ast_errors
stringlengths
0
3.2k
d_id
int64
44
121k
id
int64
70
338k
n_whitespaces
int64
3
14k
path
stringlengths
8
134
n_words
int64
4
4.82k
n_identifiers
int64
1
131
random_cut
stringlengths
16
15.8k
commit_message
stringlengths
2
15.3k
fun_name
stringlengths
1
84
commit_id
stringlengths
40
40
repo
stringlengths
3
28
file_name
stringlengths
5
79
ast_levels
int64
6
31
nloc
int64
1
548
url
stringlengths
31
59
complexity
int64
1
66
token_counts
int64
6
2.13k
n_ast_errors
int64
0
28
vocab_size
int64
4
1.11k
n_ast_nodes
int64
15
19.2k
language
stringclasses
1 value
documentation
dict
code
stringlengths
101
62.2k
53,050
211,247
554
deploy/pipeline/pipeline.py
116
14
def get_model_dir(cfg): for key in cfg.keys(): if type(cfg[key]) == dict and \ ("enable" in cfg[key].keys() and cfg[key]['enable'] or "enable" not in cfg[key].keys()): if "model_dir" in cfg[key].keys(): model_dir = cfg[key]["model_dir"] downloaded_model_dir = auto_download_model(model_dir) if downloaded_model_dir: model_dir = downloaded_model_dir cfg[key]["model_dir"] = model_dir print(key, " model dir: ", model_dir) elif key == "VEHICLE_PLATE": det_model_dir = cfg[key]["det_model_dir"] downloaded_det_model_dir = auto_download_model(det_model_dir) if downloaded_det_model_dir: det_model_dir = downloaded_det_model_dir cfg[key]["det_model_dir"] = det_model_dir print("det_model_dir model dir: ", det_model_dir) rec_model_dir = cfg[key]["rec_model_dir"] downloaded_rec_
move initialize part into class (#6621)
get_model_dir
ff8a7b1d090a2f57048d3e87892706a8407dcfe6
PaddleDetection
pipeline.py
17
32
https://github.com/PaddlePaddle/PaddleDetection.git
13
228
0
56
387
Python
{ "docstring": " \n Auto download inference model if the model_path is a url link. \n Otherwise it will use the model_path directly.\n ", "language": "en", "n_whitespaces": 38, "n_words": 18, "vocab_size": 16 }
def get_model_dir(cfg): for key in cfg.keys(): if type(cfg[key]) == dict and \ ("enable" in cfg[key].keys() and cfg[key]['enable'] or "enable" not in cfg[key].keys()): if "model_dir" in cfg[key].keys(): model_dir = cfg[key]["model_dir"] downloaded_model_dir = auto_download_model(model_dir) if downloaded_model_dir: model_dir = downloaded_model_dir cfg[key]["model_dir"] = model_dir print(key, " model dir: ", model_dir) elif key == "VEHICLE_PLATE": det_model_dir = cfg[key]["det_model_dir"] downloaded_det_model_dir = auto_download_model(det_model_dir) if downloaded_det_model_dir: det_model_dir = downloaded_det_model_dir cfg[key]["det_model_dir"] = det_model_dir print("det_model_dir model dir: ", det_model_dir) rec_model_dir = cfg[key]["rec_model_dir"] downloaded_rec_model_dir = auto_download_model(rec_model_dir) if downloaded_rec_model_dir: rec_model_dir = downloaded_rec_model_dir cfg[key]["rec_model_dir"] = rec_model_dir print("rec_model_dir model dir: ", rec_model_dir) elif key == "MOT": # for idbased and skeletonbased actions model_dir = cfg[key]["model_dir"] downloaded_model_dir = auto_download_model(model_dir) if downloaded_model_dir: model_dir = downloaded_model_dir cfg[key]["model_dir"] = model_dir print("mot_model_dir model_dir: ", model_dir)
4,398
22,669
72
linear-algebra-python/src/lib.py
29
8
def component(self, x, y): if x >= 0 and x < self.__height and y >= 0 and y < s
refactor: clean code Signed-off-by: slowy07 <[email protected]>
component
f0af0c43340763724f139fa68aa1e5a9ffe458b4
Python
lib.py
11
5
https://github.com/geekcomputers/Python.git
5
48
0
22
77
Python
{ "docstring": "\n returns the specified (x,y) component\n ", "language": "en", "n_whitespaces": 20, "n_words": 5, "vocab_size": 5 }
def component(self, x, y): if x >= 0 and x < self.__height and y >= 0 and y < self.__width: return self.__matrix[x][y] else: raise Exception("changeComponent: indices out of bounds")
23,815
109,908
270
lib/mpl_toolkits/axisartist/axis_artist.py
79
14
def toggle(self, all=None, ticks=None, ticklabels=None, label=None): if all: _ticks, _ticklabels, _label = True, True, True elif all is not None: _ticks, _ticklabels, _label = False, False, False else: _ticks, _ticklabels, _label = None, None, None if ticks is not Non
Improve mpl_toolkit documentation
toggle
df6f95703b60348e01603f98a439b133da2938a0
matplotlib
axis_artist.py
10
21
https://github.com/matplotlib/matplotlib.git
9
151
0
34
230
Python
{ "docstring": "\n Toggle visibility of ticks, ticklabels, and (axis) label.\n To turn all off, ::\n\n axis.toggle(all=False)\n\n To turn all off but ticks on ::\n\n axis.toggle(all=False, ticks=True)\n\n To turn all on but (axis) label off ::\n\n axis.toggle(all=True, label=False)\n\n ", "language": "en", "n_whitespaces": 98, "n_words": 35, "vocab_size": 23 }
def toggle(self, all=None, ticks=None, ticklabels=None, label=None): if all: _ticks, _ticklabels, _label = True, True, True elif all is not None: _ticks, _ticklabels, _label = False, False, False else: _ticks, _ticklabels, _label = None, None, None if ticks is not None: _ticks = ticks if ticklabels is not None: _ticklabels = ticklabels if label is not None: _label = label if _ticks is not None: self.major_ticks.set_visible(_ticks) self.minor_ticks.set_visible(_ticks) if _ticklabels is not None: self.major_ticklabels.set_visible(_ticklabels) self.minor_ticklabels.set_visible(_ticklabels) if _label is not None: self.label.set_visible(_label)
@pytest.mark.integration @pytest.mark.elasticsearch
75,030
257,136
148
test/test_pipeline_yaml.py
82
30
def mock_json_schema(request, monkeypatch, tmp_path): # Do not patch integration tests if "integration" in request.keywords: return # Mock the subclasses list to make it very small, containing only mock nodes monkeypatch.setattr( haystack.nodes._json_schema, "find_subclasses_in_modules", lambda *a, **k: [(conftest, MockDocumentStore), (conftest, MockReader), (conftest, MockRetriever)], ) # Point the JSON schema path to tmp_path monkeypatch.setattr(haystack.pipelines.config, "JSON_SCHEMAS_PATH", tmp_path) # Generate mock schema in tmp_path filename = f"haystack-pipeline-master.schema.json" test_schema = _json_schema.get_json_schema(filename=filename, version="ignore") with open(tm
Change YAML version exception into a warning (#2385) * Change exception into warning, add strict_version param, and remove compatibility between schemas * Simplify update_json_schema * Rename unstable into master * Prevent validate_config from changing the config to validate * Fix version validation and add tests * Rename master into ignore * Complete parameter rename Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
mock_json_schema
4eec2dc45ee60e8b8780aa4f956aea8ad3624da3
haystack
test_pipeline_yaml.py
11
13
https://github.com/deepset-ai/haystack.git
2
114
1
68
206
Python
{ "docstring": "\n JSON schema with the master version and only mocked nodes.\n ", "language": "en", "n_whitespaces": 17, "n_words": 10, "vocab_size": 10 }
def mock_json_schema(request, monkeypatch, tmp_path): # Do not patch integration tests if "integration" in request.keywords: return # Mock the subclasses list to make it very small, containing only mock nodes monkeypatch.setattr( haystack.nodes._json_schema, "find_subclasses_in_modules", lambda *a, **k: [(conftest, MockDocumentStore), (conftest, MockReader), (conftest, MockRetriever)], ) # Point the JSON schema path to tmp_path monkeypatch.setattr(haystack.pipelines.config, "JSON_SCHEMAS_PATH", tmp_path) # Generate mock schema in tmp_path filename = f"haystack-pipeline-master.schema.json" test_schema = _json_schema.get_json_schema(filename=filename, version="ignore") with open(tmp_path / filename, "w") as schema_file: json.dump(test_schema, schema_file, indent=4) # # Integration # @pytest.mark.integration @pytest.mark.elasticsearch
80,226
269,606
27
keras/backend.py
16
6
def _has_nchw_support(): explicitly_on_cpu = _is_current_explicit_device("CPU") gpus_available = bool(_get_available_gpus()) return not explicitly_on_cpu and gpus_available # VARIABLE MANIPULATI
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
_has_nchw_support
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
backend.py
10
4
https://github.com/keras-team/keras.git
2
24
0
13
47
Python
{ "docstring": "Check whether the current scope supports NCHW ops.\n\n TensorFlow does not support NCHW on CPU. Therefore we check if we are not\n explicitly put on\n CPU, and have GPUs available. In this case there will be soft-placing on the\n GPU device.\n\n Returns:\n bool: if the current scope device placement would support nchw\n ", "language": "en", "n_whitespaces": 77, "n_words": 52, "vocab_size": 41 }
def _has_nchw_support(): explicitly_on_cpu = _is_current_explicit_device("CPU") gpus_available = bool(_get_available_gpus()) return not explicitly_on_cpu and gpus_available # VARIABLE MANIPULATION
36,978
157,549
225
ldm/modules/image_degradation/utils_image.py
117
27
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
release more models
tensor2img
ca86da3a30c4e080d4db8c25fca73de843663cb4
stablediffusion
utils_image.py
17
24
https://github.com/Stability-AI/stablediffusion.git
5
228
0
77
358
Python
{ "docstring": "\n Converts a torch Tensor into an image Numpy array of BGR channel order\n Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order\n Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)\n \n# --------------------------------------------\n# Augmentation, flipe and/or rotate\n# --------------------------------------------\n# The following two are enough.\n# (1) augmet_img: numpy image of WxHxC or WxH\n# (2) augment_img_tensor4: tensor image 1xCxWxH\n# --------------------------------------------\n", "language": "en", "n_whitespaces": 68, "n_words": 62, "vocab_size": 46 }
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] n_dim = tensor.dim() if n_dim == 4: n_img = len(tensor) img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 3: img_np = tensor.numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 2: img_np = tensor.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) if out_type == np.uint8: img_np = (img_np * 255.0).round() # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. return img_np.astype(out_type)
43,310
181,347
65
gradio/utils.py
21
11
def get_local_ip_address() -> str: try: ip_address = requests.get( "https://checkip.amazonaws.com/", timeout=3 ).text.strip() except (requests.ConnectionError, requests.exceptions.ReadTimeout): ip_address = "No internet connection" return ip_address
Patching `test_get_ip` attempt 2 (#2810) * ip-patch-2 * formatting * patch 2
get_local_ip_address
51824608865b66ab04b018f55055124edbe603f3
gradio
utils.py
14
9
https://github.com/gradio-app/gradio.git
2
45
0
18
78
Python
{ "docstring": "Gets the public IP address or returns the string \"No internet connection\" if unable to obtain it.", "language": "en", "n_whitespaces": 16, "n_words": 17, "vocab_size": 16 }
def get_local_ip_address() -> str: try: ip_address = requests.get( "https://checkip.amazonaws.com/", timeout=3 ).text.strip() except (requests.ConnectionError, requests.exceptions.ReadTimeout): ip_address = "No internet connection" return ip_address
46,161
189,674
66
manim/mobject/geometry/arc.py
16
6
def get_tip(self): tips = self.get_tips() if len(tips) == 0: raise Excep
Improved structure of the :mod:`.mobject` module (#2476) * group graphing and update its references * group text and update its references * group opengl and update its references * group three_d and update its references * group geometry and update (most) references * move some chaning.py + updater files into animation * refactor arc.py * refactor line.py * refactor polygram.py * refactor tips.py * black + isort * import new files in __init__.py * refactor places where geometry was used * black + isort again * remove unused imports * update reference.rst * add descriptions to files * fix circular imports * forgot ArrowTip * fix tests * fix doctests * satisfy mypy? * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix ALL merge conflicts * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * one VMobject import slipped through * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * re-add imports to `manim/opengl/__init__.py` * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix reference manual * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * ignore unknown directive type * fix arrow tip imports in docstrings Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Benjamin Hackl <[email protected]>
get_tip
e040bcacd38378386749db18aeba575b93f4ebca
manim
arc.py
10
6
https://github.com/ManimCommunity/manim.git
2
33
0
16
59
Python
{ "docstring": "Returns the TipableVMobject instance's (first) tip,\n otherwise throws an exception.", "language": "en", "n_whitespaces": 16, "n_words": 10, "vocab_size": 10 }
def get_tip(self): tips = self.get_tips() if len(tips) == 0: raise Exception("tip not found") else: return tips[0]
35,652
153,839
95
modin/core/dataframe/pandas/partitioning/axis_partition.py
39
13
def shuffle(self, func, lengths, **kwargs): num_splits = len(lengths) # We add these to kwargs and will pop them off before performing the operation. kwargs["manual_partition"] = True kwargs["_lengths"] = lengths args = [self.axis, func, num_splits, False] args.extend(self.list_of_blocks) return self._wrap_partitions(self.d
FIX-#4464: Refactor Ray utils and quick fix groupby.count failing on virtual partitions (#4490) Co-authored-by: Devin Petersohn <[email protected]> Signed-off-by: jeffreykennethli <[email protected]>
shuffle
b22b93df20ad25ae7a11f0c89d32fb2f234d4641
modin
axis_partition.py
10
7
https://github.com/modin-project/modin.git
1
68
0
35
109
Python
{ "docstring": "\n Shuffle the order of the data in this axis partition based on the `lengths`.\n\n Parameters\n ----------\n func : callable\n The function to apply before splitting.\n lengths : list\n The list of partition lengths to split the result into.\n **kwargs : dict\n Additional keywords arguments to be passed in `func`.\n\n Returns\n -------\n list\n A list of `PandasDataframePartition` objects split by `lengths`.\n ", "language": "en", "n_whitespaces": 175, "n_words": 60, "vocab_size": 42 }
def shuffle(self, func, lengths, **kwargs): num_splits = len(lengths) # We add these to kwargs and will pop them off before performing the operation. kwargs["manual_partition"] = True kwargs["_lengths"] = lengths args = [self.axis, func, num_splits, False] args.extend(self.list_of_blocks) return self._wrap_partitions(self.deploy_axis_func(*args, **kwargs))
72,413
248,677
757
tests/storage/databases/main/test_room.py
136
29
def test_background_add_room_type_column(self): # Create a room without a type room_id = self._generate_room() # Get event_id of the m.room.create event event_id = self.get_success( self.store.db_pool.simple_select_one_onecol( table="current_state_events", keyvalues={ "room_id": room_id, "type": "m.room.create",
Implement MSC3827: Filtering of `/publicRooms` by room type (#13031) Signed-off-by: Šimon Brandner <[email protected]>
test_background_add_room_type_column
13e359aec8ae8be8dc56a036ae6d9f2bc1d07385
synapse
test_room.py
14
48
https://github.com/matrix-org/synapse.git
1
211
0
88
368
Python
{ "docstring": "Test that the background update to populate the `room_type` column in\n `room_stats_state` works properly.\n ", "language": "en", "n_whitespaces": 28, "n_words": 14, "vocab_size": 13 }
def test_background_add_room_type_column(self): # Create a room without a type room_id = self._generate_room() # Get event_id of the m.room.create event event_id = self.get_success( self.store.db_pool.simple_select_one_onecol( table="current_state_events", keyvalues={ "room_id": room_id, "type": "m.room.create", }, retcol="event_id", ) ) # Fake a room creation event with a room type event = { "content": { "creator": "@user:server.org", "room_version": "9", "type": RoomTypes.SPACE, }, "type": "m.room.create", } self.get_success( self.store.db_pool.simple_update( table="event_json", keyvalues={"event_id": event_id}, updatevalues={"json": json.dumps(event)}, desc="test", ) ) # Insert and run the background update self.get_success( self.store.db_pool.simple_insert( "background_updates", { "update_name": _BackgroundUpdates.ADD_ROOM_TYPE_COLUMN, "progress_json": "{}", }, ) ) # ... and tell the DataStore that it hasn't finished all updates yet self.store.db_pool.updates._all_done = False # Now let's actually drive the updates to completion self.wait_for_background_updates() # Make sure the background update filled in the room type room_type_after = self.get_success( self.store.db_pool.simple_select_one_onecol( table="room_stats_state", keyvalues={"room_id": room_id}, retcol="room_type", allow_none=True, ) ) self.assertEqual(room_type_after, RoomTypes.SPACE)
@router.delete("/feedback")
74,903
256,622
16
rest_api/controller/feedback.py
8
6
def get_feedback(): labels = DOCUMENT_
Allow Linux CI to push changes to forks (#2182) * Add explicit reference to repo name to allow CI to push code back * Run test matrix only on tested code changes * Isolate the bot to check if it works * Clarify situation with a comment * Simplify autoformat.yml * Add code and docs check * Add git pull to make sure to fetch changes if they were created * Add cache to autoformat.yml too * Add information on forks in CONTRIBUTING.md * Add a not about code quality tools in CONTRIBUTING.md * Add image file types to the CI exclusion list Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
get_feedback
4e940be85902dc93f3924662ba83111df72bb4d3
haystack
feedback.py
8
3
https://github.com/deepset-ai/haystack.git
1
14
1
7
41
Python
{ "docstring": "\n This endpoint allows the API user to retrieve all the feedback that has been submitted\n through the `POST /feedback` endpoint.\n ", "language": "en", "n_whitespaces": 30, "n_words": 20, "vocab_size": 18 }
def get_feedback(): labels = DOCUMENT_STORE.get_all_labels() return labels @router.delete("/feedback")
3,311
20,288
167
pipenv/patched/notpip/_vendor/pygments/formatters/__init__.py
52
17
def get_formatter_for_filename(fn, **options): fn = basename(fn) for modname, name, _, filenames, _ in FORMATTERS.values(): for filename in filenames:
check point progress on only bringing in pip==22.0.4 (#4966) * vendor in pip==22.0.4 * updating vendor packaging version * update pipdeptree to fix pipenv graph with new version of pip. * Vendoring of pip-shims 0.7.0 * Vendoring of requirementslib 1.6.3 * Update pip index safety restrictions patch for pip==22.0.4 * Update patches * exclude pyptoject.toml from black to see if that helps. * Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4
get_formatter_for_filename
f3166e673fe8d40277b804d35d77dcdb760fc3b3
pipenv
__init__.py
15
13
https://github.com/pypa/pipenv.git
8
99
0
37
155
Python
{ "docstring": "Lookup and instantiate a formatter by filename pattern.\n\n Raises ClassNotFound if not found.\n ", "language": "en", "n_whitespaces": 19, "n_words": 13, "vocab_size": 13 }
def get_formatter_for_filename(fn, **options): fn = basename(fn) for modname, name, _, filenames, _ in FORMATTERS.values(): for filename in filenames: if _fn_matches(fn, filename): if name not in _formatter_cache: _load_formatters(modname) return _formatter_cache[name](**options) for cls in find_plugin_formatters(): for filename in cls.filenames: if _fn_matches(fn, filename): return cls(**options) raise ClassNotFound("no formatter found for file name %r" % fn)
31,214
137,676
91
python/ray/util/spark/utils.py
39
12
def setup_sigterm_on_parent_death(): try: import ctypes import sig
Ray on spark implementation (#28771) REP: ray-project/enhancements#14
setup_sigterm_on_parent_death
e76ccee69aaa7583be1a9d81cf7b2aa72cf25647
ray
utils.py
14
8
https://github.com/ray-project/ray.git
2
41
0
34
86
Python
{ "docstring": "\n Uses prctl to automatically send SIGTERM to the child process when its parent is\n dead. The child process itself should handle SIGTERM properly.\n ", "language": "en", "n_whitespaces": 33, "n_words": 23, "vocab_size": 19 }
def setup_sigterm_on_parent_death(): try: import ctypes import signal libc = ctypes.CDLL("libc.so.6") # Set the parent process death signal of the command process to SIGTERM. libc.prctl(1, signal.SIGTERM) # PR_SET_PDEATHSIG, see prctl.h except OSError as e: _logger.warning(f"Setup libc.prctl PR_SET_PDEATHSIG failed, error {repr(e)}.")
