ast_errors
stringlengths 0
3.2k
| d_id
int64 44
121k
| id
int64 70
338k
| n_whitespaces
int64 3
14k
| path
stringlengths 8
134
| n_words
int64 4
4.82k
| n_identifiers
int64 1
131
| random_cut
stringlengths 16
15.8k
| commit_message
stringlengths 2
15.3k
| fun_name
stringlengths 1
84
| commit_id
stringlengths 40
40
| repo
stringlengths 3
28
| file_name
stringlengths 5
79
| ast_levels
int64 6
31
| nloc
int64 1
548
| url
stringlengths 31
59
| complexity
int64 1
66
| token_counts
int64 6
2.13k
| n_ast_errors
int64 0
28
| vocab_size
int64 4
1.11k
| n_ast_nodes
int64 15
19.2k
| language
stringclasses 1
value | documentation
dict | code
stringlengths 101
62.2k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97,748 | 298,807 | 31 | homeassistant/components/somfy/climate.py | 10 | 9 | def hvac_modes(self) -> list[HVACMode]:
hvac_state = HVAC_MODES_MAPPING[self._climat | Use climate enums in somfy (#70739) | hvac_modes | 9342a1b5777a0d0d5d289c7f5b90cf059152d6af | core | climate.py | 10 | 8 | https://github.com/home-assistant/core.git | 1 | 31 | 0 | 10 | 50 | Python | {
"docstring": "Return the list of available hvac operation modes.\n\n HEAT and COOL mode are exclusive. End user has to enable a mode manually within the Somfy application.\n So only one mode can be displayed. Auto mode is a scheduler.\n ",
"language": "en",
"n_whitespaces": 59,
"n_words": 38,
"vocab_size": 33
} | def hvac_modes(self) -> list[HVACMode]:
hvac_state = HVAC_MODES_MAPPING[self._climate.get_hvac_state()]
return [HVACMode.AUTO, hvac_state]
|
|
8,242 | 44,348 | 175 | tests/operators/test_python.py | 46 | 17 | def _assert_expected_task_states(self, dagrun, expected_states):
tis = dagrun.get_task_instances()
for ti in tis:
try:
expected_state = expected_states[ti.task_id]
except KeyError:
raise ValueError(f"Invalid task id {ti.task_id} found!")
else:
assert ti.state == expected_state
all_downstream_skipp | Add ShortCircuitOperator configurability for respecting downstream trigger rules (#20044)
* Add short-circuit mode handling | _assert_expected_task_states | 1970845c11ef0cfe4b41a8497a212aebc59bc1e2 | airflow | test_python.py | 15 | 9 | https://github.com/apache/airflow.git | 3 | 49 | 0 | 37 | 160 | Python | {
"docstring": "Helper function that asserts `TaskInstances` of a given `task_id` are in a given state.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 12
} | def _assert_expected_task_states(self, dagrun, expected_states):
tis = dagrun.get_task_instances()
for ti in tis:
try:
expected_state = expected_states[ti.task_id]
except KeyError:
raise ValueError(f"Invalid task id {ti.task_id} found!")
else:
assert ti.state == expected_state
all_downstream_skipped_states = {
"short_circuit": State.SUCCESS,
"op1": State.SKIPPED,
"op2": State.SKIPPED,
}
all_success_states = {"short_circuit": State.SUCCESS, "op1": State.SUCCESS, "op2": State.SUCCESS}
|
|
@frappe.whitelist() | 14,508 | 67,378 | 63 | erpnext/selling/page/point_of_sale/point_of_sale.py | 91 | 22 | def set_customer_info(fieldname, customer, value=""):
if fieldname == "loyalty_program":
frappe.db.set_value("Customer", customer, "loyalty_program", value)
contact = frappe.get_cached_value("Customer", customer, "customer_primary_contact")
if not contact:
contact = frappe.db.sql(
,
(customer),
as_dict=1,
)
contact = contact[0].get("parent") if contact else None
if not contact:
new_contact = frappe.new_doc("Contact")
new_contact.is_primary_contact = 1
new_contact.first_name = customer
new_contact.set("links", [{"link_doctype": "Customer", "link_name": customer}])
new_contact.save()
contact = new_contact.name
frappe.db.set_value("Customer", customer, "customer_primary_contact", contact)
contact_doc = frappe.get_doc("Contact", contact)
if fieldname == "email_id":
contact_doc.se | style: format code with black | set_customer_info | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | point_of_sale.py | 14 | 34 | https://github.com/frappe/erpnext.git | 7 | 233 | 1 | 57 | 411 | Python | {
"docstring": "\n\t\t\tSELECT parent FROM `tabDynamic Link`\n\t\t\tWHERE\n\t\t\t\tparenttype = 'Contact' AND\n\t\t\t\tparentfield = 'links' AND\n\t\t\t\tlink_doctype = 'Customer' AND\n\t\t\t\tlink_name = %s\n\t\t\t",
"language": "en",
"n_whitespaces": 15,
"n_words": 21,
"vocab_size": 16
} | def set_customer_info(fieldname, customer, value=""):
if fieldname == "loyalty_program":
frappe.db.set_value("Customer", customer, "loyalty_program", value)
contact = frappe.get_cached_value("Customer", customer, "customer_primary_contact")
if not contact:
contact = frappe.db.sql(
,
(customer),
as_dict=1,
)
contact = contact[0].get("parent") if contact else None
if not contact:
new_contact = frappe.new_doc("Contact")
new_contact.is_primary_contact = 1
new_contact.first_name = customer
new_contact.set("links", [{"link_doctype": "Customer", "link_name": customer}])
new_contact.save()
contact = new_contact.name
frappe.db.set_value("Customer", customer, "customer_primary_contact", contact)
contact_doc = frappe.get_doc("Contact", contact)
if fieldname == "email_id":
contact_doc.set("email_ids", [{"email_id": value, "is_primary": 1}])
frappe.db.set_value("Customer", customer, "email_id", value)
elif fieldname == "mobile_no":
contact_doc.set("phone_nos", [{"phone": value, "is_primary_mobile_no": 1}])
frappe.db.set_value("Customer", customer, "mobile_no", value)
contact_doc.save()
@frappe.whitelist() |
15,725 | 71,742 | 152 | wagtail/admin/tests/pages/test_unpublish_page.py | 46 | 19 | def test_unpublish_not_include_children_view_post(self):
# Post to the unpublish page
response = self.client.post(
reverse("wagtailadmin_pages:unpublish", args=(self.test_page.id,)), {}
)
# Should be redirected to explorer page
self.assertRedirects(
response, reverse("wagtailadmin_explore", args=(self.root_page.id,))
)
# Check that the page was unpublished
self.assertFalse(SimplePage.objects.get(id=self.test_page.id).live)
# Check that the descendant pages wer | Reformat with black | test_unpublish_not_include_children_view_post | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | test_unpublish_page.py | 14 | 10 | https://github.com/wagtail/wagtail.git | 1 | 118 | 0 | 34 | 192 | Python | {
"docstring": "\n This posts to the unpublish view and checks that the page was unpublished but its descendants were not\n ",
"language": "en",
"n_whitespaces": 33,
"n_words": 18,
"vocab_size": 17
} | def test_unpublish_not_include_children_view_post(self):
# Post to the unpublish page
response = self.client.post(
reverse("wagtailadmin_pages:unpublish", args=(self.test_page.id,)), {}
)
# Should be redirected to explorer page
self.assertRedirects(
response, reverse("wagtailadmin_explore", args=(self.root_page.id,))
)
# Check that the page was unpublished
self.assertFalse(SimplePage.objects.get(id=self.test_page.id).live)
# Check that the descendant pages were not unpublished
self.assertTrue(SimplePage.objects.get(id=self.test_child_page.id).live)
self.assertTrue(SimplePage.objects.get(id=self.test_another_child_page.id).live)
|
|
39,919 | 167,015 | 368 | pandas/io/json/_json.py | 75 | 23 | def _get_data_from_filepath(self, filepath_or_buffer):
# if it is a string but the file does not exist, it might be a JSON string
filepath_or_buffer = stringify_path(filepath_or_buffer)
if (
not isinstance(filepath_or_buffer, str)
or is_url(filepath_or_buffer)
or is_fsspec_url(filepath_or_buffer)
or file_exists(filepath_or_buffer)
):
self.handles = get_handle(
filepath_or_buffer,
"r",
encoding=self.encoding,
compression=self.compression,
storage_options=self.storage_options,
errors=self.encoding_errors,
)
filepath_or_buffer = self.handles.handle
elif (
isinstance(filepath_or_buffer, str)
| Raise `FileNotFoundError` in `read_json` if input looks like file path but file is missing (#46718)
* raise FileNotFoundError in _get_data_from_filepath()
* update tests test_read_non_existent + test_read_expands_user_home_dir
* add changelog entry in doc/source/whatsnew/v1.5.0.rst
* use pandas.io.common._compression_to_extension instead of hard-coded extensions
* move changelog entry from IO to other API changes
* fix ImportError from _compression_to_extension -> _extension_to_compression rename
* add test read_json very long file path
* remove extra period in extension checking
Co-authored-by: Matthew Roeschke <[email protected]> | _get_data_from_filepath | 67045903306ac4a1cab108177e92df30d99912b4 | pandas | _json.py | 16 | 26 | https://github.com/pandas-dev/pandas.git | 9 | 130 | 0 | 54 | 213 | Python | {
"docstring": "\n The function read_json accepts three input types:\n 1. filepath (string-like)\n 2. file-like object (e.g. open file object, StringIO)\n 3. JSON string\n\n This method turns (1) into (2) to simplify the rest of the processing.\n It returns input types (2) and (3) unchanged.\n\n It raises FileNotFoundError if the input is a string ending in\n one of .json, .json.gz, .json.bz2, etc. but no such file exists.\n ",
"language": "en",
"n_whitespaces": 140,
"n_words": 64,
"vocab_size": 55
} | def _get_data_from_filepath(self, filepath_or_buffer):
# if it is a string but the file does not exist, it might be a JSON string
filepath_or_buffer = stringify_path(filepath_or_buffer)
if (
not isinstance(filepath_or_buffer, str)
or is_url(filepath_or_buffer)
or is_fsspec_url(filepath_or_buffer)
or file_exists(filepath_or_buffer)
):
self.handles = get_handle(
filepath_or_buffer,
"r",
encoding=self.encoding,
compression=self.compression,
storage_options=self.storage_options,
errors=self.encoding_errors,
)
filepath_or_buffer = self.handles.handle
elif (
isinstance(filepath_or_buffer, str)
and filepath_or_buffer.lower().endswith(
(".json",) + tuple(f".json{c}" for c in _extension_to_compression)
)
and not file_exists(filepath_or_buffer)
):
raise FileNotFoundError(f"File {filepath_or_buffer} does not exist")
return filepath_or_buffer
|
|
54,698 | 217,283 | 101 | python3.10.4/Lib/ensurepip/__init__.py | 58 | 10 | def _run_pip(args, additional_paths=None):
# Run the bootstraping in a subprocess to avoid leaking any state that happens
# after pip has executed. Particulary, this avoids the case when pip holds onto
# the files in *additional_paths*, preventing us to remove them at the end of the
| add python 3.10.4 for windows | _run_pip | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | __init__.py | 10 | 10 | https://github.com/XX-net/XX-Net.git | 1 | 38 | 0 | 48 | 77 | Python | {
"docstring": "\nimport runpy\nimport sys\nsys.path = {additional_paths or []} + sys.path\nsys.argv[1:] = {args}\nrunpy.run_module(\"pip\", run_name=\"__main__\", alter_sys=True)\n",
"language": "en",
"n_whitespaces": 12,
"n_words": 17,
"vocab_size": 14
} | def _run_pip(args, additional_paths=None):
# Run the bootstraping in a subprocess to avoid leaking any state that happens
# after pip has executed. Particulary, this avoids the case when pip holds onto
# the files in *additional_paths*, preventing us to remove them at the end of the
# invocation.
code = f
return subprocess.run([sys.executable, '-W', 'ignore::DeprecationWarning',
"-c", code], check=True).returncode
|
|
52,497 | 208,740 | 62 | IPython/lib/tests/test_pretty.py | 34 | 11 | def test_pprint_heap_allocated_type():
module_name = "xxlimited" if sys.version_info < (3, 10) else "xxlimited_35"
expected_output = (
"xxlimited.Null" if sys.version_info < (3, 11) else "xxlimited_35.Null"
)
xxlimited = pyt | xxlimited_35 module now has the same name in repr in Py 3.11
See https://github.com/python/cpython/commit/a87c9b538fbfc42883417c4d5e69f1a5922690e3 | test_pprint_heap_allocated_type | d858213d4088237e1481038865bc52ccdd074053 | ipython | test_pretty.py | 10 | 8 | https://github.com/ipython/ipython.git | 3 | 59 | 0 | 24 | 100 | Python | {
"docstring": "\n Test that pprint works for heap allocated types.\n ",
"language": "en",
"n_whitespaces": 15,
"n_words": 8,
"vocab_size": 8
} | def test_pprint_heap_allocated_type():
module_name = "xxlimited" if sys.version_info < (3, 10) else "xxlimited_35"
expected_output = (
"xxlimited.Null" if sys.version_info < (3, 11) else "xxlimited_35.Null"
)
xxlimited = pytest.importorskip(module_name)
output = pretty.pretty(xxlimited.Null)
assert output == expected_output
|
|
19,226 | 95,663 | 219 | tests/sentry/api/endpoints/test_organization_metrics.py | 37 | 14 | def test_orderby_percentile_with_many_fields_transactions_unsupported_fields(self):
response = self.get_response(
self.organization.slug,
field=[
"p50(sentry.transactions.measurements.lcp)",
"sum(user_misery)",
],
statsPeriod="1h",
interval="1h",
datasource="snuba",
groupBy=["project_id", "transaction"],
orderBy="p50(sentry.transactions.measurements.lcp)",
)
assert response.status_code == 400
assert (
response.json()["detail"]
== "Multi-field select order by queries is not supported for metric user_misery"
)
| feat(metrics): Support multi-field orderby for performance [INGEST-805] (#31162)
* feat(metrics): Support metrics multi-field orderby queries
Adds support for the performance table to the
metrics organization data endpoint | test_orderby_percentile_with_many_fields_transactions_unsupported_fields | 9af098891a8243d08ee5ab6e51925a082135e3f2 | sentry | test_organization_metrics.py | 11 | 18 | https://github.com/getsentry/sentry.git | 1 | 71 | 0 | 34 | 123 | Python | {
"docstring": "\n Test that contains a field in the `select` that is performance related but currently\n not supported should return a 400\n ",
"language": "en",
"n_whitespaces": 42,
"n_words": 20,
"vocab_size": 18
} | def test_orderby_percentile_with_many_fields_transactions_unsupported_fields(self):
response = self.get_response(
self.organization.slug,
field=[
"p50(sentry.transactions.measurements.lcp)",
"sum(user_misery)",
],
statsPeriod="1h",
interval="1h",
datasource="snuba",
groupBy=["project_id", "transaction"],
orderBy="p50(sentry.transactions.measurements.lcp)",
)
assert response.status_code == 400
assert (
response.json()["detail"]
== "Multi-field select order by queries is not supported for metric user_misery"
)
|
|
78,547 | 266,736 | 180 | test/lib/ansible_test/_internal/commands/integration/__init__.py | 67 | 21 | def generate_dependency_map(integration_targets): # type: (t.List[IntegrationTarget]) -> t.Dict[str, t.Set[IntegrationTarget]]
targets_dict = dict((target.name, target) for target in integration_targets)
target_dependencies = analyze_integration_target_dependencies(integration_targets)
dependency_map = {} # type: t.Dict[str, t.Set[IntegrationTarget]]
invalid_targets = set()
for d | ansible-test - Code cleanup and refactoring. (#77169)
* Remove unnecessary PyCharm ignores.
* Ignore intentional undefined attribute usage.
* Add missing type hints. Fix existing type hints.
* Fix docstrings and comments.
* Use function to register completion handler.
* Pass strings to display functions.
* Fix CompositeAction handling of dest argument.
* Use consistent types in expressions/assignments.
* Use custom function to keep linters happy.
* Add missing raise for custom exception.
* Clean up key/value type handling in cloud plugins.
* Use dataclass instead of dict for results.
* Add custom type_guard function to check lists.
* Ignore return type that can't be checked (yet).
