ast_errors
stringlengths 0
3.2k
| d_id
int64 44
121k
| id
int64 70
338k
| n_whitespaces
int64 3
14k
| path
stringlengths 8
134
| n_words
int64 4
4.82k
| n_identifiers
int64 1
131
| random_cut
stringlengths 16
15.8k
| commit_message
stringlengths 2
15.3k
| fun_name
stringlengths 1
84
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| file_name
stringlengths 5
79
| ast_levels
int64 6
31
| nloc
int64 1
548
| url
stringlengths 31
59
| complexity
int64 1
66
| token_counts
int64 6
2.13k
| n_ast_errors
int64 0
28
| vocab_size
int64 4
1.11k
| n_ast_nodes
int64 15
19.2k
| language
stringclasses 1
value | documentation
dict | code
stringlengths 101
62.2k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49,578 | 200,279 | 30 | sympy/testing/runtests.py | 15 | 11 | def get_sympy_dir():
this_file = os.path.abspath(__file__)
sympy_dir = os.path.join(os.path.dirname(this_file), ". | runtests.py: Undo auto-formatting, re-add changes to blacklist for scipy, numpy | get_sympy_dir | 6d2bbf80752549276a968fd4af78231c569d55c5 | sympy | runtests.py | 11 | 5 | https://github.com/sympy/sympy.git | 1 | 55 | 0 | 12 | 93 | Python | {
"docstring": "\n Returns the root SymPy directory and set the global value\n indicating whether the system is case sensitive or not.\n ",
"language": "en",
"n_whitespaces": 29,
"n_words": 19,
"vocab_size": 17
} | def get_sympy_dir():
this_file = os.path.abspath(__file__)
sympy_dir = os.path.join(os.path.dirname(this_file), "..", "..")
sympy_dir = os.path.normpath(sympy_dir)
return os.path.normcase(sympy_dir)
|
|
12,150 | 60,422 | 215 | code/deep/BJMMD/caffe/scripts/cpp_lint.py | 99 | 13 | def CheckCaffeRandom(filename, clean_lines, linenum, error):
line = clean_lines.elided[linenum]
for f | Balanced joint maximum mean discrepancy for deep transfer learning | CheckCaffeRandom | cc4d0564756ca067516f71718a3d135996525909 | transferlearning | cpp_lint.py | 17 | 10 | https://github.com/jindongwang/transferlearning.git | 6 | 90 | 0 | 86 | 273 | Python | {
"docstring": "Checks for calls to C random functions (rand, rand_r, random, ...).\n\n Caffe code should (almost) always use the caffe_rng_* functions rather\n than these, as the internal state of these C functions is independent of the\n native Caffe RNG system which should produce deterministic results for a\n fixed Caffe seed set using Caffe::set_random_seed(...).\n\n Args:\n filename: The name of the current file.\n clean_lines: A CleansedLines instance containing the file.\n linenum: The number of the line to check.\n error: The function to call with any errors found.\n ",
"language": "en",
"n_whitespaces": 102,
"n_words": 84,
"vocab_size": 64
} | def CheckCaffeRandom(filename, clean_lines, linenum, error):
line = clean_lines.elided[linenum]
for function in c_random_function_list:
ix = line.find(function)
# Comparisons made explicit for clarity -- pylint: disable=g-explicit-bool-comparison
if ix >= 0 and (ix == 0 or (not line[ix - 1].isalnum() and
line[ix - 1] not in ('_', '.', '>'))):
error(filename, linenum, 'caffe/random_fn', 2,
'Use caffe_rng_rand() (or other caffe_rng_* function) instead of '
+ function +
') to ensure results are deterministic for a fixed Caffe seed.')
threading_list = (
('asctime(', 'asctime_r('),
('ctime(', 'ctime_r('),
('getgrgid(', 'getgrgid_r('),
('getgrnam(', 'getgrnam_r('),
('getlogin(', 'getlogin_r('),
('getpwnam(', 'getpwnam_r('),
('getpwuid(', 'getpwuid_r('),
('gmtime(', 'gmtime_r('),
('localtime(', 'localtime_r('),
('strtok(', 'strtok_r('),
('ttyname(', 'ttyname_r('),
)
|
|
7,678 | 42,650 | 275 | tests/jobs/test_backfill_job.py | 89 | 35 | def test_mapped_dag(self, dag_id, executor_name, session):
# This test needs a real executor to run, so that the `make_list` task can write out the TaskMap
from airflow.executors.executor_loader import ExecutorLoader
self.dagbag.process_file(str(TEST_DAGS_FOLDER / f'{dag_id}.py'))
dag = self.dagbag.get_dag(dag_id)
when = datetime.datetime(2022, 1, 1)
job = BackfillJob(
dag=dag,
start_date=when,
end_date=when,
donot_pickle=True,
executor=ExecutorLoader.load_executor(executor_name),
)
job.run()
dr = DagRun.find(dag_id=dag.dag_id, execution_date=when, session=session)[0]
assert dr
assert dr.state == DagRunState.SUCCESS
# Check that every task has a start and end date
for ti in dr.task_instances:
assert ti.state == TaskInstanceState.SUCCESS
assert ti.start_date is not None
assert ti.end_date is not Non | Replaced all days_ago functions with datetime functions (#23237)
Co-authored-by: Dev232001 <[email protected]> | test_mapped_dag | f352ee63a5d09546a7997ba8f2f8702a1ddb4af7 | airflow | test_backfill_job.py | 12 | 20 | https://github.com/apache/airflow.git | 2 | 153 | 0 | 72 | 233 | Python | {
"docstring": "\n End-to-end test of a simple mapped dag.\n\n We test with multiple executors as they have different \"execution environments\" -- for instance\n DebugExecutor runs a lot more in the same process than other Executors.\n\n ",
"language": "en",
"n_whitespaces": 62,
"n_words": 33,
"vocab_size": 31
} | def test_mapped_dag(self, dag_id, executor_name, session):
# This test needs a real executor to run, so that the `make_list` task can write out the TaskMap
from airflow.executors.executor_loader import ExecutorLoader
self.dagbag.process_file(str(TEST_DAGS_FOLDER / f'{dag_id}.py'))
dag = self.dagbag.get_dag(dag_id)
when = datetime.datetime(2022, 1, 1)
job = BackfillJob(
dag=dag,
start_date=when,
end_date=when,
donot_pickle=True,