33,111
144,090
50
python/ray/data/dataset.py
15
8
def force_reads(self) -> "Dataset[T]": blocks = self.get_internal_block_refs() bar = ProgressBar("Force reads", len(blocks)) bar.block_until_complete(blocks) return self
Deflake occasional deadlock in test_dataset.py::test_basic_actors[True] (#21970)
force_reads
fe167c94b10c832071544d82e83b51e534526c5b
ray
dataset.py
10
10
https://github.com/ray-project/ray.git
1
34
0
14
62
Python
{ "docstring": "Force full evaluation of the blocks of this dataset.\n\n This can be used to read all blocks into memory. By default, Datasets\n doesn't read blocks from the datasource until the first transform.\n ", "language": "en", "n_whitespaces": 53, "n_words": 32, "vocab_size": 26 }
def force_reads(self) -> "Dataset[T]": blocks = self.get_internal_block_refs() bar = ProgressBar("Force reads", len(blocks)) bar.block_until_complete(blocks) return self
43,896
182,658
161
src/textual/_compositor.py
36
22
def __iter__(self) -> Iterator[tuple[Widget, Region, Region, Size, Size]]: layers = sorted(self.map.items(), key=lambda item: item[1].order, reverse=True) intersection = Region.intersection for widget, (region, _order, clip, virtual_size, container_size) in layers: yield ( widget, intersection(region, clip), region, virtual_size, container
docstring
__iter__
1a20b9de7d4cef7f93e4500757d3fb42e680f40c
textual
_compositor.py
12
17
https://github.com/Textualize/textual.git
2
90
0
32
126
Python
{ "docstring": "Iterate map with information regarding each widget and is position\n\n Yields:\n Iterator[tuple[Widget, Region, Region, Size, Size]]: Iterates a tuple of\n Widget, clip region, region, virtual size, and container size.\n ", "language": "en", "n_whitespaces": 69, "n_words": 29, "vocab_size": 26 }
def __iter__(self) -> Iterator[tuple[Widget, Region, Region, Size, Size]]: layers = sorted(self.map.items(), key=lambda item: item[1].order, reverse=True) intersection = Region.intersection for widget, (region, _order, clip, virtual_size, container_size) in layers: yield ( widget, intersection(region, clip), region, virtual_size, container_size, )
38,608
160,358
71
numpy/lib/recfunctions.py
24
9
def get_names_flat(adtype): listnames = [] names = adtype.names for name in names: listnames.append(name) current = adtype[name] if current.names is not None: listnames.extend(ge
Fix docstring and examples for rfn.get_names*
get_names_flat
569fc6a40ea53054409e00c7d1c0e7f5f53cb0ce
numpy
recfunctions.py
13
9
https://github.com/numpy/numpy.git
3
54
0
22
89
Python
{ "docstring": "\n Returns the field names of the input datatype as a tuple. Input datatype\n has to have fields otherwise error is raised.\n Nested structure are flattened beforehand.\n\n Parameters\n ----------\n adtype : dtype\n Input datatype\n\n Examples\n --------\n >>> from numpy.lib import recfunctions as rfn\n >>> rfn.get_names_flat(np.empty((1,), dtype=[('A', int)]).dtype) is None\n False\n >>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', str)]).dtype)\n ('A', 'B')\n >>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])\n >>> rfn.get_names_flat(adtype)\n ('a', 'b', 'ba', 'bb')\n ", "language": "en", "n_whitespaces": 131, "n_words": 72, "vocab_size": 59 }
def get_names_flat(adtype): listnames = [] names = adtype.names for name in names: listnames.append(name) current = adtype[name] if current.names is not None: listnames.extend(get_names_flat(current)) return tuple(listnames)
39,623
164,932
512
pandas/tests/plotting/frame/test_frame.py
124
31
def test_memory_leak(self): import gc import weakref results = {} for kind in plotting.PlotAccessor._all_kinds: args = {} if kind in ["hexbin", "scatter", "pie"]: df = DataFrame( { "A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange
TST: Clean tests/plotting (#45992)
test_memory_leak
03fef5f0e35200aa5828975b62782bcf11faa0d2
pandas
test_frame.py
18
26
https://github.com/pandas-dev/pandas.git
5
184
0
92
323
Python
{ "docstring": "Check that every plot type gets properly collected.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
def test_memory_leak(self): import gc import weakref results = {} for kind in plotting.PlotAccessor._all_kinds: args = {} if kind in ["hexbin", "scatter", "pie"]: df = DataFrame( { "A": np.random.uniform(size=20), "B": np.random.uniform(size=20), "C": np.arange(20) + np.random.uniform(size=20), } ) args = {"x": "A", "y": "B"} elif kind == "area": df = tm.makeTimeDataFrame().abs() else: df = tm.makeTimeDataFrame() # Use a weakref so we can see if the object gets collected without # also preventing it from being collected results[kind] = weakref.proxy(df.plot(kind=kind, **args)) # have matplotlib delete all the figures tm.close() # force a garbage collection gc.collect() msg = "weakly-referenced object no longer exists" for key in results: # check that every plot was collected with pytest.raises(ReferenceError, match=msg): # need to actually access something to get an error results[key].lines
117,242
320,637
93
qutebrowser/utils/utils.py
39
6
def disabled_excepthook() -> Iterator[None]: old_excepthook = sys.excepthook sys.excepthook = sys.__excepthook__ try: yield finally: # If the code we did run did change sys.excepthook, we leave it # unchanged. Otherwise, we reset it. if sys.excepthook is sys.__excepthook__: sys.excepthook = old_excepthook
Update code for latest mypy
disabled_excepthook
60de9523ba42d35dc2bf8e0ed5c1521ffbc9b7f5
qutebrowser
utils.py
12
9
https://github.com/qutebrowser/qutebrowser.git
3
41
0
29
73
Python
{ "docstring": "Run code with the exception hook temporarily disabled.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
def disabled_excepthook() -> Iterator[None]: old_excepthook = sys.excepthook sys.excepthook = sys.__excepthook__ try: yield finally: # If the code we did run did change sys.excepthook, we leave it # unchanged. Otherwise, we reset it. if sys.excepthook is sys.__excepthook__: sys.excepthook = old_excepthook
36,057
154,536
120
asv_bench/benchmarks/utils/common.py
39
21
def trigger_import(*dfs): if ASV_USE_STORAGE_FORMAT != "hdk" or ASV_USE_IMPL == "pandas": return from modin.experimental.core.execution.native.implementations.hdk_on_native.db_worker import ( DbWorker, ) for df in dfs: df.shape # to trigger real execution df._query_compiler._modin_frame._partitions[0][ 0 ].frame_id = DbWorker().i
FEAT-#4946: Replace OmniSci with HDK (#4947) Co-authored-by: Iaroslav Igoshev <[email protected]> Signed-off-by: Andrey Pavlenko <[email protected]>
trigger_import
e5b1888cd932909e49194d58035da34b210b91c4
modin
common.py
17
13
https://github.com/modin-project/modin.git
4
86
0
33
134
Python
{ "docstring": "\n Trigger import execution for DataFrames obtained by HDK engine.\n\n Parameters\n ----------\n *dfs : iterable\n DataFrames to trigger import.\n ", "language": "en", "n_whitespaces": 41, "n_words": 18, "vocab_size": 17 }
def trigger_import(*dfs): if ASV_USE_STORAGE_FORMAT != "hdk" or ASV_USE_IMPL == "pandas": return from modin.experimental.core.execution.native.implementations.hdk_on_native.db_worker import ( DbWorker, ) for df in dfs: df.shape # to trigger real execution df._query_compiler._modin_frame._partitions[0][ 0 ].frame_id = DbWorker().import_arrow_table( df._query_compiler._modin_frame._partitions[0][0].get() ) # to trigger real execution
80,974
272,187
323
keras/integration_test/forwardprop_test.py
63
31
def _jacfwd(f, primals): jac_flat = [] flat_primals = tf.nest.flatten(primals) tangent_mask = [tf.zeros_like(primal) for primal in flat_primals] for primal_index, primal in enumerate(flat_primals): primal_vector = tf.reshape(primal, [-1]) primal_vector_length = tf.size(primal_vector) jac_columns = [] for element_index in tf.range(primal_vector_length): mask = tf.one_hot(element_index, primal
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
_jacfwd
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
forwardprop_test.py
19
24
https://github.com/keras-team/keras.git
4
196
0
46
299
Python
{ "docstring": "Compute the jacobian of `f` at `primals` using forward-mode autodiff.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
def _jacfwd(f, primals): jac_flat = [] flat_primals = tf.nest.flatten(primals) tangent_mask = [tf.zeros_like(primal) for primal in flat_primals] for primal_index, primal in enumerate(flat_primals): primal_vector = tf.reshape(primal, [-1]) primal_vector_length = tf.size(primal_vector) jac_columns = [] for element_index in tf.range(primal_vector_length): mask = tf.one_hot(element_index, primal_vector_length) tangent_mask[primal_index] = tf.reshape(mask, tf.shape(primal)) jac_columns.append( tf.nest.map_structure( functools.partial(tf.reshape, shape=[-1]), _jvp( f, primals, tf.nest.pack_sequence_as(primals, tangent_mask), )[1], ) ) jac_flat.append(tf.stack(jac_columns, axis=1)) tangent_mask[primal_index] = tf.zeros_like(primal) return tf.nest.pack_sequence_as(primals, jac_flat)
7,329
40,162
76
dash/_callback_context.py
30
11
def record_timing(name, duration=None, description=None): timing_information = getattr(flask.g, "timing_information", {}) if name in timing_information: raise KeyError(f'Duplicate resource name "{name}" found.') timing_information[name] = {"dur": round(duration * 1000), "desc": description} setattr(flask.g, "timing_information", timing_information)
f-strings everywhere! fffff
record_timing
c3c84b9ecf16bcc61ed80ec39d511af92fe07f2c
dash
_callback_context.py
11
6
https://github.com/plotly/dash.git
2
67
0
27
114
Python
{ "docstring": "Records timing information for a server resource.\n\n :param name: The name of the resource.\n :type name: string\n\n :param duration: The time in seconds to report. Internally, this\n is rounded to the nearest millisecond.\n :type duration: float or None\n\n :param description: A description of the resource.\n :type description: string or None\n ", "language": "en", "n_whitespaces": 110, "n_words": 50, "vocab_size": 33 }
def record_timing(name, duration=None, description=None): timing_information = getattr(flask.g, "timing_information", {}) if name in timing_information: raise KeyError(f'Duplicate resource name "{name}" found.') timing_information[name] = {"dur": round(duration * 1000), "desc": description} setattr(flask.g, "timing_information", timing_information)
@register.tag(name="admin_actions")
50,409
203,493
19
django/contrib/admin/templatetags/admin_list.py
11
6
def admin_actions(context): context["action_index"] = context.get("action_index", -1) + 1 return context @register.tag(name="admin_ac
Refs #33476 -- Reformatted code with Black.
admin_actions
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
admin_list.py
10
3
https://github.com/django/django.git
1
24
1
11
61
Python
{ "docstring": "\n Track the number of times the action field has been rendered on the page,\n so we know which value to use.\n ", "language": "en", "n_whitespaces": 31, "n_words": 21, "vocab_size": 19 }
def admin_actions(context): context["action_index"] = context.get("action_index", -1) + 1 return context @register.tag(name="admin_actions")
93,309
294,272
458
tests/components/hue/test_light_v2.py
264
22
async def test_lights(hass, mock_bridge_v2, v2_resources_test_data): await mock_bridge_v2.api.load_test_data(v2_resources_test_data) await setup_platform(hass, mock_bridge_v2, "light") # there shouldn't have been any requests at this point assert len(mock_bridge_v2.mock_requests) == 0 # 6 entities should be created from test data (grouped_lights are disabled by default) assert len(hass.states.async_all()) == 6 # test light which supports color and color temperature light_1 = hass.states.get("light.hue_light_with_color_and_color_temperature_1") assert light_1 is not None assert ( light_1.attributes["friendly_name"] == "Hue light with color and color temperature 1" ) assert light_1.state == "on" assert light_1.attributes["brightness"] == int(46.85 / 100 * 255) assert light_1.attributes["mode"] == "normal" assert light_1.attributes["color_mode"] == COLOR_MODE_XY assert set(light_1.attributes["supported_color_modes"]) == { COLOR_MODE_COLOR_TEMP, COLOR_MODE_XY, } assert light_1.attributes["xy_color"] == (0.5614, 0.4058) assert light_1.attributes["min_mireds"] == 153 assert light_1.attributes["max_mireds"] == 500 assert light_1.attributes["dynamics"] == "dynamic_palette" assert light_1.attributes["effect_list"] == ["None", "candle", "fire"] assert light_1.attributes["effect"] == "None" # test light which supports color temperature only light_2 = hass.states.get("light.hue_light_with_color_temperature_only") assert light_2 is not None assert ( light_2.attributes["friendly_name"] == "Hue light with color temperature only" ) assert light_2.state == "off" assert light_2.attributes["mode"] == "normal" assert light_2.attributes["supported_color_modes"] == [COLOR_MODE_COLOR_TEMP] assert light_2.attributes["min_mireds"] == 153 assert light_2.attributes["max_mireds"] == 454 assert light_2.attributes["dynamics"] == "none" assert light_2.attributes["effect_list"] == ["None", "candle", "sunrise"] # test light which supports color only light_3 = hass.states.get("light.hue_light_with_color_only") assert light_3 is not None assert light_3.attributes["friendly_name"] == "Hue light with color only" assert light_3.state == "on" assert light_3.attributes["brightness"] == 128 assert light_3.attributes["mode"] == "normal" assert light_3.attributes["supported_color_modes"] == [COLOR_MOD
Add effects feature to Hue lights (#68567)
test_lights
dbef90654f3693401a2df88fa00afbbffbdffcd2
core
test_light_v2.py
11
52
https://github.com/home-assistant/core.git
1
423
0
124
729
Python
{ "docstring": "Test if all v2 lights get created with correct features.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
async def test_lights(hass, mock_bridge_v2, v2_resources_test_data): await mock_bridge_v2.api.load_test_data(v2_resources_test_data) await setup_platform(hass, mock_bridge_v2, "light") # there shouldn't have been any requests at this point assert len(mock_bridge_v2.mock_requests) == 0 # 6 entities should be created from test data (grouped_lights are disabled by default) assert len(hass.states.async_all()) == 6 # test light which supports color and color temperature light_1 = hass.states.get("light.hue_light_with_color_and_color_temperature_1") assert light_1 is not None assert ( light_1.attributes["friendly_name"] == "Hue light with color and color temperature 1" ) assert light_1.state == "on" assert light_1.attributes["brightness"] == int(46.85 / 100 * 255) assert light_1.attributes["mode"] == "normal" assert light_1.attributes["color_mode"] == COLOR_MODE_XY assert set(light_1.attributes["supported_color_modes"]) == { COLOR_MODE_COLOR_TEMP, COLOR_MODE_XY, } assert light_1.attributes["xy_color"] == (0.5614, 0.4058) assert light_1.attributes["min_mireds"] == 153 assert light_1.attributes["max_mireds"] == 500 assert light_1.attributes["dynamics"] == "dynamic_palette" assert light_1.attributes["effect_list"] == ["None", "candle", "fire"] assert light_1.attributes["effect"] == "None" # test light which supports color temperature only light_2 = hass.states.get("light.hue_light_with_color_temperature_only") assert light_2 is not None assert ( light_2.attributes["friendly_name"] == "Hue light with color temperature only" ) assert light_2.state == "off" assert light_2.attributes["mode"] == "normal" assert light_2.attributes["supported_color_modes"] == [COLOR_MODE_COLOR_TEMP] assert light_2.attributes["min_mireds"] == 153 assert light_2.attributes["max_mireds"] == 454 assert light_2.attributes["dynamics"] == "none" assert light_2.attributes["effect_list"] == ["None", "candle", "sunrise"] # test light which supports color only light_3 = hass.states.get("light.hue_light_with_color_only") assert light_3 is not None assert light_3.attributes["friendly_name"] == "Hue light with color only" assert light_3.state == "on" assert light_3.attributes["brightness"] == 128 assert light_3.attributes["mode"] == "normal" assert light_3.attributes["supported_color_modes"] == [COLOR_MODE_XY] assert light_3.attributes["color_mode"] == COLOR_MODE_XY assert light_3.attributes["dynamics"] == "dynamic_palette" # test light which supports on/off only light_4 = hass.states.get("light.hue_on_off_light") assert light_4 is not None assert light_4.attributes["friendly_name"] == "Hue on/off light" assert light_4.state == "off" assert light_4.attributes["mode"] == "normal" assert light_4.attributes["supported_color_modes"] == []
47,233
195,246
102
projects/bb3/holistic_bias/scripts/eval_175b_model.py
29
6
def setup_data(self, path): for message, new_episode in super().setup_data(path): assert ( message['text'] == '__SILENCE__' ), 'The expected original context string is not found!' message['text'] = 'Person
Patch 8322 (#4709) * add dafetymix teacher * safety_mix teacher * safety_mix teacher pos and neg teachers * add tests for teacher * add license info * improvement * add task list * add task list and lint * add init.py * adding some patch to director * seeker changes * th * 3 * jing * changes * z and r * remove .opts * fix docs * add contrractions * lint Co-authored-by: Dexter Ju <[email protected]> Co-authored-by: Jing Xu <[email protected]>
setup_data
b1acb681207559da56a787ba96e16f0e23697d92
ParlAI
eval_175b_model.py
11
7
https://github.com/facebookresearch/ParlAI.git
2
43
0
26
78
Python
{ "docstring": "\n Modify each output message to add in an OPT-compatible context string.\n ", "language": "en", "n_whitespaces": 26, "n_words": 11, "vocab_size": 11 }
def setup_data(self, path): for message, new_episode in super().setup_data(path): assert ( message['text'] == '__SILENCE__' ), 'The expected original context string is not found!' message['text'] = 'Person 1:' yield message, new_episode
20,890
101,477
138
scripts/extract.py
40
20
def _get_input_locations(self) -> List[str]: if not self._args.batch_mode or os.path.isfile(self._args.input_dir): return [self._args.input_dir] # Not batch mode or a single file retval = [os.path.join(self._args.input_dir, fname) for fname in os.listdir(self._args.input_dir) if os.path.isdir(os.path.join(self._args.input_dir, fname)) or os.p
extract: Add batch processing mode
_get_input_locations
13cfb3f39e72e9ca181f173b7b3db2a048db0d08
faceswap
extract.py
16
17
https://github.com/deepfakes/faceswap.git
6
122
0
34
192
Python
{ "docstring": " Obtain the full path to input locations. Will be a list of locations if batch mode is\n selected, or a containing a single location if batch mode is not selected.\n\n Returns\n -------\n list:\n The list of input location paths\n ", "language": "en", "n_whitespaces": 86, "n_words": 39, "vocab_size": 29 }
def _get_input_locations(self) -> List[str]: if not self._args.batch_mode or os.path.isfile(self._args.input_dir): return [self._args.input_dir] # Not batch mode or a single file retval = [os.path.join(self._args.input_dir, fname) for fname in os.listdir(self._args.input_dir) if os.path.isdir(os.path.join(self._args.input_dir, fname)) or os.path.splitext(fname)[-1].lower() in _video_extensions] logger.debug("Input locations: %s", retval) return retval
13,801
65,129
22
erpnext/accounts/party.py
32
11
def get_party_gle_currency(party_type, party, company): def generator(): existing_gle_currency = frappe.db.sql( , {"company": company, "party_type": party_type, "party": party}, ) return existing_gle_currency[0][0] if existing_gle_currency else None return frappe.local_cache( "party_gle_currency", (party_type, pa
style: format code with black
get_party_gle_currency
494bd9ef78313436f0424b918f200dab8fc7c20b
erpnext
party.py
13
5
https://github.com/frappe/erpnext.git
1
32
0
27
109
Python
{ "docstring": "select account_currency from `tabGL Entry`\n\t\t\twhere docstatus=1 and company=%(company)s and party_type=%(party_type)s and party=%(party)s\n\t\t\tlimit 1", "language": "en", "n_whitespaces": 12, "n_words": 15, "vocab_size": 13 }
def get_party_gle_currency(party_type, party, company): def generator(): existing_gle_currency = frappe.db.sql( , {"company": company, "party_type": party_type, "party": party}, ) return existing_gle_currency[0][0] if existing_gle_currency else None return frappe.local_cache( "party_gle_currency", (party_type, party, company), generator, regenerate_if_none=True )
75,348
258,644
610
sklearn/datasets/_base.py
125
21
def load_breast_cancer(*, return_X_y=False, as_frame=False): data_file_name = "breast_cancer.csv" data, target, target_names, fdescr = load_csv_data( data_file_name=data_file_name, descr_file_name="breast_cancer.rst" ) feature_names = np.array( [ "mean radius", "mean texture", "mean perimeter", "mean area", "mean smoothness", "mean compactness", "mean concavity", "mean concave points", "mean symmetry", "mean fractal dimension", "radius error", "texture error", "perimeter error", "area error", "smoothness error", "compactness error", "concavity error", "concave points error", "symmetry error", "fractal dimension error", "worst radius", "worst texture", "worst perimeter", "worst area",
DOC Ensures that sklearn.datasets._base.load_breast_cancer passes numpydoc validation (#22346) Co-authored-by: Guillaume Lemaitre <[email protected]> Co-authored-by: Arturo Amor <[email protected]>
load_breast_cancer
a793c1f0ad7dd63b2a896d2e84087089a11e7fca
scikit-learn
_base.py
11
59
https://github.com/scikit-learn/scikit-learn.git
3
177
0
68
297
Python
{ "docstring": "Load and return the breast cancer wisconsin dataset (classification).\n\n The breast cancer dataset is a classic and very easy binary classification\n dataset.\n\n ================= ==============\n Classes 2\n Samples per class 212(M),357(B)\n Samples total 569\n Dimensionality 30\n Features real, positive\n ================= ==============\n\n The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is\n downloaded from:\n https://goo.gl/U2Uwz2\n\n Read more in the :ref:`User Guide <breast_cancer_dataset>`.\n\n Parameters\n ----------\n return_X_y : bool, default=False\n If True, returns ``(data, target)`` instead of a Bunch object.\n See below for more information about the `data` and `target` object.\n\n .. versionadded:: 0.18\n\n as_frame : bool, default=False\n If True, the data is a pandas DataFrame including columns with\n appropriate dtypes (numeric). The target is\n a pandas DataFrame or Series depending on the number of target columns.\n If `return_X_y` is True, then (`data`, `target`) will be pandas\n DataFrames or Series as described below.\n\n .. versionadded:: 0.23\n\n Returns\n -------\n data : :class:`~sklearn.utils.Bunch`\n Dictionary-like object, with the following attributes.\n\n data : {ndarray, dataframe} of shape (569, 30)\n The data matrix. If `as_frame=True`, `data` will be a pandas\n DataFrame.\n target : {ndarray, Series} of shape (569,)\n The classification target. If `as_frame=True`, `target` will be\n a pandas Series.\n feature_names : list\n The names of the dataset columns.\n target_names : list\n The names of target classes.\n frame : DataFrame of shape (569, 31)\n Only present when `as_frame=True`. DataFrame with `data` and\n `target`.\n\n .. versionadded:: 0.23\n DESCR : str\n The full description of the dataset.\n filename : str\n The path to the location of the data.\n\n .. versionadded:: 0.20\n\n (data, target) : tuple if ``return_X_y`` is True\n A tuple of two ndarrays by default. The first contains a 2D ndarray of\n shape (569, 30) with each row representing one sample and each column\n representing the features. The second ndarray of shape (569,) contains\n the target samples. If `as_frame=True`, both arrays are pandas objects,\n i.e. `X` a dataframe and `y` a series.\n\n .. versionadded:: 0.18\n\n Examples\n --------\n Let's say you are interested in the samples 10, 50, and 85, and want to\n know their class name.\n\n >>> from sklearn.datasets import load_breast_cancer\n >>> data = load_breast_cancer()\n >>> data.target[[10, 50, 85]]\n array([0, 1, 0])\n >>> list(data.target_names)\n ['malignant', 'benign']\n ", "language": "en", "n_whitespaces": 823, "n_words": 356, "vocab_size": 205 }
def load_breast_cancer(*, return_X_y=False, as_frame=False): data_file_name = "breast_cancer.csv" data, target, target_names, fdescr = load_csv_data( data_file_name=data_file_name, descr_file_name="breast_cancer.rst" ) feature_names = np.array( [ "mean radius", "mean texture", "mean perimeter", "mean area", "mean smoothness", "mean compactness", "mean concavity", "mean concave points", "mean symmetry", "mean fractal dimension", "radius error", "texture error", "perimeter error", "area error", "smoothness error", "compactness error", "concavity error", "concave points error", "symmetry error", "fractal dimension error", "worst radius", "worst texture", "worst perimeter", "worst area", "worst smoothness", "worst compactness", "worst concavity", "worst concave points", "worst symmetry", "worst fractal dimension", ] ) frame = None target_columns = [ "target", ] if as_frame: frame, data, target = _convert_data_dataframe( "load_breast_cancer", data, target, feature_names, target_columns ) if return_X_y: return data, target return Bunch( data=data, target=target, frame=frame, target_names=target_names, DESCR=fdescr, feature_names=feature_names, filename=data_file_name, data_module=DATA_MODULE, )
3,307
20,279
44
pipenv/patched/notpip/_vendor/pygments/filters/__init__.py
18
6
def get_filter_by_name(filtername, **options): cls = find_filter_class(filtername) if cls: return cls(**options) else: raise ClassNotFound('filter %r not found' % filte
check point progress on only bringing in pip==22.0.4 (#4966) * vendor in pip==22.0.4 * updating vendor packaging version * update pipdeptree to fix pipenv graph with new version of pip. * Vendoring of pip-shims 0.7.0 * Vendoring of requirementslib 1.6.3 * Update pip index safety restrictions patch for pip==22.0.4 * Update patches * exclude pyptoject.toml from black to see if that helps. * Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4