* Avoid changing types on local variables. | generate_dependency_map | a06fa496d3f837cca3c437ab6e9858525633d147 | ansible | __init__.py | 14 | 17 | https://github.com/ansible/ansible.git | 7 | 115 | 0 | 46 | 192 | Python | {
"docstring": "Analyze the given list of integration test targets and return a dictionary expressing target names and the targets on which they depend.",
"language": "en",
"n_whitespaces": 21,
"n_words": 22,
"vocab_size": 19
} | def generate_dependency_map(integration_targets): # type: (t.List[IntegrationTarget]) -> t.Dict[str, t.Set[IntegrationTarget]]
targets_dict = dict((target.name, target) for target in integration_targets)
target_dependencies = analyze_integration_target_dependencies(integration_targets)
dependency_map = {} # type: t.Dict[str, t.Set[IntegrationTarget]]
invalid_targets = set()
for dependency, dependents in target_dependencies.items():
dependency_target = targets_dict.get(dependency)
if not dependency_target:
invalid_targets.add(dependency)
continue
for dependent in dependents:
if dependent not in dependency_map:
dependency_map[dependent] = set()
dependency_map[dependent].add(dependency_target)
if invalid_targets:
raise ApplicationError('Non-existent target dependencies: %s' % ', '.join(sorted(invalid_targets)))
return dependency_map
|
|
117,945 | 321,852 | 44 | qutebrowser/misc/sql.py | 12 | 5 | def text(self) -> str:
if self.error is None:
return | sql: Add *all* primary sqlite result codes
For three reasons:
- There are only 31 of them, and we don't really expect any more to
turn up (last happened in 2013, and we have a test for it happening)
- It makes for nicer debug output
- It always felt strange to only have a small subset in the enum | text | ee4d6e0396a6b570f4d5592a9c4c1a9fee1027b6 | qutebrowser | sql.py | 9 | 8 | https://github.com/qutebrowser/qutebrowser.git | 2 | 28 | 0 | 11 | 48 | Python | {
"docstring": "Get a short text description of the error.\n\n This is a string suitable to show to the user as error message.\n ",
"language": "en",
"n_whitespaces": 35,
"n_words": 21,
"vocab_size": 18
} | def text(self) -> str:
if self.error is None:
return str(self)
return self.error.databaseText()
|
|
27,710 | 124,881 | 27 | python/ray/serve/tests/fault_tolerance_tests/test_controller_recovery.py | 18 | 2 | def test_recover_start_from_replica_actor_names(serve_instance):
# Test failed to deploy with tot | [Serve][Part2] Migrate the tests to use deployment graph api (#26507) | test_recover_start_from_replica_actor_names | 09a6e5336ad6ab3c41e4a16e906c778aee2450bc | ray | test_controller_recovery.py | 6 | 62 | https://github.com/ray-project/ray.git | 14 | 343 | 0 | 17 | 15 | Python | {
"docstring": "Test controller is able to recover starting -> running replicas from\n actor names.\n ",
"language": "en",
"n_whitespaces": 19,
"n_words": 13,
"vocab_size": 13
} | def test_recover_start_from_replica_actor_names(serve_instance):
# Test failed to deploy with total of 2 replicas,
# but first constructor call fails. |
|
113,185 | 314,579 | 190 | homeassistant/components/zha/core/group.py | 29 | 25 | def associated_entities(self) -> list[dict[str, Any]]:
ha_entity_registry = self.device.gateway.ha_entity_registry
zha_device_registry = self.device.gateway.devic | Fix mypy issues in zha core modules (#74028)
* Fix mypy issues in zha gateway, group and helpers
* Cleanup device
* Apply suggestion
* Raise ValueError
* Use hass.config.path | associated_entities | fb108533580d5f4c326ca970d8e6fd4998cc5593 | core | group.py | 17 | 16 | https://github.com/home-assistant/core.git | 3 | 107 | 0 | 28 | 164 | Python | {
"docstring": "Return the list of entities that were derived from this endpoint.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def associated_entities(self) -> list[dict[str, Any]]:
ha_entity_registry = self.device.gateway.ha_entity_registry
zha_device_registry = self.device.gateway.device_registry
return [
GroupEntityReference(
ha_entity_registry.async_get(entity_ref.reference_id).name,
ha_entity_registry.async_get(entity_ref.reference_id).original_name,
entity_ref.reference_id,
)._asdict()
for entity_ref in zha_device_registry.get(self.device.ieee)
if list(entity_ref.cluster_channels.values())[
0
].cluster.endpoint.endpoint_id
== self.endpoint_id
]
|
|
54,896 | 217,714 | 96 | python3.10.4/Lib/http/client.py | 28 | 11 | def getheader(self, name, default=None):
if self.headers is None:
raise ResponseNotReady()
headers = self.headers.get_all(name) or default
if isinstance(headers, | add python 3.10.4 for windows | getheader | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | client.py | 11 | 8 | https://github.com/XX-net/XX-Net.git | 5 | 62 | 0 | 24 | 103 | Python | {
"docstring": "Returns the value of the header matching *name*.\n\n If there are multiple matching headers, the values are\n combined into a single string separated by commas and spaces.\n\n If no matching header is found, returns *default* or None if\n the *default* is not specified.\n\n If the headers are unknown, raises http.client.ResponseNotReady.\n\n ",
"language": "en",
"n_whitespaces": 92,
"n_words": 50,
"vocab_size": 37
} | def getheader(self, name, default=None):
if self.headers is None:
raise ResponseNotReady()
headers = self.headers.get_all(name) or default
if isinstance(headers, str) or not hasattr(headers, '__iter__'):
return headers
else:
return ', '.join(headers)
|
|
43,397 | 181,609 | 461 | tests/export_tests.py | 42 | 6 | def test_generate_pipeline_code_2():
pipeline = [
'KNeighborsClassifier',
[
'CombineDFs',
[
'GradientBoostingClassifier',
'input_matrix',
38.0,
5,
5,
5,
0.05,
0.5],
[
'CombineDFs',
[
'MinMaxScaler',
'input_matrix'
],
['ZeroCount',
[
| Revert "Deployed 7ccda9a with MkDocs version: 1.3.0"
This reverts commit bd9629c40e01241766197119b581a99409b07068. | test_generate_pipeline_code_2 | 388616b6247ca4ea8de4e2f340d6206aee523541 | tpot | export_tests.py | 12 | 46 | https://github.com/EpistasisLab/tpot.git | 1 | 78 | 0 | 27 | 119 | Python | {
"docstring": "Assert that generate_pipeline_code() returns the correct code given a specific pipeline with two CombineDFs.make_pipeline(\n make_union(\n StackingEstimator(estimator=GradientBoostingClassifier(learning_rate=38.0, max_depth=5, max_features=5, min_samples_leaf=5, min_samples_split=0.05, n_estimators=0.5)),\n make_union(\n MinMaxScaler(),\n make_pipeline(\n MaxAbsScaler(),\n ZeroCount()\n )\n )\n ),\n KNeighborsClassifier(n_neighbors=18, p=\"uniform\", weights=2)\n)",
"language": "en",
"n_whitespaces": 124,
"n_words": 33,
"vocab_size": 30
} | def test_generate_pipeline_code_2():
pipeline = [
'KNeighborsClassifier',
[
'CombineDFs',
[
'GradientBoostingClassifier',
'input_matrix',
38.0,
5,
5,
5,
0.05,
0.5],
[
'CombineDFs',
[
'MinMaxScaler',
'input_matrix'
],
['ZeroCount',
[
'MaxAbsScaler',
'input_matrix'
]
]
]
],
18,
'uniform',
2
]
expected_code =
assert expected_code == generate_pipeline_code(pipeline, tpot_obj.operators)
|
|
12,400 | 61,054 | 134 | .venv/lib/python3.8/site-packages/pip/_internal/req/req_uninstall.py | 46 | 15 | def _script_names(dist, script_name, is_gui):
# type: (Distribution, str, bool) -> List[str | upd; format | _script_names | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | req_uninstall.py | 14 | 15 | https://github.com/jindongwang/transferlearning.git | 4 | 87 | 0 | 32 | 153 | Python | {
"docstring": "Create the fully qualified name of the files created by\n {console,gui}_scripts for the given ``dist``.\n Returns the list of file names\n ",
"language": "en",
"n_whitespaces": 30,
"n_words": 21,
"vocab_size": 17
} | def _script_names(dist, script_name, is_gui):
# type: (Distribution, str, bool) -> List[str]
if dist_in_usersite(dist):
bin_dir = get_bin_user()
else:
bin_dir = get_bin_prefix()
exe_name = os.path.join(bin_dir, script_name)
paths_to_remove = [exe_name]
if WINDOWS:
paths_to_remove.append(exe_name + '.exe')
paths_to_remove.append(exe_name + '.exe.manifest')
if is_gui:
paths_to_remove.append(exe_name + '-script.pyw')
else:
paths_to_remove.append(exe_name + '-script.py')
return paths_to_remove
|
|
52,853 | 210,061 | 36 | ppdet/modeling/bbox_utils.py | 24 | 7 | def bbox_center(boxes):
boxes_cx = (boxes[..., 0] + boxes[..., 2]) / 2
boxes_cy = (boxes[..., 1] + box | Add PP-YOLOv3 code (#5281)
* [ppyolov3] add ppyolov3 base code
* add ppyolov3 s/m/x
* modify ema
* modify code to convert onnx successfully
* support arbitrary shape
* update config to use amp default
* refine ppyolo_head code
* modify reparameter code
* refine act layer
* adapter pico_head and tood_head code
* remove ppyolov3 yaml
* fix codestyle
Co-authored-by: wangxinxin08 <[email protected]> | bbox_center | ef83ab8a3f7814e9886a7a22c8dcc55f506b6081 | PaddleDetection | bbox_utils.py | 10 | 4 | https://github.com/PaddlePaddle/PaddleDetection.git | 1 | 60 | 0 | 18 | 88 | Python | {
"docstring": "Get bbox centers from boxes.\n Args:\n boxes (Tensor): boxes with shape (..., 4), \"xmin, ymin, xmax, ymax\" format.\n Returns:\n Tensor: boxes centers with shape (..., 2), \"cx, cy\" format.\n ",
"language": "en",
"n_whitespaces": 52,
"n_words": 29,
"vocab_size": 22
} | def bbox_center(boxes):
boxes_cx = (boxes[..., 0] + boxes[..., 2]) / 2
boxes_cy = (boxes[..., 1] + boxes[..., 3]) / 2
return paddle.stack([boxes_cx, boxes_cy], axis=-1)
|
|
52,968 | 210,756 | 260 | deploy/python/video_action_infer.py | 58 | 36 | def predict(self, input):
input_names = self.predictor.get_input_names()
input_tensor = self.predictor.get_input_handle(input_names[0])
output_names = self.predictor.get_output_names()
output_tensor = self.predictor.get_output_handle(output_names[0])
| Develop branch: add fight action for pphuman (#6160)
* add fight for PP-Human
* add short_size and target_size for fight recognition
* add short_size and target_size for fight_infer
* modify code according to the reviews
* add the wrong deleted lines`
* Update pipeline.py
* Update infer_cfg.yml
* visualize fight when fight action occur
* 乱码修改
* delete useless parmas
* delete useless code str2bool | predict | 67f16ed9cac254612ddb141fcd8a14db3dbfd6d6 | PaddleDetection | video_action_infer.py | 13 | 23 | https://github.com/PaddlePaddle/PaddleDetection.git | 2 | 193 | 0 | 44 | 318 | Python | {
"docstring": "\n Args:\n input (str) or (list): video file path or image data list\n Returns:\n results (dict): \n ",
"language": "en",
"n_whitespaces": 60,
"n_words": 15,
"vocab_size": 14
} | def predict(self, input):
input_names = self.predictor.get_input_names()
input_tensor = self.predictor.get_input_handle(input_names[0])
output_names = self.predictor.get_output_names()
output_tensor = self.predictor.get_output_handle(output_names[0])
# preprocess
self.recognize_times.preprocess_time_s.start()
if type(input) == str:
inputs = self.preprocess_video(input)
else:
inputs = self.preprocess_frames(input)
self.recognize_times.preprocess_time_s.end()
inputs = np.expand_dims(
inputs, axis=0).repeat(
self.batch_size, axis=0).copy()
input_tensor.copy_from_cpu(inputs)
# model prediction
self.recognize_times.inference_time_s.start()
self.predictor.run()
self.recognize_times.inference_time_s.end()
output = output_tensor.copy_to_cpu()
# postprocess
self.recognize_times.postprocess_time_s.start()
classes, scores = self.postprocess(output)
self.recognize_times.postprocess_time_s.end()
return classes, scores
|
|
51,047 | 205,257 | 469 | django/db/migrations/autodetector.py | 121 | 25 | def deep_deconstruct(self, obj):
if isinstance(obj, list): | Refs #33476 -- Reformatted code with Black. | deep_deconstruct | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | autodetector.py | 13 | 29 | https://github.com/django/django.git | 14 | 220 | 0 | 72 | 337 | Python | {
"docstring": "\n Recursive deconstruction for a field and its arguments.\n Used for full comparison for rename/alter; sometimes a single-level\n deconstruction will not compare correctly.\n ",
"language": "en",
"n_whitespaces": 51,
"n_words": 22,
"vocab_size": 18
} | def deep_deconstruct(self, obj):
if isinstance(obj, list):
return [self.deep_deconstruct(value) for value in obj]
elif isinstance(obj, tuple):
return tuple(self.deep_deconstruct(value) for value in obj)
elif isinstance(obj, dict):
return {key: self.deep_deconstruct(value) for key, value in obj.items()}
elif isinstance(obj, functools.partial):
return (
obj.func,
self.deep_deconstruct(obj.args),
self.deep_deconstruct(obj.keywords),
)
elif isinstance(obj, COMPILED_REGEX_TYPE):
return RegexObject(obj)
elif isinstance(obj, type):
# If this is a type that implements 'deconstruct' as an instance method,
# avoid treating this as being deconstructible itself - see #22951
return obj
elif hasattr(obj, "deconstruct"):
deconstructed = obj.deconstruct()
if isinstance(obj, models.Field):
# we have a field which also returns a name
deconstructed = deconstructed[1:]
path, args, kwargs = deconstructed
return (
path,
[self.deep_deconstruct(value) for value in args],
{key: self.deep_deconstruct(value) for key, value in kwargs.items()},
)
else:
return obj
|
|
71,509 | 247,147 | 163 | tests/util/test_async_helpers.py | 54 | 16 | def test_cancellation(self):
deferred: "Deferred[str]" = Deferred()
wrapper_deferred = stop_cancellation(deferred)
# Cancel the new `Deferred`.
wrapper_deferred.cancel()
self.assertTrue(wrapper_deferred.called)
self.failureResultOf(wrapper_deferred, CancelledError)
self.assertFalse(
deferred.called, "Original `Deferre | Add `stop_cancellation` utility function (#12106) | test_cancellation | 91bc15c772d22fbe814170ab2e0fdbfa50f9c372 | synapse | test_async_helpers.py | 10 | 11 | https://github.com/matrix-org/synapse.git | 1 | 69 | 0 | 46 | 126 | Python | {
"docstring": "Test that cancellation of the new `Deferred` leaves the original running.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | def test_cancellation(self):
deferred: "Deferred[str]" = Deferred()
wrapper_deferred = stop_cancellation(deferred)
# Cancel the new `Deferred`.
wrapper_deferred.cancel()
self.assertTrue(wrapper_deferred.called)
self.failureResultOf(wrapper_deferred, CancelledError)
self.assertFalse(
deferred.called, "Original `Deferred` was unexpectedly cancelled."
)
# Now make the inner `Deferred` fail.
# The `Failure` must be consumed, otherwise unwanted tracebacks will be printed
# in logs.
deferred.errback(ValueError("abc"))
self.assertIsNone(deferred.result, "`Failure` was not consumed")
|
|
55,315 | 218,447 | 74 | python3.10.4/Lib/inspect.py | 43 | 13 | def getgeneratorlocals(generator):
if not isgenerator(generator):
raise TypeError("{!r} is not a Python generator".format(generator))
frame = getattr(generator, "gi_frame", None)
if frame is not None:
return generator.gi_frame.f_locals
else:
return {}
# ------------------------------------------------ coroutine introspection
CORO_CREATED = 'CORO_CREATED'
CORO_RUNNING = 'CORO_RUNNING'
CORO_SUSPENDED = 'CORO_SUSPENDED'
CORO_CLOSED = 'CORO_CLOSED'
| add python 3.10.4 for windows | getgeneratorlocals | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | inspect.py | 12 | 8 | https://github.com/XX-net/XX-Net.git | 3 | 50 | 0 | 33 | 115 | Python | {
"docstring": "\n Get the mapping of generator local variables to their current values.\n\n A dict is returned, with the keys the local variable names and values the\n bound values.",
"language": "en",
"n_whitespaces": 36,
"n_words": 27,
"vocab_size": 22
} | def getgeneratorlocals(generator):
if not isgenerator(generator):
raise TypeError("{!r} is not a Python generator".format(generator))
frame = getattr(generator, "gi_frame", None)
if frame is not None:
return generator.gi_frame.f_locals
else:
return {}
# ------------------------------------------------ coroutine introspection
CORO_CREATED = 'CORO_CREATED'
CORO_RUNNING = 'CORO_RUNNING'
CORO_SUSPENDED = 'CORO_SUSPENDED'
CORO_CLOSED = 'CORO_CLOSED'
|
|
11,180 | 54,966 | 128 | tests/orion/api/test_run_history.py | 44 | 29 | async def test_last_bin_contains_end_date(client, route):
response = await client.post(
f"/{route}/history",
json=dict(
history_start=str(dt),
history_end=str(dt.add(days=1, minutes=30)),
history_interval_seconds=timedelta(days=1).total_seconds(),
),
)
assert r | Use status constants instead of hardcoded values
Closes: PrefectHQ/orion#1673 | test_last_bin_contains_end_date | 37549d157007f6eef07ed8b1e2e14efb73134840 | prefect | test_run_history.py | 18 | 16 | https://github.com/PrefectHQ/prefect.git | 1 | 154 | 0 | 32 | 240 | Python | {
"docstring": "The last bin contains the end date, so its own end could be after the history end",
"language": "en",
"n_whitespaces": 16,
"n_words": 17,
"vocab_size": 14
} | async def test_last_bin_contains_end_date(client, route):
response = await client.post(
f"/{route}/history",
json=dict(
history_start=str(dt),
history_end=str(dt.add(days=1, minutes=30)),
history_interval_seconds=timedelta(days=1).total_seconds(),
),
)
assert response.status_code == status.HTTP_200_OK
parsed = pydantic.parse_obj_as(List[responses.HistoryResponse], response.json())
assert len(parsed) == 2
assert parsed[0].interval_start == dt
assert parsed[0].interval_end == dt.add(days=1)
assert parsed[1].interval_start == dt.add(days=1)
assert parsed[1].interval_end == dt.add(days=2)
|
|
27,644 | 124,648 | 659 | python/ray/train/base_trainer.py | 168 | 22 | def _validate_attributes(self):
# Run config
if not isinstance(self.run_config, RunConfig):
raise ValueError(
f"`run_config` should be an instance of `ray.air.RunConfig`, "
f"found {type(self.run_config)} with value `{self.run_config}`."
)
# Scaling config
# Todo: move to ray.air.ScalingConfig
if not isinstance(self.scaling_config, dict):
raise ValueError(
f"`scaling_config` should be an instance of `dict`, "
f"found {type(self.scaling_config)} with value `{self.scaling_config}`."
)
# Datasets
if not isinstance(self.datasets, dict):
raise ValueError(
f"`datasets` should be a dict mapping from a string to "
f"`ray.data.Dataset` objects, "
f"found {type(self.datasets)} with value `{self.datasets}`."
)
elif any(
not isinstance(ds, ray.data.Dataset) and not callable(ds)
for ds in self.datasets.values()
):
raise ValueError(
f"At least one value in the `datasets` dict is not a "
f"`ray.data.Dataset`: {self.datasets}"
)
# P | [AIR] Fix `ResourceChangingScheduler` not working with AIR (#26307)
This PR ensures that the new trial resources set by `ResourceChangingScheduler` are respected by the train loop logic by modifying the scaling config to match. Previously, even though trials had their resources updated, the scaling config was not modified which lead to eg. new workers not being spawned in the `DataParallelTrainer` even though resources were available.
In order to accomplish this, `ScalingConfigDataClass` is updated to allow equality comparisons with other `ScalingConfigDataClass`es (using the underlying PGF) and to create a `ScalingConfigDataClass` from a PGF.
Please note that this is an internal only change intended to actually make `ResourceChangingScheduler` work. In the future, `ResourceChangingScheduler` should be updated to operate on `ScalingConfigDataClass`es instead of PGFs as it is now. That will require a deprecation cycle. | _validate_attributes | b3878e26d765e28dd7c69abadbd856181037db97 | ray | base_trainer.py | 15 | 40 | https://github.com/ray-project/ray.git | 11 | 167 | 0 | 86 | 377 | Python | {
"docstring": "Called on __init()__ to validate trainer attributes.",
"language": "en",
"n_whitespaces": 6,
"n_words": 7,
"vocab_size": 7
} | def _validate_attributes(self):
# Run config
if not isinstance(self.run_config, RunConfig):
raise ValueError(
f"`run_config` should be an instance of `ray.air.RunConfig`, "
f"found {type(self.run_config)} with value `{self.run_config}`."