executor=ExecutorLoader.load_executor(executor_name),
)
job.run()
dr = DagRun.find(dag_id=dag.dag_id, execution_date=when, session=session)[0]
assert dr
assert dr.state == DagRunState.SUCCESS
# Check that every task has a start and end date
for ti in dr.task_instances:
assert ti.state == TaskInstanceState.SUCCESS
assert ti.start_date is not None
assert ti.end_date is not None
|
|
91,370 | 292,272 | 203 | tests/components/http/test_init.py | 69 | 16 | async def test_emergency_ssl_certificate_when_invalid(hass, tmpdir, caplog):
cert_path, key_path = await hass.async_add_executor_job(
_setup_broken_ssl_pem_files, tmpdir
)
hass.config.safe_mode = True
assert (
await async_setup_component(
hass,
"http",
{
"http": {"ssl_certificate": cert_path, "ssl_key": key_path},
},
)
is True
)
await hass.async_start()
await hass.async_block_till_done()
assert (
"Home Assistant is running in safe mode with an emergency self signed ssl certificate because the configured SSL certificate w | Startup with an emergency self signed cert if the ssl certificate cannot be loaded (#66707) | test_emergency_ssl_certificate_when_invalid | 3bf2be1765f7a33fbce06cbabeb2e2115f2f07c7 | core | test_init.py | 15 | 22 | https://github.com/home-assistant/core.git | 1 | 87 | 0 | 52 | 145 | Python | {
"docstring": "Test http can startup with an emergency self signed cert when the current one is broken.",
"language": "en",
"n_whitespaces": 15,
"n_words": 16,
"vocab_size": 16
} | async def test_emergency_ssl_certificate_when_invalid(hass, tmpdir, caplog):
cert_path, key_path = await hass.async_add_executor_job(
_setup_broken_ssl_pem_files, tmpdir
)
hass.config.safe_mode = True
assert (
await async_setup_component(
hass,
"http",
{
"http": {"ssl_certificate": cert_path, "ssl_key": key_path},
},
)
is True
)
await hass.async_start()
await hass.async_block_till_done()
assert (
"Home Assistant is running in safe mode with an emergency self signed ssl certificate because the configured SSL certificate was not usable"
in caplog.text
)
assert hass.http.site is not None
|
|
51,721 | 206,811 | 50 | django/views/debug.py | 18 | 9 | def get_safe_request_meta(self, request):
if not hasattr(request, "META"):
return {}
return {k: self.cleanse_setting(k, v) for k, v in request.M | Refs #33476 -- Reformatted code with Black. | get_safe_request_meta | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | debug.py | 10 | 4 | https://github.com/django/django.git | 3 | 45 | 0 | 17 | 73 | Python | {
"docstring": "\n Return a dictionary of request.META with sensitive values redacted.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | def get_safe_request_meta(self, request):
if not hasattr(request, "META"):
return {}
return {k: self.cleanse_setting(k, v) for k, v in request.META.items()}
|
|
70,802 | 245,466 | 23 | mmdet/models/data_preprocessors/data_preprocessor.py | 9 | 7 | def cuda(self, *args, **kwargs) -> nn.Module:
return self.data_preprocessor.cuda(*args, ** | [Feature] Support MultiDataPreprocessor (#8495)
* Support MultiDataPreprocessor
* Fix some commits
* Fix a bug
* Inherit from the BaseDataPreprocessor | cuda | b564ad32895ac4c2c0a18ba0e32c8c5ccb593df4 | mmdetection | data_preprocessor.py | 8 | 7 | https://github.com/open-mmlab/mmdetection.git | 1 | 29 | 0 | 8 | 47 | Python | {
"docstring": "Overrides this method to set the :attr:`device`\n\n Returns:\n nn.Module: The model itself.\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 12,
"vocab_size": 12
} | def cuda(self, *args, **kwargs) -> nn.Module:
return self.data_preprocessor.cuda(*args, **kwargs)
|
|
16,023 | 73,478 | 19 | wagtail/contrib/settings/models.py | 5 | 7 | def get_cache_attr_name(cls):
return "_{}.{}".format(cls._meta.app_label, cl | Reformat with black | get_cache_attr_name | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | models.py | 11 | 2 | https://github.com/wagtail/wagtail.git | 1 | 27 | 0 | 5 | 47 | Python | {
"docstring": "\n Returns the name of the attribute that should be used to store\n a reference to the fetched/created object on a request.\n ",
"language": "en",
"n_whitespaces": 43,
"n_words": 21,
"vocab_size": 17
} | def get_cache_attr_name(cls):
return "_{}.{}".format(cls._meta.app_label, cls._meta.model_name).lower()
|
|
5,191 | 29,046 | 485 | saleor/graphql/product/mutations/products.py | 77 | 25 | def get_instance(cls, info, **data):
object_id = data.get("id")
object_sku = data.get | Allow to update/delete product variant by providing SKU (#10861)
* Allow to update/delete product variants by providing SKU
* Review changes
* Add SKU argument to ProductVariantStocksUpdate/Delete mutations
* Review fixes
* CHANGELOG.md update
* Code readability improvement | get_instance | 0b46c89dfd9e5e22defb45cbd9869403a7817320 | saleor | products.py | 18 | 29 | https://github.com/saleor/saleor.git | 5 | 140 | 0 | 58 | 242 | Python | {
"docstring": "Prefetch related fields that are needed to process the mutation.\n\n If we are updating an instance and want to update its attributes,\n # prefetch them.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 25,
"vocab_size": 23
} | def get_instance(cls, info, **data):
object_id = data.get("id")
object_sku = data.get("sku")
attributes = data.get("attributes")
if attributes:
# Prefetches needed by AttributeAssignmentMixin and
# associate_attribute_values_to_instance
qs = cls.Meta.model.objects.prefetch_related(
"product__product_type__variant_attributes__values",
"product__product_type__attributevariant",
)
else:
# Use the default queryset.
qs = models.ProductVariant.objects.all()
if object_id:
return cls.get_node_or_error(
info, object_id, only_type="ProductVariant", qs=qs
)
elif object_sku:
instance = qs.filter(sku=object_sku).first()
if not instance:
raise ValidationError(
{
"sku": ValidationError(
"Couldn't resolve to a node: %s" % object_sku,
code="not_found",
)
}
)
return instance
else:
return cls._meta.model()
|
|
39,495 | 163,773 | 71 | pandas/core/indexes/base.py | 22 | 9 | def _can_use_libjoin(self) -> bool:
if type(self) is Index:
# excludes EAs
return isinstance(self.dtype, np.dtype)
return not is_interval_dtype(self.dtype) | ENH: ExtensionEngine (#45514) | _can_use_libjoin | 4248b23371a70b339a2c16b8e5caca9c2e5897f8 | pandas | base.py | 10 | 7 | https://github.com/pandas-dev/pandas.git | 2 | 35 | 0 | 19 | 61 | Python | {
"docstring": "\n Whether we can use the fastpaths implement in _libs.join\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | def _can_use_libjoin(self) -> bool:
if type(self) is Index:
# excludes EAs
return isinstance(self.dtype, np.dtype)
return not is_interval_dtype(self.dtype)
# --------------------------------------------------------------------
# Uncategorized Methods
|
|
47,589 | 196,089 | 113 | sympy/combinatorics/free_groups.py | 34 | 13 | def sub_syllables(self, from_i, to_j):
if not isinstance(from_i, int) or not isinstance(to_j, int):
raise ValueError("both arguments should be integers")
group = self.group
if to_j <= from_i:
return group.identity
else:
r = tuple(self.array_form[from_i: t | Updated import locations | sub_syllables | 498015021131af4dbb07eb110e5badaba8250c7b | sympy | free_groups.py | 13 | 9 | https://github.com/sympy/sympy.git | 4 | 68 | 0 | 30 | 110 | Python | {
"docstring": "\n `sub_syllables` returns the subword of the associative word `self` that\n consists of syllables from positions `from_to` to `to_j`, where\n `from_to` and `to_j` must be positive integers and indexing is done\n with origin 0.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import free_group\n >>> f, a, b = free_group(\"a, b\")\n >>> w = a**5*b*a**2*b**-4*a\n >>> w.sub_syllables(1, 2)\n b\n >>> w.sub_syllables(3, 3)\n <identity>\n\n ",
"language": "en",
"n_whitespaces": 158,
"n_words": 59,
"vocab_size": 48
} | def sub_syllables(self, from_i, to_j):
if not isinstance(from_i, int) or not isinstance(to_j, int):
raise ValueError("both arguments should be integers")
group = self.group
if to_j <= from_i:
return group.identity
else:
r = tuple(self.array_form[from_i: to_j])
return group.dtype(r)
|
|
@set_module('numpy') | 38,760 | 160,855 | 180 | numpy/core/_ufunc_config.py | 72 | 19 | def seterr(all=None, divide=None, over=None, under=None, invalid=None):
pyvals = umath.geterrobj()
old = geterr()
if divide is None:
divide = all or old['divide']
if over is None:
over = all or old['over']
if under is None:
under = all or old['under']
if i | DOC: Fixup docs for improved scalar floating point warning message | seterr | 2223a09864e4ccf5206b78684d3db5c853336df9 | numpy | _ufunc_config.py | 13 | 18 | https://github.com/numpy/numpy.git | 9 | 145 | 1 | 39 | 235 | Python | {
"docstring": "\n Set how floating-point errors are handled.\n\n Note that operations on integer scalar types (such as `int16`) are\n handled like floating point, and are affected by these settings.\n\n Parameters\n ----------\n all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional\n Set treatment for all types of floating-point errors at once:\n\n - ignore: Take no action when the exception occurs.\n - warn: Print a `RuntimeWarning` (via the Python `warnings` module).\n - raise: Raise a `FloatingPointError`.\n - call: Call a function specified using the `seterrcall` function.\n - print: Print a warning directly to ``stdout``.\n - log: Record error in a Log object specified by `seterrcall`.\n\n The default is not to change the current behavior.\n divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional\n Treatment for division by zero.\n over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional\n Treatment for floating-point overflow.\n under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional\n Treatment for floating-point underflow.\n invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional\n Treatment for invalid floating-point operation.\n\n Returns\n -------\n old_settings : dict\n Dictionary containing the old settings.\n\n See also\n --------\n seterrcall : Set a callback function for the 'call' mode.\n geterr, geterrcall, errstate\n\n Notes\n -----\n The floating-point exceptions are defined in the IEEE 754 standard [1]_:\n\n - Division by zero: infinite result obtained from finite numbers.\n - Overflow: result too large to be expressed.\n - Underflow: result so close to zero that some precision\n was lost.\n - Invalid operation: result is not an expressible number, typically\n indicates that a NaN was produced.\n\n .. [1] https://en.wikipedia.org/wiki/IEEE_754\n\n Examples\n --------\n >>> old_settings = np.seterr(all='ignore') #seterr to known value\n >>> np.seterr(over='raise')\n {'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}\n >>> np.seterr(**old_settings) # reset to default\n {'divide': 'ignore', 'over': 'raise', 'under': 'ignore', 'invalid': 'ignore'}\n\n >>> np.int16(32000) * np.int16(3)\n 30464\n >>> old_settings = np.seterr(all='warn', over='raise')\n >>> np.int16(32000) * np.int16(3)\n Traceback (most recent call last):\n File \"<stdin>\", line 1, in <module>\n FloatingPointError: overflow encountered in scalar multiply\n\n >>> old_settings = np.seterr(all='print')\n >>> np.geterr()\n {'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}\n >>> np.int16(32000) * np.int16(3)\n 30464\n\n ",
"language": "en",
"n_whitespaces": 577,
"n_words": 336,
"vocab_size": 195
} | def seterr(all=None, divide=None, over=None, under=None, invalid=None):
pyvals = umath.geterrobj()
old = geterr()
if divide is None:
divide = all or old['divide']
if over is None:
over = all or old['over']
if under is None:
under = all or old['under']
if invalid is None:
invalid = all or old['invalid']
maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) +
(_errdict[over] << SHIFT_OVERFLOW) +
(_errdict[under] << SHIFT_UNDERFLOW) +
(_errdict[invalid] << SHIFT_INVALID))
pyvals[1] = maskvalue
umath.seterrobj(pyvals)
return old
@set_module('numpy') |
3,339 | 20,351 | 677 | pipenv/patched/notpip/_vendor/pygments/formatters/img.py | 144 | 37 | def _create_drawables(self, tokensource):
lineno = charno = maxcharno = 0
maxlinelength = linelength = 0
for ttype, value in tokensource:
while ttype not in self.styles:
ttype = ttype.parent
style = self.styles[ttype]
# TODO: make sure tab expansion happens earlier in the chain. It
# really ought to be done on the input, as to do it right here is
# quite complex.
value = value.expandtabs(4)
lines = value.splitlines(True)
# print lines
for i, line in enumerate(lines):
temp = line.rstrip('\n')
if temp:
self._draw_text(
self._get_text_pos(linelength, lineno),
temp,
font = self._get_style_font(style),
text_fg = self._get_text_color(style),
text_bg | check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | _create_drawables | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | img.py | 16 | 31 | https://github.com/pypa/pipenv.git | 6 | 197 | 0 | 89 | 318 | Python | {
"docstring": "\n Create drawables for the token content.\n ",
"language": "en",
"n_whitespaces": 21,
"n_words": 6,
"vocab_size": 6
} | def _create_drawables(self, tokensource):
lineno = charno = maxcharno = 0
maxlinelength = linelength = 0
for ttype, value in tokensource:
while ttype not in self.styles:
ttype = ttype.parent
style = self.styles[ttype]