get_filter_by_name
f3166e673fe8d40277b804d35d77dcdb760fc3b3
pipenv
__init__.py
12
6
https://github.com/pypa/pipenv.git
2
33
0
18
59
Python
{ "docstring": "Return an instantiated filter.\n\n Options are passed to the filter initializer if wanted.\n Raise a ClassNotFound if not found.\n ", "language": "en", "n_whitespaces": 28, "n_words": 19, "vocab_size": 18 }
def get_filter_by_name(filtername, **options): cls = find_filter_class(filtername) if cls: return cls(**options) else: raise ClassNotFound('filter %r not found' % filtername)
10,081
50,301
23
modules/image/text_to_image/disco_diffusion_ernievil_base/vit_b_16x/ernievil2/transformers/resnet.py
14
5
def wide_resnet50_2(pretrained=False, **kwargs): kwargs['width'] = 64 * 2 return _resnet('wide_resnet50_2', BottleneckBlock, 50, pretrained, **kwargs)
add disco_diffusion_ernievil_base
wide_resnet50_2
ffcde21305c61d950a9f93e57e6180c9a9665b87
PaddleHub
resnet.py
8
3
https://github.com/PaddlePaddle/PaddleHub.git
1
33
0
14
54
Python
{ "docstring": "Wide ResNet-50-2 model from\n `\"Wide Residual Networks\" <https://arxiv.org/pdf/1605.07146.pdf>`_.\n\n Args:\n pretrained (bool): If True, returns a model pre-trained on ImageNet\n\n Examples:\n .. code-block:: python\n\n import paddle\n from paddle.vision.models import wide_resnet50_2\n\n # build model\n model = wide_resnet50_2()\n\n # build model and load imagenet pretrained weight\n # model = wide_resnet50_2(pretrained=True)\n\n x = paddle.rand([1, 3, 224, 224])\n out = model(x)\n\n print(out.shape)\n ", "language": "en", "n_whitespaces": 182, "n_words": 57, "vocab_size": 43 }
def wide_resnet50_2(pretrained=False, **kwargs): kwargs['width'] = 64 * 2 return _resnet('wide_resnet50_2', BottleneckBlock, 50, pretrained, **kwargs)
71,110
246,216
54
tests/rest/admin/test_username_available.py
19
14
def test_username_available(self) -> None: url = "%s?username=%s" % (self.url, "allowed") channel = self.make_request("GET", url, access_token=self.admin_user_tok) self.asser
Add type hints to `tests/rest/admin` (#11851)
test_username_available
901b264c0c88f39cbfb8b2229e0dc57968882658
synapse
test_username_available.py
10
8
https://github.com/matrix-org/synapse.git
1
64
0
18
106
Python
{ "docstring": "\n The endpoint should return a HTTPStatus.OK response if the username does not exist\n ", "language": "en", "n_whitespaces": 28, "n_words": 13, "vocab_size": 13 }
def test_username_available(self) -> None: url = "%s?username=%s" % (self.url, "allowed") channel = self.make_request("GET", url, access_token=self.admin_user_tok) self.assertEqual(HTTPStatus.OK, channel.code, msg=channel.json_body) self.assertTrue(channel.json_body["available"])
113,349
314,745
151
tests/helpers/test_entityfilter.py
84
9
def test_with_include_glob_filtering_case4a_include_strong(): incl_dom = {} incl_glob = {"*working"} incl_ent = {"binary_sensor.specificly_included"} excl_dom = {} excl_glob = {"*broken", "*notworking", "binary_sensor.*"} excl_ent = {"light.ignoreme"} testfilter = generate_filter( incl_dom, incl_ent, excl_dom, excl_ent, incl_glob, excl_glob ) assert testfilter("sensor.working") is True assert testfilter("sensor.notworking") is True # include is stronger assert testfilter("sensor.broken") is False assert testfilter("light.test") is False assert testfilter("light.notworking") is True # include is stronger assert testfilter("light.ignoreme") is False assert testfilter("binary_sensor.not_working") is True # include is stronger assert t
Adjust entity filters to make includes stronger than excludes (#74080) * Adjust entity filters to make includes stronger than excludes Fixes #59080 * adjust test for stronger entity glob includes * sync with docs
test_with_include_glob_filtering_case4a_include_strong
a8349a4866d22cddbca9ac9367d4affae39a8325
core
test_entityfilter.py
9
20
https://github.com/home-assistant/core.git
1
123
0
41
227
Python
{ "docstring": "Test case 4 - include and exclude specified, both have globs, and a specifically included entity.", "language": "en", "n_whitespaces": 15, "n_words": 16, "vocab_size": 15 }
def test_with_include_glob_filtering_case4a_include_strong(): incl_dom = {} incl_glob = {"*working"} incl_ent = {"binary_sensor.specificly_included"} excl_dom = {} excl_glob = {"*broken", "*notworking", "binary_sensor.*"} excl_ent = {"light.ignoreme"} testfilter = generate_filter( incl_dom, incl_ent, excl_dom, excl_ent, incl_glob, excl_glob ) assert testfilter("sensor.working") is True assert testfilter("sensor.notworking") is True # include is stronger assert testfilter("sensor.broken") is False assert testfilter("light.test") is False assert testfilter("light.notworking") is True # include is stronger assert testfilter("light.ignoreme") is False assert testfilter("binary_sensor.not_working") is True # include is stronger assert testfilter("binary_sensor.another") is False assert testfilter("binary_sensor.specificly_included") is True assert testfilter("sun.sun") is False
@frappe.whitelist()
14,183
66,418
67
erpnext/manufacturing/doctype/production_plan/production_plan.py
93
20
def get_sales_orders(self): so_filter = item_filter = "" bom_item = "bom.item = so_item.item_code" date_field_mapper = { "from_date": (">=", "so.transaction_date"), "to_date": ("<=", "so.transaction_date"), "from_delivery_date": (">=", "so_item.delivery_date"), "to_delivery_date": ("<=", "so_item.delivery_date"), } for
style: format code with black
get_sales_orders
494bd9ef78313436f0424b918f200dab8fc7c20b
erpnext
production_plan.py
13
38
https://github.com/frappe/erpnext.git
9
158
1
59
329
Python
{ "docstring": "\n\t\tselect distinct so.name, so.transaction_date, so.customer, so.base_grand_total\n\t\tfrom `tabSales Order` so, `tabSales Order Item` so_item\n\t\twhere so_item.parent = so.name\n\t\t\tand so.docstatus = 1 and so.status not in (\"Stopped\", \"Closed\")\n\t\t\tand so.company = %(company)s\n\t\t\tand so_item.qty > so_item.work_order_qty {so_filter} {item_filter}\n\t\t\tand (exists (select name from `tabBOM` bom where {bom_item}\n\t\t\t\t\tand bom.is_active = 1)\n\t\t\t\tor exists (select name from `tabPacked Item` pi\n\t\t\t\t\twhere pi.parent = so.name and pi.parent_item = so_item.item_code\n\t\t\t\t\t\tand exists (select name from `tabBOM` bom where bom.item=pi.item_code\n\t\t\t\t\t\t\tand bom.is_active = 1)))\n\t\t", "language": "en", "n_whitespaces": 68, "n_words": 80, "vocab_size": 49 }
def get_sales_orders(self): so_filter = item_filter = "" bom_item = "bom.item = so_item.item_code" date_field_mapper = { "from_date": (">=", "so.transaction_date"), "to_date": ("<=", "so.transaction_date"), "from_delivery_date": (">=", "so_item.delivery_date"), "to_delivery_date": ("<=", "so_item.delivery_date"), } for field, value in date_field_mapper.items(): if self.get(field): so_filter += f" and {value[1]} {value[0]} %({field})s" for field in ["customer", "project", "sales_order_status"]: if self.get(field): so_field = "status" if field == "sales_order_status" else field so_filter += f" and so.{so_field} = %({field})s" if self.item_code and frappe.db.exists("Item", self.item_code): bom_item = self.get_bom_item() or bom_item item_filter += " and so_item.item_code = %(item_code)s" open_so = frappe.db.sql( f, self.as_dict(), as_dict=1, ) return open_so @frappe.whitelist()
16,251
74,366
39
wagtail/core/tests/test_page_model.py
11
9
def test_copy_published_emits_signal(self): christmas_page = EventPage.objects.get(url_path="/h
Reformat with black
test_copy_published_emits_signal
d10f15e55806c6944827d801cd9c2d53f5da4186
wagtail
test_page_model.py
10
11
https://github.com/wagtail/wagtail.git
1
65
0
9
44
Python
{ "docstring": "Test that copying of a published page emits a page_published signal.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 10 }
def test_copy_published_emits_signal(self): christmas_page = EventPage.objects.get(url_path="/home/events/christmas/") signal_fired = False signal_page = None
6,971
38,418
98
utils/tests_fetcher.py
55
17
def get_all_tests(): test_root_dir = os.path.join(PATH_TO_TRANFORMERS, "tests") # test folders/files directly under `tests` folder tests = os.listdir(test_root_dir) tests = sorted( list(filter(lambda x: os.path.isdir(x) or x.startswith("tests/test_"), [f"tests/{x}" for x in tests])) ) # model specific test folders model_tests_folders = os.listdir(os.path.join(test_root_dir, "models")) model_test_folders = sorted(list(filter(os.path.isdir, [f"tests/models/{x}" for x in model_tests
Update self-push workflow (#17177) * update push ci * install git-python * update comment * update deepspeed jobs * fix report * skip 2 more tests that require fairscale * Fix changes in test_fetcher.py (to deal with `setup.py` is changed) * set RUN_PT_TF_CROSS_TESTS=1 and final clean-up * remove SIGOPT_API_TOKEN * remove echo "$matrix_folders" Co-authored-by: ydshieh <[email protected]>
get_all_tests
38043d8453b82a9c712f8d5c98323150fbee7503
transformers
tests_fetcher.py
17
11
https://github.com/huggingface/transformers.git
4
118
0
40
205
Python
{ "docstring": "\n Return a list of paths to all test folders and files under `tests`. All paths are rooted at `tests`.\n\n - folders under `tests`: `tokenization`, `pipelines`, etc. The folder `models` is excluded.\n - folders under `tests/models`: `bert`, `gpt2`, etc.\n - test files under `tests`: `test_modeling_common.py`, `test_tokenization_common.py`, etc.\n ", "language": "en", "n_whitespaces": 62, "n_words": 46, "vocab_size": 32 }
def get_all_tests(): test_root_dir = os.path.join(PATH_TO_TRANFORMERS, "tests") # test folders/files directly under `tests` folder tests = os.listdir(test_root_dir) tests = sorted( list(filter(lambda x: os.path.isdir(x) or x.startswith("tests/test_"), [f"tests/{x}" for x in tests])) ) # model specific test folders model_tests_folders = os.listdir(os.path.join(test_root_dir, "models")) model_test_folders = sorted(list(filter(os.path.isdir, [f"tests/models/{x}" for x in model_tests_folders]))) tests.remove("tests/models") tests = model_test_folders + tests return tests
30,090
133,739
433
rllib/agents/impala/tests/test_vtrace.py
150
30
def test_vtrace(self): seq_len = 5 batch_size = 10 # Create log_rhos such that rho will span from near-zero to above the # clipping thresholds. In particular, calculate log_rhos in # [-2.5, 2.5), # so that rho is in approx [0.08, 12.2). space_w_time
[CI] Format Python code with Black (#21975) See #21316 and #21311 for the motivation behind these changes.
test_vtrace
7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065
ray
test_vtrace.py
15
25
https://github.com/ray-project/ray.git
6
230
0
109
344
Python
{ "docstring": "Tests V-trace against ground truth data calculated in python.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
def test_vtrace(self): seq_len = 5 batch_size = 10 # Create log_rhos such that rho will span from near-zero to above the # clipping thresholds. In particular, calculate log_rhos in # [-2.5, 2.5), # so that rho is in approx [0.08, 12.2). space_w_time = Box(-1.0, 1.0, (seq_len, batch_size), np.float32) space_only_batch = Box(-1.0, 1.0, (batch_size,), np.float32) log_rhos = space_w_time.sample() / (batch_size * seq_len) log_rhos = 5 * (log_rhos - 0.5) # [0.0, 1.0) -> [-2.5, 2.5). values = { "log_rhos": log_rhos, # T, B where B_i: [0.9 / (i+1)] * T "discounts": np.array( [[0.9 / (b + 1) for b in range(batch_size)] for _ in range(seq_len)] ), "rewards": space_w_time.sample(), "values": space_w_time.sample() / batch_size, "bootstrap_value": space_only_batch.sample() + 1.0, "clip_rho_threshold": 3.7, "clip_pg_rho_threshold": 2.2, } for fw, sess in framework_iterator(frameworks=("torch", "tf"), session=True): vtrace = vtrace_tf if fw != "torch" else vtrace_torch output = vtrace.from_importance_weights(**values) if sess: output = sess.run(output) ground_truth_v = _ground_truth_calculation(vtrace, **values) check(output, ground_truth_v)
52,821
209,854
205
scapy/base_classes.py
45
24
def pdfdump(self, filename=None, **kargs): # type: (Optional[str], **Any) -> None from scapy.config import conf from scapy.utils import get_temp_file, ContextManagerSubprocess canvas = self.canvas_dump(**kargs) if filename is None: fname = get_temp_file(autoext=kargs.get("suffix", ".pdf")) canvas.writePDFfile(fname) if WINDOWS and not conf.prog.pdfreader: os.startfile(fname) else: with ContextManagerSubprocess(conf.prog.pdfreader): subprocess.Popen([conf.prog.pdfreader, fname]) else: canvas.writePDFfile(filename) print
[Hinty] Core typing: windows (#3684) * Core typing: windows Co-authored-by: Pierre <[email protected]>
pdfdump
a2b7a28faff1db058dd22ce097a268e0ad5d1d33
scapy
base_classes.py
17
15
https://github.com/secdev/scapy.git
4
115
0
40
193
Python
{ "docstring": "\n pdfdump(filename=None, layer_shift=0, rebuild=1)\n\n Creates a PDF file describing a packet. If filename is not provided a\n temporary file is created and xpdf is called.\n\n :param filename: the file's filename\n ", "language": "en", "n_whitespaces": 65, "n_words": 29, "vocab_size": 23 }
def pdfdump(self, filename=None, **kargs): # type: (Optional[str], **Any) -> None from scapy.config import conf from scapy.utils import get_temp_file, ContextManagerSubprocess canvas = self.canvas_dump(**kargs) if filename is None: fname = get_temp_file(autoext=kargs.get("suffix", ".pdf")) canvas.writePDFfile(fname) if WINDOWS and not conf.prog.pdfreader: os.startfile(fname) else: with ContextManagerSubprocess(conf.prog.pdfreader): subprocess.Popen([conf.prog.pdfreader, fname]) else: canvas.writePDFfile(filename) print()
118,072
322,143
190
examples/dependency_parsing/ddparser/utils.py
105
22
def index_sample(x, index): x_s = x.shape dim = len(index.shape) - 1 assert x_s[:dim] == index.shape[:dim] if len(x_s) == 3 and dim == 1: r_x = paddle.reshape(x, shape=[-1, x_s[1], x_s[-1]]) else: r_x = paddle.reshape(x, shape=[-1, x_s[-1]]) index = paddle.reshape(index, shape=[len(r_x), -1, 1]) # Generate arange index, shape like index
Update neural search readme and Add Paddle Serving Support (#1558) * add recall inference similarity * update examples * updatea readme * update dir name * update neural search readme * update milvus readme * update domain adaptive pretraining readme * fix the mistakes * update readme * add recall Paddle Serving Support * update readme * update readme and format the code * reformat the files * move the files * reformat the code * remove redundant code Co-authored-by: Zeyu Chen <[email protected]> Co-authored-by: tianxin <[email protected]>
index_sample
621357338437ee420eabbbf5ab19065bc85e73a5
PaddleNLP
utils.py
15
20
https://github.com/PaddlePaddle/PaddleNLP.git
5
272
0
64
410
Python
{ "docstring": "\n Select input value according to index\n \n Arags:\n input: input matrix\n index: index matrix\n Returns:\n output\n >>> input\n [\n [1, 2, 3],\n [4, 5, 6]\n ]\n >>> index\n [\n [1, 2],\n [0, 1]\n ]\n >>> index_sample(input, index)\n [\n [2, 3],\n [4, 5]\n ]\n ", "language": "en", "n_whitespaces": 149, "n_words": 42, "vocab_size": 28 }
def index_sample(x, index): x_s = x.shape dim = len(index.shape) - 1 assert x_s[:dim] == index.shape[:dim] if len(x_s) == 3 and dim == 1: r_x = paddle.reshape(x, shape=[-1, x_s[1], x_s[-1]]) else: r_x = paddle.reshape(x, shape=[-1, x_s[-1]]) index = paddle.reshape(index, shape=[len(r_x), -1, 1]) # Generate arange index, shape like index arr_index = paddle.arange(start=0, end=len(index), dtype=index.dtype) arr_index = paddle.unsqueeze(arr_index, axis=[1, 2]) arr_index = paddle.expand(arr_index, index.shape) # Genrate new index new_index = paddle.concat((arr_index, index), -1) new_index = paddle.reshape(new_index, (-1, 2)) # Get output out = paddle.gather_nd(r_x, new_index) if len(x_s) == 3 and dim == 2: out = paddle.reshape(out, shape=[x_s[0], x_s[1], -1]) else: out = paddle.reshape(out, shape=[x_s[0], -1]) return out
48,334
197,094
923
sympy/diffgeom/diffgeom.py
188
50
def __new__(cls, name, patch, symbols=None, relations={}, **kwargs): if not isinstance(name, Str): name = Str(name) # canonicallize the symbols if symbols is None: names = kwargs.get('names', None) if names is None: symbols = Tuple( *[Symbol('%s_%s' % (name.name, i), real=True) for i in range(patch.dim)] ) else: sympy_deprecation_warning( f, deprecated_since_version="1.7", active_deprecations_target="deprecated-diffgeom-mutable", ) symbols = Tuple( *[Symbol(n, real=True) for n in names]
Update the sympy.diffgeom mutability deprecations
__new__
f8674bfe4988332e7ce60ceb36b365ce9aff662a
sympy
diffgeom.py
21
73
https://github.com/sympy/sympy.git
15
399
0
109
681
Python
{ "docstring": "\nThe 'names' argument to CoordSystem is deprecated. Use 'symbols' instead. That\nis, replace\n\n CoordSystem(..., names={names})\n\nwith\n\n CoordSystem(..., symbols=[{', '.join([\"Symbol(\" + repr(n) + \", real=True)\" for n in names])}])\n \n\nPassing a string as the coordinate symbol name to CoordSystem is deprecated.\nPass a Symbol with the appropriate name and assumptions instead.\n\nThat is, replace {s} with Symbol({s!r}, real=True).\n \n CoordSystem.transforms is deprecated. The CoordSystem class is now\n immutable. Use the 'relations' keyword argument to the\n CoordSystems() constructor to specify relations.\n ", "language": "en", "n_whitespaces": 167, "n_words": 78, "vocab_size": 52 }
def __new__(cls, name, patch, symbols=None, relations={}, **kwargs): if not isinstance(name, Str): name = Str(name) # canonicallize the symbols if symbols is None: names = kwargs.get('names', None) if names is None: symbols = Tuple( *[Symbol('%s_%s' % (name.name, i), real=True) for i in range(patch.dim)] ) else: sympy_deprecation_warning( f, deprecated_since_version="1.7", active_deprecations_target="deprecated-diffgeom-mutable", ) symbols = Tuple( *[Symbol(n, real=True) for n in names] ) else: syms = [] for s in symbols: if isinstance(s, Symbol): syms.append(Symbol(s.name, **s._assumptions.generator)) elif isinstance(s, str): sympy_deprecation_warning( f, deprecated_since_version="1.7", active_deprecations_target="deprecated-diffgeom-mutable", ) syms.append(Symbol(s, real=True)) symbols = Tuple(*syms) # canonicallize the relations rel_temp = {} for k,v in relations.items(): s1, s2 = k if not isinstance(s1, Str): s1 = Str(s1) if not isinstance(s2, Str): s2 = Str(s2) key = Tuple(s1, s2) # Old version used Lambda as a value. if isinstance(v, Lambda): v = (tuple(v.signature), tuple(v.expr)) else: v = (tuple(v[0]), tuple(v[1])) rel_temp[key] = v relations = Dict(rel_temp) # construct the object obj = super().__new__(cls, name, patch, symbols, relations) # Add deprecated attributes obj.transforms = _deprecated_dict( , {}) obj._names = [str(n) for n in symbols] obj.patch.coord_systems.append(obj) # deprecated obj._dummies = [Dummy(str(n)) for n in symbols] # deprecated obj._dummy = Dummy() return obj
117,222
320,610
99
qutebrowser/completion/models/miscmodels.py
43
12
def tab_focus(*, info): m
Fixes qutebrowser/qutebrowser#6967 by adding win id param in _tabs & using it in delete_tabs As delete_tab was assuming that completion column contains window ID, it was showing exception in case of tab-focus, as it doesn't have the window ID in completion column. So instead a new parameter named current_win_id is used in _tabs which is also passed in all uses of the function.
tab_focus
57155e329ada002245ab3fac45d906f6707c14cf
qutebrowser
miscmodels.py
12
10
https://github.com/qutebrowser/qutebrowser.git
1
70
0
34
118
Python
{ "docstring": "A model to complete on open tabs in the current window.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
def tab_focus(*, info): model = _tabs(win_id_filter=lambda win_id: win_id == info.win_id, add_win_id=False, current_win_id=info.win_id) special = [ ("last", "Focus the last-focused tab"), ("stack-next", "Go forward through a stack of focused tabs"), ("stack-prev", "Go backward through a stack of focused tabs"), ] model.add_category(listcategory.ListCategory("Special", special)) return model
14,907
68,836
49
erpnext/accounts/report/sales_payment_summary/sales_payment_summary.py
80
22
def get_mode_of_payment_details(filters): mode_of_payment_details = {} invoice_list = get_invoices(filters) invoice_list_names = ",".join("'" + invoice["name"] + "'" for invoice in invoice_list) if invoice_list: inv_mop_detail = frappe.db.sq
refactor: DB independent quoting and truthy/falsy values (#31358) * refactor: DB independent quoting and truthy/falsy values * style: reformat to black spec * fix: ifnull -> coalesce * fix: coalesce -> Coalesce * fix: revert pypika comparison * refactor: convert queries to QB * fix: incorrect value types for query `=` query makes no sense with list of values * fix: remove warehouse docstatus condition * fix: keep using base rate as rate Co-authored-by: Ankush Menat <[email protected]>
get_mode_of_payment_details
74a782d81d8f8c4a4d9214a9c06377e5e6e464dd
erpnext
sales_payment_summary.py
18
71
https://github.com/frappe/erpnext.git
9
181
0
50
304
Python
{ "docstring": "\n\t\t\tselect t.owner,\n\t\t\t t.posting_date,\n\t\t\t\t t.mode_of_payment,\n\t\t\t\t sum(t.paid_amount) as paid_amount\n\t\t\tfrom (\n\t\t\t\tselect a.owner, a.posting_date,\n\t\t\t\tifnull(b.mode_of_payment, '') as mode_of_payment, sum(b.base_amount) as paid_amount\n\t\t\t\tfrom `tabSales Invoice` a, `tabSales Invoice Payment` b\n\t\t\t\twhere a.name = b.parent\n\t\t\t\tand a.docstatus = 1\n\t\t\t\tand a.name in ({invoice_list_names})\n\t\t\t\tgroup by a.owner, a.posting_date, mode_of_payment\n\t\t\t\tunion\n\t\t\t\tselect a.owner,a.posting_date,\n\t\t\t\tifnull(b.mode_of_payment, '') as mode_of_payment, sum(c.allocated_amount) as paid_amount\n\t\t\t\tfrom `tabSales Invoice` a, `tabPayment Entry` b,`tabPayment Entry Reference` c\n\t\t\t\twhere a.name = c.reference_name\n\t\t\t\tand b.name = c.parent\n\t\t\t\tand b.docstatus = 1\n\t\t\t\tand a.name in ({invoice_list_names})\n\t\t\t\tgroup by a.owner, a.posting_date, mode_of_payment\n\t\t\t\tunion\n\t\t\t\tselect a.owner, a.posting_date,\n\t\t\t\tifnull(a.voucher_type,'') as mode_of_payment, sum(b.credit)\n\t\t\t\tfrom `tabJournal Entry` a, `tabJournal Entry Account` b\n\t\t\t\twhere a.name = b.parent\n\t\t\t\tand a.docstatus = 1\n\t\t\t\tand b.reference_type = 'Sales Invoice'\n\t\t\t\tand b.reference_name in ({invoice_list_names})\n\t\t\t\tgroup by a.owner, a.posting_date, mode_of_payment\n\t\t\t) t\n\t\t\tgroup by t.owner, t.posting_date, t.mode_of_payment\n\t\t\tselect a.owner, a.posting_date,\n\t\t\tifnull(b.mode_of_payment, '') as mode_of_payment, sum(a.base_change_amount) as change_amount\n\t\t\tfrom `tabSales Invoice` a, `tabSales Invoice Payment` b\n\t\t\twhere a.name = b.parent\n\t\t\tand a.name in ({invoice_list_names})\n\t\t\tand b.type = 'Cash'\n\t\t\tand a.base_change_amount > 0\n\t\t\tgroup by a.owner, a.posting_date, mode_of_payment", "language": "en", "n_whitespaces": 142, "n_words": 169, "vocab_size": 64 }
def get_mode_of_payment_details(filters): mode_of_payment_details = {} invoice_list = get_invoices(filters) invoice_list_names = ",".join("'" + invoice["name"] + "'" for invoice in invoice_list) if invoice_list: inv_mop_detail = frappe.db.sql( .format( invoice_list_names=invoice_list_names ), as_dict=1, ) inv_change_amount = frappe.db.sql( .format( invoice_list_names=invoice_list_names ), as_dict=1, ) for d in inv_change_amount: for det in inv_mop_detail: if ( det["owner"] == d["owner"] and det["posting_date"] == d["posting_date"] and det["mode_of_payment"] == d["mode_of_payment"] ): paid_amount = det["paid_amount"] - d["change_amount"] det["paid_amount"] = paid_amount for d in inv_mop_detail: mode_of_payment_details.setdefault(d["owner"] + cstr(d["posting_date"]), []).append( (d.mode_of_payment, d.paid_amount) ) return mode_of_payment_details
78,013
265,164
207
netbox/extras/models/configcontexts.py
85
12
def get_config_context(self): data = {} if not hasattr(self, 'config_context_data'): # The annotation is not available, so we fall back to manually querying for the config context objects config_context_data = ConfigContext.objects.get_for_object(self, aggregate_data=True) else: # The attribute may exist, but the annotated value could be None if there is no config context data config_context_data = self.config_context_data or [] for context in config_context_data: data = deepmerge(data,
Closes #9582: Enable assigning config contexts based on device location
get_config_context
379880cd8431da6cc39753a8b3a7c8bfcd8f9cc1
netbox
configcontexts.py
11
11
https://github.com/netbox-community/netbox.git
5
73
0
59
122
Python
{ "docstring": "\n Compile all config data, overwriting lower-weight values with higher-weight values where a collision occurs.\n Return the rendered configuration context for a device or VM.\n ", "language": "en", "n_whitespaces": 46, "n_words": 24, "vocab_size": 22 }
def get_config_context(self): data = {} if not hasattr(self, 'config_context_data'): # The annotation is not available, so we fall back to manually querying for the config context objects config_context_data = ConfigContext.objects.get_for_object(self, aggregate_data=True) else: # The attribute may exist, but the annotated value could be None if there is no config context data config_context_data = self.config_context_data or [] for context in config_context_data: data = deepmerge(data, context) # If the object has local config context data defined, merge it last if self.local_context_data: data = deepmerge(data, self.local_context_data) return data
72,899
249,408
159
tests/rest/admin/test_server_notice.py
32
14
def test_displayname_is_set_avatar_is_none(self) -> None: channel = self.make_request( "POST", self.url, access_token=self.admin_user_tok, content={ "user_id": self.other_user, "content": {"msgtype": "m.text", "body": "test msg"}, }, ) self.assertEqual(200, channel.code, msg=channel.json_body) # user has one inv
Fix that sending server notices fail if avatar is `None` (#13566) Indroduced in #11846.