)
# Scaling config
# Todo: move to ray.air.ScalingConfig
if not isinstance(self.scaling_config, dict):
raise ValueError(
f"`scaling_config` should be an instance of `dict`, "
f"found {type(self.scaling_config)} with value `{self.scaling_config}`."
)
# Datasets
if not isinstance(self.datasets, dict):
raise ValueError(
f"`datasets` should be a dict mapping from a string to "
f"`ray.data.Dataset` objects, "
f"found {type(self.datasets)} with value `{self.datasets}`."
)
elif any(
not isinstance(ds, ray.data.Dataset) and not callable(ds)
for ds in self.datasets.values()
):
raise ValueError(
f"At least one value in the `datasets` dict is not a "
f"`ray.data.Dataset`: {self.datasets}"
)
# Preprocessor
if self.preprocessor is not None and not isinstance(
self.preprocessor, ray.data.Preprocessor
):
raise ValueError(
f"`preprocessor` should be an instance of `ray.data.Preprocessor`, "
f"found {type(self.preprocessor)} with value `{self.preprocessor}`."
)
if self.resume_from_checkpoint is not None and not isinstance(
self.resume_from_checkpoint, ray.air.Checkpoint
):
raise ValueError(
f"`resume_from_checkpoint` should be an instance of "
f"`ray.air.Checkpoint`, found {type(self.resume_from_checkpoint)} "
f"with value `{self.resume_from_checkpoint}`."
)
|
|
89,089 | 289,963 | 97 | homeassistant/components/mqtt/device_tracker/schema_discovery.py | 25 | 5 | def longitude(self) -> float | None:
if (
self.extra_state_attributes is not None
and ATTR_LONG | Improve MQTT type hints part 8 (#81034)
* Improve typing device_tracker discovery
* Improve typing device_tracker yaml
* Add test source_type attribute
* Follow up comment
* Initialize at `__init__` not at class level.
* Use full name for return variable
* Correct import, remove assert
* Use AsyncSeeCallback | longitude | bcae6d604e2967c7475f0caa4b1b5e4e76ab88bf | core | schema_discovery.py | 10 | 9 | https://github.com/home-assistant/core.git | 3 | 40 | 0 | 21 | 64 | Python | {
"docstring": "Return longitude if provided in extra_state_attributes or None.",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | def longitude(self) -> float | None:
if (
self.extra_state_attributes is not None
and ATTR_LONGITUDE in self.extra_state_attributes
):
longitude: float = self.extra_state_attributes[ATTR_LONGITUDE]
return longitude
return None
|
|
3,291 | 20,240 | 31 | pipenv/patched/notpip/_vendor/platformdirs/windows.py | 10 | 9 | def user_cache_dir(self) -> str:
path = os.path.normpath(get_win_folder("CSIDL_LOCAL_APPDATA"))
return self._append_parts(path, opinion_value="Cache")
| check point progress on only bringing in pip==22.0.4 (#4966)
* vendor in pip==22.0.4
* updating vendor packaging version
* update pipdeptree to fix pipenv graph with new version of pip.
* Vendoring of pip-shims 0.7.0
* Vendoring of requirementslib 1.6.3
* Update pip index safety restrictions patch for pip==22.0.4
* Update patches
* exclude pyptoject.toml from black to see if that helps.
* Move this part of the hash collection back to the top (like prior implementation) because it affects the outcome of this test now in pip 22.0.4 | user_cache_dir | f3166e673fe8d40277b804d35d77dcdb760fc3b3 | pipenv | windows.py | 11 | 7 | https://github.com/pypa/pipenv.git | 1 | 32 | 0 | 10 | 63 | Python | {
"docstring": "\n :return: cache directory tied to the user (if opinionated with ``Cache`` folder within ``$appname``) e.g.\n ``%USERPROFILE%\\\\AppData\\\\Local\\\\$appauthor\\\\$appname\\\\Cache\\\\$version``\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 16,
"vocab_size": 16
} | def user_cache_dir(self) -> str:
path = os.path.normpath(get_win_folder("CSIDL_LOCAL_APPDATA"))
return self._append_parts(path, opinion_value="Cache")
|
|
18,254 | 87,220 | 47 | src/sentry/relay/config/__init__.py | 16 | 12 | def get_project_config(project, full_config=True, project_keys=None):
with sentry_sdk.push_scope() as scope:
scope.set_tag("project", project.id)
with metri | feat(dynamic-sampling): Add new bias for dev envs [TET-491] (#40382)
This PR add new bias for dev envs.
Also add common approach to adding new rules like: releases or health
checks to `generate_rules()` function.
Also enable mypy for `src/sentry/dynamic_sampling/`
TODO (fix mypy issues after merge conflicts in) :
- [x] src/sentry/dynamic_sampling/feature_multiplexer.py
- [x] src/sentry/dynamic_sampling/utils.py | get_project_config | 30e13df85cc296e8eee62eb376a0310c2e0d0261 | sentry | __init__.py | 12 | 5 | https://github.com/getsentry/sentry.git | 1 | 54 | 0 | 15 | 93 | Python | {
"docstring": "Constructs the ProjectConfig information.\n :param project: The project to load configuration for. Ensure that\n organization is bound on this object; otherwise it will be loaded from\n the database.\n :param full_config: True if only the full config is required, False\n if only the restricted (for external relays) is required\n (default True, i.e. full configuration)\n :param project_keys: Pre-fetched project keys for performance. However, if\n no project keys are provided it is assumed that the config does not\n need to contain auth information (this is the case when used in\n python's StoreView)\n :return: a ProjectConfig object for the given project\n ",
"language": "en",
"n_whitespaces": 161,
"n_words": 97,
"vocab_size": 71
} | def get_project_config(project, full_config=True, project_keys=None):
with sentry_sdk.push_scope() as scope:
scope.set_tag("project", project.id)
with metrics.timer("relay.config.get_project_config.duration"):
return _get_project_config(project, full_config=full_config, project_keys=project_keys)
|
|
74,852 | 256,282 | 348 | haystack/nodes/retriever/text2sparql.py | 61 | 19 | def _query_kg(self, sparql_query):
try:
response = self.knowledge_graph.query(sparql_query=sparql_query)
# unpack different answer styles
if isinstance(re | Apply black formatting (#2115)
* Testing black on ui/
* Applying black on docstores
* Add latest docstring and tutorial changes
* Create a single GH action for Black and docs to reduce commit noise to the minimum, slightly refactor the OpenAPI action too
* Remove comments
* Relax constraints on pydoc-markdown
* Split temporary black from the docs. Pydoc-markdown was obsolete and needs a separate PR to upgrade
* Fix a couple of bugs
* Add a type: ignore that was missing somehow
* Give path to black
* Apply Black
* Apply Black
* Relocate a couple of type: ignore
* Update documentation
* Make Linux CI run after applying Black
* Triggering Black
* Apply Black
* Remove dependency, does not work well
* Remove manually double trailing commas
* Update documentation
Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com> | _query_kg | a59bca366174d9c692fa19750c24d65f47660ef7 | haystack | text2sparql.py | 20 | 20 | https://github.com/deepset-ai/haystack.git | 8 | 127 | 0 | 41 | 218 | Python | {
"docstring": "\n Execute a single SPARQL query on the knowledge graph to retrieve an answer and unpack\n different answer styles for boolean queries, count queries, and list queries.\n\n :param sparql_query: SPARQL query that shall be executed on the knowledge graph\n ",
"language": "en",
"n_whitespaces": 67,
"n_words": 38,
"vocab_size": 29
} | def _query_kg(self, sparql_query):
try:
response = self.knowledge_graph.query(sparql_query=sparql_query)
# unpack different answer styles
if isinstance(response, list):
if len(response) == 0:
result = ""
else:
result = []
for x in response:
for k, v in x.items():
result.append(v["value"])
elif isinstance(response, bool):
result = str(response)
elif "count" in response[0]:
result = str(int(response[0]["count"]["value"]))
else:
result = ""
except Exception:
result = ""
return result, sparql_query
|
|
55,135 | 218,107 | 197 | python3.10.4/Lib/importlib/_bootstrap_external.py | 47 | 11 | def _path_importer_cache(cls, path):
if path == '':
try:
path = _os.getcwd()
except FileNotFoundError:
# Don't cache the failure as the cwd can easily change to
# a valid directory later on.
return None
try:
finder = sys.path_importer_cache[path]
except KeyError:
finder = cls._path_hooks(path)
sys.path_importer_cache[path] = finder
return finder
| add python 3.10.4 for windows | _path_importer_cache | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | _bootstrap_external.py | 12 | 12 | https://github.com/XX-net/XX-Net.git | 4 | 58 | 0 | 34 | 100 | Python | {
"docstring": "Get the finder for the path entry from sys.path_importer_cache.\n\n If the path entry is not in the cache, find the appropriate finder\n and cache it. If no finder is available, store None.\n\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 32,
"vocab_size": 22
} | def _path_importer_cache(cls, path):
if path == '':
try:
path = _os.getcwd()
except FileNotFoundError:
# Don't cache the failure as the cwd can easily change to
# a valid directory later on.
return None
try:
finder = sys.path_importer_cache[path]
except KeyError:
finder = cls._path_hooks(path)
sys.path_importer_cache[path] = finder
return finder
|
|
51,857 | 207,077 | 95 | tests/admin_docs/test_utils.py | 28 | 15 | def test_publish_parts(self):
import docutils
self.asser | Refs #33476 -- Reformatted code with Black. | test_publish_parts | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | test_utils.py | 11 | 9 | https://github.com/django/django.git | 1 | 57 | 0 | 25 | 102 | Python | {
"docstring": "\n Django shouldn't break the default role for interpreted text\n when ``publish_parts`` is used directly, by setting it to\n ``cmsreference`` (#6681).\n ",
"language": "en",
"n_whitespaces": 49,
"n_words": 20,
"vocab_size": 20
} | def test_publish_parts(self):
import docutils
self.assertNotEqual(
docutils.parsers.rst.roles.DEFAULT_INTERPRETED_ROLE, "cmsreference"
)
source = "reST, `interpreted text`, default role."
markup = "<p>reST, <cite>interpreted text</cite>, default role.</p>\n"
parts = docutils.core.publish_parts(source=source, writer_name="html4css1")
self.assertEqual(parts["fragment"], markup)
|
|
72,997 | 249,564 | 240 | tests/storage/test_event_federation.py | 88 | 14 | def test_get_backfill_points_in_room(self):
setup_info = self._setup_room_for_backfill_tests()
room_id = setup_info.room_id
depth_map = setup_info.depth_map
# Try at "B"
backfill_points = self.get_success(
self.store.get_backfill_points_in_room(room_id, depth_map["B"], limit=100)
)
backfill_event_ids = [backfill_point[0] for backfill_point in backfill_points]
self.assertListEqual(
backfill_event_ids, ["b6", "b5", "b4", "2", "b3", "b2", "b1"]
)
# Try at "A"
backfill_points = self.get_success(
self.store.get_backfill_points_in_room(room_id, depth_map["A"], limit=100)
)
backfill_event_ids = [backfill_point[0] for backfill_point in backfill_p | Limit and filter the number of backfill points to get from the database (#13879)
There is no need to grab thousands of backfill points when we only need 5 to make the `/backfill` request with. We need to grab a few extra in case the first few aren't visible in the history.
Previously, we grabbed thousands of backfill points from the database, then sorted and filtered them in the app. Fetching the 4.6k backfill points for `#matrix:matrix.org` from the database takes ~50ms - ~570ms so it's not like this saves a lot of time 🤷. But it might save us more time now that `get_backfill_points_in_room`/`get_insertion_event_backward_extremities_in_room` are more complicated after https://github.com/matrix-org/synapse/pull/13635
This PR moves the filtering and limiting to the SQL query so we just have less data to work with in the first place.
Part of https://github.com/matrix-org/synapse/issues/13356 | test_get_backfill_points_in_room | df8b91ed2bba4995c59a5b067e3b252ab90c9a5e | synapse | test_event_federation.py | 12 | 16 | https://github.com/matrix-org/synapse.git | 3 | 131 | 0 | 62 | 219 | Python | {
"docstring": "\n Test to make sure only backfill points that are older and come before\n the `current_depth` are returned.\n ",
"language": "en",
"n_whitespaces": 39,
"n_words": 17,
"vocab_size": 16
} | def test_get_backfill_points_in_room(self):
setup_info = self._setup_room_for_backfill_tests()
room_id = setup_info.room_id
depth_map = setup_info.depth_map
# Try at "B"
backfill_points = self.get_success(
self.store.get_backfill_points_in_room(room_id, depth_map["B"], limit=100)
)
backfill_event_ids = [backfill_point[0] for backfill_point in backfill_points]
self.assertListEqual(
backfill_event_ids, ["b6", "b5", "b4", "2", "b3", "b2", "b1"]
)
# Try at "A"
backfill_points = self.get_success(
self.store.get_backfill_points_in_room(room_id, depth_map["A"], limit=100)
)
backfill_event_ids = [backfill_point[0] for backfill_point in backfill_points]
# Event "2" has a depth of 2 but is not included here because we only
# know the approximate depth of 5 from our event "3".
self.assertListEqual(backfill_event_ids, ["b3", "b2", "b1"])
|
|
48,149 | 196,753 | 74 | sympy/printing/theanocode.py | 28 | 13 | def theano_code(expr, cache=None, **kwargs):
sympy_deprecation_warning(
,
deprecated_since_version="1.8",
active_deprecations_target='theanocode-deprecated')
if not theano:
raise Im | Update the deprecation warning for theanocode | theano_code | d54b0dc8170186cdd447bf40d55f805edd8a8d5a | sympy | theanocode.py | 11 | 12 | https://github.com/sympy/sympy.git | 3 | 62 | 0 | 25 | 105 | Python | {
"docstring": "\n Convert a SymPy expression into a Theano graph variable.\n\n .. deprecated:: 1.8\n\n ``sympy.printing.theanocode`` is deprecated. Theano has been renamed to\n Aesara. Use ``sympy.printing.aesaracode`` instead. See\n :ref:`theanocode-deprecated` for more information.\n\n Parameters\n ==========\n\n expr : sympy.core.expr.Expr\n SymPy expression object to convert.\n\n cache : dict\n Cached Theano variables (see :class:`TheanoPrinter.cache\n <TheanoPrinter>`). Defaults to the module-level global cache.\n\n dtypes : dict\n Passed to :meth:`.TheanoPrinter.doprint`.\n\n broadcastables : dict\n Passed to :meth:`.TheanoPrinter.doprint`.\n\n Returns\n =======\n\n theano.gof.graph.Variable\n A variable corresponding to the expression's value in a Theano symbolic\n expression graph.\n\n \n sympy.printing.theanocode is deprecated. Theano has been renamed to\n Aesara. Use sympy.printing.aesaracode instead.",
"language": "en",
"n_whitespaces": 209,
"n_words": 94,
"vocab_size": 63
} | def theano_code(expr, cache=None, **kwargs):
sympy_deprecation_warning(
,
deprecated_since_version="1.8",
active_deprecations_target='theanocode-deprecated')
if not theano:
raise ImportError("theano is required for theano_code")
if cache is None:
cache = global_cache
return TheanoPrinter(cache=cache, settings={}).doprint(expr, **kwargs)
|
|
35,804 | 154,139 | 518 | modin/core/dataframe/pandas/dataframe/dataframe.py | 147 | 16 | def _validate_axes_lengths(self):
if self._row_lengths_cache is not None and len(self.index) > 0:
# An empty frame can have 0 rows but a nonempty index. If the frame
# does have rows, the number of rows must equal the size of the
# index.
num_rows = sum(self._row_lengths_cache)
if num_rows > 0:
ErrorMessage.catch_bugs_and_request_email(
num_rows != len(self._index_cache),
f"Row lengths: {num_rows} != {len(self._index_cache)}",
)
ErrorMessage.catch_bugs_and_request_email(
any(val < 0 for val in self._row_lengths_cache),
f"Row lengths cannot be negative: {self._row_lengths_cache}",
)
if self._column_widths_cache is not None and len(self.columns) > 0:
# An empty frame can have 0 column but a nonempty column index. If
# the frame does have columns, the number of columns must equal the
# size of the columns.
num_columns = sum(self._column_widths_cache)
if num_columns > 0:
ErrorMessage.catch_bugs_and_request_email(
num_columns != len(self._columns_cache),
f"Column widths: {num_columns} != {len(self._columns_cache)}",
)
ErrorMessage.catch_bugs_and_request_email(
any(val < 0 for val in self._column_widths_cache),
f"Column widths cannot be negative: {self._column_widths_cache}",
)
| FEAT-#4725: Make index and columns lazy in Modin DataFrame (#4726)
Co-authored-by: Mahesh Vashishtha <[email protected]>
Co-authored-by: Yaroslav Igoshev <[email protected]>
Signed-off-by: Vasily Litvinov <[email protected]> | _validate_axes_lengths | adb16a17f721048005520388080627975c6852d8 | modin | dataframe.py | 16 | 23 | https://github.com/modin-project/modin.git | 9 | 142 | 0 | 70 | 273 | Python | {
"docstring": "Validate that labels are split correctly if split is known.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 9
} | def _validate_axes_lengths(self):
if self._row_lengths_cache is not None and len(self.index) > 0:
# An empty frame can have 0 rows but a nonempty index. If the frame
# does have rows, the number of rows must equal the size of the
# index.
num_rows = sum(self._row_lengths_cache)
if num_rows > 0:
ErrorMessage.catch_bugs_and_request_email(
num_rows != len(self._index_cache),
f"Row lengths: {num_rows} != {len(self._index_cache)}",
)
ErrorMessage.catch_bugs_and_request_email(
any(val < 0 for val in self._row_lengths_cache),
f"Row lengths cannot be negative: {self._row_lengths_cache}",
)
if self._column_widths_cache is not None and len(self.columns) > 0:
# An empty frame can have 0 column but a nonempty column index. If
# the frame does have columns, the number of columns must equal the
# size of the columns.
num_columns = sum(self._column_widths_cache)
if num_columns > 0:
ErrorMessage.catch_bugs_and_request_email(
num_columns != len(self._columns_cache),
f"Column widths: {num_columns} != {len(self._columns_cache)}",
)
ErrorMessage.catch_bugs_and_request_email(
any(val < 0 for val in self._column_widths_cache),
f"Column widths cannot be negative: {self._column_widths_cache}",
)
|
|
54,129 | 215,735 | 24 | tests/pytests/unit/utils/win_dacl/test_get_name.py | 12 | 9 | def test_get_name_capability_sid():
cap_sid = "S-1-15-3-1024-1065365936-1281604716-3511738428-1654721687-432734479-3232135806-4053264122-3456934681"
sid_obj = win32security.ConvertStringSidToSid(cap_sid)
assert salt.utils.win_dacl.get_name(sid_obj) is No | Add tests, migrate some tests to pytest | test_get_name_capability_sid | 3bb43882e727b1d36abe2e501759c9c5e9048ecf | salt | test_get_name.py | 10 | 4 | https://github.com/saltstack/salt.git | 1 | 29 | 0 | 11 | 52 | Python | {
"docstring": "\n Test get_name with a compatibility SID. Should return `None` as we want to\n ignore these SIDs\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 16,
"vocab_size": 16
} | def test_get_name_capability_sid():
cap_sid = "S-1-15-3-1024-1065365936-1281604716-3511738428-1654721687-432734479-3232135806-4053264122-3456934681"
sid_obj = win32security.ConvertStringSidToSid(cap_sid)
assert salt.utils.win_dacl.get_name(sid_obj) is None
|
|
36,798 | 156,894 | 65 | dask/compatibility.py | 17 | 8 | def entry_points(group=None):
eps = importlib.metadata.entry_points()
if group:
try:
return eps.select(group=group)
except AttributeError:
return eps.get(group, [])
return eps
| Add `entry_points` compatibility utility (#9388) | entry_points | a9ee6c2fdf0a3093747e675997143e0dbe584bad | dask | compatibility.py | 13 | 8 | https://github.com/dask/dask.git | 3 | 46 | 0 | 14 | 77 | Python | {
"docstring": "Returns an iterable of entrypoints.\n\n For compatibility with Python 3.8/3.9.\n In 3.10 the return type changed from a dict to an ``importlib.metadata.EntryPoints``.\n This compatibility utility can be removed once Python 3.10 is the minimum.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 34,
"vocab_size": 29
} | def entry_points(group=None):
eps = importlib.metadata.entry_points()
if group:
try:
return eps.select(group=group)
except AttributeError:
return eps.get(group, [])
return eps
|
|
45,651 | 186,900 | 53 | certbot/certbot/_internal/storage.py | 14 | 10 | def elliptic_curve(self) -> Optional[str]:
key = self._private_key()
if isinstance(key, EllipticCurvePrivateKey):
return key.cu | error out when --reuse-key conflicts with other flags (#9262)
* error out when --reuse-key conflicts with other flags
* add unit test
* add integration tests
* lint | elliptic_curve | 212c2ba990758cb9acd2b200e55302534988089a | certbot | storage.py | 9 | 9 | https://github.com/certbot/certbot.git | 2 | 34 | 0 | 13 | 56 | Python | {
"docstring": "\n :returns: If the private key is an elliptic key, the name of its curve.\n :rtype: str\n ",
"language": "en",
"n_whitespaces": 38,
"n_words": 16,
"vocab_size": 15
} | def elliptic_curve(self) -> Optional[str]:
key = self._private_key()
if isinstance(key, EllipticCurvePrivateKey):
return key.curve.name
return None
|
|
16,691 | 77,682 | 55 | wagtail/models/__init__.py | 12 | 5 | def page_type_display_name(self):
if no | Add a page_type_display_name shortcut property | page_type_display_name | a3b1cb6c287a2a0c2957c8141c54453928e1b97e | wagtail | __init__.py | 11 | 5 | https://github.com/wagtail/wagtail.git | 3 | 30 | 0 | 11 | 55 | Python | {
"docstring": "\n A human-readable version of this page's type\n ",
"language": "en",
"n_whitespaces": 22,
"n_words": 7,
"vocab_size": 7
} | def page_type_display_name(self):
if not self.specific_class or self.is_root():
return ""
else:
return self.specific_class.get_verbose_name()
|
|
7,423 | 41,675 | 47 | seaborn/_core/plot.py | 19 | 6 | def save(self, fname, **kwargs) -> Plot:
# TODO expose important keyword arugments in our signature?
se | Add some docstrings and basic API docs | save | 6357619ec08a59e4ecf00c6b1300ac6e014a753f | seaborn | plot.py | 9 | 13 | https://github.com/mwaskom/seaborn.git | 1 | 28 | 0 | 18 | 47 | Python | {
"docstring": "\n Render the plot and write it to a buffer or file on disk.\n\n Parameters\n ----------\n fname : str, path, or buffer\n Location on disk to save the figure, or a buffer to write into.\n Other keyword arguments are passed to :meth:`matplotlib.figure.Figure.savefig`.\n\n ",
"language": "en",
"n_whitespaces": 95,
"n_words": 41,
"vocab_size": 30
} | def save(self, fname, **kwargs) -> Plot:
# TODO expose important keyword arugments in our signature?
self.plot().save(fname, **kwargs)
return self
|
|
12,270 | 60,741 | 141 | .venv/lib/python3.8/site-packages/pip/_internal/index/package_finder.py | 29 | 13 | def get_install_candidate(self, link_evaluator, link):
# type: (LinkEvaluator, Link) -> Optional[InstallationCandidate]
is_candidate, r | upd; format | get_install_candidate | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | package_finder.py | 12 | 11 | https://github.com/jindongwang/transferlearning.git | 3 | 57 | 0 | 27 | 89 | Python | {
"docstring": "\n If the link is a candidate for install, convert it to an\n InstallationCandidate and return it. Otherwise, return None.\n ",
"language": "en",
"n_whitespaces": 41,
"n_words": 19,
"vocab_size": 18
} | def get_install_candidate(self, link_evaluator, link):
# type: (LinkEvaluator, Link) -> Optional[InstallationCandidate]
is_candidate, result = link_evaluator.evaluate_link(link)
if not is_candidate:
if result:
self._log_skipped_link(link, reason=result)
return None
return InstallationCandidate(
name=link_evaluator.project_name,
link=link,
version=result,
)
|
|
40,165 | 168,029 | 26 | pandas/plotting/_core.py | 12 | 7 | def bar(self, x=None, y=None, **kwargs) -> PlotAccessor:
return self(kind="bar", x=x, y=y, **kwargs)
| TYP: pandas/plotting annotations from pandas-stubs (#47827)
* TYP: pandas/plotting annotations from pandas-stubs
* xticks + pyright | bar | 4d7cfc436f8a7bc65c11770aa16f05e875b74077 | pandas | _core.py | 9 | 11 | https://github.com/pandas-dev/pandas.git | 1 | 37 | 0 | 11 | 57 | Python | {
"docstring": "\n Vertical bar plot.\n\n A bar plot is a plot that presents categorical data with\n rectangular bars with lengths proportional to the values that they\n represent. A bar plot shows comparisons among discrete categories. One\n axis of the plot shows the specific categories being compared, and the\n other axis represents a measured value.\n ",
"language": "en",
"n_whitespaces": 102,
"n_words": 52,
"vocab_size": 38
} | def bar(self, x=None, y=None, **kwargs) -> PlotAccessor:
return self(kind="bar", x=x, y=y, **kwargs)
|
|
@keras_export("keras.backend.map_fn")
@doc_controls.do_not_generate_docs | 80,228 | 269,608 | 205 | keras/backend.py | 71 | 40 | def ctc_decode(y_pred, input_length, greedy=True, beam_width=100, top_paths=1):
input_shape = shape(y_pred)
num_samples, num_steps = input_shape[0], input_shape[1]
y_pred = tf.math.log(
tf.compat.v1.transpose(y_pred, perm=[1, 0, 2]) + epsilon()
)
input_length = tf.cast(input_length, tf.int32)
if greedy:
(decoded, log_prob) = tf.nn.ctc_greedy_decoder(
inputs=y_pred, sequence_length=input_length
)
else:
(decoded, log_prob) = tf.compat.v1.nn.ctc_beam_search_decoder(
inputs=y_pred,
sequence_length=input_length,
beam_width=beam_width,
top_paths=top_paths,
)
decoded_dense = []
for st in decoded:
st = tf.SparseTensor(st.indices, st.values, (num_samples, num_steps))
decoded_dense.append(tf.sparse.to_dense(sp_input=st, default_value=-1))
return (decoded_dense, log_prob)
# HIGH | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | ctc_decode | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | backend.py | 14 | 23 | https://github.com/keras-team/keras.git | 3 | 197 | 1 | 57 | 309 | Python | {
"docstring": "Decodes the output of a softmax.\n\n Can use either greedy search (also known as best path)\n or a constrained dictionary search.\n\n Args:\n y_pred: tensor `(samples, time_steps, num_categories)`\n containing the prediction, or output of the softmax.\n input_length: tensor `(samples, )` containing the sequence length for\n each batch item in `y_pred`.\n greedy: perform much faster best-path search if `true`.\n This does not use a dictionary.\n beam_width: if `greedy` is `false`: a beam search decoder will be used\n with a beam of this width.\n top_paths: if `greedy` is `false`,\n how many of the most probable paths will be returned.\n\n Returns:\n Tuple:\n List: if `greedy` is `true`, returns a list of one element that\n contains the decoded sequence.\n If `false`, returns the `top_paths` most probable\n decoded sequences.\n Each decoded sequence has shape (samples, time_steps).\n Important: blank labels are returned as `-1`.\n Tensor `(top_paths, )` that contains\n the log probability of each decoded sequence.\n ",
"language": "en",
"n_whitespaces": 373,
"n_words": 149,
"vocab_size": 99
} | def ctc_decode(y_pred, input_length, greedy=True, beam_width=100, top_paths=1):
input_shape = shape(y_pred)
num_samples, num_steps = input_shape[0], input_shape[1]
y_pred = tf.math.log(
tf.compat.v1.transpose(y_pred, perm=[1, 0, 2]) + epsilon()
)
input_length = tf.cast(input_length, tf.int32)
if greedy:
(decoded, log_prob) = tf.nn.ctc_greedy_decoder(
inputs=y_pred, sequence_length=input_length
)
else:
(decoded, log_prob) = tf.compat.v1.nn.ctc_beam_search_decoder(
inputs=y_pred,
sequence_length=input_length,
beam_width=beam_width,
top_paths=top_paths,
)
decoded_dense = []
for st in decoded:
st = tf.SparseTensor(st.indices, st.values, (num_samples, num_steps))
decoded_dense.append(tf.sparse.to_dense(sp_input=st, default_value=-1))
return (decoded_dense, log_prob)
# HIGH ORDER FUNCTIONS
@keras_export("keras.backend.map_fn")
@doc_controls.do_not_generate_docs |
35,376 | 153,340 | 10 | modin/core/execution/ray/generic/modin_aqp.py | 4 | 8 | def display_time_updates(bar):
threading.Thread(target | REFACTOR-#4251: define public interfaces in `modin.core.execution.ray` module (#3868)
Signed-off-by: Anatoly Myachev <[email protected]> | display_time_updates | e7cb2e82f8b9c7a68f82abdd3b6011d661230b7e | modin | modin_aqp.py | 11 | 2 | https://github.com/modin-project/modin.git | 1 | 25 | 0 | 4 | 42 | Python | {
"docstring": "\n Start displaying the progress `bar` in a notebook.\n\n Parameters\n ----------\n bar : tqdm.tqdm\n The progress bar wrapper to display in a notebook cell.\n ",
"language": "en",
"n_whitespaces": 46,
"n_words": 23,
"vocab_size": 19
} | def display_time_updates(bar):
threading.Thread(target=_show_time_updates, args=(bar,)).start()
|
|
53,792 | 215,074 | 513 | salt/modules/aixpkg.py | 157 | 38 | def remove(name=None, pkgs=None, **kwargs):
targets = salt.utils.args.split_input(pkgs) if pkgs else [name]
if not targets:
return {}
if pkgs:
log.debug("Removing these fileset(s)/rpm package(s) %s: %s", name, targets)
errors = []
# Get a list of the currently installed pkgs.
old = list_pkgs()
# Remove the fileset or rpm package(s)
for target in targets:
try:
named, versionpkg, rpmpkg = _check_pkg(target)
except CommandExecutionError as exc:
if exc.info:
errors.append(exc.info["errors"])
continue
if rpmpkg:
# assume use dnf or yum
cmdflags = " -y remove "
if pathlib.Path("/opt/freeware/bin/dnf").is_file():
cmdexe = "/opt/freeware/bin/dnf"
elif pathlib.Path("/opt/freeware/bin/yum").is_file():
cmdexe = "/opt/freeware/bin/yum"
elif pathlib.Path("/usr/bin/yum").is_file():
cmdexe = "/usr/bin/yum"
else:
cmdexe = "/usr/bin/rpm"
cmdflags = " -e "
cmd = [cmdexe, cmdflags, named]
out = __salt__["cmd.run_all"](cmd, python_shell=False)
else:
cmd = ["/usr/sbin/installp", "-u", named]
out = __salt__["cmd.run_all"](cmd, python_shell=False)
# Get a list of the packages after the uninstall
__context__.pop("pkg.list_pkgs", None)
new = list_pkgs()
ret = salt.utils.data.compare_dicts(old, new)
if errors:
raise CommandExecutionError(
"Problems encountered removing filesets(s)/package(s)",
info={"changes": ret, "errors": errors},
)
return ret
| work in progress while resolve issue of python3_32 usage by dnf and yum | remove | fbcc707e76f11770712e6828155258ac61e00ff8 | salt | aixpkg.py | 16 | 40 | https://github.com/saltstack/salt.git | 12 | 256 | 0 | 106 | 443 | Python | {
"docstring": "\n Remove specified fileset(s)/rpm package(s).\n\n name\n The name of the fileset or rpm package to be deleted.\n\n .. versionadded:: 3005\n\n preference to install rpm packages are to use in the following order:\n /opt/freeware/bin/dnf\n /opt/freeware/bin/yum\n /usr/bin/yum\n /usr/bin/rpm\n\n Multiple Package Options:\n\n pkgs\n A list of filesets and/or rpm packages to delete.\n Must be passed as a python list. The ``name`` parameter will be\n ignored if this option is passed.\n\n\n Returns a list containing the removed packages.\n\n CLI Example:\n\n .. code-block:: bash\n\n salt '*' pkg.remove <fileset/rpm package name>\n salt '*' pkg.remove tcsh\n salt '*' pkg.remove xlC.rte\n salt '*' pkg.remove Firefox.base.adt\n salt '*' pkg.remove pkgs='[\"foo\", \"bar\"]'\n ",
"language": "en",
"n_whitespaces": 243,
"n_words": 101,
"vocab_size": 72
} | def remove(name=None, pkgs=None, **kwargs):
targets = salt.utils.args.split_input(pkgs) if pkgs else [name]
if not targets:
return {}
if pkgs:
log.debug("Removing these fileset(s)/rpm package(s) %s: %s", name, targets)
errors = []
# Get a list of the currently installed pkgs.
old = list_pkgs()
# Remove the fileset or rpm package(s)
for target in targets:
try:
named, versionpkg, rpmpkg = _check_pkg(target)
except CommandExecutionError as exc:
if exc.info:
errors.append(exc.info["errors"])
continue
if rpmpkg:
# assume use dnf or yum
cmdflags = " -y remove "
if pathlib.Path("/opt/freeware/bin/dnf").is_file():
cmdexe = "/opt/freeware/bin/dnf"
elif pathlib.Path("/opt/freeware/bin/yum").is_file():
cmdexe = "/opt/freeware/bin/yum"
elif pathlib.Path("/usr/bin/yum").is_file():
cmdexe = "/usr/bin/yum"
else:
cmdexe = "/usr/bin/rpm"
cmdflags = " -e "
cmd = [cmdexe, cmdflags, named]
out = __salt__["cmd.run_all"](cmd, python_shell=False)
else:
cmd = ["/usr/sbin/installp", "-u", named]
out = __salt__["cmd.run_all"](cmd, python_shell=False)
# Get a list of the packages after the uninstall
__context__.pop("pkg.list_pkgs", None)
new = list_pkgs()
ret = salt.utils.data.compare_dicts(old, new)
if errors:
raise CommandExecutionError(
"Problems encountered removing filesets(s)/package(s)",
info={"changes": ret, "errors": errors},
)
return ret
|
|
22,693 | 107,327 | 313 | lib/matplotlib/dates.py | 156 | 31 | def _from_ordinalf(x, tz=None):
tz = _get_tzinfo(tz)
dt = (np.datetime64(get_epoch()) +
np.timedelta64(int(np.round(x * MUSECONDS_PER_DAY)), 'us'))
if dt < np.datetime64('0001-01-01') or dt >= np.datetime64('10000-01-01'):
raise ValueError(f'Date ordinal {x} converts to {dt} (using '
f'epoch {get_epoch()}), but Matplotlib dates must be '
'between year 0001 and 9999.')
# c | All classes and methods in dates support both string and tzinfo as tz-argument | _from_ordinalf | 115877861608a869be63110a1e3917c3d1dda04a | matplotlib | dates.py | 15 | 18 | https://github.com/matplotlib/matplotlib.git | 5 | 169 | 0 | 107 | 346 | Python | {
"docstring": "\n Convert Gregorian float of the date, preserving hours, minutes,\n seconds and microseconds. Return value is a `.datetime`.\n\n The input date *x* is a float in ordinal days at UTC, and the output will\n be the specified `.datetime` object corresponding to that time in\n timezone *tz*, or if *tz* is ``None``, in the timezone specified in\n :rc:`timezone`.\n ",
"language": "en",
"n_whitespaces": 79,
"n_words": 56,
"vocab_size": 43
} | def _from_ordinalf(x, tz=None):
tz = _get_tzinfo(tz)
dt = (np.datetime64(get_epoch()) +
np.timedelta64(int(np.round(x * MUSECONDS_PER_DAY)), 'us'))
if dt < np.datetime64('0001-01-01') or dt >= np.datetime64('10000-01-01'):
raise ValueError(f'Date ordinal {x} converts to {dt} (using '
f'epoch {get_epoch()}), but Matplotlib dates must be '
'between year 0001 and 9999.')