# TODO: make sure tab expansion happens earlier in the chain. It
# really ought to be done on the input, as to do it right here is
# quite complex.
value = value.expandtabs(4)
lines = value.splitlines(True)
# print lines
for i, line in enumerate(lines):
temp = line.rstrip('\n')
if temp:
self._draw_text(
self._get_text_pos(linelength, lineno),
temp,
font = self._get_style_font(style),
text_fg = self._get_text_color(style),
text_bg = self._get_text_bg_color(style),
)
temp_width, temp_hight = self.fonts.get_text_size(temp)
linelength += temp_width
maxlinelength = max(maxlinelength, linelength)
charno += len(temp)
maxcharno = max(maxcharno, charno)
if line.endswith('\n'):
# add a line for each extra line in the value
linelength = 0
charno = 0
lineno += 1
self.maxlinelength = maxlinelength
self.maxcharno = maxcharno
self.maxlineno = lineno
|
|
89,156 | 290,030 | 57 | homeassistant/util/dt.py | 26 | 12 | def __monotonic_time_coarse() -> float:
return time.clock_gett | Significantly reduce clock_gettime syscalls on platforms with broken vdso (#81257) | __monotonic_time_coarse | 1589c06203c0bc9f87adcc97fe34d5c52aaf403a | core | dt.py | 13 | 12 | https://github.com/home-assistant/core.git | 1 | 14 | 0 | 24 | 96 | Python | {
"docstring": "Return a monotonic time in seconds.\n\n This is the coarse version of time_monotonic, which is faster but less accurate.\n\n Since many arm64 and 32-bit platforms don't support VDSO with time.monotonic\n because of errata, we can't rely on the kernel to provide a fast\n monotonic time.\n\n https://lore.kernel.org/lkml/[email protected]/\n ",
"language": "en",
"n_whitespaces": 64,
"n_words": 46,
"vocab_size": 41
} | def __monotonic_time_coarse() -> float:
return time.clock_gettime(CLOCK_MONOTONIC_COARSE)
monotonic_time_coarse = time.monotonic
with suppress(Exception):
if (
platform.system() == "Linux"
and abs(time.monotonic() - __monotonic_time_coarse()) < 1
):
monotonic_time_coarse = __monotonic_time_coarse
|
|
5,803 | 31,789 | 487 | tests/test_feature_extraction_common.py | 129 | 32 | def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
image_inputs = []
for i in range(feature_ex | Compute min_resolution in prepare_image_inputs (#17915)
Co-authored-by: ydshieh <[email protected]> | prepare_image_inputs | 6aae59d0b54f04c13a79f80b708622db8e8a17e4 | transformers | test_feature_extraction_common.py | 17 | 31 | https://github.com/huggingface/transformers.git | 11 | 226 | 0 | 87 | 344 | Python | {
"docstring": "This function prepares a list of PIL images, or a list of numpy arrays if one specifies numpify=True,\n or a list of PyTorch tensors if one specifies torchify=True.\n ",
"language": "en",
"n_whitespaces": 34,
"n_words": 28,
"vocab_size": 18
} | def prepare_image_inputs(feature_extract_tester, equal_resolution=False, numpify=False, torchify=False):
assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time"
if equal_resolution:
image_inputs = []
for i in range(feature_extract_tester.batch_size):
image_inputs.append(
np.random.randint(
255,
size=(
feature_extract_tester.num_channels,
feature_extract_tester.max_resolution,
feature_extract_tester.max_resolution,
),
dtype=np.uint8,
)
)
else:
image_inputs = []
# To avoid getting image width/height 0
min_resolution = feature_extract_tester.min_resolution
if getattr(feature_extract_tester, "size_divisor", None):
# If `size_divisor` is defined, the image needs to have width/size >= `size_divisor`
min_resolution = max(feature_extract_tester.size_divisor, min_resolution)
for i in range(feature_extract_tester.batch_size):
width, height = np.random.choice(np.arange(min_resolution, feature_extract_tester.max_resolution), 2)
image_inputs.append(
np.random.randint(255, size=(feature_extract_tester.num_channels, width, height), dtype=np.uint8)
)
if not numpify and not torchify:
# PIL expects the channel dimension as last dimension
image_inputs = [Image.fromarray(np.moveaxis(x, 0, -1)) for x in image_inputs]
if torchify:
image_inputs = [torch.from_numpy(x) for x in image_inputs]
return image_inputs
|
|
81,356 | 275,266 | 22 | keras/optimizers/optimizer_experimental/optimizer.py | 8 | 6 | def _update_step_xla(self, gradient, variable, key):
return self._update_step(gradient, | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | _update_step_xla | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | optimizer.py | 7 | 2 | https://github.com/keras-team/keras.git | 1 | 21 | 0 | 8 | 32 | Python | {
"docstring": "A wrapper of `update_step` to enable XLA acceleration.\n\n Due to `tf.function` tracing mechanism, for (gradient, variable) pairs of\n the same shape and dtype, the execution graph always invoke the first\n pair it has seen. Thus, we need a `key` argument to make each\n (gradient, variable) pair unique. In additions, XLA cannot understand\n string input, so the key is an integer.\n\n Args:\n gradient: backpropagated gradient of the given variable.\n variable: variable whose value needs to be updated.\n key (int): a unique key that identifies the variable.\n\n Returns:\n An `Operation` that applies the specified gradients.\n ",
"language": "en",
"n_whitespaces": 185,
"n_words": 93,
"vocab_size": 73
} | def _update_step_xla(self, gradient, variable, key):
return self._update_step(gradient, variable)
|
|
21,557 | 102,626 | 104 | chia/rpc/wallet_rpc_api.py | 33 | 9 | async def log_in(self, request):
fingerprint = request["fingerprint"]
if self.service.logged_in_fingerprint == fingerprint:
return {"fingerpri | Merge standalone wallet into main (#9793)
* wallet changes from pac
* cat changes
* pool tests
* pooling tests passing
* offers
* lint
* mempool_mode
* black
* linting
* workflow files
* flake8
* more cleanup
* renamed
* remove obsolete test, don't cast announcement
* memos are not only bytes32
* trade renames
* fix rpcs, block_record
* wallet rpc, recompile settlement clvm