test_displayname_is_set_avatar_is_none
37f329c9adf6ed02df15661850f999edd9e5fd93
synapse
test_server_notice.py
14
17
https://github.com/matrix-org/synapse.git
1
78
0
32
129
Python
{ "docstring": "\n Tests that sending a server notices is successfully,\n if a display_name is set, avatar_url is `None` and\n \"check avatar size and mime type\" is set.\n ", "language": "en", "n_whitespaces": 54, "n_words": 25, "vocab_size": 20 }
def test_displayname_is_set_avatar_is_none(self) -> None: channel = self.make_request( "POST", self.url, access_token=self.admin_user_tok, content={ "user_id": self.other_user, "content": {"msgtype": "m.text", "body": "test msg"}, }, ) self.assertEqual(200, channel.code, msg=channel.json_body) # user has one invite self._check_invite_and_join_status(self.other_user, 1, 0)
29,712
132,250
57
python/ray/tune/schedulers/hyperband.py
14
9
def cur_iter_done(self) -> bool: return all( self._get_result_time(result) >
[CI] Format Python code with Black (#21975) See #21316 and #21311 for the motivation behind these changes.
cur_iter_done
7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065
ray
hyperband.py
11
8
https://github.com/ray-project/ray.git
2
32
0
14
53
Python
{ "docstring": "Checks if all iterations have completed.\n\n TODO(rliaw): also check that `t.iterations == self._r`", "language": "en", "n_whitespaces": 19, "n_words": 13, "vocab_size": 13 }
def cur_iter_done(self) -> bool: return all( self._get_result_time(result) >= self._cumul_r for result in self._live_trials.values() )
14,065
65,946
12
erpnext/education/report/student_monthly_attendance_sheet/student_monthly_attendance_sheet.py
18
9
def get_attendance_years(): year_list = frappe.db.sql_list( ) if not year_list: year_list
style: format code with black
get_attendance_years
494bd9ef78313436f0424b918f200dab8fc7c20b
erpnext
student_monthly_attendance_sheet.py
12
7
https://github.com/frappe/erpnext.git
3
41
0
16
72
Python
{ "docstring": "select distinct YEAR(date) from `tabStudent Attendance` ORDER BY YEAR(date) DESC", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 9 }
def get_attendance_years(): year_list = frappe.db.sql_list( ) if not year_list: year_list = [getdate().year] return "\n".join(str(year) for year in year_list)
115,022
316,444
22
tests/test_config_entries.py
10
9
async def test_discovery_notification(hass): mock_integration(hass, MockModule("test")) mock_entity_platform(hass, "config_flow.test", None) with patch.dict(config_entries.
Search/replace RESULT_TYPE_* by FlowResultType enum (#74642)
test_discovery_notification
7cd68381f1d4f58930ffd631dfbfc7159d459832
core
test_config_entries.py
10
28
https://github.com/home-assistant/core.git
1
223
0
10
61
Python
{ "docstring": "Test that we create/dismiss a notification when source is discovery.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
async def test_discovery_notification(hass): mock_integration(hass, MockModule("test")) mock_entity_platform(hass, "config_flow.test", None) with patch.dict(config_entries.HANDLERS):
13,468
63,674
22
.venv/lib/python3.8/site-packages/pip/_vendor/resolvelib/providers.py
8
7
def get_preference(self, identifier, resolutions, candidates, information): raise NotImplementedError
upd; format
get_preference
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
transferlearning
providers.py
6
2
https://github.com/jindongwang/transferlearning.git
1
16
0
8
24
Python
{ "docstring": "Produce a sort key for given requirement based on preference.\n\n The preference is defined as \"I think this requirement should be\n resolved first\". The lower the return value is, the more preferred\n this group of arguments is.\n\n :param identifier: An identifier as returned by ``identify()``. This\n identifies the dependency matches of which should be returned.\n :param resolutions: Mapping of candidates currently pinned by the\n resolver. Each key is an identifier, and the value a candidate.\n The candidate may conflict with requirements from ``information``.\n :param candidates: Mapping of each dependency's possible candidates.\n Each value is an iterator of candidates.\n :param information: Mapping of requirement information of each package.\n Each value is an iterator of *requirement information*.\n\n A *requirement information* instance is a named tuple with two members:\n\n * ``requirement`` specifies a requirement contributing to the current\n list of candidates.\n * ``parent`` specifies the candidate that provides (dependend on) the\n requirement, or ``None`` to indicate a root requirement.\n\n The preference could depend on a various of issues, including (not\n necessarily in this order):\n\n * Is this package pinned in the current resolution result?\n * How relaxed is the requirement? Stricter ones should probably be\n worked on first? (I don't know, actually.)\n * How many possibilities are there to satisfy this requirement? Those\n with few left should likely be worked on first, I guess?\n * Are there any known conflicts for this requirement? We should\n probably work on those with the most known conflicts.\n\n A sortable value should be returned (this will be used as the ``key``\n parameter of the built-in sorting function). The smaller the value is,\n the more preferred this requirement is (i.e. the sorting function\n is called with ``reverse=False``).\n ", "language": "en", "n_whitespaces": 526, "n_words": 279, "vocab_size": 160 }
def get_preference(self, identifier, resolutions, candidates, information): raise NotImplementedError
3,155
19,946
517
pipenv/patched/notpip/_internal/req/req_install.py
72
23
def prepare_metadata(self) -> None: assert self.source_dir details = self.name or f"from {self.link}" if self.use_pep517: assert self.pep517_backend is not None if ( self.editable and self.permit_editable_wheels and self.supports_pyproject_editable() ): self.metadata_directory = generate_editable_metadata( build_env=self.build_env, backend=self.pep517_backend, details=details, ) else: self.metadata_directory = generate_metadata( build_env=self.build_env, backend=self.pep517_backend, details=details, ) else: self.metadata_directory = generate_metadata_legacy( build_env=self.build_env, setup_py_path=self.setup_py_path, source
check point progress on only bringing in pip==22.0.4 (#4966) * vendor in pip==22.0.4 * updating vendor packaging version * update pipdeptree to fix pipenv graph with new version of pip. * Vendoring of pip-shims 0.7.0 * Vendoring of requirementslib 1.6.3 * Update pip index safety restrictions patch for pip==22.0.4 * Update patches * exclude pyptoject.toml from black to see if that helps. * Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4
prepare_metadata
f3166e673fe8d40277b804d35d77dcdb760fc3b3
pipenv
req_install.py
15
39
https://github.com/pypa/pipenv.git
7
157
0
50
252
Python
{ "docstring": "Ensure that project metadata is available.\n\n Under PEP 517 and PEP 660, call the backend hook to prepare the metadata.\n Under legacy processing, call setup.py egg-info.\n ", "language": "en", "n_whitespaces": 47, "n_words": 26, "vocab_size": 22 }
def prepare_metadata(self) -> None: assert self.source_dir details = self.name or f"from {self.link}" if self.use_pep517: assert self.pep517_backend is not None if ( self.editable and self.permit_editable_wheels and self.supports_pyproject_editable() ): self.metadata_directory = generate_editable_metadata( build_env=self.build_env, backend=self.pep517_backend, details=details, ) else: self.metadata_directory = generate_metadata( build_env=self.build_env, backend=self.pep517_backend, details=details, ) else: self.metadata_directory = generate_metadata_legacy( build_env=self.build_env, setup_py_path=self.setup_py_path, source_dir=self.unpacked_source_directory, isolated=self.isolated, details=details, ) # Act on the newly generated metadata, based on the name and version. if not self.name: self._set_requirement() else: self.warn_on_mismatching_name() self.assert_source_matches_version()
16,381
75,204
34
wagtail/images/tests/test_blocks.py
13
14
def get_image_filename(self, image, filterspec): name, ext = os.path.splitext(os.path.basename(i
Reformat with black
get_image_filename
d10f15e55806c6944827d801cd9c2d53f5da4186
wagtail
test_blocks.py
12
3
https://github.com/wagtail/wagtail.git
1
48
0
12
75
Python
{ "docstring": "\n Get the generated filename for a resized image\n ", "language": "en", "n_whitespaces": 23, "n_words": 8, "vocab_size": 8 }
def get_image_filename(self, image, filterspec): name, ext = os.path.splitext(os.path.basename(image.file.name)) return "{}images/{}.{}{}".format(settings.MEDIA_URL, name, filterspec, ext)
55,678
219,648
340
python3.10.4/Lib/_pydecimal.py
95
17
def min(self, other, context=None): other = _convert_other(other, raiseit=True) if context is None: context = getcontext() if self._is_special or other._is_special: # If one operand is a quiet NaN and the other is number, then the # number is always returned sn = self._isnan() on = other._isnan() if sn or on: if on == 1 and sn == 0: return self._fix(context) if sn == 1 and on == 0: return other._fix(context) return self._check_nans
add python 3.10.4 for windows
min
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
_pydecimal.py
13
21
https://github.com/XX-net/XX-Net.git
12
143
0
51
232
Python
{ "docstring": "Returns the smaller value.\n\n Like min(self, other) except if one is not a number, returns\n NaN (and signals if one is sNaN). Also rounds.\n ", "language": "en", "n_whitespaces": 46, "n_words": 24, "vocab_size": 21 }
def min(self, other, context=None): other = _convert_other(other, raiseit=True) if context is None: context = getcontext() if self._is_special or other._is_special: # If one operand is a quiet NaN and the other is number, then the # number is always returned sn = self._isnan() on = other._isnan() if sn or on: if on == 1 and sn == 0: return self._fix(context) if sn == 1 and on == 0: return other._fix(context) return self._check_nans(other, context) c = self._cmp(other) if c == 0: c = self.compare_total(other) if c == -1: ans = self else: ans = other return ans._fix(context)
51,886
207,160
70
tests/admin_filters/tests.py
21
17
def test_simplelistfilter_with_none_returning_lookups(self): modeladmin = DecadeFilterBookAdminWithNoneReturningLookups(Book, site) request = self.request_f
Refs #33476 -- Reformatted code with Black.
test_simplelistfilter_with_none_returning_lookups
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
tests.py
9
7
https://github.com/django/django.git
1
64
0
17
105
Python
{ "docstring": "\n A SimpleListFilter lookups method can return None but disables the\n filter completely.\n ", "language": "en", "n_whitespaces": 34, "n_words": 12, "vocab_size": 12 }
def test_simplelistfilter_with_none_returning_lookups(self): modeladmin = DecadeFilterBookAdminWithNoneReturningLookups(Book, site) request = self.request_factory.get("/", {}) request.user = self.alfred changelist = modeladmin.get_changelist_instance(request) filterspec = changelist.get_filters(request)[0] self.assertEqual(len(filterspec), 0)
1,099
6,991
450
ludwig/data/preprocessing.py
157
32
def precompute_fill_value(dataset_cols, feature, preprocessing_parameters, backend): missing_value_strategy = preprocessing_parameters["missing_value_strategy"] if missing_value_strategy == FILL_WITH_CONST: return preprocessing_parameters["fill_value"] elif missing_value_strategy == FILL_WITH_MODE: return dataset_cols[feature[COLUMN]].value_counts().index[0] elif missing_value_strategy == FILL_WITH_MEAN: if feature[TYPE] != NUMBER: raise ValueError( f"Filling missing values with mean is supported " f"only for number types, not for type {feature[TYPE]}.", ) return backend.df_engine.compute(dataset_cols[feature[COLUMN]].mean()) elif missing_value_strategy == FILL_WITH_FALSE: distinct_values = backend.df_engine.compute( dataset_cols[feature[COLUMN]].drop_duplicates().dropna() ).values.tolist() if len(distinct_values) > 2: raise ValueError( f"Missing value strategy `fill_with_false` " f"for column {feature[COLUMN]} expects 2 distinct values, " f"found: {len(distinct_values)} (ex: {distinct_values[:10]})" ) # Determine the False label. # Distinct values are sorted in reverse to mirror the selection of the default fallback_true_label (in # binary_feature.get_feature_meta) for binary columns with unconventional boolean values, "human"/"bot". for v in sorted(distinct_values, reverse=True): fallback_true_label = preprocessing_parameters.get("fallback_true_label", "true") if strings_utils.str2bool(v, fallback_true_label) is False: return v raise ValueError( f"Unable to determine False value for column {feature[COLUMN]} with distinct values: {distin
Fixes NaN handling in boolean dtypes (#2058) * reorganizes cast_columns and handle_missing_values * fix failing tests with logs * remove logs * re-added deflaked test * cleanup * refactor to avoid calling handle missing values twice * refactored build preprocessing and metadata to separate fns * improve style with metadata * preserves outputs as booleans for binary output feature * remove extraneous casting * fixes related to manual boolean casting * leaving a note comment in read_xsv for prosperity * updates wording * cast changed from np fixed length str (modin) to object * cleanup * cleanup * unit tests * revert back to str type again * add backwards compatible behavior in torchscript * add comment in precompute_fill_value to remind devs of NaNs * revert changes to test_class_imbalance_feature::test_imbalance_ray * cleanup
precompute_fill_value
3030fc2f7d414d54a9aaa0f7b47ccf8d4f54b12c
ludwig
preprocessing.py
20
31
https://github.com/ludwig-ai/ludwig.git
9
188
0
105
351
Python
{ "docstring": "Precomputes the fill value for a feature.\n\n NOTE: this is called before NaNs are removed from the dataset. Modifications here must handle NaNs gracefully.\n ", "language": "en", "n_whitespaces": 30, "n_words": 24, "vocab_size": 22 }
def precompute_fill_value(dataset_cols, feature, preprocessing_parameters, backend): missing_value_strategy = preprocessing_parameters["missing_value_strategy"] if missing_value_strategy == FILL_WITH_CONST: return preprocessing_parameters["fill_value"] elif missing_value_strategy == FILL_WITH_MODE: return dataset_cols[feature[COLUMN]].value_counts().index[0] elif missing_value_strategy == FILL_WITH_MEAN: if feature[TYPE] != NUMBER: raise ValueError( f"Filling missing values with mean is supported " f"only for number types, not for type {feature[TYPE]}.", ) return backend.df_engine.compute(dataset_cols[feature[COLUMN]].mean()) elif missing_value_strategy == FILL_WITH_FALSE: distinct_values = backend.df_engine.compute( dataset_cols[feature[COLUMN]].drop_duplicates().dropna() ).values.tolist() if len(distinct_values) > 2: raise ValueError( f"Missing value strategy `fill_with_false` " f"for column {feature[COLUMN]} expects 2 distinct values, " f"found: {len(distinct_values)} (ex: {distinct_values[:10]})" ) # Determine the False label. # Distinct values are sorted in reverse to mirror the selection of the default fallback_true_label (in # binary_feature.get_feature_meta) for binary columns with unconventional boolean values, "human"/"bot". for v in sorted(distinct_values, reverse=True): fallback_true_label = preprocessing_parameters.get("fallback_true_label", "true") if strings_utils.str2bool(v, fallback_true_label) is False: return v raise ValueError( f"Unable to determine False value for column {feature[COLUMN]} with distinct values: {distinct_values}." ) # Otherwise, we cannot precompute the fill value for this dataset return None
6,129
33,645
284
src/transformers/models/deformable_detr/modeling_deformable_detr.py
84
36
def loss_labels(self, outputs, targets, indices, num_boxes, log=True): if "logits" not in outputs: raise ValueError("No logits were found in the outputs") source_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( source_logits.shape[:2], self.num_classes, dtype=torch.int64, device
Add Deformable DETR (#17281) * First draft * More improvements * Improve model, add custom CUDA code * Import torch before * Add script that imports custom layer * Add everything in new ops directory * Import custom layer in modeling file * Fix ARCHIVE_MAP typo * Creating the custom kernel on the fly. * Import custom layer in modeling file * More improvements * Fix CUDA loading * More improvements * Improve conversion script * Improve conversion script * Make it work until encoder_outputs * Make forward pass work * More improvements * Make logits match original implementation * Make implementation also support single_scale model * Add support for single_scale and dilation checkpoint * Add support for with_box_refine model * Support also two stage model * Improve tests * Fix more tests * Make more tests pass * Upload all models to the hub * Clean up some code * Improve decoder outputs * Rename intermediate hidden states and reference points * Improve model outputs * Move tests to dedicated folder * Improve model outputs * Fix retain_grad test * Improve docs * Clean up and make test_initialization pass * Improve variable names * Add copied from statements * Improve docs * Fix style * Improve docs * Improve docs, move tests to model folder * Fix rebase * Remove DetrForSegmentation from auto mapping * Apply suggestions from code review * Improve variable names and docstrings * Apply some more suggestions from code review * Apply suggestion from code review * better docs and variables names * hint to num_queries and two_stage confusion * remove asserts and code refactor * add exception if two_stage is True and with_box_refine is False * use f-strings * Improve docs and variable names * Fix code quality * Fix rebase * Add require_torch_gpu decorator * Add pip install ninja to CI jobs * Apply suggestion of @sgugger * Remove DeformableDetrForObjectDetection from auto mapping * Remove DeformableDetrModel from auto mapping * Add model to toctree * Add model back to mappings, skip model in pipeline tests * Apply @sgugger's suggestion * Fix imports in the init * Fix copies * Add CPU implementation * Comment out GPU function * Undo previous change * Apply more suggestions * Remove require_torch_gpu annotator * Fix quality * Add logger.info * Fix logger * Fix variable names * Fix initializaztion * Add missing initialization * Update checkpoint name * Add model to doc tests * Add CPU/GPU equivalence test * Add Deformable DETR to pipeline tests * Skip model for object detection pipeline Co-authored-by: Nicolas Patry <[email protected]> Co-authored-by: Nouamane Tazi <[email protected]> Co-authored-by: Sylvain Gugger <[email protected]>
loss_labels
59407bbeb31fff8340938768051c9daabd38d7a7
transformers
modeling_deformable_detr.py
12
24
https://github.com/huggingface/transformers.git
3
226
0
68
337
Python
{ "docstring": "Classification loss (NLL)\n targets dicts must contain the key \"labels\" containing a tensor of dim [nb_target_boxes]\n ", "language": "en", "n_whitespaces": 30, "n_words": 16, "vocab_size": 16 }
def loss_labels(self, outputs, targets, indices, num_boxes, log=True): if "logits" not in outputs: raise ValueError("No logits were found in the outputs") source_logits = outputs["logits"] idx = self._get_source_permutation_idx(indices) target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) target_classes = torch.full( source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device ) target_classes[idx] = target_classes_o target_classes_onehot = torch.zeros( [source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1], dtype=source_logits.dtype, layout=source_logits.layout, device=source_logits.device, ) target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) target_classes_onehot = target_classes_onehot[:, :, :-1] loss_ce = ( sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) * source_logits.shape[1] ) losses = {"loss_ce": loss_ce} return losses
76,567
260,920
129
sklearn/ensemble/tests/test_stacking.py
62
29
def test_stacking_classifier_multilabel_predict_proba(estimator): X_train, X_test, y_train, y_test = train_test_split( X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42 ) n_outputs = 3 estimators = [("est", estimator)] stacker = StackingClassifier( estimators=estimators, final_estimator=KNeighborsClassifier(), stack_method="predict_proba", ).fit(X_train, y_train) X_trans = stacker.transform(X_test) assert X_trans.shape == (X_test.shape[0], n_outputs) # we should not have any collinear classes and thus nothing should sum to 1 assert not any(np.isclose(X_trans.sum(axis=1), 1.0)) y_pred = stac
EHN Add multilabel classification support for `StackingClassifier` (#24146) * Add stacking multilabel functionality * Add underscore to a class attr * Remove model from base estimator in test_stacking * Remove scale in train/test split in test_stacking_classifier_multilabel * Add stack_method as a test parameter, change RandomForestClassifier to KNeighborsClassifier in test * Update Changelog * fix doc typos * predict_proba output will be concatenate this list in an array of shape n_samples, n_outputs * n_classes - 1. Update test. * Update sklearn/ensemble/_stacking.py Co-authored-by: Guillaume Lemaitre <[email protected]> * Update doc/whats_new/v1.0.rst Co-authored-by: Guillaume Lemaitre <[email protected]> * update whats_new * add passthrough test * update whats_new with current PR * Apply suggestions from code review Co-authored-by: Julien Jerphanion <[email protected]> * update tests * Apply suggestion to update comments on `concatenate` Co-authored-by: Julien Jerphanion <[email protected]> * parametrized the two tests into one * parametrized the two tests into one * strip the mysterious trailing _r * fix multilabel list scenario * add Guillaume's recommendations * add test for * some fix * split tests * fix flake8 * add suggestions * Trigger CI * remove multiclass-multioutput from comments and docstrings Co-authored-by: Nicolas <[email protected]> Co-authored-by: Nestor Navarro <[email protected]> Co-authored-by: Nestor Navarro <[email protected]> Co-authored-by: Guillaume Lemaitre <[email protected]> Co-authored-by: Julien Jerphanion <[email protected]>
test_stacking_classifier_multilabel_predict_proba
c18460f78441f11b3e6c15c12238695fcfe3c872
scikit-learn
test_stacking.py
13
16
https://github.com/scikit-learn/scikit-learn.git
1
127
0
52
193
Python
{ "docstring": "Check the behaviour for the multilabel classification case and the\n `predict_proba` stacking method.\n\n Estimators are not consistent with the output arrays and we need to ensure that\n we handle all cases.\n ", "language": "en", "n_whitespaces": 43, "n_words": 31, "vocab_size": 26 }
def test_stacking_classifier_multilabel_predict_proba(estimator): X_train, X_test, y_train, y_test = train_test_split( X_multilabel, y_multilabel, stratify=y_multilabel, random_state=42 ) n_outputs = 3 estimators = [("est", estimator)] stacker = StackingClassifier( estimators=estimators, final_estimator=KNeighborsClassifier(), stack_method="predict_proba", ).fit(X_train, y_train) X_trans = stacker.transform(X_test) assert X_trans.shape == (X_test.shape[0], n_outputs) # we should not have any collinear classes and thus nothing should sum to 1 assert not any(np.isclose(X_trans.sum(axis=1), 1.0)) y_pred = stacker.predict(X_test) assert y_pred.shape == y_test.shape
12,842
62,033
1,086
.venv/lib/python3.8/site-packages/pip/_vendor/distlib/locators.py
199
57
def get_page(self, url): # http:
upd; format
get_page
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
transferlearning
locators.py
22
49
https://github.com/jindongwang/transferlearning.git
14
362
0
111
624
Python
{ "docstring": "\n Get the HTML for an URL, possibly from an in-memory cache.\n\n XXX TODO Note: this cache is never actually cleared. It's assumed that\n the data won't get stale over the lifetime of a locator instance (not\n necessarily true for the default_locator).\n ", "language": "en", "n_whitespaces": 77, "n_words": 41, "vocab_size": 36 }
def get_page(self, url): # http://peak.telecommunity.com/DevCenter/EasyInstall#package-index-api scheme, netloc, path, _, _, _ = urlparse(url) if scheme == 'file' and os.path.isdir(url2pathname(path)): url = urljoin(ensure_slash(url), 'index.html') if url in self._page_cache: result = self._page_cache[url] logger.debug('Returning %s from cache: %s', url, result) else: host = netloc.split(':', 1)[0] result = None if host in self._bad_hosts: logger.debug('Skipping %s due to bad host %s', url, host) else: req = Request(url, headers={'Accept-encoding': 'identity'}) try: logger.debug('Fetching %s', url) resp = self.opener.open(req, timeout=self.timeout) logger.debug('Fetched %s', url) headers = resp.info() content_type = headers.get('Content-Type', '') if HTML_CONTENT_TYPE.match(content_type): final_url = resp.geturl() data = resp.read() encoding = headers.get('Content-Encoding') if encoding: decoder = self.decoders[encoding] # fail if not found data = decoder(data) encoding = 'utf-8' m = CHARSET.search(content_type) if m: encoding = m.group(1) try: data = data.decode(encoding) except UnicodeError: # pragma: no cover data = data.decode('latin-1') # fallback result = Page(data, final_url) self._page_cache[final_url] = result except HTTPError as e: if e.code != 404: logger.exception('Fetch failed: %s: %s', url, e) except URLError as e: # pragma: no cover logger.exception('Fetch failed: %s: %s', url, e) with self._lock: self._bad_hosts.add(host) except Exception as e: # pragma: no cover logger.exception('Fetch failed: %s: %s', url, e) finally: self._page_cache[url] = result # even if None (failure) return result _distname_re = re.compile('<a href=[^>]*>([^<]+)<')
3,429
20,567
15
pipenv/patched/notpip/_vendor/pyparsing/core.py
11
3
def enable_all_warnings() -> None: __diag__.enable_all_warnings() # hide abstract class del
check point progress on only bringing in pip==22.0.4 (#4966) * vendor in pip==22.0.4 * updating vendor packaging version * update pipdeptree to fix pipenv graph with new version of pip. * Vendoring of pip-shims 0.7.0 * Vendoring of requirementslib 1.6.3 * Update pip index safety restrictions patch for pip==22.0.4 * Update patches * exclude pyptoject.toml from black to see if that helps. * Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4
enable_all_warnings
f3166e673fe8d40277b804d35d77dcdb760fc3b3
pipenv
core.py
7
5
https://github.com/pypa/pipenv.git
1
12
0
11
28
Python
{ "docstring": "\n Enable all global pyparsing diagnostic warnings (see :class:`Diagnostics`).\n ", "language": "en", "n_whitespaces": 15, "n_words": 8, "vocab_size": 8 }
def enable_all_warnings() -> None: __diag__.enable_all_warnings() # hide abstract class del __config_flags
77,672
264,300
32
netbox/netbox/views/generic/bulk_views.py
11
7
def export_yaml(self): yaml_da
Refactor generic views; add plugins dev documentation
export_yaml
54834c47f8870e7faabcd847c3270da0bd3d2884
netbox
bulk_views.py
9
3
https://github.com/netbox-community/netbox.git
2
28
0
11
50
Python
{ "docstring": "\n Export the queryset of objects as concatenated YAML documents.\n ", "language": "en", "n_whitespaces": 24, "n_words": 9, "vocab_size": 9 }
def export_yaml(self): yaml_data = [obj.to_yaml() for obj in self.queryset] return '---\n'.join(yaml_data)
51,643
206,700
150
django/utils/http.py
79
10
def url_has_allowed_host_and_scheme(url, allowed_hosts, require_https=False): if url is not None: url = url.strip() if not url: return False if allowed_hosts is None: allowed_hosts = set() elif isinstance(allowed_hosts, str): allowed_hosts = {allowed_hosts} # Chrome treats \ completely as / in paths but it could be part of some # basic auth credentials so we need to check both URLs. return _url_has_allowed_host_and_scheme( url, allowed_hosts, require_https=require_https ) and _url_has_allowed_host_and_sche
Refs #33476 -- Reformatted code with Black.