# convert from datetime64 to datetime:
dt = dt.tolist()
# datetime64 is always UTC:
dt = dt.replace(tzinfo=dateutil.tz.gettz('UTC'))
# but maybe we are working in a different timezone so move.
dt = dt.astimezone(tz)
# fix round off errors
if np.abs(x) > 70 * 365:
# if x is big, round off to nearest twenty microseconds.
# This avoids floating point roundoff error
ms = round(dt.microsecond / 20) * 20
if ms == 1000000:
dt = dt.replace(microsecond=0) + datetime.timedelta(seconds=1)
else:
dt = dt.replace(microsecond=ms)
return dt
# a version of _from_ordinalf that can operate on numpy arrays
_from_ordinalf_np_vectorized = np.vectorize(_from_ordinalf, otypes="O")
# a version of dateutil.parser.parse that can operate on numpy arrays
_dateutil_parser_parse_np_vectorized = np.vectorize(dateutil.parser.parse)
|
|
55,275 | 218,387 | 106 | python3.10.4/Lib/inspect.py | 31 | 10 | def getdoc(object):
try:
doc = object.__doc__
except A | add python 3.10.4 for windows | getdoc | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | inspect.py | 12 | 13 | https://github.com/XX-net/XX-Net.git | 5 | 56 | 0 | 20 | 93 | Python | {
"docstring": "Get the documentation string for an object.\n\n All tabs are expanded to spaces. To clean up docstrings that are\n indented to line up with blocks of code, any whitespace than can be\n uniformly removed from the second line onwards is removed.",
"language": "en",
"n_whitespaces": 50,
"n_words": 41,
"vocab_size": 36
} | def getdoc(object):
try:
doc = object.__doc__
except AttributeError:
return None
if doc is None:
try:
doc = _finddoc(object)
except (AttributeError, TypeError):
return None
if not isinstance(doc, str):
return None
return cleandoc(doc)
|
|
1,017 | 6,541 | 62 | ludwig/marshmallow/marshmallow_schema_utils.py | 37 | 12 | def load_config_with_kwargs(cls, kwargs):
assert_is_a_marshmallow_ | feat: Modify Trainer to use marshmallow_dataclass syntax for handling hyperparameters. Add basic scripting for docstring extraction to marshmallow schema. Fix some existing marshmallow issues. (#1606) | load_config_with_kwargs | 23a33eef3bc7ea3ba33ec56dc9b56ba38462648a | ludwig | marshmallow_schema_utils.py | 13 | 7 | https://github.com/ludwig-ai/ludwig.git | 5 | 75 | 0 | 24 | 119 | Python | {
"docstring": "Takes a marshmallow class and dict of parameter values and appropriately instantiantes the schema.",
"language": "en",
"n_whitespaces": 13,
"n_words": 14,
"vocab_size": 13
} | def load_config_with_kwargs(cls, kwargs):
assert_is_a_marshmallow_class(cls)
schema = cls.Schema()
fields = schema.fields.keys()
return load_config(cls, **{k: v for k, v in kwargs.items() if k in fields}), {
k: v for k, v in kwargs.items() if k not in fields
}
|
|
@patch("saleor.payment.gateway.refund") | 5,046 | 26,687 | 140 | saleor/payment/tests/test_gateway.py | 43 | 29 | def test_payment_refund_or_void_refund_called_txn_exist(refund_mock, payment):
# given
payment.charge_status = ChargeStatus.FULLY_CHARGED
payment.save(update_fi | Fix payment flow (#9504)
* Do not capture payment again when it should be refunded or voided
* Do not create order when then is ongoing refund | test_payment_refund_or_void_refund_called_txn_exist | 0881beec1ac02dfa97525c5173687defb356d85c | saleor | test_gateway.py | 11 | 19 | https://github.com/saleor/saleor.git | 1 | 120 | 1 | 37 | 202 | Python | {
"docstring": "Ensure that the refund method is called when the refund process\n is already ongoing but not covered full payment captured amount.",
"language": "en",
"n_whitespaces": 23,
"n_words": 21,
"vocab_size": 18
} | def test_payment_refund_or_void_refund_called_txn_exist(refund_mock, payment):
# given
payment.charge_status = ChargeStatus.FULLY_CHARGED
payment.save(update_fields=["charge_status"])
assert payment.can_refund() is True
payment.captured_amount = payment.total
payment.save(update_fields=["captured_amount"])
txn = payment.transactions.create(
is_success=True,
action_required=False,
kind=TransactionKind.REFUND_ONGOING,
amount=payment.captured_amount / 2,
currency=payment.currency,
token="test",
gateway_response={},
)
# when
gateway.payment_refund_or_void(
payment, get_plugins_manager(), None, transaction_id=txn.token
)
# then
assert refund_mock.called_once()
@patch("saleor.payment.gateway.refund") |
55,214 | 218,222 | 29 | python3.10.4/Lib/importlib/metadata/__init__.py | 8 | 10 | def _all(self):
groups = super(Deprecated, self).values()
return EntryPoin | add python 3.10.4 for windows | _all | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | __init__.py | 10 | 3 | https://github.com/XX-net/XX-Net.git | 1 | 30 | 0 | 8 | 51 | Python | {
"docstring": "\n Reconstruct a list of all entrypoints from the groups.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | def _all(self):
groups = super(Deprecated, self).values()
return EntryPoints(itertools.chain.from_iterable(groups))
|
|
56,380 | 221,366 | 30 | python3.10.4/Lib/codecs.py | 9 | 7 | def readlines(self, sizehint=None, keepends=True):
data = self.read()
re | add python 3.10.4 for windows | readlines | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | codecs.py | 8 | 3 | https://github.com/XX-net/XX-Net.git | 1 | 28 | 0 | 9 | 46 | Python | {
"docstring": " Read all lines available on the input stream\n and return them as a list.\n\n Line breaks are implemented using the codec's decoder\n method and are included in the list entries.\n\n sizehint, if given, is ignored since there is no efficient\n way to finding the true end-of-line.\n\n ",
"language": "en",
"n_whitespaces": 109,
"n_words": 46,
"vocab_size": 40
} | def readlines(self, sizehint=None, keepends=True):
data = self.read()
return data.splitlines(keepends)
|
|
43,215 | 180,689 | 65 | gradio/event_queue.py | 14 | 8 | async def notify_clients(cls) -> None:
while not cls.STOP:
await asyncio.sleep(cls.UPDATE_INTERVALS)
| Release new queue beta (#1969)
* queue-refactor-backend (#1489)
* queue-refactor-backend
- create a template for the new design
* queue-refactor-backend
- clean after the old queue
* queue-refactor-backend
- add basic test to websocket endpoint
* queue-refactor-backend
- small fix
* queue-refactor-backend
- debugs&fixes&finalizations
- test the flow with postman
* queue-refactor-backend
- tweaks on websocket closing
* queue-refactor-backend
- cleanup
* queue-refactor-backend
- cleanup & tweaks
* queue-refactor-backend
- cleanup & tweaks
* queue-refactor-backend
- cleanup & tweaks
- correct the exception handling
* queue-refactor-backend
- add websockets dependency
* queue-refactor-backend
- reformat
* queue-refactor-backend
- add single event test
* queue-refactor-backend
- tweaks
- remove outdated tests
* queue-refactor-backend
- reformat
* queue-refactor-backend
- reformat
* queue-refactor-backend
- reformat
* queue-refactor-backend
- add Queue configurations to Blocks.launch()
- add live_queue_update to send estimations whenever a job gets fetched from the Queue
* queue-refactor-backend
- add Queue configurations to Blocks.launch()
- add live_queue_update to send estimations whenever a job gets fetched from the Queue
* queue-refactor-backend
- tweaks
* queue-refactor-backend
- make SLEEP_WHEN_FREE shorter
Co-authored-by: Ali Abid <[email protected]>
* Add estimation parameters to queue (#1889)
* - tweaks on Estimation
* version
* Revert "version"
This reverts commit bd1f4d7bfe3658a4967b93126859a62a511a70e2.
* some fix and tweaks
* implement queue frontend (#1950)
* implement queue frontend
* fix types
* fix ws endpoint in build mode
* cleanup
* Queue tweaks (#1909)
* tweaks on estimation payload
* Queue keep ws connections open (#1910)
* 1. keep ws connections open after the event process is completed
2. do not send estimations periodically if live queue updates is open
* fix calculation
* 1. tweaks on event_queue
* fix issue - create new ws for each request
* format
* fix
* fix tests
* fix tests
* tets
* test
* changes
* changes
* changes
* change'
* wtf
* changes
* changes
* file perms
* Release queue beta v1 (#1971)
* - release the new queue
* - bypass the issue in the tests
- rewrite the lost part in the codebase
* - add concurrent queue example (#1978)
* rank_eta calc
* Queue fixes (#1981)
* change
* format
* - comment out queue tests as they dont work well
* - reformat
* Update gradio/event_queue.py
Co-authored-by: Ömer Faruk Özdemir <[email protected]>
* changes
* changes
* change
* weird fix
Co-authored-by: Ömer Faruk Özdemir <[email protected]>
* release-queue-v3 (#1988)
* Fix frontend queuing to target secure WSS (#1996)
* change
* format
* changes
* queue-concurrency-tweaks (#2002)
1. make gather_data and broadcast_estimation sequential instead of concurrent because they were deleting elements at the same time and raising expections which was lowering the performance
* Update Queue API, documentation (#2026)
* changes
* changes
* fixes
* changes
* change
* fix
Co-authored-by: Ömer Faruk Özdemir <[email protected]>
Co-authored-by: pngwn <[email protected]> | notify_clients | b1dfc9a172440e9c9736566f326ba339ff559604 | gradio | event_queue.py | 12 | 8 | https://github.com/gradio-app/gradio.git | 3 | 34 | 0 | 13 | 61 | Python | {
"docstring": "\n Notify clients about events statuses in the queue periodically.\n ",
"language": "en",
"n_whitespaces": 24,
"n_words": 9,
"vocab_size": 9
} | async def notify_clients(cls) -> None:
while not cls.STOP:
await asyncio.sleep(cls.UPDATE_INTERVALS)
if cls.EVENT_QUEUE:
await cls.broadcast_estimations()
|
|
42,667 | 178,336 | 2,556 | nuitka/nodes/ModuleNodes.py | 244 | 32 | def _readPyPIFile(self):
# Complex stuff, pylint: disable=too-many-branches,too-many-statements
if self.used_modules is None:
pyi_filename = self.getPyIFilename()
if os.path.exists(pyi_filename):
pyi_deps = OrderedSet()
# Flag signalling multiline import handling
in_import = False
in_import_part = ""
for line in getFileContentByLine(pyi_filename):
line = line.strip()
if not in_import:
if line.startswith("import "):
imported = line[7:]
pyi_deps.add(imported)
elif line.startswith("from "):
parts = line.split(None, 3)
assert parts[0] == "from"
assert parts[2] == "import"
origin_name = parts[1]
if origin_name == "typing":
continue
if origin_name == ".":
origin_name = self.getFullName()
else:
| Fix, the parsing of ".pyi" files didn't handle relative imports | _readPyPIFile | 1f5a2759dc7a3dda7baa4e599a803a34a0be5444 | Nuitka | ModuleNodes.py | 31 | 82 | https://github.com/Nuitka/Nuitka.git | 26 | 469 | 0 | 118 | 808 | Python | {
"docstring": "Read the .pyi file if present and scan for dependencies.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def _readPyPIFile(self):
# Complex stuff, pylint: disable=too-many-branches,too-many-statements
if self.used_modules is None:
pyi_filename = self.getPyIFilename()
if os.path.exists(pyi_filename):
pyi_deps = OrderedSet()
# Flag signalling multiline import handling
in_import = False
in_import_part = ""
for line in getFileContentByLine(pyi_filename):
line = line.strip()
if not in_import:
if line.startswith("import "):
imported = line[7:]
pyi_deps.add(imported)
elif line.startswith("from "):
parts = line.split(None, 3)
assert parts[0] == "from"
assert parts[2] == "import"
origin_name = parts[1]
if origin_name == "typing":
continue
if origin_name == ".":
origin_name = self.getFullName()
else:
dot_count = 0
while origin_name.startswith("."):
origin_name = origin_name[1:]
dot_count += 1
if dot_count > 0:
if origin_name:
origin_name = (
self.getFullName()
.getRelativePackageName(level=dot_count + 1)
.getChildNamed(origin_name)
)
else:
origin_name = (
self.getFullName().getRelativePackageName(
level=dot_count + 1
)
)
if origin_name != self.getFullName():
pyi_deps.add(origin_name)
imported = parts[3]
if imported.startswith("("):
# Handle multiline imports
if not imported.endswith(")"):
in_import = True
imported = imported[1:]
in_import_part = origin_name
assert in_import_part, (
"Multiline part in file %s cannot be empty"
% pyi_filename
)
else:
in_import = False
imported = imported[1:-1]
assert imported
if imported == "*":
continue
for name in imported.split(","):
if name:
name = name.strip()
pyi_deps.add(origin_name + "." + name)
else: # In import
imported = line
if imported.endswith(")"):
imported = imported[0:-1]
in_import = False
for name in imported.split(","):
name = name.strip()
if name:
pyi_deps.add(in_import_part + "." + name)
if "typing" in pyi_deps:
pyi_deps.discard("typing")
if "__future__" in pyi_deps:
pyi_deps.discard("__future__")
if self.getFullName() in pyi_deps:
pyi_deps.discard(self.getFullName())
if self.getFullName().getPackageName() in pyi_deps:
pyi_deps.discard(self.getFullName().getPackageName())
self.used_modules = tuple((pyi_dep, None) for pyi_dep in pyi_deps)
else:
self.used_modules = ()
|
|
12,774 | 61,951 | 378 | .venv/lib/python3.8/site-packages/pip/_vendor/distlib/database.py | 108 | 19 | def topological_sort(self):
result = []
# Make a shallow copy of the adjacency list
alist = {}
for k, v in self.adjacency_list.items():
alist[k] = v[:]
while True:
# See what we can remove in this run
to_remove = []
for k, v in list(alist.items())[:]:
if not v:
to_remove.append(k)
del alist[k]
if not to_rem | upd; format | topological_sort | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | database.py | 13 | 19 | https://github.com/jindongwang/transferlearning.git | 10 | 155 | 0 | 71 | 252 | Python | {
"docstring": "\n Perform a topological sort of the graph.\n :return: A tuple, the first element of which is a topologically sorted\n list of distributions, and the second element of which is a\n list of distributions that cannot be sorted because they have\n circular dependencies and so form a cycle.\n ",
"language": "en",
"n_whitespaces": 117,
"n_words": 47,
"vocab_size": 32
} | def topological_sort(self):
result = []
# Make a shallow copy of the adjacency list
alist = {}
for k, v in self.adjacency_list.items():
alist[k] = v[:]
while True:
# See what we can remove in this run
to_remove = []
for k, v in list(alist.items())[:]:
if not v:
to_remove.append(k)
del alist[k]
if not to_remove:
# What's left in alist (if anything) is a cycle.
break
# Remove from the adjacency list of others
for k, v in alist.items():
alist[k] = [(d, r) for d, r in v if d not in to_remove]
logger.debug('Moving to result: %s',
['%s (%s)' % (d.name, d.version) for d in to_remove])
result.extend(to_remove)
return result, list(alist.keys())
|
|
28,732 | 128,528 | 61 | rllib/evaluation/episode.py | 19 | 13 | def soft_reset(self) -> None:
self.length = 0
self.episode_id = random.randrange( | Convert floats to integers before using randrange (#28962)
Signed-off-by: Ram Rachum <[email protected]> | soft_reset | f448e33473c19854f47a93d7d55ccf72ad1b7fbf | ray | episode.py | 10 | 11 | https://github.com/ray-project/ray.git | 1 | 49 | 0 | 15 | 79 | Python | {
"docstring": "Clears rewards and metrics, but retains RNN and other state.\n\n This is used to carry state across multiple logical episodes in the\n same env (i.e., if `soft_horizon` is set).\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 29,
"vocab_size": 27
} | def soft_reset(self) -> None:
self.length = 0
self.episode_id = random.randrange(int(2e9))
self.total_reward = 0.0
self.agent_rewards = defaultdict(float)
self._agent_reward_history = defaultdict(list)
|
|
16,005 | 73,290 | 200 | wagtail/contrib/modeladmin/views.py | 46 | 14 | def get_ordering_field(self, field_name):
try:
field = self.opts.get_field(field_name)
return field.name
| Reformat with black | get_ordering_field | d10f15e55806c6944827d801cd9c2d53f5da4186 | wagtail | views.py | 15 | 12 | https://github.com/wagtail/wagtail.git | 4 | 77 | 0 | 35 | 126 | Python | {
"docstring": "\n Returns the proper model field name corresponding to the given\n field_name to use for ordering. field_name may either be the name of a\n proper model field or the name of a method (on the admin or model) or a\n callable with the 'admin_order_field' attribute. Returns None if no\n proper model field name can be matched.\n ",
"language": "en",
"n_whitespaces": 98,
"n_words": 55,
"vocab_size": 32
} | def get_ordering_field(self, field_name):
try:
field = self.opts.get_field(field_name)
return field.name
except FieldDoesNotExist:
# See whether field_name is a name of a non-field
# that allows sorting.
if callable(field_name):
attr = field_name
elif hasattr(self.model_admin, field_name):
attr = getattr(self.model_admin, field_name)
else:
attr = getattr(self.model, field_name)
return getattr(attr, "admin_order_field", None)
|
|
50,321 | 203,347 | 224 | django/contrib/admin/checks.py | 50 | 16 | def _check_ordering(self, obj):
# ordering = None
if obj.ordering i | Refs #33476 -- Reformatted code with Black. | _check_ordering | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | checks.py | 16 | 14 | https://github.com/django/django.git | 4 | 84 | 0 | 43 | 137 | Python | {
"docstring": "Check that ordering refers to existing fields or is random.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def _check_ordering(self, obj):
# ordering = None
if obj.ordering is None: # The default value is None
return []
elif not isinstance(obj.ordering, (list, tuple)):
return must_be(
"a list or tuple", option="ordering", obj=obj, id="admin.E031"
)
else:
return list(
chain.from_iterable(
self._check_ordering_item(obj, field_name, "ordering[%d]" % index)
for index, field_name in enumerate(obj.ordering)
)
)
|
|
45,524 | 186,612 | 24 | certbot-nginx/certbot_nginx/_internal/parser_obj.py | 10 | 7 | def parsing_hooks(cls) -> Tuple[Type["Block"], Type["Sentence"], Type["Statements"]]:
return Block, Sentence, Statements
| Fully type certbot-nginx module (#9124)
* Work in progress
* Fix type
* Work in progress
* Work in progress
* Work in progress
* Work in progress
* Work in progress
* Oups.
* Fix typing in UnspacedList
* Fix logic
* Finish typing
* List certbot-nginx as fully typed in tox
* Fix lint
* Fix checks
* Organize imports
* Fix typing for Python 3.6
* Fix checks
* Fix lint
* Update certbot-nginx/certbot_nginx/_internal/configurator.py
Co-authored-by: alexzorin <[email protected]>
* Update certbot-nginx/certbot_nginx/_internal/configurator.py
Co-authored-by: alexzorin <[email protected]>
* Fix signature of deploy_cert regarding the installer interface
* Update certbot-nginx/certbot_nginx/_internal/obj.py
Co-authored-by: alexzorin <[email protected]>
* Fix types
* Update certbot-nginx/certbot_nginx/_internal/parser.py
Co-authored-by: alexzorin <[email protected]>
* Precise type
* Precise _coerce possible inputs/outputs
* Fix type
* Update certbot-nginx/certbot_nginx/_internal/http_01.py
Co-authored-by: ohemorange <[email protected]>
* Fix type
* Remove an undesirable implementation.