* key derivation
* clvm tests
* lgtm issues and wallet peers
* stash
* rename
* mypy linting
* flake8
* bad initializer
* flaky tests
* Make CAT wallets only create on verified hints (#9651)
* fix clvm tests
* return to log lvl warn
* check puzzle unhardened
* public key, not bytes. api caching change
* precommit changes
* remove unused import
* mypy ci file, tests
* ensure balance before creating a tx
* Remove CAT logic from full node test (#9741)
* Add confirmations and sleeps for wallet (#9742)
* use pool executor
* rever merge mistakes/cleanup
* Fix trade test flakiness (#9751)
* remove precommit
* older version of black
* lint only in super linter
* Make announcements in RPC be objects instead of bytes (#9752)
* Make announcements in RPC be objects instead of bytes
* Lint
* misc hint'ish cleanup (#9753)
* misc hint'ish cleanup
* unremove some ci bits
* Use main cached_bls.py
* Fix bad merge in main_pac (#9774)
* Fix bad merge at 71da0487b9cd5564453ec24b76f1ac773c272b75
* Remove unused ignores
* more unused ignores
* Fix bad merge at 3b143e705057d6c14e2fb3e00078aceff0552d7e
* One more byte32.from_hexstr
* Remove obsolete test
* remove commented out
* remove duplicate payment object
* remove long sync
* remove unused test, noise
* memos type
* bytes32
* make it clear it's a single state at a time
* copy over asset ids from pacr
* file endl linter
* Update chia/server/ws_connection.py
Co-authored-by: dustinface <[email protected]>
Co-authored-by: Matt Hauff <[email protected]>
Co-authored-by: Kyle Altendorf <[email protected]>
Co-authored-by: dustinface <[email protected]> | log_in | 89f15f591cc3cc3e8ae40e95ffc802f7f2561ece | chia-blockchain | wallet_rpc_api.py | 10 | 9 | https://github.com/Chia-Network/chia-blockchain.git | 3 | 67 | 0 | 25 | 120 | Python | {
"docstring": "\n Logs in the wallet with a specific key.\n ",
"language": "en",
"n_whitespaces": 23,
"n_words": 8,
"vocab_size": 8
} | async def log_in(self, request):
fingerprint = request["fingerprint"]
if self.service.logged_in_fingerprint == fingerprint:
return {"fingerprint": fingerprint}
await self._stop_wallet()
started = await self.service._start(fingerprint)
if started is True:
return {"fingerprint": fingerprint}
return {"success": False, "error": "Unknown Error"}
|
|
17,927 | 85,091 | 56 | zerver/webhooks/bitbucket2/tests.py | 18 | 6 | def test_bitbucket2_on_push_commits_multiple_committers_with_others(self) -> None:
commit_info = "* first commit ([84b96adc644](https://bitbucket.org/kolaszek/repository-na | webhooks: Pick a more reasonable length for short sha.
7 characters are not enough for large projects, so we change
it to reasonably longer. As an example, The Linux kernel needs
at least 11 characters of sha in its shortened form to identify
a revision. We pick 11 so it should work for most of the projects.
Signed-off-by: Zixuan James Li <[email protected]> | test_bitbucket2_on_push_commits_multiple_committers_with_others | 4e4689949438735622bdf669f05d218c671e7e01 | zulip | tests.py | 9 | 6 | https://github.com/zulip/zulip.git | 1 | 24 | 0 | 16 | 52 | Python | {
"docstring": "Tomasz [pushed](https://bitbucket.org/kolaszek/repository-name/branch/master) 10 commits to branch master. Commits by Tomasz (4), James (3), Brendon (2) and others (1).\\n\\n{commit_info*9}* first commit ([84b96adc644](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))",
"language": "en",
"n_whitespaces": 20,
"n_words": 21,
"vocab_size": 20
} | def test_bitbucket2_on_push_commits_multiple_committers_with_others(self) -> None:
commit_info = "* first commit ([84b96adc644](https://bitbucket.org/kolaszek/repository-name/commits/84b96adc644a30fd6465b3d196369d880762afed))\n"
expected_message = f
self.check_webhook(
"push_multiple_committers_with_others", TOPIC_BRANCH_EVENTS, expected_message
)
|
|
117,623 | 321,275 | 646 | qutebrowser/mainwindow/tabwidget.py | 122 | 47 | def drawControl(self, element, opt, p, widget=None):
if element not in [QStyle.ControlElement.CE_TabBarTab, QStyle.ControlElement.CE_TabBarTabShape,
QStyle.ControlElement.CE_TabBarTabLabel]:
# Let the real style draw it.
self._style.drawControl(element, opt, p, widget)
return
layouts = self._tab_layout(opt)
if layouts is None:
log.misc.warning("Could not get layouts for tab!")
return
if element == QStyle.ControlElement.CE_TabBarTab:
# We override this so we can control TabBarTabShape/TabBarTabLabel.
self.drawControl(QStyle.ControlElement.CE_TabBarTabShape, opt, p, widget)
self.drawControl(QStyle.ControlElement.CE_TabBarTabLabel, opt, p, widget)
elif element == QStyle.ControlElement.CE_TabBarTabShape:
p.fillRect(opt.rect, opt.palette.window())
self._draw_indicator(layouts, opt, p)
# We use super() rather than self._style here because we don't want
# any sophisticated drawing.
super().drawControl(QStyle.ControlElement.CE_TabBarTabShape, opt, p, widget)
elif element == QStyle.ControlElement.CE_TabBarTabLabe | Run scripts/dev/rewrite_enums.py | drawControl | 0877fb0d78635692e481c8bde224fac5ad0dd430 | qutebrowser | tabwidget.py | 15 | 30 | https://github.com/qutebrowser/qutebrowser.git | 8 | 286 | 0 | 86 | 435 | Python | {
"docstring": "Override drawControl to draw odd tabs in a different color.\n\n Draws the given element with the provided painter with the style\n options specified by option.\n\n Args:\n element: ControlElement\n opt: QStyleOption\n p: QPainter\n widget: QWidget\n ",
"language": "en",
"n_whitespaces": 106,
"n_words": 34,
"vocab_size": 31
} | def drawControl(self, element, opt, p, widget=None):
if element not in [QStyle.ControlElement.CE_TabBarTab, QStyle.ControlElement.CE_TabBarTabShape,
QStyle.ControlElement.CE_TabBarTabLabel]:
# Let the real style draw it.
self._style.drawControl(element, opt, p, widget)
return
layouts = self._tab_layout(opt)
if layouts is None:
log.misc.warning("Could not get layouts for tab!")