url_has_allowed_host_and_scheme
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
http.py
11
14
https://github.com/django/django.git
6
83
0
60
136
Python
{ "docstring": "\n Return ``True`` if the url uses an allowed host and a safe scheme.\n\n Always return ``False`` on an empty url.\n\n If ``require_https`` is ``True``, only 'https' will be considered a valid\n scheme, as opposed to 'http' and 'https' with the default, ``False``.\n\n Note: \"True\" doesn't entail that a URL is \"safe\". It may still be e.g.\n quoted incorrectly. Ensure to also use django.utils.encoding.iri_to_uri()\n on the path component of untrusted URLs.\n ", "language": "en", "n_whitespaces": 95, "n_words": 70, "vocab_size": 59 }
def url_has_allowed_host_and_scheme(url, allowed_hosts, require_https=False): if url is not None: url = url.strip() if not url: return False if allowed_hosts is None: allowed_hosts = set() elif isinstance(allowed_hosts, str): allowed_hosts = {allowed_hosts} # Chrome treats \ completely as / in paths but it could be part of some # basic auth credentials so we need to check both URLs. return _url_has_allowed_host_and_scheme( url, allowed_hosts, require_https=require_https ) and _url_has_allowed_host_and_scheme( url.replace("\\", "/"), allowed_hosts, require_https=require_https ) # Copied from urllib.parse.urlparse() but uses fixed urlsplit() function.
78,455
266,523
161
lib/ansible/module_utils/service.py
60
15
def get_ps(module, pattern): found = False if platform.system() == 'SunOS': flags = '-ef' else: flags = 'auxww' psbin = module.get_bin_path('ps', True) (rc, psout, pserr) = module.run_comm
Misc typo fixes in module_utils (#76564)
get_ps
fee90b15a25b588bfb8a9ff047e851d43e78511f
ansible
service.py
12
14
https://github.com/ansible/ansible.git
5
81
0
47
138
Python
{ "docstring": "\n Last resort to find a service by trying to match pattern to programs in memory\n ", "language": "en", "n_whitespaces": 22, "n_words": 15, "vocab_size": 13 }
def get_ps(module, pattern): found = False if platform.system() == 'SunOS': flags = '-ef' else: flags = 'auxww' psbin = module.get_bin_path('ps', True) (rc, psout, pserr) = module.run_command([psbin, flags]) if rc == 0: for line in psout.splitlines(): if pattern in line: # FIXME: should add logic to prevent matching 'self', though that should be extremely rare found = True break return found
@register_op
53,060
211,300
161
ppdet/data/transform/operators.py
47
17
def apply(self, sample, context=None):
[dev] add ppyoloe_plus configs and alter NormalizeImage (#6675) * [dev] add ppyoloe_plus configs and alter NormalizeImage * alter other NormalizeImage * alter cpp NormalizeImage
apply
34d7832946145006083b602d5d090f7f104e661e
PaddleDetection
operators.py
12
13
https://github.com/PaddlePaddle/PaddleDetection.git
3
114
1
30
176
Python
{ "docstring": "Normalize the image.\n Operators:\n 1.(optional) Scale the pixel to [0,1]\n 2.(optional) Each pixel minus mean and is divided by std\n ", "language": "en", "n_whitespaces": 56, "n_words": 20, "vocab_size": 18 }
def apply(self, sample, context=None): im = sample['image'] im = im.astype(np.float32, copy=False) if self.is_scale: scale = 1.0 / 255.0 im *= scale if self.norm_type == 'mean_std': mean = np.array(self.mean)[np.newaxis, np.newaxis, :] std = np.array(self.std)[np.newaxis, np.newaxis, :] im -= mean im /= std sample['image'] = im return sample @register_op
51,119
205,412
460
django/db/models/base.py
88
21
def _check_m2m_through_same_relationship(cls): errors = [] seen_intermediary_signatures = [] fields = cls._meta.local_many_to_many # Skip when the target model wasn't found. fields = (f for f in fields if isinstance(f.remote_field.model, Mod
Refs #33476 -- Reformatted code with Black.
_check_m2m_through_same_relationship
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
base.py
18
26
https://github.com/django/django.git
7
136
0
53
215
Python
{ "docstring": "Check if no relationship model is used by more than one m2m field.", "language": "en", "n_whitespaces": 12, "n_words": 13, "vocab_size": 13 }
def _check_m2m_through_same_relationship(cls): errors = [] seen_intermediary_signatures = [] fields = cls._meta.local_many_to_many # Skip when the target model wasn't found. fields = (f for f in fields if isinstance(f.remote_field.model, ModelBase)) # Skip when the relationship model wasn't found. fields = (f for f in fields if isinstance(f.remote_field.through, ModelBase)) for f in fields: signature = ( f.remote_field.model, cls, f.remote_field.through, f.remote_field.through_fields, ) if signature in seen_intermediary_signatures: errors.append( checks.Error( "The model has two identical many-to-many relations " "through the intermediate model '%s'." % f.remote_field.through._meta.label, obj=cls, id="models.E003", ) ) else: seen_intermediary_signatures.append(signature) return errors
20,765
101,350
32
plugins/extract/pipeline.py
11
3
def image(self) -> "np.ndarray": assert self.
Bugfix: convert - Gif Writer - Fix non-launch error on Gif Writer - convert plugins - linting - convert/fs_media/preview/queue_manager - typing - Change convert items from dict to Dataclass
image
1022651eb8a7741014f5d2ec7cbfe882120dfa5f
faceswap
pipeline.py
7
4
https://github.com/deepfakes/faceswap.git
1
19
0
10
34
Python
{ "docstring": " :class:`numpy.ndarray`: The source frame for this object. ", "language": "en", "n_whitespaces": 8, "n_words": 7, "vocab_size": 7 }
def image(self) -> "np.ndarray": assert self._image is not None return self._image
18,055
85,880
512
tests/sentry/notifications/test_notifications.py
113
36
def test_sends_deployment_notification(self, record_analytics): release = self.create_release() version_parsed = self.version_parsed = parse_release(release.version)["description"] url
chore(notification): Pass User ID into notification analytics (#38924) We pass in the actor_id to notification analytics events but we should also include a user_id if the recipient is a user
test_sends_deployment_notification
afbf9a3334ce9cad1a62fced372d7fcee40a3133
sentry
test_notifications.py
15
42
https://github.com/getsentry/sentry.git
1
211
0
67
433
Python
{ "docstring": "\n Test that an email AND Slack notification are sent with\n the expected values when a release is deployed.\n ", "language": "en", "n_whitespaces": 40, "n_words": 18, "vocab_size": 18 }
def test_sends_deployment_notification(self, record_analytics): release = self.create_release() version_parsed = self.version_parsed = parse_release(release.version)["description"] url = f"/api/0/organizations/{self.organization.slug}/releases/{release.version}/deploys/" with self.tasks(): response = self.client.post( url, format="json", data={"environment": self.environment.name} ) assert response.status_code == 201, response.content msg = mail.outbox[0] # check the txt version assert f"Version {version_parsed} was deployed to {self.environment.name} on" in msg.body # check the html version assert ( f"Version {version_parsed} was deployed to {self.environment.name}\n </h2>\n" in msg.alternatives[0][0] ) attachment, text = get_attachment() assert ( text == f"Release {version_parsed} was deployed to {self.environment.name} for this project" ) assert ( attachment["actions"][0]["url"] == f"http://testserver/organizations/{self.organization.slug}/releases/{release.version}/?project={self.project.id}&unselectedSeries=Healthy/" ) assert ( attachment["footer"] == f"{self.project.slug} | <http://testserver/settings/account/notifications/deploy/?referrer=release_activity-slack-user|Notification Settings>" ) assert analytics_called_with_args( record_analytics, "integrations.email.notification_sent", user_id=self.user.id, actor_id=self.user.actor_id, organization_id=self.organization.id, ) assert analytics_called_with_args( record_analytics, "integrations.slack.notification_sent", user_id=self.user.id, actor_id=self.user.actor_id, organization_id=self.organization.id, )
13,781
65,049
3
erpnext/accounts/doctype/sales_invoice/sales_invoice.py
9
7
def get_all_mode_of_payments(doc): return frappe.db.sql( , {"compa
style: format code with black
get_all_mode_of_payments
494bd9ef78313436f0424b918f200dab8fc7c20b
erpnext
sales_invoice.py
10
9
https://github.com/frappe/erpnext.git
1
27
0
9
44
Python
{ "docstring": "\n\t\tselect mpa.default_account, mpa.parent, mp.type as type\n\t\tfrom `tabMode of Payment Account` mpa,`tabMode of Payment` mp\n\t\twhere mpa.parent = mp.name and mpa.company = %(company)s and mp.enabled = 1", "language": "en", "n_whitespaces": 24, "n_words": 27, "vocab_size": 23 }
def get_all_mode_of_payments(doc): return frappe.db.sql( , {"company": doc.company}, as_dict=1, )
23,728
109,744
615
lib/mpl_toolkits/mplot3d/axes3d.py
203
44
def _on_move(self, event): if not self.button_pressed: return if self.get_navigate_mode() is not None: # we don't want to rotate if we are zooming/panning # from the toolbar return if self.M is None: return x, y = event.xdata, event.ydata # In case the mouse is out of bounds. if x is None or event.inaxes != self: return dx, dy = x - self._sx, y - self._sy w = self._pseudo_w h = self._pseudo_h # Rotation if self.button_pressed in self._rotate_btn: # rotate viewing point # get the x and y pixel coords if dx == 0 and dy == 0: return roll = np.deg2rad(self.roll) delev = -(dy/h)*180*np.cos(roll) + (dx/w)*180*np.sin(roll) dazim = -(d
Add pan and zoom toolbar handling to 3D Axes (Replaces PR#22614) (#23449) * ENH: Add pan and zoom toolbar handling to 3D Axes 1) This moves the pan logic that was already in the mouse move handler into the "drag_pan" method to make it available from the toolbar. 2) This expands upon the panning logic to enable a zoom-to-box feature. The zoom-to-box is done relative to the Axes, so it shrinks/expands the box as a fraction of each delta, from lower-left Axes to lower-left zoom-box. Thus, it tries to handle non-centered zooms, which adds more cases to handle versus the current right-click zoom only scaling from the center of the projection. * Rewrite zooming with bounding box * Rewrite 3d panning to work with a roll angle * Whats new for zoom and pan buttons * Make pan button configurable * Do not jump when zooming and mouse goes over other subplot * Rework zooming for 3d plots * Handle x/y lock when zooming and panning * Update tests * Docstrings * Dont assume a scale_z * Limit zoom box * Test zoom pan key modifiers * Save some calculation by saving view axes * Deprecation warnings for Axes3D.eye, .vvec * Remove Axes3D._prepare_view_from_bbox for now * Comments and docstrings * Switch from uvn to uvw * Save aspect to axes * Constrain zooming with mouse when one of the equal aspect ratios is set * Cleanup * Cleanup * Consolidate finding equal aspect axis indices * linting * More intuitive scaling * Box zoom keeps existing aspect ratios * Linting * Code review comments * Revert parameters for view_transformation * Fix new 3d pan/zoom view going on view stack twice * Better clipping * Test 3d toolbar navigation * Privatize helper functions * Deprecations * Code review changes * Deprecation note * Undeprecate proj3d.view_transformation * Undeprecate proj3d.view_transformation * Update doc/api/next_api_changes/deprecations/23449-SS.rst Co-authored-by: Greg Lucas <[email protected]> Co-authored-by: Scott Shambaugh <[email protected]> Co-authored-by: Oscar Gustafsson <[email protected]>
_on_move
4896ec1a2cfb8c454e385632d8df213c915ced52
matplotlib
axes3d.py
14
32
https://github.com/matplotlib/matplotlib.git
11
306
0
125
490
Python
{ "docstring": "\n Mouse moving.\n\n By default, button-1 rotates, button-2 pans, and button-3 zooms;\n these buttons can be modified via `mouse_init`.\n ", "language": "en", "n_whitespaces": 47, "n_words": 18, "vocab_size": 18 }
def _on_move(self, event): if not self.button_pressed: return if self.get_navigate_mode() is not None: # we don't want to rotate if we are zooming/panning # from the toolbar return if self.M is None: return x, y = event.xdata, event.ydata # In case the mouse is out of bounds. if x is None or event.inaxes != self: return dx, dy = x - self._sx, y - self._sy w = self._pseudo_w h = self._pseudo_h # Rotation if self.button_pressed in self._rotate_btn: # rotate viewing point # get the x and y pixel coords if dx == 0 and dy == 0: return roll = np.deg2rad(self.roll) delev = -(dy/h)*180*np.cos(roll) + (dx/w)*180*np.sin(roll) dazim = -(dy/h)*180*np.sin(roll) - (dx/w)*180*np.cos(roll) self.elev = self.elev + delev self.azim = self.azim + dazim self.stale = True elif self.button_pressed in self._pan_btn: # Start the pan event with pixel coordinates px, py = self.transData.transform([self._sx, self._sy]) self.start_pan(px, py, 2) # pan view (takes pixel coordinate input) self.drag_pan(2, None, event.x, event.y) self.end_pan() # Zoom elif self.button_pressed in self._zoom_btn: # zoom view (dragging down zooms in) scale = h/(h - dy) self._scale_axis_limits(scale, scale, scale) # Store the event coordinates for the next time through. self._sx, self._sy = x, y # Always request a draw update at the end of interaction self.figure.canvas.draw_idle()
53,793
215,075
998
salt/modules/aixpkg.py
248
46
def install(name=None, refresh=False, pkgs=None, version=None, test=False, **kwargs): targets = salt.utils.args.split_input(pkgs) if pkgs else [name] if not targets: return {} if pkgs: log.debug("Removing these fileset(s)/rpm package(s) %s: %s", name, targets) # Get a list of the currently installed pkgs. old = list_pkgs() # Install the fileset (normally ends with bff or rte) or rpm package(s) errors = [] for target in targets: filename = os.path.basename(target) if filename.endswith(".bff") or filename.endswith(".rte"): if _is_installed(target): continue cmd = "/usr/sbin/installp -acYXg" if test: cmd += "p" cmd += " -d " dirpath = os.path.dirname(target) cmd += dirpath + " " + filename out = __salt__["cmd.run_all"](cmd, python_shell=False) else: if _is_installed_rpm(filename.split(".aix")[0]): continue # assume use dnf or yum cmdflags = " install --allowerasing " if pathlib.Path("/opt/freeware/bin/dnf").is_file(): cmdexe = "/opt/freeware/bin/dnf" if test: cmdflags += " --assumeno" else: cmdflags += " --assumeyes"
work in progress while resolve issue of python3_32 usage by dnf and yum
install
fbcc707e76f11770712e6828155258ac61e00ff8
salt
aixpkg.py
18
66
https://github.com/saltstack/salt.git
22
371
0
129
663
Python
{ "docstring": "\n Install the named fileset(s)/rpm package(s).\n\n .. versionadded:: 3005\n\n preference to install rpm packages are to use in the following order:\n /opt/freeware/bin/dnf\n /opt/freeware/bin/yum\n /usr/bin/yum\n /usr/bin/rpm\n\n Note: use of rpm to install implies that rpm's dependencies must have been previously installed.\n dnf and yum automatically install rpm's dependencies as part of the install process\n\n name\n The name of the fileset or rpm package to be installed.\n\n refresh\n Whether or not to update the yum database before executing.\n\n\n Multiple Package Installation Options:\n\n pkgs\n A list of filesets and/or rpm packages to install.\n Must be passed as a python list. The ``name`` parameter will be\n ignored if this option is passed.\n\n version\n Install a specific version of a fileset/rpm package.\n (Unused at present).\n\n test\n Verify that command functions correctly:\n\n Returns a dict containing the new fileset(s)/rpm package(s) names and versions:\n\n {'<package>': {'old': '<old-version>',\n 'new': '<new-version>'}}\n\n CLI Example:\n\n .. code-block:: bash\n\n salt '*' pkg.install /stage/middleware/AIX/bash-4.2-3.aix6.1.ppc.rpm\n salt '*' pkg.install /stage/middleware/AIX/bash-4.2-3.aix6.1.ppc.rpm refresh=True\n salt '*' pkg.install /stage/middleware/AIX/VIOS2211_update/tpc_4.1.1.85.bff\n salt '*' pkg.install /stage/middleware/AIX/Xlc/usr/sys/inst.images/xlC.rte\n salt '*' pkg.install /stage/middleware/AIX/Firefox/ppc-AIX53/Firefox.base\n salt '*' pkg.install pkgs='[\"foo\", \"bar\"]'\n ", "language": "en", "n_whitespaces": 405, "n_words": 172, "vocab_size": 115 }
def install(name=None, refresh=False, pkgs=None, version=None, test=False, **kwargs): targets = salt.utils.args.split_input(pkgs) if pkgs else [name] if not targets: return {} if pkgs: log.debug("Removing these fileset(s)/rpm package(s) %s: %s", name, targets) # Get a list of the currently installed pkgs. old = list_pkgs() # Install the fileset (normally ends with bff or rte) or rpm package(s) errors = [] for target in targets: filename = os.path.basename(target) if filename.endswith(".bff") or filename.endswith(".rte"): if _is_installed(target): continue cmd = "/usr/sbin/installp -acYXg" if test: cmd += "p" cmd += " -d " dirpath = os.path.dirname(target) cmd += dirpath + " " + filename out = __salt__["cmd.run_all"](cmd, python_shell=False) else: if _is_installed_rpm(filename.split(".aix")[0]): continue # assume use dnf or yum cmdflags = " install --allowerasing " if pathlib.Path("/opt/freeware/bin/dnf").is_file(): cmdexe = "/opt/freeware/bin/dnf" if test: cmdflags += " --assumeno" else: cmdflags += " --assumeyes" if refresh: cmdflags += " --refresh" elif pathlib.Path("/opt/freeware/bin/yum").is_file(): cmdexe = "/opt/freeware/bin/yum" if test: cmdflags += " --assumeno" else: cmdflags += " --assumeyes" if refresh: cmdflags += " --refresh" elif pathlib.Path("/usr/bin/yum").is_file(): cmdexe = "/usr/bin/yum" if test: cmdflags += " --assumeno" else: cmdflags += " --assumeyes" else: cmdexe = "/usr/bin/rpm" cmdflags = " -Uivh " if test: cmdflags += " --test" cmd = [cmdexe, cmdflags, target] out = __salt__["cmd.run_all"](cmd, python_shell=False) if 0 != out["retcode"]: errors.append(out["stderr"]) # Get a list of the packages after the uninstall __context__.pop("pkg.list_pkgs", None) new = list_pkgs() ret = salt.utils.data.compare_dicts(old, new) if errors: raise CommandExecutionError( "Problems encountered installing filesets(s)/package(s)", info={"changes": ret, "errors": errors}, ) # No error occurred if test: return "Test succeeded." return ret
121,108
337,705
36
src/accelerate/utils/deepspeed.py
15
6
def is_false(self, ds_key_long): value = self.get_value(ds_key_long) return False if value is None else not bool(value)
Migrate HFDeepSpeedConfig from trfrs to accelerate (#432) * Migrate HFDeepSpeedConfig from trfrs to accelerate * update state.py to resolve comments 1. Adds static method to have a simple API for integrating deepspeed config in transformers trainer. * reverting changes and addressing comments * Marking DepSpeed and FSDP as experimental in accelerate
is_false
873dcc63a461558152eec20af991482204e8248f
accelerate
deepspeed.py
9
3
https://github.com/huggingface/accelerate.git
2
28
0
14
46
Python
{ "docstring": "\n Returns `True`/``False` only if the value is set, always `False` otherwise. So use this method to ask the very\n specific question of whether the value is set to `False` (and it's not set to `True`` or isn't set).\n ", "language": "en", "n_whitespaces": 60, "n_words": 38, "vocab_size": 30 }
def is_false(self, ds_key_long): value = self.get_value(ds_key_long) return False if value is None else not bool(value)
1,042
6,647
253
scripts/extract_schema.py
62
30
def extract_pytorch_structures(): for opt in lmo.optimizer_registry: # Get the torch class: optimizer_class = lmo.optimizer_registry[opt][0] # Parse and clean the class structure: path = get_fully_qualified_class_name(optimizer_class) opt_struct = get_pytkdocs_structure_for_path(path, "google")["objects"][0] prune_pytorch_structures(opt_struct) # Write it to a file:
fix: Naming scheme cleanup that includes: renaming `ludwig.marshmallow` module to `ludwig.validation` to avoid implicit import errors, and moving `ludwig.utils.schema` into this new module. (#1936) * Rename marshmallow/ folder to marshmallow_schema_utils/, marshmallow_schema_utils.py to utils.py (under folder), update all refs. * Rename marshmallow/ folder to marshmallow_schema_utils/, marshmallow_schema_utils.py to utils.py (under folder), update all refs. * update extract_schema * update generated files. * update manifest * rename using validation/schema_utils naming * update generated files * new naming scheme * fix imports. * rerun extract_schema
extract_pytorch_structures
a95f611d582a724740af772ead1fa439b3713124
ludwig
extract_schema.py
14
18
https://github.com/ludwig-ai/ludwig.git
2
136
0
55
229
Python
{ "docstring": "Extracts and saves the parsed structure of all pytorch classes referenced in\n `ludwig.modules.optimization_modules.optimizer_registry` as JSON files under\n `ludwig/validation/generated/torch/`.", "language": "en", "n_whitespaces": 23, "n_words": 18, "vocab_size": 18 }
def extract_pytorch_structures(): for opt in lmo.optimizer_registry: # Get the torch class: optimizer_class = lmo.optimizer_registry[opt][0] # Parse and clean the class structure: path = get_fully_qualified_class_name(optimizer_class) opt_struct = get_pytkdocs_structure_for_path(path, "google")["objects"][0] prune_pytorch_structures(opt_struct) # Write it to a file: parent_dir = str(Path(__file__).parent.parent) filename = os.path.join(parent_dir, "ludwig/validation/generated/torch/", optimizer_class.__name__) + ".json" os.makedirs(os.path.dirname(filename), exist_ok=True) with open(filename, "w") as outfile: json.dump( opt_struct, outfile, indent=4, sort_keys=True, separators=(",", ": "), ) outfile.write("\n")
25,830
116,777
53
tests/unit/test_ml_handlers.py
17
7
def test_hf_classification_bin(self, mock_handler): # create predictor create_sql = model_name = 'spam_classifier' predict_sql = self.hf_test_run(mock_handler, model_
huggingface handler in new ml handler api - permanent is property of handler
test_hf_classification_bin
4e12722621c12ca2b2b075421f30e5ae8a58ebe8
mindsdb
test_ml_handlers.py
7
17
https://github.com/mindsdb/mindsdb.git
1
28
0
15
49
Python
{ "docstring": "\n CREATE PREDICTOR huggingface.spam_classifier\n predict PRED\n USING\n task='text-classification',\n model_name= \"mrm8488/bert-tiny-finetuned-sms-spam-detection\",\n input_column = 'text_spammy',\n labels=['ham','spam']\n \n SELECT h.*\n FROM pg.df as t \n JOIN huggingface.spam_classifier as h\n ", "language": "en", "n_whitespaces": 166, "n_words": 23, "vocab_size": 21 }
def test_hf_classification_bin(self, mock_handler): # create predictor create_sql = model_name = 'spam_classifier' predict_sql = self.hf_test_run(mock_handler, model_name, create_sql, predict_sql)
23,586
109,439
1,147
lib/matplotlib/_constrained_layout.py
190
33
def match_submerged_margins(layoutgrids, fig): for sfig in fig.subfigs: match_submerged_margins(layoutgrids, sfig) axs = [a for a in fig.get_axes() if a.get_subplotspec() is not None and a.get_in_layout()] for ax1 in axs: ss1 = ax1.get_subplotspec() if ss1.get_gridspec() not in layoutgrids: axs.remove(ax1) continue lg1 = layoutgrids[ss1.get_gridspec()] # interior columns: if len(ss1.colspan) > 1: maxsubl = np.max( lg1.margin_vals['left'][ss1.colspan[1:]] + lg1.margin_vals['leftcb'][ss1.colspan[1:]] ) maxsubr = np.max( lg1.margin_vals['right'][ss1.colspan[:-1]] + lg1.margin_vals['rightcb'][ss1.colspan[:-1]] ) for ax2 in axs: ss2 = ax2.get_subplotspec() lg2 = layoutgrids[ss2.get_gridspec()] if lg2 is not None and len(ss2.colspan) > 1: maxsubl2 = np.max( lg2.margin_vals['left'][ss2.colspan[1:]] + lg2.margin_vals['leftcb'][ss2.colspan[1:]]) if maxsubl2 > maxsubl:
Merge SubplotBase into AxesBase.