* Fix type
Co-authored-by: alexzorin <[email protected]>
Co-authored-by: ohemorange <[email protected]> | parsing_hooks | 16aad35d31a887dab157f9d4f5e0fe9218d06064 | certbot | parser_obj.py | 7 | 8 | https://github.com/certbot/certbot.git | 1 | 30 | 0 | 10 | 50 | Python | {
"docstring": "Returns object types that this class should be able to `parse` recusrively.\n The order of the objects indicates the order in which the parser should\n try to parse each subitem.\n :returns: A list of Parsable classes.\n :rtype list:\n ",
"language": "en",
"n_whitespaces": 73,
"n_words": 38,
"vocab_size": 32
} | def parsing_hooks(cls) -> Tuple[Type["Block"], Type["Sentence"], Type["Statements"]]:
return Block, Sentence, Statements
|
|
40,371 | 169,009 | 98 | pandas/core/computation/ops.py | 28 | 13 | def _cast_inplace(terms, acceptable_dtypes, dtype) -> None:
dt = np.dtype(dtype | TYP: Autotyping (#48191)
* annotate-magics
* annotate-imprecise-magics
* none-return
* scalar-return
* pyi files
* ignore vendored file
* manual changes
* ignore pyright in pickle_compat (these errors would be legit if the current __new__ methods were called but I think these pickle tests call older __new__ methods which allowed providing multiple positional arguments)
* run autotyping in pre-commit
* remove final and expand safe (and add annotate-imprecise-magics) | _cast_inplace | 54347fe684e0f7844bf407b1fb958a5269646825 | pandas | ops.py | 14 | 22 | https://github.com/pandas-dev/pandas.git | 4 | 64 | 0 | 24 | 104 | Python | {
"docstring": "\n Cast an expression inplace.\n\n Parameters\n ----------\n terms : Op\n The expression that should cast.\n acceptable_dtypes : list of acceptable numpy.dtype\n Will not cast if term's dtype in this list.\n dtype : str or numpy.dtype\n The dtype to cast to.\n ",
"language": "en",
"n_whitespaces": 82,
"n_words": 39,
"vocab_size": 31
} | def _cast_inplace(terms, acceptable_dtypes, dtype) -> None:
dt = np.dtype(dtype)
for term in terms:
if term.type in acceptable_dtypes:
continue
try:
new_value = term.value.astype(dt)
except AttributeError:
new_value = dt.type(term.value)
term.update(new_value)
|
|
18,567 | 89,746 | 1,928 | src/sentry/integrations/vercel/webhook.py | 360 | 60 | def _deployment_created(self, external_id, request):
payload = request.data["payload"]
vercel_project_id = (
payload["projectId"] if payload.get("projectId") else payload["project"]["id"]
)
# Only create releases for production deploys for now
if payload["target"] != "production":
logger.info(
f"Ignoring deployment for environment: {payload['target']}",
extra={"external_id": external_id, "vercel_project_id": vercel_project_id},
)
return self.respond(status=204)
logging_params = {"external_id": external_id, "vercel_project_id": vercel_project_id}
org_integrations = OrganizationIntegration.objects.select_related("organization").filter(
integration__external_id=external_id, integration__provider=self.provider
)
if not org_integrations:
logger.info("Integration not found", extra=logging_params)
return self.respond({"detail": "Integration not found"}, status=404)
# for each org integration, search the configs to find one that matches the vercel project of the webhook
for org_integration in org_integrations:
project_mappings = org_integration.config.get("project_mappings") or []
matched_mappings = list(filter(lambda x: x[1] == vercel_project_id, project_mappings))
if matched_mappings:
organization = org_integration.organization
sentry_project_id = matched_mappings[0][0]
logging_params["organization_id"] = organization.id
logging_params["project_id"] = sentry_project_id
try:
release_payload, token = get_payload_and_token(
payload, organization.id, sentry_project_id
)
except Project.DoesNotExist:
logger.info("Project not found", extra=logging_params)
return self.respond({"detail": "Project not found"}, status=404)
except SentryAppInstallationForProvider.DoesNotExist:
logger.info("Installation not found", extra=logging_params)
return self.respond({"detail": "Installation not found"}, status=404)
except SentryAppInstallationToken.DoesNotExist:
logger.info("Token not found", extra=logging_params)
return self.respond({"detail": "Token not found"}, status=404)
except NoCommitFoundError:
logger.info("No commit found", extra=logging_params)
return self.respond({"detail": "No commit found"}, status=404)
except MissingRepositoryError:
logger.info("Could not determine repository", extra=logging_params)
return self.respond({"detail": "Could not determine repository"}, status=400)
url = absolute_uri(f"/api/0/organizations/{organization.slug}/releases/")
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {token}",
"User-Agent": f"sentry_vercel/{VERSION}",
}
json_error = None
# create the basic release payload without refs
no_ref_payload = release_payload.copy()
del no_ref_payload["refs"]
with http.build_session() as session:
try:
| fix: Add functionality for new Vercel webhook payloads (#42340)
Fixes WOR-2493 | _deployment_created | 199dee4680dcecac0c485576f3933d9de49d6e44 | sentry | webhook.py | 20 | 94 | https://github.com/getsentry/sentry.git | 14 | 571 | 0 | 200 | 1,010 | Python | {
"docstring": "\n Steps:\n 1. Find all org integrations that match the external id\n 2. Search the configs to find one that matches the vercel project of the webhook\n 3. Look up the Sentry project that matches\n 4. Look up the connected internal integration\n 5. Find the token associated with that installation\n 6. Determine the commit sha and repo based on what provider is used\n 7. Create the release using the token WITHOUT refs\n 8. Update the release with refs\n ",
"language": "en",
"n_whitespaces": 180,
"n_words": 77,
"vocab_size": 55
} | def _deployment_created(self, external_id, request):
payload = request.data["payload"]
vercel_project_id = (
payload["projectId"] if payload.get("projectId") else payload["project"]["id"]
)
# Only create releases for production deploys for now
if payload["target"] != "production":
logger.info(
f"Ignoring deployment for environment: {payload['target']}",
extra={"external_id": external_id, "vercel_project_id": vercel_project_id},
)
return self.respond(status=204)
logging_params = {"external_id": external_id, "vercel_project_id": vercel_project_id}
org_integrations = OrganizationIntegration.objects.select_related("organization").filter(
integration__external_id=external_id, integration__provider=self.provider
)
if not org_integrations:
logger.info("Integration not found", extra=logging_params)
return self.respond({"detail": "Integration not found"}, status=404)
# for each org integration, search the configs to find one that matches the vercel project of the webhook
for org_integration in org_integrations:
project_mappings = org_integration.config.get("project_mappings") or []
matched_mappings = list(filter(lambda x: x[1] == vercel_project_id, project_mappings))
if matched_mappings:
organization = org_integration.organization
sentry_project_id = matched_mappings[0][0]
logging_params["organization_id"] = organization.id
logging_params["project_id"] = sentry_project_id
try:
release_payload, token = get_payload_and_token(
payload, organization.id, sentry_project_id
)
except Project.DoesNotExist:
logger.info("Project not found", extra=logging_params)
return self.respond({"detail": "Project not found"}, status=404)
except SentryAppInstallationForProvider.DoesNotExist:
logger.info("Installation not found", extra=logging_params)
return self.respond({"detail": "Installation not found"}, status=404)
except SentryAppInstallationToken.DoesNotExist:
logger.info("Token not found", extra=logging_params)
return self.respond({"detail": "Token not found"}, status=404)
except NoCommitFoundError:
logger.info("No commit found", extra=logging_params)
return self.respond({"detail": "No commit found"}, status=404)
except MissingRepositoryError:
logger.info("Could not determine repository", extra=logging_params)
return self.respond({"detail": "Could not determine repository"}, status=400)
url = absolute_uri(f"/api/0/organizations/{organization.slug}/releases/")
headers = {
"Accept": "application/json",
"Authorization": f"Bearer {token}",
"User-Agent": f"sentry_vercel/{VERSION}",
}
json_error = None
# create the basic release payload without refs
no_ref_payload = release_payload.copy()
del no_ref_payload["refs"]
with http.build_session() as session:
try:
resp = session.post(url, json=no_ref_payload, headers=headers)
json_error = safe_json_parse(resp)
resp.raise_for_status()
except RequestException as e:
# errors here should be uncommon but we should be aware of them
logger.error(
f"Error creating release: {e} - {json_error}",
extra=logging_params,
exc_info=True,
)
# 400 probably isn't the right status code but oh well
return self.respond({"detail": f"Error creating release: {e}"}, status=400)
# set the refs
try:
resp = session.post(
url,
json=release_payload,
headers=headers,
)
json_error = safe_json_parse(resp)
resp.raise_for_status()
except RequestException as e:
# errors will probably be common if the user doesn't have repos set up
logger.info(
f"Error setting refs: {e} - {json_error}",
extra=logging_params,
exc_info=True,
)
# 400 probably isn't the right status code but oh well
return self.respond({"detail": f"Error setting refs: {e}"}, status=400)
# we are going to quit after the first project match as there shouldn't be multiple matches
return self.respond(status=201)
return self.respond(status=204)
|
|
18,378 | 88,354 | 27 | src/sentry/auth/helper.py | 13 | 5 | def _app_user(self) -> User | None:
return self.user if isinstance(self.user, Us | ref(auth): Type hints on auth/helper.py and related modules (#41158) | _app_user | e451a0a5b06d082b9515406d933c78e5a3f6253a | sentry | helper.py | 9 | 3 | https://github.com/getsentry/sentry.git | 2 | 25 | 0 | 13 | 40 | Python | {
"docstring": "The user, if they are represented persistently in our app.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def _app_user(self) -> User | None:
return self.user if isinstance(self.user, User) else None
|
|
23,790 | 109,881 | 33 | lib/mpl_toolkits/axes_grid1/axes_divider.py | 19 | 5 | def new_locator(self, nx, nx1=None):
return AxesL | Improve mpl_toolkit documentation | new_locator | df6f95703b60348e01603f98a439b133da2938a0 | matplotlib | axes_divider.py | 9 | 2 | https://github.com/matplotlib/matplotlib.git | 2 | 34 | 0 | 17 | 48 | Python | {
"docstring": "\n Create a new `.AxesLocator` for the specified cell.\n\n Parameters\n ----------\n nx, nx1 : int\n Integers specifying the column-position of the\n cell. When *nx1* is None, a single *nx*-th column is\n specified. Otherwise, location of columns spanning between *nx*\n to *nx1* (but excluding *nx1*-th column) is specified.\n ",
"language": "en",
"n_whitespaces": 126,
"n_words": 46,
"vocab_size": 37
} | def new_locator(self, nx, nx1=None):
return AxesLocator(self, nx, 0, nx1 if nx1 is not None else nx + 1, 1)
|
|
17,602 | 83,152 | 1,529 | zerver/tests/test_message_edit.py | 310 | 35 | def test_edit_cases(self) -> None:
self.login("hamlet")
hamlet = self.example_user("hamlet")
msg_id = self.send_stream_message(
self.example_user("hamlet"), "Denmark", topic_name="topic 1", content="content 1"
)
result = self.client_patch(
f"/json/messages/{msg_id}",
{
"message_id": msg_id,
"content": "content 2",
},
)
self.assert_json_success(result)
history = orjson.loads(Message.objects.get(id=msg_id).edit_history)
self.assertEqual(history[0]["prev_content"], "content 1")
self.assertEqual(history[0]["user_id"], hamlet.id)
self.assertEqual(
set(history[0].keys()),
{
"timestamp",
"prev_content",
"user_id",
"prev_rendered_content",
"prev_rendered_content_version",
},
)
result = self.client_patch(
f"/json/messages/{msg_id}",
{
"message_id": msg_id,
"topic": "topic 2",
},
)
self.assert_json_success(result)
history = orjson.loads(Message.objects.get(id=msg_id).edit_history)
self.assertEqual(history[0][LEGACY_PREV_TOPIC], "topic 1")
self.assertEqual(history[0]["user_id"], hamlet.id)
self.assertEqual(set(history[0].keys()), {"timestamp", LEGACY_PREV_TOPIC, "user_id"})
result = self.client_patch(
f"/json/messages/{msg_id}",
{
"message_id": msg_id,
"content": "content 3",
"topic": "topic 3",
},
)
self.assert_json_success(result)
history = orjson.loads(Message.objects.get(id=msg_id).edit_history)
self.assertEqual(history[0]["prev_content"], "content 2")
self.assertEqual(history[0][LEGACY_PREV_TOPIC], "topic 2")
self.assertEqual(history[0]["user_id"], hamlet.id)
self.assertEqual(
set(history[0].keys()),
{
"timestamp",
LEGACY_PREV_TOPIC,
"prev_content",
| python: Replace string concatenations with f-strings. | test_edit_cases | d560d124a304a2f6dd467200aab7f070a78bf155 | zulip | test_message_edit.py | 13 | 128 | https://github.com/zulip/zulip.git | 4 | 1,019 | 0 | 136 | 1,737 | Python | {
"docstring": "This test verifies the accuracy of construction of Zulip's edit\n history data structures.",
"language": "en",
"n_whitespaces": 19,
"n_words": 13,
"vocab_size": 12
} | def test_edit_cases(self) -> None:
self.login("hamlet")
hamlet = self.example_user("hamlet")
msg_id = self.send_stream_message(
self.example_user("hamlet"), "Denmark", topic_name="topic 1", content="content 1"
)
result = self.client_patch(
f"/json/messages/{msg_id}",
{
"message_id": msg_id,
"content": "content 2",
},
)
self.assert_json_success(result)
history = orjson.loads(Message.objects.get(id=msg_id).edit_history)
self.assertEqual(history[0]["prev_content"], "content 1")
self.assertEqual(history[0]["user_id"], hamlet.id)
self.assertEqual(
set(history[0].keys()),
{
"timestamp",
"prev_content",
"user_id",
"prev_rendered_content",
"prev_rendered_content_version",
},
)
result = self.client_patch(
f"/json/messages/{msg_id}",
{
"message_id": msg_id,
"topic": "topic 2",
},
)
self.assert_json_success(result)
history = orjson.loads(Message.objects.get(id=msg_id).edit_history)
self.assertEqual(history[0][LEGACY_PREV_TOPIC], "topic 1")
self.assertEqual(history[0]["user_id"], hamlet.id)
self.assertEqual(set(history[0].keys()), {"timestamp", LEGACY_PREV_TOPIC, "user_id"})
result = self.client_patch(
f"/json/messages/{msg_id}",
{
"message_id": msg_id,
"content": "content 3",
"topic": "topic 3",
},
)
self.assert_json_success(result)
history = orjson.loads(Message.objects.get(id=msg_id).edit_history)
self.assertEqual(history[0]["prev_content"], "content 2")
self.assertEqual(history[0][LEGACY_PREV_TOPIC], "topic 2")
self.assertEqual(history[0]["user_id"], hamlet.id)
self.assertEqual(
set(history[0].keys()),
{
"timestamp",
LEGACY_PREV_TOPIC,
"prev_content",
"user_id",
"prev_rendered_content",
"prev_rendered_content_version",
},
)
result = self.client_patch(
f"/json/messages/{msg_id}",
{
"message_id": msg_id,
"content": "content 4",
},
)
self.assert_json_success(result)
history = orjson.loads(Message.objects.get(id=msg_id).edit_history)
self.assertEqual(history[0]["prev_content"], "content 3")
self.assertEqual(history[0]["user_id"], hamlet.id)
self.login("iago")
result = self.client_patch(
f"/json/messages/{msg_id}",
{
"message_id": msg_id,
"topic": "topic 4",
},
)
self.assert_json_success(result)
history = orjson.loads(Message.objects.get(id=msg_id).edit_history)
self.assertEqual(history[0][LEGACY_PREV_TOPIC], "topic 3")
self.assertEqual(history[0]["user_id"], self.example_user("iago").id)
history = orjson.loads(Message.objects.get(id=msg_id).edit_history)
self.assertEqual(history[0][LEGACY_PREV_TOPIC], "topic 3")
self.assertEqual(history[2][LEGACY_PREV_TOPIC], "topic 2")
self.assertEqual(history[3][LEGACY_PREV_TOPIC], "topic 1")
self.assertEqual(history[1]["prev_content"], "content 3")
self.assertEqual(history[2]["prev_content"], "content 2")
self.assertEqual(history[4]["prev_content"], "content 1")
# Now, we verify that the edit history data sent back has the
# correct filled-out fields
message_edit_history = self.client_get(f"/json/messages/{msg_id}/history")
json_response = orjson.loads(message_edit_history.content)
# We reverse the message history view output so that the IDs line up with the above.
message_history = list(reversed(json_response["message_history"]))
i = 0
for entry in message_history:
expected_entries = {"content", "rendered_content", "topic", "timestamp", "user_id"}
if i in {0, 2, 3}:
expected_entries.add("prev_topic")
if i in {1, 2, 4}:
expected_entries.add("prev_content")
expected_entries.add("prev_rendered_content")
expected_entries.add("content_html_diff")
i += 1
self.assertEqual(expected_entries, set(entry.keys()))
self.assert_length(message_history, 6)
self.assertEqual(message_history[0]["prev_topic"], "topic 3")
self.assertEqual(message_history[0]["topic"], "topic 4")
self.assertEqual(message_history[1]["topic"], "topic 3")
self.assertEqual(message_history[2]["topic"], "topic 3")
self.assertEqual(message_history[2]["prev_topic"], "topic 2")
self.assertEqual(message_history[3]["topic"], "topic 2")
self.assertEqual(message_history[3]["prev_topic"], "topic 1")
self.assertEqual(message_history[4]["topic"], "topic 1")
self.assertEqual(message_history[0]["content"], "content 4")
self.assertEqual(message_history[1]["content"], "content 4")
self.assertEqual(message_history[1]["prev_content"], "content 3")
self.assertEqual(message_history[2]["content"], "content 3")
self.assertEqual(message_history[2]["prev_content"], "content 2")
self.assertEqual(message_history[3]["content"], "content 2")
self.assertEqual(message_history[4]["content"], "content 2")
self.assertEqual(message_history[4]["prev_content"], "content 1")
self.assertEqual(message_history[5]["content"], "content 1")
self.assertEqual(message_history[5]["topic"], "topic 1")
|
|
@frappe.whitelist()
@frappe.validate_and_sanitize_search_inputs | 14,971 | 69,102 | 47 | erpnext/controllers/queries.py | 69 | 28 | def get_project_name(doctype, txt, searchfield, start, page_len, filters):
doctype = "Project"
cond = ""
if filters and filters.get("customer"):
cond = % (
frappe.db.escape(filters.get("customer"))
)
fields = get_fields(doctype, ["name", "project_name"])
searchfields = frappe.get_meta(doctype).get_search_fields()
searchfields = " or ".join(["`tabProject`." + field + " li | fix: specify allowed doctype in queries (#31761) | get_project_name | 9baa2229761c5415f29646a1a5bed4a3f4981e05 | erpnext | queries.py | 16 | 30 | https://github.com/frappe/erpnext.git | 5 | 171 | 1 | 56 | 304 | Python | {
"docstring": "(`tabProject`.customer = %s or\n\t\t\tifnull(`tabProject`.customer,\"\")=\"\") andselect {fields} from `tabProject`\n\t\twhere\n\t\t\t`tabProject`.status not in ('Completed', 'Cancelled')\n\t\t\tand {cond} {scond} {match_cond}\n\t\torder by\n\t\t\t(case when locate(%(_txt)s, `tabProject`.name) > 0 then locate(%(_txt)s, `tabProject`.name) else 99999 end),\n\t\t\t`tabProject`.idx desc,\n\t\t\t`tabProject`.name asc\n\t\tlimit {page_len} offset {start}",
"language": "en",
"n_whitespaces": 31,
"n_words": 41,
"vocab_size": 39
} | def get_project_name(doctype, txt, searchfield, start, page_len, filters):
doctype = "Project"
cond = ""
if filters and filters.get("customer"):
cond = % (
frappe.db.escape(filters.get("customer"))
)
fields = get_fields(doctype, ["name", "project_name"])
searchfields = frappe.get_meta(doctype).get_search_fields()
searchfields = " or ".join(["`tabProject`." + field + " like %(txt)s" for field in searchfields])
return frappe.db.sql(
.format(
fields=", ".join(["`tabProject`.{0}".format(f) for f in fields]),
cond=cond,
scond=searchfields,
match_cond=get_match_cond(doctype),
start=start,
page_len=page_len,
),
{"txt": "%{0}%".format(txt), "_txt": txt.replace("%", "")},
)
@frappe.whitelist()
@frappe.validate_and_sanitize_search_inputs |
52,508 | 208,754 | 60 | IPython/tests/test_shortcuts.py | 21 | 13 | def test_autosuggest_at_EOL(text, cursor, suggestion, called):
event = make_event(text, cursor, suggestion)
event.current_buffer.insert_text = Mock()
_apply_autosuggest(event)
if called:
event.current_buffer.insert_t | Apply autosuggestion only at EOL.
