'y')\n {'x'}\n\n >>> get_dependencies(dsk, 'z') # doctest: +SKIP\n {'x', 'y'}\n\n >>> get_dependencies(dsk, 'w') # Only direct dependencies\n {'z'}\n\n >>> get_dependencies(dsk, 'a') # Ignore non-keys\n {'x'}\n\n >>> get_dependencies(dsk, task=(inc, 'x')) # provide tasks directly\n {'x'}\n ",
"language": "en",
"n_whitespaces": 190,
"n_words": 92,
"vocab_size": 61
} | def get_dependencies(dsk, key=None, task=no_default, as_list=False):
if key is not None:
arg = dsk[key]
elif task is not no_default:
arg = task
else:
raise ValueError("Provide either key or task")
return keys_in_tasks(dsk, [arg], as_list=as_list)
|
|
33,589 | 146,016 | 87 | python/ray/ml/tests/test_checkpoints.py | 24 | 13 | def test_dict_checkpoint_fs(self):
checkpoint = self._prepare_dict_checkpoint()
# Convert into fs c | [ml] Add Ray ML / AIR checkpoint implementation (#22691)
This PR splits up the changes in #22393 and introduces an implementation of the ML Checkpoint interface used by Ray Tune.
This means, the TuneCheckpoint class implements the to/from_[bytes|dict|directory|object_ref|uri] conversion functions, as well as more high-level functions to transition between the different TuneCheckpoint classes. It also includes test cases for Tune's main conversion modes, i.e. dict - intermediate - dict and fs - intermediate - fs.
These changes will be the basis for refactoring the tune interface to use TuneCheckpoint objects instead of TrialCheckpoints (externally) and instead of paths/objects (internally). | test_dict_checkpoint_fs | b267be475863a66e9feedb2be5f0a30a2ed8c493 | ray | test_checkpoints.py | 8 | 7 | https://github.com/ray-project/ray.git | 1 | 50 | 0 | 18 | 87 | Python | {
"docstring": "Test conversion from dict to FS checkpoint and back.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def test_dict_checkpoint_fs(self):
checkpoint = self._prepare_dict_checkpoint()
# Convert into fs checkpoint
path = checkpoint.to_directory()
self.assertIsInstance(path, str)
# Create from path
checkpoint = Checkpoint.from_directory(path)
self.assertTrue(checkpoint._local_path)
self._assert_dict_checkpoint(checkpoint)
|