match_submerged_margins
c73f4c455514cf5422d27bf38c93250de8316b21
matplotlib
_constrained_layout.py
26
64
https://github.com/matplotlib/matplotlib.git
21
623
0
91
986
Python
{ "docstring": "\n Make the margins that are submerged inside an Axes the same size.\n\n This allows axes that span two columns (or rows) that are offset\n from one another to have the same size.\n\n This gives the proper layout for something like::\n fig = plt.figure(constrained_layout=True)\n axs = fig.subplot_mosaic(\"AAAB\\nCCDD\")\n\n Without this routine, the axes D will be wider than C, because the\n margin width between the two columns in C has no width by default,\n whereas the margins between the two columns of D are set by the\n width of the margin between A and B. However, obviously the user would\n like C and D to be the same size, so we need to add constraints to these\n \"submerged\" margins.\n\n This routine makes all the interior margins the same, and the spacing\n between the three columns in A and the two column in C are all set to the\n margins between the two columns of D.\n\n See test_constrained_layout::test_constrained_layout12 for an example.\n ", "language": "en", "n_whitespaces": 218, "n_words": 158, "vocab_size": 87 }
def match_submerged_margins(layoutgrids, fig): for sfig in fig.subfigs: match_submerged_margins(layoutgrids, sfig) axs = [a for a in fig.get_axes() if a.get_subplotspec() is not None and a.get_in_layout()] for ax1 in axs: ss1 = ax1.get_subplotspec() if ss1.get_gridspec() not in layoutgrids: axs.remove(ax1) continue lg1 = layoutgrids[ss1.get_gridspec()] # interior columns: if len(ss1.colspan) > 1: maxsubl = np.max( lg1.margin_vals['left'][ss1.colspan[1:]] + lg1.margin_vals['leftcb'][ss1.colspan[1:]] ) maxsubr = np.max( lg1.margin_vals['right'][ss1.colspan[:-1]] + lg1.margin_vals['rightcb'][ss1.colspan[:-1]] ) for ax2 in axs: ss2 = ax2.get_subplotspec() lg2 = layoutgrids[ss2.get_gridspec()] if lg2 is not None and len(ss2.colspan) > 1: maxsubl2 = np.max( lg2.margin_vals['left'][ss2.colspan[1:]] + lg2.margin_vals['leftcb'][ss2.colspan[1:]]) if maxsubl2 > maxsubl: maxsubl = maxsubl2 maxsubr2 = np.max( lg2.margin_vals['right'][ss2.colspan[:-1]] + lg2.margin_vals['rightcb'][ss2.colspan[:-1]]) if maxsubr2 > maxsubr: maxsubr = maxsubr2 for i in ss1.colspan[1:]: lg1.edit_margin_min('left', maxsubl, cell=i) for i in ss1.colspan[:-1]: lg1.edit_margin_min('right', maxsubr, cell=i) # interior rows: if len(ss1.rowspan) > 1: maxsubt = np.max( lg1.margin_vals['top'][ss1.rowspan[1:]] + lg1.margin_vals['topcb'][ss1.rowspan[1:]] ) maxsubb = np.max( lg1.margin_vals['bottom'][ss1.rowspan[:-1]] + lg1.margin_vals['bottomcb'][ss1.rowspan[:-1]] ) for ax2 in axs: ss2 = ax2.get_subplotspec() lg2 = layoutgrids[ss2.get_gridspec()] if lg2 is not None: if len(ss2.rowspan) > 1: maxsubt = np.max([np.max( lg2.margin_vals['top'][ss2.rowspan[1:]] + lg2.margin_vals['topcb'][ss2.rowspan[1:]] ), maxsubt]) maxsubb = np.max([np.max( lg2.margin_vals['bottom'][ss2.rowspan[:-1]] + lg2.margin_vals['bottomcb'][ss2.rowspan[:-1]] ), maxsubb]) for i in ss1.rowspan[1:]: lg1.edit_margin_min('top', maxsubt, cell=i) for i in ss1.rowspan[:-1]: lg1.edit_margin_min('bottom', maxsubb, cell=i)
70,805
245,473
95
mmdet/version.py
26
12
def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_
[Enhance] Update mmdet, mmcv, and mmdet version in MMDetection (#8417) * Update dev-3.x circleci (#8396) * update circleci * update test config * tmp delete github action * update * tmp reduce the coverage requirement * update branch * update branch * [Fix] Fix metafile 3.x (#8404) * update reppoints readme and metafile * update openimages metafile * update faster rcnn readme and metafile * update convnext readme and metafile * update guided_anchoring metafile * update groie metafile and readme * update reppoints readme and metafile * update metafile * update metafile * release ld and mask_rcnn models * update metafile * update regnet metafile * fix markdown format * Update README.md * Update README.md * Update README.md * Update README.md * update md format * release lad * rename * rename * update solov2 metafile * update cascase rcnn metafile * [Doc]: fix markdown version (#8408) * [Enhance] Update mmdet, mmcv, and mmdet version in MMDetection * Fix anchor_free load_from_state_dict Co-authored-by: RangiLyu <[email protected]> Co-authored-by: Cedric Luo <[email protected]> Co-authored-by: Wenwei Zhang <[email protected]>
parse_version_info
035b915983ace07533f1a718a983315d126f3a40
mmdetection
version.py
15
10
https://github.com/open-mmlab/mmdetection.git
4
79
0
23
156
Python
{ "docstring": "Parse a version string into a tuple.\n\n Args:\n version_str (str): The version string.\n Returns:\n tuple[int | str]: The version info, e.g., \"1.3.0\" is parsed into\n (1, 3, 0), and \"2.0.0rc1\" is parsed into (2, 0, 0, 'rc1').\n ", "language": "en", "n_whitespaces": 71, "n_words": 37, "vocab_size": 28 }
def parse_version_info(version_str): version_info = [] for x in version_str.split('.'): if x.isdigit(): version_info.append(int(x)) elif x.find('rc') != -1: patch_version = x.split('rc') version_info.append(int(patch_version[0])) version_info.append(f'rc{patch_version[1]}') return tuple(version_info) version_info = parse_version_info(__version__)
@pytest.fixture
19,398
97,275
173
src/sentry/utils/pytest/relay.py
40
8
def adjust_settings_for_relay_tests(settings): settings.ALLOWED_HOSTS = [ "localhost", "testserver", "host.docker
feat: Improve relay debug in CI (#32625)
adjust_settings_for_relay_tests
8429cf33623b759a3ff7bddcf13d251b0dab9b8e
sentry
relay.py
13
19
https://github.com/getsentry/sentry.git
1
65
1
34
132
Python
{ "docstring": "\n Adjusts the application settings to accept calls from a Relay instance running inside a\n docker container.\n\n :param settings: the app settings\n ", "language": "en", "n_whitespaces": 34, "n_words": 21, "vocab_size": 18 }
def adjust_settings_for_relay_tests(settings): settings.ALLOWED_HOSTS = [ "localhost", "testserver", "host.docker.internal", "0.0.0.0", "127.0.0.1", ] settings.KAFKA_CLUSTERS = { "default": { "common": {"bootstrap.servers": "127.0.0.1:9092"}, "producers": { "compression.type": "lz4", "message.max.bytes": 50000000, # 50MB, default is 1MB }, } } settings.SENTRY_RELAY_WHITELIST_PK = ["SMSesqan65THCV6M4qs4kBzPai60LzuDn-xNsvYpuP8"] settings.SENTRY_USE_RELAY = True @pytest.fixture
27,047
121,234
65
jax/_src/api.py
31
19
def clear_backends(): if xc._version < 79: rais
Introduce jax.experimental.clear_backends to delete all JAX runtime backends. In cases like unit tests, users may want to clean up all the backends along with the resources used in the end of the test, and reinitialize them in the next test. PiperOrigin-RevId: 462239974
clear_backends
c0ec3b33e687ce37b431906109d4a2bc4655285f
jax
api.py
11
10
https://github.com/google/jax.git
2
59
0
30
108
Python
{ "docstring": "\n Clear all backend clients so that new backend clients can be created later.\n ", "language": "en", "n_whitespaces": 16, "n_words": 13, "vocab_size": 11 }
def clear_backends(): if xc._version < 79: raise RuntimeError("clear_backends is not supported in the jaxlib used." "Please update your jaxlib package.") xb._clear_backends() jax.lib.xla_bridge._backends = {} dispatch.xla_callable.cache_clear() # type: ignore dispatch.xla_primitive_callable.cache_clear() _cpp_jit_cache.clear() jax_jit.CompiledFunctionCache.clear_all()
78,027
265,205
190
netbox/dcim/models/racks.py
54
23
def get_power_utilization(self): powerfeeds = PowerFeed.objects.filter(rack=self) available_power_total = sum(pf.available_power for pf in powerfeeds) print(f'available_power_total: {available_power_total}') if not available_power_total: return 0 pow
Update power utilization calculations for new cabling model
get_power_utilization
fcd1daaf798d62023f999c3e09e035f7b3f47c8f
netbox
racks.py
13
16
https://github.com/netbox-community/netbox.git
7
103
0
39
175
Python
{ "docstring": "\n Determine the utilization rate of power in the rack and return it as a percentage.\n ", "language": "en", "n_whitespaces": 30, "n_words": 15, "vocab_size": 14 }
def get_power_utilization(self): powerfeeds = PowerFeed.objects.filter(rack=self) available_power_total = sum(pf.available_power for pf in powerfeeds) print(f'available_power_total: {available_power_total}') if not available_power_total: return 0 powerports = [] for powerfeed in powerfeeds: powerports.extend([ peer for peer in powerfeed.link_peers if isinstance(peer, PowerPort) ]) allocated_draw = 0 for powerport in powerports: allocated_draw += powerport.get_power_draw()['allocated'] print(f'allocated_draw: {allocated_draw}') return int(allocated_draw / available_power_total * 100)
17,238
81,631
1,121
awx/main/dispatch/pool.py
270
52
def cleanup(self): orphaned = [] for w in self.workers[::]: if not w.alive: # the worker process has exited # 1. take the task it was running and enqueue the error # callbacks # 2. take any pending tasks delivered to its queue and # send them to another worker logger.error('worker pid:{} is gone (exit={})'.format(w.pid, w.exitcode)) if w.current_task: if w.current_task != 'QUIT': try: for j in UnifiedJob.objects.filter(celery_task_id=w.current_task['uuid']): reaper.reap_job(j, 'failed') except Exception: logger.exception('failed to reap job UUID {}'.format(w.current_task['uuid'])) orphaned.extend(w.orphaned_tasks) self.workers.remove(w) elif (len(self.workers) > self.min_workers) and w.ready_to_scale_down: # the process has an empty queue (it's idle) and we have # more processes in the pool than we need (> min) # send this process a message so it will exit gracefully # at the next opportunity logger
Add back in cleanup call
cleanup
67190100500819eb1237c4572accafa72816ae54
awx
pool.py
22
36
https://github.com/ansible/awx.git
18
330
0
171
602
Python
{ "docstring": "\n Perform some internal account and cleanup. This is run on\n every cluster node heartbeat:\n\n 1. Discover worker processes that exited, and recover messages they\n were handling.\n 2. Clean up unnecessary, idle workers.\n\n IMPORTANT: this function is one of the few places in the dispatcher\n (aside from setting lookups) where we talk to the database. As such,\n if there's an outage, this method _can_ throw various\n django.db.utils.Error exceptions. Act accordingly.\n ", "language": "en", "n_whitespaces": 149, "n_words": 69, "vocab_size": 64 }
def cleanup(self): orphaned = [] for w in self.workers[::]: if not w.alive: # the worker process has exited # 1. take the task it was running and enqueue the error # callbacks # 2. take any pending tasks delivered to its queue and # send them to another worker logger.error('worker pid:{} is gone (exit={})'.format(w.pid, w.exitcode)) if w.current_task: if w.current_task != 'QUIT': try: for j in UnifiedJob.objects.filter(celery_task_id=w.current_task['uuid']): reaper.reap_job(j, 'failed') except Exception: logger.exception('failed to reap job UUID {}'.format(w.current_task['uuid'])) orphaned.extend(w.orphaned_tasks) self.workers.remove(w) elif (len(self.workers) > self.min_workers) and w.ready_to_scale_down: # the process has an empty queue (it's idle) and we have # more processes in the pool than we need (> min) # send this process a message so it will exit gracefully # at the next opportunity logger.info(f'scaling down worker pid:{w.pid} prior total:{len(self.workers)}') w.quit() self.workers.remove(w) if w.alive: # if we discover a task manager invocation that's been running # too long, reap it (because otherwise it'll just hold the postgres # advisory lock forever); the goal of this code is to discover # deadlocks or other serious issues in the task manager that cause # the task manager to never do more work current_task = w.current_task if current_task and isinstance(current_task, dict): endings = ['tasks.task_manager', 'tasks.dependency_manager', 'tasks.workflow_manager'] current_task_name = current_task.get('task', '') if any(current_task_name.endswith(e) for e in endings): if 'started' not in current_task: w.managed_tasks[current_task['uuid']]['started'] = time.time() age = time.time() - current_task['started'] w.managed_tasks[current_task['uuid']]['age'] = age if age > self.task_manager_timeout: logger.error(f'{current_task_name} has held the advisory lock for {age}, sending SIGTERM to {w.pid}') os.kill(w.pid, signal.SIGTERM) for m in orphaned: # if all the workers are dead, spawn at least one if not len(self.workers): self.up() idx = random.choice(range(len(self.workers))) self.write(idx, m)
50,084
202,366
87
tests/csrf_tests/tests.py
24
16
def test_token_node_empty_csrf_cookie(self): req = self._get_request(cookie="") mw = CsrfViewMiddleware(token_view) mw.process_view(req, token_view, (), {}) resp = token_view(req) token = get_token(req) self.assertIsNotNone(token) csrf_secret = _unmask_cipher_token(token)
Refs #33476 -- Reformatted code with Black.
test_token_node_empty_csrf_cookie
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
tests.py
10
9
https://github.com/django/django.git
1
68
0
20
113
Python
{ "docstring": "\n A new token is sent if the csrf_cookie is the empty string.\n ", "language": "en", "n_whitespaces": 27, "n_words": 12, "vocab_size": 10 }
def test_token_node_empty_csrf_cookie(self): req = self._get_request(cookie="") mw = CsrfViewMiddleware(token_view) mw.process_view(req, token_view, (), {}) resp = token_view(req) token = get_token(req) self.assertIsNotNone(token) csrf_secret = _unmask_cipher_token(token) self._check_token_present(resp, csrf_secret)
22,483
106,865
143
py/visdom/__init__.py
34
9
def save(self, envs): assert isinstance(envs, list), "envs should be a list" if le
apply black py to all python files
save
5b8b7f267cfaf76a2a39a727ef31a62b3909a093
visdom
__init__.py
11
11
https://github.com/fossasia/visdom.git
3
52
0
30
86
Python
{ "docstring": "\n This function allows the user to save envs that are alive on the\n Tornado server. The envs can be specified as a list of env ids.\n ", "language": "en", "n_whitespaces": 48, "n_words": 26, "vocab_size": 24 }
def save(self, envs): assert isinstance(envs, list), "envs should be a list" if len(envs) > 0: for env in envs: assert isstr(env), "env should be a string" return self._send( { "data": envs, }, "save", )
52,148
207,885
76
tests/admin_views/tests.py
20
16
def test_has_related_field_in_list_display_o2o(self): media = Media.objects.create(name="Foo") Vodcast.objects.create(media=media) response = self.client.get(reverse("admin:admin_views_vodcast_changelist"), {}) response.context["cl"].list_display = ["media"] sel
Refs #33476 -- Reformatted code with Black.
test_has_related_field_in_list_display_o2o
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
tests.py
11
8
https://github.com/django/django.git
1
102
0
15
177
Python
{ "docstring": "Joins shouldn't be performed for <O2O>_id fields in list display.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
def test_has_related_field_in_list_display_o2o(self): media = Media.objects.create(name="Foo") Vodcast.objects.create(media=media) response = self.client.get(reverse("admin:admin_views_vodcast_changelist"), {}) response.context["cl"].list_display = ["media"] self.assertIs(response.context["cl"].has_related_field_in_list_display(), True) response.context["cl"].list_display = ["media_id"] self.assertIs(response.context["cl"].has_related_field_in_list_display(), False)
@keras_export("keras.backend.binary_focal_crossentropy") @tf.__internal__.dispatch.add_dispatch_support @doc_controls.do_not_generate_docs
80,219
269,598
421
keras/backend.py
176
37
def binary_crossentropy(target, output, from_logits=False): target = tf.convert_to_tensor(target) output = tf.convert_to_tensor(output) # Use logits whenever they are available. `softmax` and `sigmoid` # activations cache logits on the `output` Tensor.