As they are displayed only at EOL.
Fixes #13724 | test_autosuggest_at_EOL | 517a92f878588484116edd6b88dfc738dcfe3cfb | ipython | test_shortcuts.py | 12 | 8 | https://github.com/ipython/ipython.git | 2 | 58 | 0 | 19 | 95 | Python | {
"docstring": "\n test that autosuggest is only applied at end of line.\n ",
"language": "en",
"n_whitespaces": 17,
"n_words": 10,
"vocab_size": 10
} | def test_autosuggest_at_EOL(text, cursor, suggestion, called):
event = make_event(text, cursor, suggestion)
event.current_buffer.insert_text = Mock()
_apply_autosuggest(event)
if called:
event.current_buffer.insert_text.assert_called()
else:
event.current_buffer.insert_text.assert_not_called()
# event.current_buffer.document.get_end_of_line_position.assert_called()
|
|
@keras_export(
"keras.applications.resnet50.ResNet50",
"keras.applications.resnet.ResNet50",
"keras.applications.ResNet50",
) | 80,067 | 269,419 | 131 | keras/applications/resnet.py | 43 | 14 | def stack3(x, filters, blocks, stride1=2, groups=32, name=None):
x = block3(x, filters, stride=stride1, groups=groups, name=name + "_block1")
for i in range(2, blocks + 1):
x = block3(
x,
filters,
groups=groups,
conv_shortcut=False,
name=name + "_block" + s | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | stack3 | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | resnet.py | 14 | 11 | https://github.com/keras-team/keras.git | 2 | 86 | 1 | 32 | 145 | Python | {
"docstring": "A set of stacked residual blocks.\n\n Args:\n x: input tensor.\n filters: integer, filters of the bottleneck layer in a block.\n blocks: integer, blocks in the stacked blocks.\n stride1: default 2, stride of the first layer in the first block.\n groups: default 32, group size for grouped convolution.\n name: string, stack label.\n\n Returns:\n Output tensor for the stacked blocks.\n ",
"language": "en",
"n_whitespaces": 102,
"n_words": 58,
"vocab_size": 40
} | def stack3(x, filters, blocks, stride1=2, groups=32, name=None):
x = block3(x, filters, stride=stride1, groups=groups, name=name + "_block1")
for i in range(2, blocks + 1):
x = block3(
x,
filters,
groups=groups,
conv_shortcut=False,
name=name + "_block" + str(i),
)
return x
@keras_export(
"keras.applications.resnet50.ResNet50",
"keras.applications.resnet.ResNet50",
"keras.applications.ResNet50",
) |
40,247 | 168,235 | 100 | pandas/core/indexes/base.py | 28 | 11 | def is_mixed(self) -> bool:
warnings.warn(
"Index.is_m | PERF cache find_stack_level (#48023)
cache stacklevel | is_mixed | 2f8d0a36703e81e4dca52ca9fe4f58c910c1b304 | pandas | base.py | 12 | 36 | https://github.com/pandas-dev/pandas.git | 1 | 37 | 0 | 27 | 66 | Python | {
"docstring": "\n Check if the Index holds data with mixed data types.\n\n Returns\n -------\n bool\n Whether or not the Index holds data with mixed data types.\n\n See Also\n --------\n is_boolean : Check if the Index only consists of booleans.\n is_integer : Check if the Index only consists of integers.\n is_floating : Check if the Index is a floating type.\n is_numeric : Check if the Index only consists of numeric data.\n is_object : Check if the Index is of the object dtype.\n is_categorical : Check if the Index holds categorical data.\n is_interval : Check if the Index holds Interval objects.\n\n Examples\n --------\n >>> idx = pd.Index(['a', np.nan, 'b'])\n >>> idx.is_mixed()\n True\n\n >>> idx = pd.Index([1.0, 2.0, 3.0, 5.0])\n >>> idx.is_mixed()\n False\n ",
"language": "en",
"n_whitespaces": 284,
"n_words": 118,
"vocab_size": 56
} | def is_mixed(self) -> bool:
warnings.warn(
"Index.is_mixed is deprecated and will be removed in a future version. "
"Check index.inferred_type directly instead.",
FutureWarning,
stacklevel=find_stack_level(inspect.currentframe()),
)
return self.inferred_type in ["mixed"]
|
|
@pytest.mark.parametrize(
"responder, read_method, parquet_engine",
[
(CSVUserAgentResponder, pd.read_csv, None),
(JSONUserAgentResponder, pd.read_json, None),
(ParquetPyArrowUserAgentResponder, pd.read_parquet, "pyarrow"),
pytest.param(
ParquetFastParquetUserAgentResponder,
pd.read_parquet,
"fastparquet",
# TODO(ArrayManager) fastparquet
marks=[
td.skip_array_manager_not_yet_implemented,
pytest.mark.xfail(PY310, reason="fastparquet failing on 3.10"),
],
),
(PickleUserAgentResponder, pd.read_pickle, None),
(StataUserAgentResponder, pd.read_stata, None),
(GzippedCSVUserAgentResponder, pd.read_csv, None),
(GzippedJSONUserAgentResponder, pd.read_json, None),
],
indirect=["responder"],
) | 39,497 | 163,775 | 380 | pandas/tests/io/test_user_agent.py | 93 | 48 | def responder(request):
# Find an available port
with socket.socket() as sock:
sock.bind(("localhost", 0))
port = sock.getsockname()[1]
server_process = multiprocessing.Process(
target=process_server, args=(request.param, port)
)
server_process.start()
yield port
server_process.join(10)
server_process.terminate()
kill_time = 5
wait_time = 0
while server_process.is_alive():
if wait_time > kill_time:
server_process.kill()
break | CI/TST: Call join on server process test (#45628) | responder | c5ff649b11bd625ca36ad218539badb1c2057668 | pandas | test_user_agent.py | 15 | 21 | https://github.com/pandas-dev/pandas.git | 3 | 117 | 1 | 75 | 366 | Python | {
"docstring": "\n Fixture that starts a local http server in a separate process on localhost\n and returns the port.\n\n Running in a separate process instead of a thread to allow termination/killing\n of http server upon cleanup.\n ",
"language": "en",
"n_whitespaces": 50,
"n_words": 34,
"vocab_size": 25
} | def responder(request):
# Find an available port
with socket.socket() as sock:
sock.bind(("localhost", 0))
port = sock.getsockname()[1]
server_process = multiprocessing.Process(
target=process_server, args=(request.param, port)
)
server_process.start()
yield port
server_process.join(10)
server_process.terminate()
kill_time = 5
wait_time = 0
while server_process.is_alive():
if wait_time > kill_time:
server_process.kill()
break
else:
wait_time += 0.1
time.sleep(0.1)
server_process.close()
@pytest.mark.parametrize(
"responder, read_method, parquet_engine",
[
(CSVUserAgentResponder, pd.read_csv, None),
(JSONUserAgentResponder, pd.read_json, None),
(ParquetPyArrowUserAgentResponder, pd.read_parquet, "pyarrow"),
pytest.param(
ParquetFastParquetUserAgentResponder,
pd.read_parquet,
"fastparquet",
# TODO(ArrayManager) fastparquet
marks=[
td.skip_array_manager_not_yet_implemented,
pytest.mark.xfail(PY310, reason="fastparquet failing on 3.10"),
],
),
(PickleUserAgentResponder, pd.read_pickle, None),
(StataUserAgentResponder, pd.read_stata, None),
(GzippedCSVUserAgentResponder, pd.read_csv, None),
(GzippedJSONUserAgentResponder, pd.read_json, None),
],
indirect=["responder"],
) |
51,525 | 206,452 | 419 | django/test/testcases.py | 72 | 29 | def _pre_setup(self):
super()._pre_setup()
if self.available_apps is not None:
apps.set_available_apps(self.available_apps)
setting_changed.send(
sender=settings._wrapped.__class__,
setting="INSTALLED_APPS",
value=self.available_apps,
enter=True,
)
for db_name in self._databases_names(include_mirrors=False):
| Refs #33476 -- Reformatted code with Black. | _pre_setup | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | testcases.py | 15 | 26 | https://github.com/django/django.git | 6 | 155 | 0 | 56 | 247 | Python | {
"docstring": "\n Perform pre-test setup:\n * If the class has an 'available_apps' attribute, restrict the app\n registry to these applications, then fire the post_migrate signal --\n it must run with the correct set of applications for the test case.\n * If the class has a 'fixtures' attribute, install those fixtures.\n ",
"language": "en",
"n_whitespaces": 95,
"n_words": 48,
"vocab_size": 38
} | def _pre_setup(self):
super()._pre_setup()
if self.available_apps is not None:
apps.set_available_apps(self.available_apps)
setting_changed.send(
sender=settings._wrapped.__class__,
setting="INSTALLED_APPS",
value=self.available_apps,
enter=True,
)
for db_name in self._databases_names(include_mirrors=False):
emit_post_migrate_signal(verbosity=0, interactive=False, db=db_name)
try:
self._fixture_setup()
except Exception:
if self.available_apps is not None:
apps.unset_available_apps()
setting_changed.send(
sender=settings._wrapped.__class__,
setting="INSTALLED_APPS",
value=settings.INSTALLED_APPS,
enter=False,
)
raise
# Clear the queries_log so that it's less likely to overflow (a single
# test probably won't execute 9K queries). If queries_log overflows,
# then assertNumQueries() doesn't work.
for db_name in self._databases_names(include_mirrors=False):
connections[db_name].queries_log.clear()
|
|
51,970 | 207,475 | 173 | tests/admin_views/test_actions.py | 51 | 14 | def test_multiple_actions_form(self):
action_data = {
ACTION_CHECKBOX_NAME: [self.s1.pk],
# Two differen | Refs #33476 -- Reformatted code with Black. | test_multiple_actions_form | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | test_actions.py | 11 | 11 | https://github.com/django/django.git | 1 | 73 | 0 | 46 | 126 | Python | {
"docstring": "\n Actions come from the form whose submit button was pressed (#10618).\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | def test_multiple_actions_form(self):
action_data = {
ACTION_CHECKBOX_NAME: [self.s1.pk],
# Two different actions selected on the two forms...
"action": ["external_mail", "delete_selected"],
# ...but "go" was clicked on the top form.
"index": 0,
}
self.client.post(
reverse("admin:admin_views_externalsubscriber_changelist"), action_data
)
# The action sends mail rather than deletes.
self.assertEqual(len(mail.outbox), 1)
self.assertEqual(mail.outbox[0].subject, "Greetings from a function action")
|
|
17,659 | 83,350 | 90 | zerver/tests/test_message_send.py | 26 | 9 | def test_empty_message(self) -> None:
self.login("hamlet")
othello = self.example_user("othello")
result = se | tests: Remove `client` parameter if test can use default `User-Agent`.
Removes `client` parameter from backend tests using the
`POST /messages` endpoint when the test can use the default
`User-Agent` as the client, which is set to `ZulipMobile` for API
requests and a browser user agent string for web app requests. | test_empty_message | 47056ef06fff67388ebe1bd09846280fc84f9660 | zulip | test_message_send.py | 11 | 11 | https://github.com/zulip/zulip.git | 1 | 55 | 0 | 25 | 104 | Python | {
"docstring": "\n Sending a message that is empty or only whitespace should fail\n ",
"language": "en",
"n_whitespaces": 26,
"n_words": 11,
"vocab_size": 11
} | def test_empty_message(self) -> None:
self.login("hamlet")
othello = self.example_user("othello")
result = self.client_post(
"/json/messages",
{"type": "private", "content": " ", "to": othello.email},
)
self.assert_json_error(result, "Message must not be empty")
|
|
35,160 | 151,914 | 50 | freqtrade/templates/FreqaiExampleStrategy.py | 15 | 5 | def freqai_feature_engineering_generic(self, dataframe, **kwargs):
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dat | freqAI Strategy - improve user experience | freqai_feature_engineering_generic | 8227b4aafe51b30e5942d293e8d0052c968442dd | freqtrade | FreqaiExampleStrategy.py | 10 | 5 | https://github.com/freqtrade/freqtrade.git | 1 | 44 | 0 | 13 | 80 | Python | {
"docstring": "\n This optional function will be called for all include_timeframes (including corr_pairs).\n After that, the features will be shifted by the number of candles in the\n include_shifted_candles.\n :param df: strategy dataframe which will receive the features\n dataframe[\"%-pct-change\"] = dataframe[\"close\"].pct_change()\n ",
"language": "en",
"n_whitespaces": 81,
"n_words": 38,
"vocab_size": 31
} | def freqai_feature_engineering_generic(self, dataframe, **kwargs):
dataframe["%-pct-change"] = dataframe["close"].pct_change()
dataframe["%-raw_volume"] = dataframe["volume"]
dataframe["%-raw_price"] = dataframe["close"]
return dataframe
|
|
@keras_export("keras.utils.GeneratorEnqueuer") | 81,723 | 276,754 | 10 | keras/utils/data_utils.py | 5 | 5 | def next_sample(uid):
return next(_SHARED_SEQUENCES[uid])
@keras_export("keras.utils.G | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | next_sample | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | data_utils.py | 8 | 2 | https://github.com/keras-team/keras.git | 1 | 14 | 1 | 5 | 36 | Python | {
"docstring": "Gets the next value from the generator `uid`.\n\n To allow multiple generators to be used at the same time, we use `uid` to\n get a specific one. A single generator would cause the validation to\n overwrite the training generator.\n\n Args:\n uid: int, generator identifier\n\n Returns:\n The next value of generator `uid`.\n ",
"language": "en",
"n_whitespaces": 83,
"n_words": 51,
"vocab_size": 39
} | def next_sample(uid):
return next(_SHARED_SEQUENCES[uid])
@keras_export("keras.utils.GeneratorEnqueuer") |
50,250 | 203,215 | 234 | django/contrib/staticfiles/utils.py | 83 | 10 | def check_settings(base_url=None):
if base_url is None:
base_url = settings.STATIC_URL
if not base_url:
raise ImproperlyConfigured(
"You're using the staticfiles app "
"without having set the required STATIC_URL setting.")
if settings.MEDIA_URL == base_url:
raise ImproperlyConfigured(
"The MEDIA_URL and STATIC_URL | Refs #33476 -- Refactored problematic code before reformatting by Black.
In these cases Black produces unexpected results, e.g.
def make_random_password(
self,
length=10,
allowed_chars='abcdefghjkmnpqrstuvwxyz' 'ABCDEFGHJKLMNPQRSTUVWXYZ' '23456789',
):
or
cursor.execute("""
SELECT ...
""",
[table name],
) | check_settings | c5cd8783825b5f6384417dac5f3889b4210b7d08 | django | utils.py | 11 | 21 | https://github.com/django/django.git | 11 | 99 | 0 | 49 | 169 | Python | {
"docstring": "\n Check if the staticfiles settings have sane values.\n ",
"language": "en",
"n_whitespaces": 15,
"n_words": 8,
"vocab_size": 8
} | def check_settings(base_url=None):
if base_url is None:
base_url = settings.STATIC_URL
if not base_url:
raise ImproperlyConfigured(
"You're using the staticfiles app "
"without having set the required STATIC_URL setting.")
if settings.MEDIA_URL == base_url:
raise ImproperlyConfigured(
"The MEDIA_URL and STATIC_URL settings must have different values"
)
if (settings.DEBUG and settings.MEDIA_URL and settings.STATIC_URL and
settings.MEDIA_URL.startswith(settings.STATIC_URL)):
raise ImproperlyConfigured(
"runserver can't serve media if MEDIA_URL is within STATIC_URL."