return
if element == QStyle.ControlElement.CE_TabBarTab:
# We override this so we can control TabBarTabShape/TabBarTabLabel.
self.drawControl(QStyle.ControlElement.CE_TabBarTabShape, opt, p, widget)
self.drawControl(QStyle.ControlElement.CE_TabBarTabLabel, opt, p, widget)
elif element == QStyle.ControlElement.CE_TabBarTabShape:
p.fillRect(opt.rect, opt.palette.window())
self._draw_indicator(layouts, opt, p)
# We use super() rather than self._style here because we don't want
# any sophisticated drawing.
super().drawControl(QStyle.ControlElement.CE_TabBarTabShape, opt, p, widget)
elif element == QStyle.ControlElement.CE_TabBarTabLabel:
if not opt.icon.isNull() and layouts.icon.isValid():
self._draw_icon(layouts, opt, p)
alignment = (config.cache['tabs.title.alignment'] |
Qt.AlignmentFlag.AlignVCenter | Qt.TextFlag.TextHideMnemonic)
self._style.drawItemText(p,
layouts.text,
int(alignment),
opt.palette,
bool(opt.state & QStyle.StateFlag.State_Enabled),
opt.text,
QPalette.ColorRole.WindowText)
else:
raise ValueError("Invalid element {!r}".format(element))
|
|
4,685 | 24,033 | 110 | ppocr/modeling/heads/rec_abinet_head.py | 48 | 22 | def _get_mask(length, max_length):
length = length.unsqueeze(-1)
B = paddle.shape(length)[0]
| [New Rec] add vitstr and ABINet | _get_mask | c503dc2f9352272615dc3cc11737b833036c6ccc | PaddleOCR | rec_abinet_head.py | 12 | 14 | https://github.com/PaddlePaddle/PaddleOCR.git | 1 | 148 | 0 | 35 | 230 | Python | {
"docstring": "Generate a square mask for the sequence. The masked positions are filled with float('-inf').\n Unmasked positions are filled with float(0.0).\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 20,
"vocab_size": 16
} | def _get_mask(length, max_length):
length = length.unsqueeze(-1)
B = paddle.shape(length)[0]
grid = paddle.arange(0, max_length).unsqueeze(0).tile([B, 1])
zero_mask = paddle.zeros([B, max_length], dtype='float32')
inf_mask = paddle.full([B, max_length], '-inf', dtype='float32')
diag_mask = paddle.diag(
paddle.full(
[max_length], '-inf', dtype=paddle.float32),
offset=0,
name=None)
mask = paddle.where(grid >= length, inf_mask, zero_mask)
mask = mask.unsqueeze(1) + diag_mask
return mask.unsqueeze(1)
|
|
26,358 | 118,683 | 204 | lib/tests/streamlit/config_test.py | 52 | 18 | def test_config_options_removed_on_reparse(self):
global_config_path = "/mock/home/folder/.streamlit/config.toml"
makedirs_patch = pat | Report sharing removal (#4260)
The report sharing feature is a substantial but completely unused portion of the code in Streamlit's underlying machinery. The feature was created early on, used by just a few groups, and has not been used by anyone for a while, as indicated by no activity in the associated S3 buckets. This commit removes that code to make the remaining code easier to navigate and understand. | test_config_options_removed_on_reparse | dd9084523e365e637443ea351eaaaa25f52d8412 | streamlit | config_test.py | 12 | 25 | https://github.com/streamlit/streamlit.git | 1 | 147 | 0 | 32 | 268 | Python | {
"docstring": "Test that config options that are removed in a file are also removed\n from our _config_options dict.\n [theme]\n base = \"dark\"\n font = \"sans serif\"\n \n [theme]\n base = \"dark\"\n ",
"language": "en",
"n_whitespaces": 86,
"n_words": 29,
"vocab_size": 21
} | def test_config_options_removed_on_reparse(self):
global_config_path = "/mock/home/folder/.streamlit/config.toml"
makedirs_patch = patch("streamlit.config.os.makedirs")
makedirs_patch.return_value = True
pathexists_patch = patch("streamlit.config.os.path.exists")
pathexists_patch.side_effect = lambda path: path == global_config_path
global_config =
open_patch = patch("streamlit.config.open", mock_open(read_data=global_config))
with open_patch, makedirs_patch, pathexists_patch:
config.get_config_options()
self.assertEqual("dark", config.get_option("theme.base"))
self.assertEqual("sans serif", config.get_option("theme.font"))
global_config =
open_patch = patch("streamlit.config.open", mock_open(read_data=global_config))
with open_patch, makedirs_patch, pathexists_patch:
config.get_config_options(force_reparse=True)
self.assertEqual("dark", config.get_option("theme.base"))
self.assertEqual(None, config.get_option("theme.font"))
|
|
39,411 | 163,265 | 511 | pandas/core/indexes/base.py | 178 | 27 | def __getitem__(self, key):
getitem = self._data.__getitem__
if is_integer(key) or is_float(key):
# GH#44051 exclude bool, which would return a 2d ndarray
key = com.cast_scalar_indexer(key, warn_float=True)
return getitem(key)
if isinstance(key, slice):
# This case is separated from the conditional above to avoid
# pessimization com.is_bool_indexer and ndim checks.
result = getitem(key)
# Going through simple_new for performance.
return type(self)._simple_new(result, name=self._name)
if com.is_bool_indexer(key):
# if we have list[bools, length=1e5] then doing this check+convert
# takes 166 µs + 2.1 ms and cuts the ndarray.__getitem__
# time below from 3.8 ms to 496 µs
# if we already have ndarray[bool], the overhead is 1.4 µs or .25%
key = np.asarray(key, dtype=bool)
result = getitem(key)
# Because we ruled out integer above, we always get an arraylike here
if result.ndim > 1:
deprecate_ndim_indexing(result)
if hasattr(result, "_ndarray"):
# error: Item "ndarray[Any, Any]" of "Union[ExtensionArray,
# ndarray[Any, Any]]" has no attribute "_ndarray" [union-attr]
# i.e. NDArrayBackedExtensionArray
# Unpack to ndarray for MPL compat
return result._ndarray # type: ignore[union-attr]
return result
# NB: Using | TYP: Ignore numpy related issues (#45244) | __getitem__ | d603d43df2057ecdf74010d9dadc735e37f8f7b5 | pandas | base.py | 11 | 17 | https://github.com/pandas-dev/pandas.git | 7 | 139 | 0 | 123 | 236 | Python | {
"docstring": "\n Override numpy.ndarray's __getitem__ method to work as desired.\n\n This function adds lists and Series as valid boolean indexers\n (ndarrays only supports ndarray with dtype=bool).\n\n If resulting ndim != 1, plain ndarray is returned instead of\n corresponding `Index` subclass.\n\n ",
"language": "en",
"n_whitespaces": 81,
"n_words": 38,
"vocab_size": 36
} | def __getitem__(self, key):
getitem = self._data.__getitem__
if is_integer(key) or is_float(key):
# GH#44051 exclude bool, which would return a 2d ndarray
key = com.cast_scalar_indexer(key, warn_float=True)
return getitem(key)
if isinstance(key, slice):