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
binary_crossentropy
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
backend.py
14
31
https://github.com/keras-team/keras.git
7
222
1
121
387
Python
{ "docstring": "Binary crossentropy between an output tensor and a target tensor.\n\n Args:\n target: A tensor with the same shape as `output`.\n output: A tensor.\n from_logits: Whether `output` is expected to be a logits tensor.\n By default, we consider that `output`\n encodes a probability distribution.\n\n Returns:\n A tensor.\n ", "language": "en", "n_whitespaces": 105, "n_words": 46, "vocab_size": 37 }
def binary_crossentropy(target, output, from_logits=False): target = tf.convert_to_tensor(target) output = tf.convert_to_tensor(output) # Use logits whenever they are available. `softmax` and `sigmoid` # activations cache logits on the `output` Tensor. if hasattr(output, "_keras_logits"): output = output._keras_logits # pylint: disable=protected-access if from_logits: warnings.warn( '"`binary_crossentropy` received `from_logits=True`, but the `output`' " argument was produced by a sigmoid or softmax activation and thus " 'does not represent logits. Was this intended?"', stacklevel=2, ) from_logits = True if from_logits: return tf.nn.sigmoid_cross_entropy_with_logits( labels=target, logits=output ) if ( not isinstance(output, (tf.__internal__.EagerTensor, tf.Variable)) and output.op.type == "Sigmoid" ) and not hasattr(output, "_keras_history"): # When sigmoid activation function is used for output operation, we # use logits from the sigmoid function directly to compute loss in order # to prevent collapsing zero when training. assert len(output.op.inputs) == 1 output = output.op.inputs[0] return tf.nn.sigmoid_cross_entropy_with_logits( labels=target, logits=output ) epsilon_ = _constant_to_tensor(epsilon(), output.dtype.base_dtype) output = tf.clip_by_value(output, epsilon_, 1.0 - epsilon_) # Compute cross entropy from probabilities. bce = target * tf.math.log(output + epsilon()) bce += (1 - target) * tf.math.log(1 - output + epsilon()) return -bce @keras_export("keras.backend.binary_focal_crossentropy") @tf.__internal__.dispatch.add_dispatch_support @doc_controls.do_not_generate_docs
71,960
247,858
20
tests/handlers/test_federation_event.py
6
3
def test_process_pulled_event_with_missing_state(self) -> None: return self._test_process_pulled_event_with_missing_state(False)
Optimise `_get_state_after_missing_prev_event`: use `/state` (#12040) If we're missing most of the events in the room state, then we may as well call the /state endpoint, instead of individually requesting each and every event.
test_process_pulled_event_with_missing_state
9b43df1f7b2977431563b3cda8fed1ed879651ba
synapse
test_federation_event.py
7
12
https://github.com/matrix-org/synapse.git
1
15
0
6
27
Python
{ "docstring": "Ensure that we correctly handle pulled events with lots of missing state\n\n In this test, we pretend we are processing a \"pulled\" event (eg, via backfill\n or get_missing_events). The pulled event has a prev_event we haven't previously\n seen, so the server requests the state at that prev_event. There is a lot\n of state we don't have, so we expect the server to make a /state request.\n\n We check that the pulled event is correctly persisted, and that the state is\n as we expect.\n ", "language": "en", "n_whitespaces": 132, "n_words": 83, "vocab_size": 54 }
def test_process_pulled_event_with_missing_state(self) -> None: return self._test_process_pulled_event_with_missing_state(False)
19,664
99,586
238
tests/sentry/integrations/slack/notifications/test_resolved_in_release.py
45
22
def test_resolved_in_release(self, mock_func): notification = ResolvedInReleaseActivityNotification( Activity( project=self.project, group=self.group, user=self.user, type=ActivityType.SET_RESOLVED_IN_RELEASE, data={"version": "meow"}, ) ) with self.tasks(): notification.send() attachment, text = get_attachment() release_name = notification.activity.data["version"] assert text == f"Issue marked as resolved in {release_name} by {self.name}" assert ( attachment["footer"] == f"{self.project.slug} | <http://testserver/settings/account/notifications/workflow/?referrer=r
fix(notifications): Use `metrics_key` (#34572)
test_resolved_in_release
1730c481f1a8a71446326fa1ff72e10663016385
sentry
test_resolved_in_release.py
14
19
https://github.com/getsentry/sentry.git
1
92
0
38
174
Python
{ "docstring": "\n Test that a Slack message is sent with the expected payload when an issue is resolved in a release\n ", "language": "en", "n_whitespaces": 34, "n_words": 19, "vocab_size": 17 }
def test_resolved_in_release(self, mock_func): notification = ResolvedInReleaseActivityNotification( Activity( project=self.project, group=self.group, user=self.user, type=ActivityType.SET_RESOLVED_IN_RELEASE, data={"version": "meow"}, ) ) with self.tasks(): notification.send() attachment, text = get_attachment() release_name = notification.activity.data["version"] assert text == f"Issue marked as resolved in {release_name} by {self.name}" assert ( attachment["footer"] == f"{self.project.slug} | <http://testserver/settings/account/notifications/workflow/?referrer=resolved_in_release_activity-slack-user|Notification Settings>" )
82,104
277,596
302
keras/layers/preprocessing/index_lookup.py
100
25
def get_vocabulary(self, include_special_tokens=True): # The lookup table data will not be sorted, so we will create a inverted # lookup here, and us
reduce layers line-too-long
get_vocabulary
8401e08334d4b1f102a6ee9479738bacfee0600c
keras
index_lookup.py
12
19
https://github.com/keras-team/keras.git
7
158
0
70
249
Python
{ "docstring": "Returns the current vocabulary of the layer.\n\n Args:\n include_special_tokens: If True, the returned vocabulary will include\n mask and OOV tokens, and a term's index in the vocabulary will equal\n the term's index when calling the layer. If False, the returned\n vocabulary will not include any mask or OOV tokens.\n ", "language": "en", "n_whitespaces": 105, "n_words": 49, "vocab_size": 29 }
def get_vocabulary(self, include_special_tokens=True): # The lookup table data will not be sorted, so we will create a inverted # lookup here, and use that to lookup a range of indices [0, # vocab_size). if self.lookup_table.size() == 0: vocab, indices = [], [] else: keys, values = self.lookup_table.export() vocab, indices = (values, keys) if self.invert else (keys, values) vocab, indices = ( self._tensor_vocab_to_numpy(vocab), indices.numpy(), ) lookup = collections.defaultdict( lambda: self.oov_token, zip(indices, vocab) ) vocab = [lookup[x] for x in range(self.vocabulary_size())] if self.mask_token is not None and self.output_mode == INT: vocab[0] = self.mask_token if not include_special_tokens: vocab = vocab[self._token_start_index() :] return vocab
@pytest.mark.parametrize( "val_dl", [ DataLoader(dataset=RandomDataset(32, 64), shuffle=True), CombinedLoader(DataLoader(dataset=RandomDataset(32, 64), shuffle=True)), CombinedLoader( [DataLoader(dataset=RandomDataset(32, 64)), DataLoader(dataset=RandomDataset(32, 64), shuffle=True)] ), CombinedLoader( { "dl1": DataLoader(dataset=RandomDataset(32, 64)), "dl2": DataLoader(dataset=RandomDataset(32, 64), shuffle=True), } ), ], )
69,640
241,648
220
tests/trainer/test_data_loading.py
63
25
def test_error_raised_with_float_limited_eval_batches(): model = BoringModel() dl_size = len(model.val_dataloader()) limit_val_batches = 1 / (dl_size + 2) trainer = Trainer(limit_val_batches=limit_val_batches) trainer._data_connector.attach_data(model) with pytest.raises( MisconfigurationException, match=fr"{limit_val_batches} \* {dl_size} < 1. Please increase the `limit_val_batches`", ): trainer._data_connector._reset_eval_dataloader(RunningStage.VALIDATING, model) @py
Deprecate `TrainerDataLoadingMixin` and move logic to `DataConnector` (#11282) Co-authored-by: Rohit Gupta <[email protected]> Co-authored-by: Aki Nitta <[email protected]> Co-authored-by: Carlos Mocholí <[email protected]>
test_error_raised_with_float_limited_eval_batches
5b59c951e28ddc8bb884f044b1f46fb54c23a8b8
lightning
test_data_loading.py
16
11
https://github.com/Lightning-AI/lightning.git
1
71
1
50
303
Python
{ "docstring": "Test that an error is raised if there are not enough batches when passed with float value of\n limit_eval_batches.", "language": "en", "n_whitespaces": 21, "n_words": 19, "vocab_size": 19 }
def test_error_raised_with_float_limited_eval_batches(): model = BoringModel() dl_size = len(model.val_dataloader()) limit_val_batches = 1 / (dl_size + 2) trainer = Trainer(limit_val_batches=limit_val_batches) trainer._data_connector.attach_data(model) with pytest.raises( MisconfigurationException, match=fr"{limit_val_batches} \* {dl_size} < 1. Please increase the `limit_val_batches`", ): trainer._data_connector._reset_eval_dataloader(RunningStage.VALIDATING, model) @pytest.mark.parametrize( "val_dl", [ DataLoader(dataset=RandomDataset(32, 64), shuffle=True), CombinedLoader(DataLoader(dataset=RandomDataset(32, 64), shuffle=True)), CombinedLoader( [DataLoader(dataset=RandomDataset(32, 64)), DataLoader(dataset=RandomDataset(32, 64), shuffle=True)] ), CombinedLoader( { "dl1": DataLoader(dataset=RandomDataset(32, 64)), "dl2": DataLoader(dataset=RandomDataset(32, 64), shuffle=True), } ), ], )
27,096
121,997
177
jax/_src/dispatch.py
130
18
def not_none_device_or_backend_on_jit(backend, device, num_ins): # TODO(yashkatariya): Remove this entire function when backend and device are # removed as arguments on jit. from jax.experimental import sharding if device is not None and backend is not None: raise ValueError("can't specify both a device and a backend for jit, " "got device={} and backend={}".format(device, backend)) if backend
Minimally support `device` argument on `jit` in the `jax.Array` path This means that only a single device is allowed to flow through this path. This is a compromise i.e. it will support the existing codepaths but won't support sharded arrays to go through this path and encourage users to use other well supported techniques like using device_put explicitly instead of relying on `jit` to do that for you. PiperOrigin-RevId: 473373822
not_none_device_or_backend_on_jit
980aa318fbe1e3653906465788e919027cf4d680
jax
dispatch.py
14
14
https://github.com/google/jax.git
4
106
0
85
174
Python
{ "docstring": "This is to support the backend and device argument on jit. It's a feature\n that's deprecated but needs to be supported for feature parity and so that we\n can delete the non-Array paths when Array is switched on.\n ", "language": "en", "n_whitespaces": 41, "n_words": 38, "vocab_size": 33 }
def not_none_device_or_backend_on_jit(backend, device, num_ins): # TODO(yashkatariya): Remove this entire function when backend and device are # removed as arguments on jit. from jax.experimental import sharding if device is not None and backend is not None: raise ValueError("can't specify both a device and a backend for jit, " "got device={} and backend={}".format(device, backend)) if backend is not None: da = [xb.get_backend(backend).get_default_device_assignment(1)[0]] else: assert device is not None da = [device] assert len(da) == 1 # Set committed to True for this path because it simulates a device_put on # behalf of a user. committed = True # in_shardings will be marked as replicated regardless of whatever the input # had. Given that only a single device is allowed above, this is correct. in_shardings = [sharding.OpShardingSharding.get_replicated(da)] * num_ins return committed, da, in_shardings
46,969
194,435
25
kivy/input/motionevent.py
11
5
def is_mouse_scrolling(self, *args): return 'button' in self.profile and 'scroll' in self.button
Feature: EventManagerBase (#7658) * Added EventManagerBase class and event_managers attribute to WindowBase class. * Added on_motion event to Widget class. * Updated post_dispatch_input in EventLoopBase to skip non-touch events. * Using type ids in MouseMotionEventProvider. * Added on_motion method to Widget subclasses. * Updated Widget.on_motion method to dispatch to filtered widgets if 'pos' is not in me.profile. * Changed motion_filter property in Widget to store key to list values. * Updated Widget.on_motion to not dispatch event to children if widget is disabled. * Widget: Using flags to control dispatching in on_motion method. * Widget: Don't dispatch on_motion to children if only self is registered. * Widget: Removed collision on disabled check from on_motion method. * Widget: Added docstrings for motion_filter and related methods. * EventManager: Moved motion event flags to eventmanager/__init__.py module. * ScreenManager: Overrode the on_motion method. * WindowBase: Using attributes event_managers and event_managers_dict. * WindowBase: Added doc for register_event_manager and unregister_event_manager methods. * Widget: Improved default dispatch to stop after the last registered widgets. * EventManagerBase: Added initial docs class and module. * Widget: Added experimental warnings to motion_filter property and to on_motion and (un)register_for_motion_event methods. * WindowBase: Added docs for event_managers and event_managers_dict attributes. * MotionEvent: Added type_id and flags to push_attrs list. * EventManagerBase: Added versionadded tag on all flags. * EventManagerBase: Use dispatch modes instead of flags.
is_mouse_scrolling
1830123ba3edf7290b7c6cb1c6f406ccf1d0e5d4
kivy
motionevent.py
8
2
https://github.com/kivy/kivy.git
2
21
0
10
39
Python
{ "docstring": "Returns True if the touch event is a mousewheel scrolling\n\n .. versionadded:: 1.6.0\n ", "language": "en", "n_whitespaces": 27, "n_words": 13, "vocab_size": 13 }
def is_mouse_scrolling(self, *args): return 'button' in self.profile and 'scroll' in self.button
53,492
212,886
223
PySimpleGUI.py
60
27
def easy_print(*args, size=(None, None), end=None, sep=None, location=(None, None), relative_location=(None, None), font=None, no_titlebar=False, no_button=False, grab_anywhere=False, keep_on_top=None, do_not_reroute_stdout=True, echo_stdout=False, text_color=None, background_color=None, colors=None, c=None, erase_all=False, resizable=True, blocking=None): if _DebugWin.debug_window is None: _DebugWin.debug_window = _DebugWin(size=size, location=location, relative_location=relative_location, font=font, no_titlebar=no_titlebar, no_button=no_button, grab_anywhere=grab_anywhere, keep_on_top=keep_on_top, do_not_reroute_stdout=do_not_reroute_stdout, echo_stdout=echo_stdout, resizable=resizable, blocking=blocking) txt_color, bg_color = _parse_colors_parm(c or colors) _DebugWin.debug_window.Print(*args, end=end, sep=sep, text_color=text_color or txt_color, background_color=background_color or bg_color, erase_all=erase_all, font=font, blocking=blocking)
Addition of blocking parameter to debug printing. IF True, then execution of your code is stopped until the "Quit" button / "X" is clicked on the Debug Window.
easy_print
935e430420f5ac18df67233040ba86359d98a579
PySimpleGUI
PySimpleGUI.py
11
3
https://github.com/PySimpleGUI/PySimpleGUI.git
1
94
0
51
279
Python
{ "docstring": "\n Works like a \"print\" statement but with windowing options. Routes output to the \"Debug Window\"\n\n In addition to the normal text and background colors, you can use a \"colors\" tuple/string\n The \"colors\" or \"c\" parameter defines both the text and background in a single parm.\n It can be a tuple or a single single. Both text and background colors need to be specified\n colors -(str, str) or str. A combined text/background color definition in a single parameter\n c - (str, str) - Colors tuple has format (foreground, backgrouned)\n c - str - can also be a string of the format \"foreground on background\" (\"white on red\")\n\n :param *args: stuff to output\n :type *args: (Any)\n :param size: (w,h) w=characters-wide, h=rows-high\n :type size: (int, int)\n :param end: end character\n :type end: (str)\n :param sep: separator character\n :type sep: (str)\n :param location: Location of upper left corner of the window\n :type location: (int, int)\n :param relative_location: (x,y) location relative to the default location of the window, in pixels. Normally the window centers. This location is relative to the location the window would be created. Note they can be negative.\n :type relative_location: (int, int)\n :param font: specifies the font family, size, etc. Tuple or Single string format 'name size styles'. Styles: italic * roman bold normal underline overstrike\n :type font: (str or (str, int[, str]) or None)\n :param no_titlebar: If True no titlebar will be shown\n :type no_titlebar: (bool)\n :param no_button: don't show button\n :type no_button: (bool)\n :param grab_anywhere: If True: can grab anywhere to move the window (Default = False)\n :type grab_anywhere: (bool)\n :param background_color: color of background\n :type background_color: (str)\n :param text_color: color of the text\n :type text_color: (str)\n :param keep_on_top: If True the window will remain above all current windows\n :type keep_on_top: (bool)\n :param location: Location of upper left corner of the window\n :type location: (int, int)\n :param do_not_reroute_stdout: do not reroute stdout and stderr. If False, both stdout and stderr will reroute to here\n :type do_not_reroute_stdout: (bool)\n :param echo_stdout: If True stdout is sent to both the console and the debug window\n :type echo_stdout: (bool)\n :param colors: Either a tuple or a string that has both the text and background colors\n :type colors: (str) or (str, str)\n :param c: Either a tuple or a string that has both the text and background colors\n :type c: (str) or (str, str)\n :param resizable: if True, the user can resize the debug window. Default is True\n :type resizable: (bool)\n :param erase_all: If True when erase the output before printing\n :type erase_all: (bool)\n :param blocking: if True, makes the window block instead of returning immediately. The \"Quit\" button changers to \"More\"\n :type blocking: (bool | None)\n :return:\n :rtype:\n ", "language": "en", "n_whitespaces": 1135, "n_words": 444, "vocab_size": 200 }
def easy_print(*args, size=(None, None), end=None, sep=None, location=(None, None), relative_location=(None, None), font=None, no_titlebar=False, no_button=False, grab_anywhere=False, keep_on_top=None, do_not_reroute_stdout=True, echo_stdout=False, text_color=None, background_color=None, colors=None, c=None, erase_all=False, resizable=True, blocking=None): if _DebugWin.debug_window is None: _DebugWin.debug_window = _DebugWin(size=size, location=location, relative_location=relative_location, font=font, no_titlebar=no_titlebar, no_button=no_button, grab_anywhere=grab_anywhere, keep_on_top=keep_on_top, do_not_reroute_stdout=do_not_reroute_stdout, echo_stdout=echo_stdout, resizable=resizable, blocking=blocking) txt_color, bg_color = _parse_colors_parm(c or colors) _DebugWin.debug_window.Print(*args, end=end, sep=sep, text_color=text_color or txt_color, background_color=background_color or bg_color, erase_all=erase_all, font=font, blocking=blocking)
1,978
10,901
119
jina/orchestrate/pods/__init__.py
22
11
def wait_start_success(self): _timeout = self.args.timeout_ready if _timeout <= 0: _timeout = None else: _timeout /=
refactor: rename pod to deployment (#4230) * refactor: rename pod to deployment * style: fix overload and cli autocomplete * fix: undo daemon mistake * refactor: leftover cleanup * fix: more test fixes * fix: more fixes * fix: more fixes * fix: more fixes * fix: more tests * fix: fix more tests * refactor: fix more tests * refactor: more tests fixes * refactor: rename pea to pod * refactor: adjust docs * refactor: complete pea renaming * refactor: more fixes * fix: pea_type in k8s yamls * fix: adjust pod args name * refactor: rename peapods parser folder * fix: da init Co-authored-by: Jina Dev Bot <[email protected]>
wait_start_success
13edc16d806fb5d77a6849551178ccc75937f25f
jina
__init__.py
10
11
https://github.com/jina-ai/jina.git
3
56
0
16
95
Python
{ "docstring": "Block until all pods starts successfully.\n\n If not success, it will raise an error hoping the outer function to catch it\n ", "language": "en", "n_whitespaces": 35, "n_words": 21, "vocab_size": 20 }
def wait_start_success(self): _timeout = self.args.timeout_ready if _timeout <= 0: _timeout = None else: _timeout /= 1e3 if self._wait_for_ready_or_shutdown(_timeout): self._check_failed_to_start() self.logger.debug(__ready_msg__) else: self._fail_start_timeout(_timeout)
47,872
196,372
53
sympy/matrices/decompositions.py
25
15
def _rank_decomposition(M, iszerofunc=_iszero, simplify=False): r F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc, pivots=True) rank = len(pivot_cols) C = M.extract(range(M.rows), pivot_cols) F = F[:rank, :] return C,
Moved imports to higher level
_rank_decomposition
59d22b6bb7287613d598611027f640d068ca5748
sympy
decompositions.py
11
91
https://github.com/sympy/sympy.git
1
69
0
21
105
Python
{ "docstring": "Returns a pair of matrices (`C`, `F`) with matching rank\n such that `A = C F`.\n\n Parameters\n ==========\n\n iszerofunc : Function, optional\n A function used for detecting whether an element can\n act as a pivot. ``lambda x: x.is_zero`` is used by default.\n\n simplify : Bool or Function, optional\n A function used to simplify elements when looking for a\n pivot. By default SymPy's ``simplify`` is used.\n\n Returns\n =======\n\n (C, F) : Matrices\n `C` and `F` are full-rank matrices with rank as same as `A`,\n whose product gives `A`.\n\n See Notes for additional mathematical details.\n\n Examples\n ========\n\n >>> from sympy import Matrix\n >>> A = Matrix([\n ... [1, 3, 1, 4],\n ... [2, 7, 3, 9],\n ... [1, 5, 3, 1],\n ... [1, 2, 0, 8]\n ... ])\n >>> C, F = A.rank_decomposition()\n >>> C\n Matrix([\n [1, 3, 4],\n [2, 7, 9],\n [1, 5, 1],\n [1, 2, 8]])\n >>> F\n Matrix([\n [1, 0, -2, 0],\n [0, 1, 1, 0],\n [0, 0, 0, 1]])\n >>> C * F == A\n True\n\n Notes\n =====\n\n Obtaining `F`, an RREF of `A`, is equivalent to creating a\n product\n\n .. math::\n E_n E_{n-1} ... E_1 A = F\n\n where `E_n, E_{n-1}, \\dots, E_1` are the elimination matrices or\n permutation matrices equivalent to each row-reduction step.\n\n The inverse of the same product of elimination matrices gives\n `C`:\n\n .. math::\n C = \\left(E_n E_{n-1} \\dots E_1\\right)^{-1}\n\n It is not necessary, however, to actually compute the inverse:\n the columns of `C` are those from the original matrix with the\n same column indices as the indices of the pivot columns of `F`.\n\n References\n ==========\n\n .. [1] https://en.wikipedia.org/wiki/Rank_factorization\n\n .. [2] Piziak, R.; Odell, P. L. (1 June 1999).\n \"Full Rank Factorization of Matrices\".\n Mathematics Magazine. 72 (3): 193. doi:10.2307/2690882\n\n See Also\n ========\n\n sympy.matrices.matrices.MatrixReductions.rref\n ", "language": "en", "n_whitespaces": 543, "n_words": 291, "vocab_size": 172 }
def _rank_decomposition(M, iszerofunc=_iszero, simplify=False): r F, pivot_cols = M.rref(simplify=simplify, iszerofunc=iszerofunc, pivots=True) rank = len(pivot_cols) C = M.extract(range(M.rows), pivot_cols) F = F[:rank, :] return C, F
75,623
259,172
542
sklearn/preprocessing/_data.py
172
37
def normalize(X, norm="l2", *, axis=1, copy=True, return_norm=False): if norm not in ("l1", "l2", "max"): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = "csc" elif axis == 1: sparse_format = "csr" else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array( X, accept_sparse=sparse_format, copy=copy, estimator="the normalize function", dtype=FLOAT_DTYPES, ) if axis == 0: X = X.T if sparse.issparse(X): if return_norm and norm in ("l1", "l2"): raise NotImplementedError( "return_norm=True is not implemented " "for sparse matrices with norm 'l1' " "or norm 'l2'" ) if norm == "l1": inplace_csr_row_normalize_l1(X) elif norm == "l2": inplace_csr_row_normalize_l2(X) elif norm == "max": mins, maxes = min_max_axis(X, 1) norms = np.maximum(abs(mins), maxes) norms_elementwise = norms.repeat(np.diff(X.indptr)) mask = norms_elementwise != 0 X.data[mask] /= norms_elementwise[mask] else: if norm == "l1": norms = np.abs(X).sum(axis=1) elif norm == "l2": norms = row_norms(X) elif norm == "max": norms = np.max(abs(X), axis=1) norms = _handle_zeros_in_scale(no
fix docstrings on preprocessing._data.normalize (#22795) Co-authored-by: ducanne <[email protected]>
normalize
6d36596c4d724cb1354db9eb824bc84b8e2ce512
scikit-learn
_data.py
16
50
https://github.com/scikit-learn/scikit-learn.git
16
300
0
91
501
Python
{ "docstring": "Scale input vectors individually to unit norm (vector length).\n\n Read more in the :ref:`User Guide <preprocessing_normalization>`.\n\n Parameters\n ----------\n X : {array-like, sparse matrix} of shape (n_samples, n_features)\n The data to normalize, element by element.\n scipy.sparse matrices should be in CSR format to avoid an\n un-necessary copy.\n\n norm : {'l1', 'l2', 'max'}, default='l2'\n The norm to use to normalize each non zero sample (or each non-zero\n feature if axis is 0).\n\n axis : {0, 1}, default=1\n axis used to normalize the data along. If 1, independently normalize\n each sample, otherwise (if 0) normalize each feature.\n\n copy : bool, default=True\n Set to False to perform inplace row normalization and avoid a\n copy (if the input is already a numpy array or a scipy.sparse\n CSR matrix and if axis is 1).\n\n return_norm : bool, default=False\n Whether to return the computed norms.\n\n Returns\n -------\n X : {ndarray, sparse matrix} of shape (n_samples, n_features)\n Normalized input X.\n\n norms : ndarray of shape (n_samples, ) if axis=1 else (n_features, )\n An array of norms along given axis for X.\n When X is sparse, a NotImplementedError will be raised\n for norm 'l1' or 'l2'.\n\n See Also\n --------\n Normalizer : Performs normalization using the Transformer API\n (e.g. as part of a preprocessing :class:`~sklearn.pipeline.Pipeline`).\n\n Notes\n -----\n For a comparison of the different scalers, transformers, and normalizers,\n see :ref:`examples/preprocessing/plot_all_scaling.py\n <sphx_glr_auto_examples_preprocessing_plot_all_scaling.py>`.\n ", "language": "en", "n_whitespaces": 395, "n_words": 220, "vocab_size": 142 }
def normalize(X, norm="l2", *, axis=1, copy=True, return_norm=False): if norm not in ("l1", "l2", "max"): raise ValueError("'%s' is not a supported norm" % norm) if axis == 0: sparse_format = "csc" elif axis == 1: sparse_format = "csr" else: raise ValueError("'%d' is not a supported axis" % axis) X = check_array( X, accept_sparse=sparse_format, copy=copy, estimator="the normalize function", dtype=FLOAT_DTYPES, ) if axis == 0: X = X.T if sparse.issparse(X): if return_norm and norm in ("l1", "l2"): raise NotImplementedError( "return_norm=True is not implemented " "for sparse matrices with norm 'l1' " "or norm 'l2'" ) if norm == "l1": inplace_csr_row_normalize_l1(X) elif norm == "l2": inplace_csr_row_normalize_l2(X) elif norm == "max": mins, maxes = min_max_axis(X, 1) norms = np.maximum(abs(mins), maxes) norms_elementwise = norms.repeat(np.diff(X.indptr)) mask = norms_elementwise != 0 X.data[mask] /= norms_elementwise[mask] else: if norm == "l1": norms = np.abs(X).sum(axis=1) elif norm == "l2": norms = row_norms(X) elif norm == "max": norms = np.max(abs(X), axis=1) norms = _handle_zeros_in_scale(norms, copy=False) X /= norms[:, np.newaxis] if axis == 0: X = X.T if return_norm: return X, norms else: return X
3,075
19,712
255
pipenv/installers.py
41
16
def find_version_to_install(self, name): version = Version.parse(name) if version.patch is not None: return name try: best_match = max( ( inst_version for inst_version in self.iter_installable_versions() if inst_version.matches_minor(version) ), key=operator.attrgetter("cmpkey"), ) except ValueError:
Issue 4993 Add standard pre commit hooks and apply linting. (#4994) * Add .pre-commit-config.yaml to the project and exclude tests (for now). This does not include the MyPy linting that pip does but does include everything else.
find_version_to_install
9a3b3ce70621af6f9adaa9eeac9cf83fa149319c
pipenv
installers.py
14
18
https://github.com/pypa/pipenv.git
5
73
0
33
123
Python
{ "docstring": "Find a version in the installer from the version supplied.\n\n A ValueError is raised if a matching version cannot be found.\n ", "language": "en", "n_whitespaces": 35, "n_words": 21, "vocab_size": 17 }
def find_version_to_install(self, name): version = Version.parse(name) if version.patch is not None: return name try: best_match = max( ( inst_version for inst_version in self.iter_installable_versions() if inst_version.matches_minor(version) ), key=operator.attrgetter("cmpkey"), ) except ValueError: raise ValueError( f"no installable version found for {name!r}", ) return best_match
78,322
266,161
138
netbox/utilities/utils.py
45
16
def copy_safe_request(request): meta = { k: request.META[k] for k in HTTP_REQUEST_META_SAFE_COPY if k in request.META and
Closes #10920: Include request cookies when queuing a custom script
copy_safe_request
540bba4544d9f31c126571cc1a45a6783b3b6a89
netbox
utils.py
13
16
https://github.com/netbox-community/netbox.git
4
97
0
43
158
Python
{ "docstring": "\n Copy selected attributes from a request object into a new fake request object. This is needed in places where\n thread safe pickling of the useful request data is needed.\n ", "language": "en", "n_whitespaces": 39, "n_words": 29, "vocab_size": 25 }
def copy_safe_request(request): meta = { k: request.META[k] for k in HTTP_REQUEST_META_SAFE_COPY if k in request.META and isinstance(request.META[k], str) } return NetBoxFakeRequest({ 'META': meta, 'COOKIES': request.COOKIES, 'POST': request.POST, 'GET': request.GET, 'FILES': request.FILES, 'user': request.user, 'path': request.path, 'id': getattr(request, 'id', None), # UUID assigned by middleware })
47,190
195,091
168
projects/director/director_agent.py
38
13
def batchify(self, obs_batch, sort=False): batch = super().batchify(obs_batch, sort=sort) if batc
Added director agent and safety experiment commands. (#4602) * Added director agent and safety. * ran autoformat.sh
batchify
2ef5586ed0d644abe18cd3ff45ef9fa01981e87c
ParlAI
director_agent.py
13
14
https://github.com/facebookresearch/ParlAI.git
4
98
0
27
153
Python
{ "docstring": "\n This method calls the parent class's batchify method and then add\n classifier_label and is_ltr property to the the batch.\n ", "language": "en", "n_whitespaces": 41, "n_words": 19, "vocab_size": 15 }
def batchify(self, obs_batch, sort=False): batch = super().batchify(obs_batch, sort=sort) if batch.valid_indices is None: return batch batch.classifier_label = torch.tensor( [ [obs_batch[i].get('classifier_label_idx', -1)] for i in batch.valid_indices ] ) batch.is_ltr = torch.tensor( [[obs_batch[i].get('is_ltr', False)] for i in batch.valid_indices] ) return batch
77,229
262,467
57
TTS/tts/layers/tacotron/capacitron_layers.py
25
8
def calculate_post_conv_height(height, kernel_size, stride, pad, n_convs):
Capacitron (#977) * new CI config * initial Capacitron implementation * delete old unused file * fix empty formatting changes * update losses and training script * fix previous commit * fix commit * Add Capacitron test and first round of test fixes * revert formatter change * add changes to the synthesizer * add stepwise gradual lr scheduler and changes to the recipe * add inference script for dev use * feat: add posterior inference arguments to synth methods - added reference wav and text args for posterior inference - some formatting * fix: add espeak flag to base_tts and dataset APIs - use_espeak_phonemes flag was not implemented in those APIs - espeak is now able to be utilised for phoneme generation - necessary phonemizer for the Capacitron model * chore: update training script and style - training script includes the espeak flag and other hyperparams - made style * chore: fix linting * feat: add Tacotron 2 support * leftover from dev * chore:rename parser args * feat: extract optimizers - created a separate optimizer class to merge the two optimizers * chore: revert arbitrary trainer changes * fmt: revert formatting bug * formatting again * formatting fixed * fix: log func * fix: update optimizer - Implemented load_state_dict for continuing training * fix: clean optimizer init for standard models * improvement: purge espeak flags and add training scripts * Delete capacitronT2.py delete old training script, new one is pushed * feat: capacitron trainer methods - extracted capacitron specific training operations from the trainer into custom methods in taco1 and taco2 models * chore: renaming and merging capacitron and gst style args * fix: bug fixes from the previous commit * fix: implement state_dict method on CapacitronOptimizer * fix: call method * fix: inference naming * Delete train_capacitron.py * fix: synthesize * feat: update tests * chore: fix style * Delete capacitron_inference.py * fix: fix train tts t2 capacitron tests * fix: double forward in T2 train step * fix: double forward in T1 train step * fix: run make style * fix: remove unused import * fix: test for T1 capacitron * fix: make lint * feat: add blizzard2013 recipes * make style * fix: update recipes * chore: make style * Plot test sentences in Tacotron * chore: make style and fix import * fix: call forward first before problematic floordiv op * fix: update recipes * feat: add min_audio_len to recipes * aux_input["style_mel"] * chore: make style * Make capacitron T2 recipe more stable * Remove T1 capacitron Ljspeech * feat: implement new grad clipping routine and update configs * make style * Add pretrained checkpoints * Add default vocoder * Change trainer package * Fix grad clip issue for tacotron * Fix scheduler issue with tacotron Co-authored-by: Eren Gölge <[email protected]> Co-authored-by: WeberJulian <[email protected]> Co-authored-by: Eren Gölge <[email protected]>
calculate_post_conv_height
8be21ec38734e780e787d07d7e979392d7d63f24
TTS
capacitron_layers.py
13
4
https://github.com/coqui-ai/TTS.git
2
36
0
23
59
Python
{ "docstring": "Height of spec after n convolutions with fixed kernel/stride/pad.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
def calculate_post_conv_height(height, kernel_size, stride, pad, n_convs): for _ in range(n_convs): height = (height - kernel_size + 2 * pad) // stride + 1 return height
89,645
290,529
164
tests/components/stream/test_hls.py
76
34
async def test_hls_playlist_view(hass, setup_component, hls_stream, stream_worker_sync): stream = create_stream(hass, STREAM_SOURCE, {}, dynamic_stream_settings()) stream_worker_sync.pause() hls = stream.add_provider(HLS_PROVIDER) for i in range(2): segment = Segment(sequence=i, duration=SEGMENT_DURATION) hls.put(segment) await hass.async_block_till_done() hls_client = await hls_stream(stream) resp = await hls_client.get("/playlist.m3u8") assert resp.status == HTTPStatus.OK assert await resp.text() == make_playlist( sequence=0, segments=[make_segment(0), make_segment(1)] ) segment = Segment(sequence=2, duration=SEGMENT_DURATI
Refactor camera stream settings (#81663)
test_hls_playlist_view
ee910bd0e41391e00ccd521fe7d605e494d33046
core
test_hls.py
13
24
https://github.com/home-assistant/core.git
2
209
0
44
337
Python
{ "docstring": "Test rendering the hls playlist with 1 and 2 output segments.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 11 }
async def test_hls_playlist_view(hass, setup_component, hls_stream, stream_worker_sync): stream = create_stream(hass, STREAM_SOURCE, {}, dynamic_stream_settings()) stream_worker_sync.pause() hls = stream.add_provider(HLS_PROVIDER) for i in range(2): segment = Segment(sequence=i, duration=SEGMENT_DURATION) hls.put(segment) await hass.async_block_till_done() hls_client = await hls_stream(stream) resp = await hls_client.get("/playlist.m3u8") assert resp.status == HTTPStatus.OK assert await resp.text() == make_playlist( sequence=0, segments=[make_segment(0), make_segment(1)] ) segment = Segment(sequence=2, duration=SEGMENT_DURATION) hls.put(segment) await hass.async_block_till_done() resp = await hls_client.get("/playlist.m3u8") assert resp.status == HTTPStatus.OK assert await resp.text() == make_playlist( sequence=0, segments=[make_segment(0), make_segment(1), make_segment(2)] ) stream_worker_sync.resume() await stream.stop()
32,355
141,415
107
python/ray/train/_internal/backend_executor.py
28
15
def _create_local_rank_map(self) -> Dict: rank_mapping = {} ip_dict = defaultdict(int) for world_rank in range(len(self.worker_group)): worker = self.worker_group.workers[world_rank] node_ip = worker.metadata.node_ip rank_mapping[world_rank] = ip_dict[node_ip]
[Train] Clean up `ray.train` package (#25566)
_create_local_rank_map
80ae651f259e1ea13c21b285d6bfcc7fd834ef9c
ray
backend_executor.py
11
30
https://github.com/ray-project/ray.git
2
65
0
22
104
Python
{ "docstring": "Create mapping from worker world_rank to local_rank.\n\n Example:\n Worker 0: 0.0.0.0\n Worker 1: 0.0.0.0\n Worker 2: 0.0.0.1\n Worker 3: 0.0.0.0\n Worker 4: 0.0.0.1\n\n Workers 0, 1, 3 are on 0.0.0.0.\n Workers 2, 4 are on 0.0.0.1.\n\n Expected Output:\n {\n 0 -> 0,\n 1 -> 1,\n 2 -> 0,\n 3 -> 2,\n 4 -> 1\n }\n ", "language": "en", "n_whitespaces": 254, "n_words": 55, "vocab_size": 34 }
def _create_local_rank_map(self) -> Dict: rank_mapping = {} ip_dict = defaultdict(int) for world_rank in range(len(self.worker_group)): worker = self.worker_group.workers[world_rank] node_ip = worker.metadata.node_ip rank_mapping[world_rank] = ip_dict[node_ip] ip_dict[node_ip] += 1 return rank_mapping
21,013
101,605
503
tools/sort/sort.py
124
46
def _output_groups(self) -> None: is_rename = self._args.sort_method != "none" logger.info("Creating %s group folders in '%s'.", len(self._sorter.binned), self._args.output_dir) bin_names = [f"_{b}" for b in self._sorter.bin_names] if is_rename:
Overhaul sort: - Standardize image data reading and writing - Optimize loading (just one pass required) - Make all sort groups binnable (to greater or lesser results) - Add sort by pitch - Deprecate multiple options - linting, docs + locales
_output_groups
98d01760e469fd2108eed8d0b0a1ba6297c3177c
faceswap
sort.py
15
37
https://github.com/deepfakes/faceswap.git
11
260
0
88
486
Python
{ "docstring": " Move the files to folders.\n\n Obtains the bins and original filenames from :attr:`_sorter` and outputs into appropriate\n bins in the output location\n ", "language": "en", "n_whitespaces": 44, "n_words": 22, "vocab_size": 18 }
def _output_groups(self) -> None: is_rename = self._args.sort_method != "none" logger.info("Creating %s group folders in '%s'.", len(self._sorter.binned), self._args.output_dir) bin_names = [f"_{b}" for b in self._sorter.bin_names] if is_rename: bin_names = [f"{name}_by_{self._args.sort_method}" for name in bin_names] for name in bin_names: folder = os.path.join(self._args.output_dir, name) if os.path.exists(folder): rmtree(folder) os.makedirs(folder) description = f"{'Copying' if self._args.keep_original else 'Moving'} into groups" description += " and renaming" if is_rename else "" pbar = tqdm(range(len(self._sorter.sorted_filelist)), desc=description, file=sys.stdout, leave=False) idx = 0 for bin_id, bin_ in enumerate(self._sorter.binned): pbar.set_description(f"{description}: Bin {bin_id + 1} of {len(self._sorter.binned)}") output_path = os.path.join(self._args.output_dir, bin_names[bin_id]) if not bin_: logger.debug("Removing empty bin: %s", output_path) os.rmdir(output_path) for source in bin_: basename = os.path.basename(source) dst_name = f"{idx:06d}_{basename}" if is_rename else basename dest = os.path.join(output_path, dst_name) self._sort_file(source, dest) idx += 1 pbar.update(1) # Output methods
42,710
178,485
125
nuitka/utils/SharedLibraries.py
53
11
def _setSharedLibraryRPATHElf(filename, rpath): # TODO: Might write something that makes a shell script replacement # in case no rpath is present, or use patchelf, for now our use # case seems to use rpaths for executables. # patchelf --set-rpath "$ORIGIN/path/to/library" <executable> with withEnvironmentVarOverriden("LANG", "C"): execut
macOS: Make sure to check exit code and output problematic command
_setSharedLibraryRPATHElf
e399c9cade448a8dd0018dc5484613782fcabf63
Nuitka
SharedLibraries.py
12
10
https://github.com/Nuitka/Nuitka.git
1
42
0
46
75
Python
{ "docstring": "\\\nError, needs 'patchelf' on your system, due to 'RPATH' settings that need to be\nset.", "language": "en", "n_whitespaces": 13, "n_words": 16, "vocab_size": 15 }
def _setSharedLibraryRPATHElf(filename, rpath): # TODO: Might write something that makes a shell script replacement # in case no rpath is present, or use patchelf, for now our use # case seems to use rpaths for executables. # patchelf --set-rpath "$ORIGIN/path/to/library" <executable> with withEnvironmentVarOverriden("LANG", "C"): executeToolChecked( logger=postprocessing_logger, command=("patchelf", "--set-rpath", rpath, filename), stderr_filter=_filterPatchelfErrorOutput, absence_message=, )
35,802
154,137
105
modin/core/dataframe/pandas/dataframe/dataframe.py
21
6
def _get_columns(self):
FEAT-#4725: Make index and columns lazy in Modin DataFrame (#4726) Co-authored-by: Mahesh Vashishtha <[email protected]> Co-authored-by: Yaroslav Igoshev <[email protected]> Signed-off-by: Vasily Litvinov <[email protected]>
_get_columns
adb16a17f721048005520388080627975c6852d8
modin
dataframe.py
11
8
https://github.com/modin-project/modin.git
3
41
0
14
68
Python
{ "docstring": "\n Get the columns from the cache object.\n\n Returns\n -------\n pandas.Index\n An index object containing the column labels.\n ", "language": "en", "n_whitespaces": 64, "n_words": 17, "vocab_size": 15 }
def _get_columns(self): if self._columns_cache is None: self._columns_cache, column_widths = self._compute_axis_labels_and_lengths( 1 ) if self._column_widths_cache is None: self._column_widths_cache = column_widths return self._columns_cache
103,934
305,142
301
homeassistant/components/intesishome/climate.py
90
41
async def async_update(self) -> None: # Update values from controller's device dictionary self._connected = self._
Improve entity type hints [i] (#77529)
async_update
23090cb8a268b3f268aefa8477f30af88bf46051
core
climate.py
9
24
https://github.com/home-assistant/core.git
1
243
0
63
393
Python
{ "docstring": "Copy values from controller dictionary to climate device.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
async def async_update(self) -> None: # Update values from controller's device dictionary self._connected = self._controller.is_connected self._current_temp = self._controller.get_temperature(self._device_id) self._fan_speed = self._controller.get_fan_speed(self._device_id) self._power = self._controller.is_on(self._device_id) self._min_temp = self._controller.get_min_setpoint(self._device_id) self._max_temp = self._controller.get_max_setpoint(self._device_id) self._rssi = self._controller.get_rssi(self._device_id) self._run_hours = self._controller.get_run_hours(self._device_id) self._target_temp = self._controller.get_setpoint(self._device_id) self._outdoor_temp = self._controller.get_outdoor_temperature(self._device_id) # Operation mode mode = self._controller.get_mode(self._device_id) self._hvac_mode = MAP_IH_TO_HVAC_MODE.get(mode) # Preset mode preset = self._controller.get_preset_mode(self._device_id) self._preset = MAP_IH_TO_PRESET_MODE.get(preset) # Swing mode # Climate module only supports one swing setting. self._vvane = self._controller.get_vertical_swing(self._device_id) self._hvane = self._controller.get_horizontal_swing(self._device_id) # Power usage self._power_consumption_heat = self._controller.get_heat_power_consumption( self._device_id ) self._power_consumption_cool = self._controller.get_cool_power_consumption( self._device_id )
24,423
111,524
157
spacy/tests/pipeline/test_entity_linker.py
94
19
def test_kb_valid_entities(nlp): mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3) # adding entities mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3]) mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0]) mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2]) mykb.add_alias(a
Refactor KB for easier customization (#11268) * Add implementation of batching + backwards compatibility fixes. Tests indicate issue with batch disambiguation for custom singular entity lookups. * Fix tests. Add distinction w.r.t. batch size. * Remove redundant and add new comments. * Adjust comments. Fix variable naming in EL prediction. * Fix mypy errors. * Remove KB entity type config option. Change return types of candidate retrieval functions to Iterable from Iterator. Fix various other issues. * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <[email protected]> * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <[email protected]> * Update spacy/kb_base.pyx Co-authored-by: Paul O'Leary McCann <[email protected]> * Update spacy/kb_base.pyx Co-authored-by: Paul O'Leary McCann <[email protected]> * Update spacy/pipeline/entity_linker.py Co-authored-by: Paul O'Leary McCann <[email protected]> * Add error messages to NotImplementedErrors. Remove redundant comment. * Fix imports. * Remove redundant comments. * Rename KnowledgeBase to InMemoryLookupKB and BaseKnowledgeBase to KnowledgeBase. * Fix tests. * Update spacy/errors.py Co-authored-by: Sofie Van Landeghem <[email protected]> * Move KB into subdirectory. * Adjust imports after KB move to dedicated subdirectory. * Fix config imports. * Move Candidate + retrieval functions to separate module. Fix other, small issues. * Fix docstrings and error message w.r.t. class names. Fix typing for candidate retrieval functions. * Update spacy/kb/kb_in_memory.pyx Co-authored-by: Sofie Van Landeghem <[email protected]> * Update spacy/ml/models/entity_linker.py Co-authored-by: Sofie Van Landeghem <[email protected]> * Fix typing. * Change typing of mentions to be Span instead of Union[Span, str]. * Update docs. * Update EntityLinker and _architecture docs. * Update website/docs/api/entitylinker.md Co-authored-by: Paul O'Leary McCann <[email protected]> * Adjust message for E1046. * Re-add section for Candidate in kb.md, add reference to dedicated page. * Update docs and docstrings. * Re-add section + reference for KnowledgeBase.get_alias_candidates() in docs. * Update spacy/kb/candidate.pyx * Update spacy/kb/kb_in_memory.pyx * Update spacy/pipeline/legacy/entity_linker.py * Remove canididate.md. Remove mistakenly added config snippet in entity_linker.py. Co-authored-by: Paul O'Leary McCann <[email protected]> Co-authored-by: Sofie Van Landeghem <[email protected]>
test_kb_valid_entities
1f23c615d7a7326ca5a38a7d768b8b70caaa0e17
spaCy
test_entity_linker.py
11
16
https://github.com/explosion/spaCy.git
1
275
0
67
423
Python
{ "docstring": "Test the valid construction of a KB with 3 entities and two aliases", "language": "en", "n_whitespaces": 12, "n_words": 13, "vocab_size": 13 }
def test_kb_valid_entities(nlp): mykb = InMemoryLookupKB(nlp.vocab, entity_vector_length=3) # adding entities mykb.add_entity(entity="Q1", freq=19, entity_vector=[8, 4, 3]) mykb.add_entity(entity="Q2", freq=5, entity_vector=[2, 1, 0]) mykb.add_entity(entity="Q3", freq=25, entity_vector=[-1, -6, 5]) # adding aliases mykb.add_alias(alias="douglas", entities=["Q2", "Q3"], probabilities=[0.8, 0.2]) mykb.add_alias(alias="adam", entities=["Q2"], probabilities=[0.9]) # test the size of the corresponding KB assert mykb.get_size_entities() == 3 assert mykb.get_size_aliases() == 2 # test retrieval of the entity vectors assert mykb.get_vector("Q1") == [8, 4, 3] assert mykb.get_vector("Q2") == [2, 1, 0] assert mykb.get_vector("Q3") == [-1, -6, 5] # test retrieval of prior probabilities assert_almost_equal(mykb.get_prior_prob(entity="Q2", alias="douglas"), 0.8) assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglas"), 0.2) assert_almost_equal(mykb.get_prior_prob(entity="Q342", alias="douglas"), 0.0) assert_almost_equal(mykb.get_prior_prob(entity="Q3", alias="douglassssss"), 0.0)
38,596
160,327
183
numpy/lib/twodim_base.py
104
17
def eye(N, M=None, k=0, dtype=float, order='C', *, like=None): if like is not None: return _eye_with_like(N, M=M, k=k, dtype=dtype, order=order, like=like) if M is None: M = N m = zeros((N, M), dtype=dtype, order=order) if k >= M: return m # Ensure M and k are integers, so we don't get any surprise casting # result
BUG: lib: Allow type uint64 for eye() arguments. Closes gh-9982. (Plus a few small PEP 8 fixes.)
eye
f9355942f6ef7c5d27691c4571096234efb67a2b
numpy
twodim_base.py
12
16
https://github.com/numpy/numpy.git
5
146
0
73
239
Python
{ "docstring": "\n Return a 2-D array with ones on the diagonal and zeros elsewhere.\n\n Parameters\n ----------\n N : int\n Number of rows in the output.\n M : int, optional\n Number of columns in the output. If None, defaults to `N`.\n k : int, optional\n Index of the diagonal: 0 (the default) refers to the main diagonal,\n a positive value refers to an upper diagonal, and a negative value\n to a lower diagonal.\n dtype : data-type, optional\n Data-type of the returned array.\n order : {'C', 'F'}, optional\n Whether the output should be stored in row-major (C-style) or\n column-major (Fortran-style) order in memory.\n\n .. versionadded:: 1.14.0\n ${ARRAY_FUNCTION_LIKE}\n\n .. versionadded:: 1.20.0\n\n Returns\n -------\n I : ndarray of shape (N,M)\n An array where all elements are equal to zero, except for the `k`-th\n diagonal, whose values are equal to one.\n\n See Also\n --------\n identity : (almost) equivalent function\n diag : diagonal 2-D array from a 1-D array specified by the user.\n\n Examples\n --------\n >>> np.eye(2, dtype=int)\n array([[1, 0],\n [0, 1]])\n >>> np.eye(3, k=1)\n array([[0., 1., 0.],\n [0., 0., 1.],\n [0., 0., 0.]])\n\n ", "language": "en", "n_whitespaces": 350, "n_words": 176, "vocab_size": 120 }
def eye(N, M=None, k=0, dtype=float, order='C', *, like=None): if like is not None: return _eye_with_like(N, M=M, k=k, dtype=dtype, order=order, like=like) if M is None: M = N m = zeros((N, M), dtype=dtype, order=order) if k >= M: return m # Ensure M and k are integers, so we don't get any surprise casting # results in the expressions `M-k` and `M+1` used below. This avoids # a problem with inputs with type (for example) np.uint64. M = operator.index(M) k = operator.index(k) if k >= 0: i = k else: i = (-k) * M m[:M-k].flat[i::M+1] = 1 return m _eye_with_like = array_function_dispatch( _eye_dispatcher )(eye)