# This case is separated from the conditional above to avoid
# pessimization com.is_bool_indexer and ndim checks.
result = getitem(key)
# Going through simple_new for performance.
return type(self)._simple_new(result, name=self._name)
if com.is_bool_indexer(key):
# if we have list[bools, length=1e5] then doing this check+convert
# takes 166 µs + 2.1 ms and cuts the ndarray.__getitem__
# time below from 3.8 ms to 496 µs
# if we already have ndarray[bool], the overhead is 1.4 µs or .25%
key = np.asarray(key, dtype=bool)
result = getitem(key)
# Because we ruled out integer above, we always get an arraylike here
if result.ndim > 1:
deprecate_ndim_indexing(result)
if hasattr(result, "_ndarray"):
# error: Item "ndarray[Any, Any]" of "Union[ExtensionArray,
# ndarray[Any, Any]]" has no attribute "_ndarray" [union-attr]
# i.e. NDArrayBackedExtensionArray
# Unpack to ndarray for MPL compat
return result._ndarray # type: ignore[union-attr]
return result
# NB: Using _constructor._simple_new would break if MultiIndex
# didn't override __getitem__
return self._constructor._simple_new(result, name=self._name)
|
|
14,521 | 67,430 | 5 | erpnext/selling/report/sales_order_analysis/sales_order_analysis.py | 14 | 9 | def get_data(conditions, filters):
data = frappe.db.sql(
.format(
conditions=conditions
),
filters,
| style: format code with black | get_data | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | sales_order_analysis.py | 11 | 44 | https://github.com/frappe/erpnext.git | 1 | 33 | 0 | 13 | 51 | Python | {
"docstring": "\n\t\tSELECT\n\t\t\tso.transaction_date as date,\n\t\t\tsoi.delivery_date as delivery_date,\n\t\t\tso.name as sales_order,\n\t\t\tso.status, so.customer, soi.item_code,\n\t\t\tDATEDIFF(CURDATE(), soi.delivery_date) as delay_days,\n\t\t\tIF(so.status in ('Completed','To Bill'), 0, (SELECT delay_days)) as delay,\n\t\t\tsoi.qty, soi.delivered_qty,\n\t\t\t(soi.qty - soi.delivered_qty) AS pending_qty,\n\t\t\tIF((SELECT pending_qty) = 0, (TO_SECONDS(Max(dn.posting_date))-TO_SECONDS(so.transaction_date)), 0) as time_taken_to_deliver,\n\t\t\tIFNULL(SUM(sii.qty), 0) as billed_qty,\n\t\t\tsoi.base_amount as amount,\n\t\t\t(soi.delivered_qty * soi.base_rate) as delivered_qty_amount,\n\t\t\t(soi.billed_amt * IFNULL(so.conversion_rate, 1)) as billed_amount,\n\t\t\t(soi.base_amount - (soi.billed_amt * IFNULL(so.conversion_rate, 1))) as pending_amount,\n\t\t\tsoi.warehouse as warehouse,\n\t\t\tso.company, soi.name,\n\t\t\tsoi.description as description\n\t\tFROM\n\t\t\t`tabSales Order` so,\n\t\t\t(`tabSales Order Item` soi\n\t\tLEFT JOIN `tabSales Invoice Item` sii\n\t\t\tON sii.so_detail = soi.name and sii.docstatus = 1)\n\t\tLEFT JOIN `tabDelivery Note Item` dni\n\t\t\ton dni.so_detail = soi.name\n\t\tRIGHT JOIN `tabDelivery Note` dn\n\t\t\ton dni.parent = dn.name and dn.docstatus = 1\n\t\tWHERE\n\t\t\tsoi.parent = so.name\n\t\t\tand so.status not in ('Stopped', 'Closed', 'On Hold')\n\t\t\tand so.docstatus = 1\n\t\t\t{conditions}\n\t\tGROUP BY soi.name\n\t\tORDER BY so.transaction_date ASC, soi.item_code ASC\n\t",
"language": "en",
"n_whitespaces": 112,
"n_words": 146,
"vocab_size": 102
} | def get_data(conditions, filters):
data = frappe.db.sql(
.format(
conditions=conditions
),
filters,
as_dict=1,
)
return data
|
|
55,277 | 218,391 | 140 | python3.10.4/Lib/inspect.py | 40 | 16 | def getcoroutinelocals(coroutine):
frame = getattr(coroutine, "cr_frame", None)
if frame is not None:
return frame.f_locals
else:
return {}
###############################################################################
### Function Signature Object (PEP 362)
################################################### | add python 3.10.4 for windows | getcoroutinelocals | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | inspect.py | 9 | 6 | https://github.com/XX-net/XX-Net.git | 2 | 31 | 0 | 33 | 118 | Python | {
"docstring": "\n Get the mapping of coroutine local variables to their current values.\n\n A dict is returned, with the keys the local variable names and values the\n bound values.",
"language": "en",
"n_whitespaces": 36,
"n_words": 27,
"vocab_size": 22
} | def getcoroutinelocals(coroutine):
frame = getattr(coroutine, "cr_frame", None)
if frame is not None:
return frame.f_locals
else:
return {}
###############################################################################
### Function Signature Object (PEP 362)
###############################################################################
_WrapperDescriptor = type(type.__call__)
_MethodWrapper = type(all.__call__)
_ClassMethodWrapper = type(int.__dict__['from_bytes'])
_NonUserDefinedCallables = (_WrapperDescriptor,
_MethodWrapper,
_ClassMethodWrapper,
types.BuiltinFunctionType)
|
|
80,975 | 272,189 | 51 | keras/integration_test/forwardprop_test.py | 14 | 9 | def _forward_over_back_hessian(f, params, use_pfor, dtype=None):
return _vectorize_parameters(
functools.partial(_hvp, f, params),
params,
use_pfor=use_pfor,
dtype=dtype,
| Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | _forward_over_back_hessian | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | forwardprop_test.py | 9 | 7 | https://github.com/keras-team/keras.git | 1 | 39 | 0 | 13 | 55 | Python | {
"docstring": "Computes the full Hessian matrix for the scalar-valued f(*params).\n\n Args:\n f: A function taking `params` and returning a scalar.\n params: A possibly nested structure of tensors.\n use_pfor: If true, uses `tf.vectorized_map` calls instead of looping.\n dtype: Required if `use_pfor=False`. A possibly nested structure of dtypes\n (e.g. `tf.float32`) matching the structure of `f`'s returns.\n\n Returns:\n A possibly nested structure of matrix slices corresponding to `params`. Each\n slice has shape [P, p_s] where `p_s` is the number of parameters (`tf.size`)\n in the corresponding element of `params` and `P` is the total number of\n parameters (`sum_s(p_s)`). The full matrix can be obtained by concatenating\n along the second axis.\n ",
"language": "en",
"n_whitespaces": 166,
"n_words": 105,
"vocab_size": 73
} | def _forward_over_back_hessian(f, params, use_pfor, dtype=None):
return _vectorize_parameters(
functools.partial(_hvp, f, params),
params,
use_pfor=use_pfor,
dtype=dtype,
)
|
|
75,837 | 259,605 | 603 | sklearn/linear_model/_stochastic_gradient.py | 125 | 24 | def predict_proba(self, X):
check_is_fitted(self)
# TODO(1.3): Remove "log"
if self.loss in ("log_loss", "log"):
return self._predict_proba_lr(X)
elif self.loss == "modified_huber":
binary = len(self.classes_) == 2
scores = self.decision_function(X)
if binary:
prob2 = np.ones((scores.shape[0], 2))
prob = prob2[:, 1]
else:
prob = scores
np.clip(scores, -1, 1, prob)
prob += 1.0
prob /= 2.0
if binary:
prob2[:, 0] -= prob
prob = prob2
else:
# the above might assign zero to all classes, which doesn't
# normalize neatly; work around this to produce uniform
# probabilities
prob_sum = prob.sum(axis=1)
all_zero = prob_sum == 0
if np.any(all_zero):
prob[all_zero, :] = 1
prob_sum[all_zero] = len(self.classes_)
# normalize
prob /= p | DEP loss "log" in favor of "log loss" in SGDClassifier (#23046)
Co-authored-by: Julien Jerphanion <[email protected]>
Co-authored-by: Jérémie du Boisberranger <[email protected]> | predict_proba | 0c20ba744966d23ede67cffd7c5d2e0d01cd0658 | scikit-learn | _stochastic_gradient.py | 17 | 33 | https://github.com/scikit-learn/scikit-learn.git | 6 | 204 | 0 | 85 | 328 | Python | {
"docstring": "Probability estimates.\n\n This method is only available for log loss and modified Huber loss.\n\n Multiclass probability estimates are derived from binary (one-vs.-rest)\n estimates by simple normalization, as recommended by Zadrozny and\n Elkan.\n\n Binary probability estimates for loss=\"modified_huber\" are given by\n (clip(decision_function(X), -1, 1) + 1) / 2. For other loss functions\n it is necessary to perform proper probability calibration by wrapping\n the classifier with\n :class:`~sklearn.calibration.CalibratedClassifierCV` instead.\n\n Parameters\n ----------\n X : {array-like, sparse matrix}, shape (n_samples, n_features)\n Input data for prediction.\n\n Returns\n -------\n ndarray of shape (n_samples, n_classes)\n Returns the probability of the sample for each class in the model,\n where classes are ordered as they are in `self.classes_`.\n\n References\n ----------\n Zadrozny and Elkan, \"Transforming classifier scores into multiclass\n probability estimates\", SIGKDD'02,\n https://dl.acm.org/doi/pdf/10.1145/775047.775151\n\n The justification for the formula in the loss=\"modified_huber\"\n case is in the appendix B in:\n http://jmlr.csail.mit.edu/papers/volume2/zhang02c/zhang02c.pdf\n ",
"language": "en",
"n_whitespaces": 339,
"n_words": 138,
"vocab_size": 98
} | def predict_proba(self, X):
check_is_fitted(self)
# TODO(1.3): Remove "log"
if self.loss in ("log_loss", "log"):
return self._predict_proba_lr(X)
elif self.loss == "modified_huber":
binary = len(self.classes_) == 2
scores = self.decision_function(X)
if binary:
prob2 = np.ones((scores.shape[0], 2))
prob = prob2[:, 1]
else:
prob = scores
np.clip(scores, -1, 1, prob)
prob += 1.0
prob /= 2.0
if binary:
prob2[:, 0] -= prob
prob = prob2
else:
# the above might assign zero to all classes, which doesn't
# normalize neatly; work around this to produce uniform
# probabilities
prob_sum = prob.sum(axis=1)
all_zero = prob_sum == 0
if np.any(all_zero):
prob[all_zero, :] = 1
prob_sum[all_zero] = len(self.classes_)
# normalize
prob /= prob_sum.reshape((prob.shape[0], -1))
return prob
else:
raise NotImplementedError(
"predict_(log_)proba only supported when"
" loss='log_loss' or loss='modified_huber' "
"(%r given)"
% self.loss
)
|
|
5,027 | 26,573 | 216 | saleor/plugins/openid_connect/utils.py | 86 | 25 | def fetch_jwks(jwks_url) -> Optional[dict]:
response = None
try:
response = requests.get(jwks_url, timeout=REQUEST_TIMEOUT)
response.raise_for_status()
jwks = response.json()
except requests.exceptions.RequestException:
logger.exception("Unable to fetch jwks from %s", jwks_url)
raise AuthenticationError("Unable to finalize the authentication process.")
except json.JSONDecodeError:
content = response.content if response else "Unable to find the response"
logger.exception(
"Unable to decode the response from auth service with jwks. "
"Response: %s",
content,
)
raise AuthenticationError("Unable to finalize the authentication process.")
keys = jwks.get("keys", [])
if | Make OIDC plugin public (#9406)
* Make OIDC plugin public
* Add missing dependency package
* Apply changes after review
* Update changelog
* Apply changes after review
* Add const file | fetch_jwks | 7d2e77c5f235ca60a2bf3ee02f4f9a8b10b03214 | saleor | utils.py | 12 | 28 | https://github.com/saleor/saleor.git | 5 | 122 | 0 | 59 | 210 | Python | {
"docstring": "Fetch JSON Web Key Sets from a provider.\n\n Fetched keys will be stored in the cache to the reduced amount of possible\n requests.\n :raises AuthenticationError\n ",
"language": "en",
"n_whitespaces": 37,
"n_words": 25,
"vocab_size": 24
} | def fetch_jwks(jwks_url) -> Optional[dict]:
response = None
try:
response = requests.get(jwks_url, timeout=REQUEST_TIMEOUT)
response.raise_for_status()
jwks = response.json()
except requests.exceptions.RequestException:
logger.exception("Unable to fetch jwks from %s", jwks_url)
raise AuthenticationError("Unable to finalize the authentication process.")
except json.JSONDecodeError:
content = response.content if response else "Unable to find the response"
logger.exception(
"Unable to decode the response from auth service with jwks. "
"Response: %s",
content,
)
raise AuthenticationError("Unable to finalize the authentication process.")
keys = jwks.get("keys", [])
if not keys:
logger.warning("List of JWKS keys is empty")
cache.set(JWKS_KEY, keys, JWKS_CACHE_TIME)
return keys
|