)
if ((settings.MEDIA_ROOT and settings.STATIC_ROOT) and
(settings.MEDIA_ROOT == settings.STATIC_ROOT)):
raise ImproperlyConfigured(
"The MEDIA_ROOT and STATIC_ROOT settings must have different values"
)
|
|
@PublicAPI(stability="beta") | 28,782 | 128,704 | 471 | python/ray/serve/schema.py | 89 | 16 | def kubernetes_dict(self, **kwargs) -> Dict:
config = self.dict(**kwargs)
for idx, deployment in enumerate(config["deployments"]):
if isinstance(deployment.get("ray_actor_options"), dict):
# JSON-serialize ray_actor_options' resources dictionary
if isinstance(deployment["ray_actor_options"].get("resources"), dict):
deployment["ray_actor_options"]["resources"] = json.dumps(
deployment["ray_actor_options"]["resources"]
)
# JSON-serialize ray_actor_options' runtime_env dictionary
if isinstance(deployment["ray_actor_options"].get("runtime_env"), dict):
deployment["ray_actor_options"]["runtime_env"] = json.dumps(
deployment["ray_actor_options"]["runtime_env"]
)
# Convert ray_actor_options' keys
deployment["ray_actor_options"] = dict_keys_snake_to_camel_case(
deployment["ray_actor_options"]
)
# JSON-serialize user_config dictionary
if isinstance(deployment.get("user_config"), dict):
deployment["user_config"] = json.dumps(deployment["user_config"])
# Convert deployment's keys
config["deployments"][idx] = dict_keys_snake_to_camel_case(deployment)
# Convert top-level runtime_env
if isinstance(config.get("runtime_env"), dict):
config["runtime_env"] = json.dumps(config["runtime_env"])
# Convert top-level option's keys
config = dict_keys_snake_to_camel_case(config)
return config
@PublicAPI(stability="b | [Serve] [KubeRay] Add flag that allows `serve build` to print Kubernetes-formatted output (#28918) | kubernetes_dict | 05e623ecc22788cfe3b8ebe7933135350d3e0a2d | ray | schema.py | 17 | 29 | https://github.com/ray-project/ray.git | 7 | 204 | 1 | 47 | 378 | Python | {
"docstring": "Returns dictionary in Kubernetes format.\n\n Dictionary can be yaml-dumped to a Serve config file directly and then\n copy-pasted into a RayService Kubernetes config.\n\n Args: all kwargs are passed directly into schema's dict() function.\n ",
"language": "en",
"n_whitespaces": 61,
"n_words": 33,
"vocab_size": 29
} | def kubernetes_dict(self, **kwargs) -> Dict:
config = self.dict(**kwargs)
for idx, deployment in enumerate(config["deployments"]):
if isinstance(deployment.get("ray_actor_options"), dict):
# JSON-serialize ray_actor_options' resources dictionary
if isinstance(deployment["ray_actor_options"].get("resources"), dict):
deployment["ray_actor_options"]["resources"] = json.dumps(
deployment["ray_actor_options"]["resources"]
)
# JSON-serialize ray_actor_options' runtime_env dictionary
if isinstance(deployment["ray_actor_options"].get("runtime_env"), dict):
deployment["ray_actor_options"]["runtime_env"] = json.dumps(
deployment["ray_actor_options"]["runtime_env"]
)
# Convert ray_actor_options' keys
deployment["ray_actor_options"] = dict_keys_snake_to_camel_case(
deployment["ray_actor_options"]
)
# JSON-serialize user_config dictionary
if isinstance(deployment.get("user_config"), dict):
deployment["user_config"] = json.dumps(deployment["user_config"])
# Convert deployment's keys
config["deployments"][idx] = dict_keys_snake_to_camel_case(deployment)
# Convert top-level runtime_env
if isinstance(config.get("runtime_env"), dict):
config["runtime_env"] = json.dumps(config["runtime_env"])
# Convert top-level option's keys
config = dict_keys_snake_to_camel_case(config)
return config
@PublicAPI(stability="beta") |
20,689 | 101,270 | 430 | tools/sort/sort.py | 135 | 34 | def reload_images(self, group_method, img_list):
logger.info("Preparing to group...")
if group_method == 'group_blur':
filename_list, image_list = self._get_images()
blurs = [self.estimate_blur(img) for img in image_list]
temp_list = list(zip(filename_list, blurs))
elif group_method == 'group_blur_fft':
filename_list, image_list = self._get_images()
fft_bl | lib.align updates:
- alignments.py
- Add typed dicts for imported alignments
- Explicitly check for presence of thumb value in alignments dict
- linting
- detected_face.py
- Typing
- Linting
- Legacy support for pre-aligned face
- Update dependencies to new property names | reload_images | 5e73437be47f2410439a3c6716de96354e6a0c94 | faceswap | sort.py | 19 | 29 | https://github.com/deepfakes/faceswap.git | 12 | 301 | 0 | 64 | 480 | Python | {
"docstring": "\n Reloads the image list by replacing the comparative values with those\n that the chosen grouping method expects.\n :param group_method: str name of the grouping method that will be used.\n :param img_list: image list that has been sorted by one of the sort\n methods.\n :return: img_list but with the comparative values that the chosen\n grouping method expects.\n ",
"language": "en",
"n_whitespaces": 113,
"n_words": 56,
"vocab_size": 33
} | def reload_images(self, group_method, img_list):
logger.info("Preparing to group...")
if group_method == 'group_blur':
filename_list, image_list = self._get_images()
blurs = [self.estimate_blur(img) for img in image_list]
temp_list = list(zip(filename_list, blurs))
elif group_method == 'group_blur_fft':
filename_list, image_list = self._get_images()
fft_blurs = [self.estimate_blur_fft(img) for img in image_list]
temp_list = list(zip(filename_list, fft_blurs))
elif group_method == 'group_face_cnn':
filename_list, image_list, landmarks = self._get_landmarks()
temp_list = list(zip(filename_list, landmarks))
elif group_method == 'group_face_yaw':
filename_list, image_list, landmarks = self._get_landmarks()
yaws = [self.calc_landmarks_face_yaw(mark) for mark in landmarks]
temp_list = list(zip(filename_list, yaws))
elif group_method == 'group_hist':
filename_list, image_list = self._get_images()
histograms = [cv2.calcHist([img], [0], None, [256], [0, 256]) for img in image_list]
temp_list = list(zip(filename_list, histograms))
elif group_method == 'group_black_pixels':
filename_list, image_list = self._get_images()
black_pixels = [np.ndarray.all(img == [0, 0, 0], axis=2).sum()/img.size*100*3
for img in image_list]
temp_list = list(zip(filename_list, black_pixels))
else:
raise ValueError(f"{group_method} group_method not found.")
return self.splice_lists(img_list, temp_list)
|
|
14,529 | 67,455 | 17 | erpnext/selling/report/territory_wise_sales/territory_wise_sales.py | 27 | 13 | def get_sales_orders(quotations):
if not quotations:
return []
quotation_names = [q.name for q in quotations]
return frappe.db.sql(
.form | style: format code with black | get_sales_orders | 494bd9ef78313436f0424b918f200dab8fc7c20b | erpnext | territory_wise_sales.py | 14 | 15 | https://github.com/frappe/erpnext.git | 3 | 59 | 0 | 26 | 98 | Python | {
"docstring": "\n\tSELECT so.`name`, so.`base_grand_total`, soi.prevdoc_docname as quotation\n\tFROM `tabSales Order` so, `tabSales Order Item` soi\n\tWHERE so.docstatus=1 AND so.name = soi.parent AND soi.prevdoc_docname in ({0})\n\t",
"language": "en",
"n_whitespaces": 21,
"n_words": 24,
"vocab_size": 21
} | def get_sales_orders(quotations):
if not quotations:
return []
quotation_names = [q.name for q in quotations]
return frappe.db.sql(
.format(
", ".join(["%s"] * len(quotation_names))
),
tuple(quotation_names),
as_dict=1,
) # nosec
|
|
74,310 | 253,927 | 95 | d2l/mxnet.py | 47 | 19 | def download_extract(name, folder=None):
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname)
if ext == '.zip':
fp = zipfile.ZipFile(fname, 'r')
elif ext in ('.t | JAX: Fix CI bug; enable build all sections | download_extract | 2b1acfbfe84b6c9c4756a615620f9b376d48085a | d2l-en | mxnet.py | 12 | 12 | https://github.com/d2l-ai/d2l-en.git | 4 | 99 | 0 | 38 | 166 | Python | {
"docstring": "Download and extract a zip/tar file.\n\n Defined in :numref:`sec_utils`",
"language": "en",
"n_whitespaces": 11,
"n_words": 9,
"vocab_size": 9
} | def download_extract(name, folder=None):
fname = download(name)
base_dir = os.path.dirname(fname)
data_dir, ext = os.path.splitext(fname)
if ext == '.zip':
fp = zipfile.ZipFile(fname, 'r')
elif ext in ('.tar', '.gz'):
fp = tarfile.open(fname, 'r')
else:
assert False, 'Only zip/tar files can be extracted.'
fp.extractall(base_dir)
return os.path.join(base_dir, folder) if folder else data_dir
|
|
80,913 | 271,957 | 112 | keras/engine/training_v1.py | 48 | 4 | def sample_weights_mismatch(self):
# If there is a mismatch between sample weight mode and the placeholders
# created, then recompile the sub-graphs that depend on sample weights.
return (
self.sample_weight_mode is not None and self.sample_weight is N | Reformatting the codebase with black.
PiperOrigin-RevId: 450093126 | sample_weights_mismatch | 84afc5193d38057e2e2badf9c889ea87d80d8fbf | keras | training_v1.py | 10 | 6 | https://github.com/keras-team/keras.git | 4 | 36 | 0 | 31 | 59 | Python | {
"docstring": "Check if the sample weight and the mode match or not.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 10
} | def sample_weights_mismatch(self):
# If there is a mismatch between sample weight mode and the placeholders
# created, then recompile the sub-graphs that depend on sample weights.
return (
self.sample_weight_mode is not None and self.sample_weight is None
) or (
self.sample_weight_mode is None and self.sample_weight is not None
)
|
|
52,324 | 208,426 | 241 | IPython/core/magics/script.py | 69 | 16 | def shebang(self, line, cell):
# Create the event loop in which to run script magics
# this operates on a background thread
if self.event_loop is None:
if sys.platform == "win32":
# don't override the current policy,
# just create an event loop
event_loop = asyncio.WindowsProactorEventLoopPolicy().new_event_loop()
else:
event_loop = asyncio.new_event_loop()
self.event_loop = | avoid deprecated get_event_loop
use our own `async_helpers.get_asyncio_loop` to track the global event loop
script magics use dedicated background asyncio loop
instead of trying to work on the main loop, which may or may not exist
_AsyncIOProxy wraps background script objects to transfer awaitables across loops
only works for coroutine methods, which might be good enough? Works for read, etc. | shebang | ce62a7a4b2c97bf8a30e8074e8fc18103a0718a0 | ipython | script.py | 14 | 79 | https://github.com/ipython/ipython.git | 18 | 515 | 0 | 45 | 131 | Python | {
"docstring": "Run a cell via a shell command\n\n The `%%script` line is like the #! line of script,\n specifying a program (bash, perl, ruby, etc.) with which to run.\n\n The rest of the cell is run by that program.\n\n Examples\n --------\n ::\n\n In [1]: %%script bash\n ...: for i in 1 2 3; do\n ...: echo $i\n ...: done\n 1\n 2\n 3\n ",
"language": "en",
"n_whitespaces": 198,
"n_words": 61,
"vocab_size": 49
} | def shebang(self, line, cell):
# Create the event loop in which to run script magics
# this operates on a background thread
if self.event_loop is None:
if sys.platform == "win32":
# don't override the current policy,
# just create an event loop
event_loop = asyncio.WindowsProactorEventLoopPolicy().new_event_loop()
else:
event_loop = asyncio.new_event_loop()
self.event_loop = event_loop
# start the loop in a background thread
asyncio_thread = Thread(target=event_loop.run_forever, daemon=True)
asyncio_thread.start()
else:
event_loop = self.event_loop
|
|
13,503 | 63,781 | 66 | .venv/lib/python3.8/site-packages/pip/_vendor/tenacity/__init__.py | 12 | 4 | def statistics(self):
try:
return self._local.statistics
| upd; format | statistics | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | __init__.py | 11 | 6 | https://github.com/jindongwang/transferlearning.git | 2 | 31 | 0 | 9 | 53 | Python | {
"docstring": "Return a dictionary of runtime statistics.\n\n This dictionary will be empty when the controller has never been\n ran. When it is running or has ran previously it should have (but\n may not) have useful and/or informational keys and values when\n running is underway and/or completed.\n\n .. warning:: The keys in this dictionary **should** be some what\n stable (not changing), but there existence **may**\n change between major releases as new statistics are\n gathered or removed so before accessing keys ensure that\n they actually exist and handle when they do not.\n\n .. note:: The values in this dictionary are local to the thread\n running call (so if multiple threads share the same retrying\n object - either directly or indirectly) they will each have\n there own view of statistics they have collected (in the\n future we may provide a way to aggregate the various\n statistics from each thread).\n ",
"language": "en",
"n_whitespaces": 359,
"n_words": 145,
"vocab_size": 103
} | def statistics(self):
try:
return self._local.statistics
except AttributeError:
self._local.statistics = {}
return self._local.statistics
|
|
51,281 | 205,919 | 116 | django/dispatch/dispatcher.py | 26 | 11 | def send(self, sender, **named):
if (
not self.receivers
or self.sender_receivers_cache.get(sender) is NO_RECEIVERS
):
return []
return [
(receiver, receiver(signal=self, sender=sender, **named))
for receiver in self._live_receivers(sender)
]
| Refs #33476 -- Reformatted code with Black. | send | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | dispatcher.py | 11 | 10 | https://github.com/django/django.git | 4 | 62 | 0 | 25 | 95 | Python | {
"docstring": "\n Send signal from sender to all connected receivers.\n\n If any receiver raises an error, the error propagates back through send,\n terminating the dispatch loop. So it's possible that all receivers\n won't be called if an error is raised.\n\n Arguments:\n\n sender\n The sender of the signal. Either a specific object or None.\n\n named\n Named arguments which will be passed to receivers.\n\n Return a list of tuple pairs [(receiver, response), ... ].\n ",
"language": "en",
"n_whitespaces": 172,
"n_words": 70,
"vocab_size": 58
} | def send(self, sender, **named):
if (
not self.receivers
or self.sender_receivers_cache.get(sender) is NO_RECEIVERS
):
return []
return [
(receiver, receiver(signal=self, sender=sender, **named))
for receiver in self._live_receivers(sender)
]
|
|
35,293 | 153,192 | 95 | modin/core/execution/ray/implementations/pandas_on_ray/partitioning/virtual_partition.py | 55 | 14 | def deploy_ray_func(func, *args): # pragma: no cover
result = func(*args)
ip = get_node_ip_address()
if isinstance(result, pandas.DataFrame):
return result, len(result), len(result.columns), ip
elif all(isinstance(r, pandas.DataFrame) for r in result):
return [i for r in result for i in [r, len(r), l | FIX-#3675: Expand virtual partitioning utility (#3886)
Co-authored-by: mvashishtha <[email protected]>
Co-authored-by: jeffreykennethli <[email protected]>
Co-authored-by: Anatoly Myachev <[email protected]>
Co-authored-by: Vasily Litvinov <[email protected]>
Co-authored-by: Alexey Prutskov <[email protected]>
Co-authored-by: Mahesh Vashishtha <[email protected]>
Co-authored-by: Naren Krishna <[email protected]>
Co-authored-by: Yaroslav Igoshev <[email protected]>
Co-authored-by: Dmitry Chigarev <[email protected]>
Co-authored-by: Yaroslav Igoshev <[email protected]>
Co-authored-by: Doris Lee <[email protected]>
Co-authored-by: Aditya Parameswaran <[email protected]>
Co-authored-by: Rehan Sohail Durrani <[email protected]>
Co-authored-by: Susmit Vengurlekar <[email protected]>
Signed-off-by: Devin Petersohn <[email protected]> | deploy_ray_func | 8d1004fdbdaa05700613c8e6287641a732acf606 | modin | virtual_partition.py | 14 | 9 | https://github.com/modin-project/modin.git | 8 | 114 | 0 | 34 | 169 | Python | {
"docstring": "\n Execute a function on an axis partition in a worker process.\n\n Parameters\n ----------\n func : callable\n Function to be executed on an axis partition.\n *args : iterable\n Additional arguments that need to passed in ``func``.\n\n Returns\n -------\n list\n The result of the function ``func`` and metadata for it.\n\n Notes\n -----\n Ray functions are not detected by codecov (thus pragma: no cover).\n ",
"language": "en",
"n_whitespaces": 119,
"n_words": 61,
"vocab_size": 53
} | def deploy_ray_func(func, *args): # pragma: no cover
result = func(*args)
ip = get_node_ip_address()
if isinstance(result, pandas.DataFrame):
return result, len(result), len(result.columns), ip
elif all(isinstance(r, pandas.DataFrame) for r in result):
return [i for r in result for i in [r, len(r), len(r.columns), ip]]
else:
return [i for r in result for i in [r, None, None, ip]]
|
|
@add_start_docstrings(
"The bare ViLT Model transformer outputting raw hidden-states without any specific head on top.",
VILT_START_DOCSTRING,
) | 6,254 | 34,307 | 54 | src/transformers/models/vilt/modeling_vilt.py | 36 | 11 | def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, ViltEncoder):
module.gradient_checkpointing = value
VILT_START_DOCSTRING = r
VILT_INPUTS_DOCST | Add ViLT (#14895)
* First commit
* Add conversion script
* Make conversion script work for base model
* More improvements
* Update conversion script, works for vqa
* Add indexing argument to meshgrid
* Make conversion script work for ViltForPreTraining
* Add ViltForPreTraining to docs
* Fix device issue
* Add processor
* Add MinMaxResize to feature extractor
* Implement call method of ViltProcessor
* Fix tests
* Add integration test
* Add loss calculation for VQA
* Improve tests
* Improve some more tests
* Debug tests
* Small improvements
* Add support for attention_mask
* Remove mask_it
* Add pixel_mask
* Add tests for ViltFeatureExtractor
* Improve tests
* Add ViltForNaturalLanguageVisualReasoning
* Add ViltForNaturalLanguageVisualReasoning to conversion script
* Minor fixes
* Add support for image_embeds, update docstrings to markdown
* Update docs to markdown
* Improve conversion script
* Rename ViltForPreTraining to ViltForMaskedLM
* Improve conversion script
* Convert docstrings to markdown
* Fix code example of retrieval model
* Properly convert masked language model
* Add integration test for nlvr
* Fix code quality
* Apply suggestions from code review
* Add copied from statements
* Fix pretrained_config_archive_map
* Fix docs
* Add model to README
* Apply suggestions from code review
Co-authored-by: Sylvain Gugger <[email protected]>
* Apply more suggestions from code review
* Make code more readable
* Add ViltForNaturalLanguageVisualReasoning to the tests
* Rename ViltForVisualQuestionAnswering to ViltForQuestionAnswering
* Replace pixel_values_2 by single tensor
* Add hidden_states and attentions
* Fix one more test
* Fix all tests
* Update year
* Fix rebase issues
* Fix another rebase issue
* Remove ViltForPreTraining from auto mapping
* Rename ViltForImageRetrievalTextRetrieval to ViltForImageAndTextRetrieval
* Make it possible to use BertTokenizerFast in the processor
* Use BertTokenizerFast by default
* Rename ViltForNaturalLanguageVisualReasoning, define custom model output
Co-authored-by: Sylvain Gugger <[email protected]> | _set_gradient_checkpointing | ac227093e41cecb07c7e0f2fc9a504850907bd06 | transformers | modeling_vilt.py | 9 | 3 | https://github.com/huggingface/transformers.git | 2 | 24 | 1 | 31 | 71 | Python | {
"docstring": "\n This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ subclass. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ViltConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n\n Args:\n input_ids (`torch.LongTensor` of shape `({0})`):\n Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`BertTokenizer`]. See\n [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input\n IDs?](../glossary#input-ids)\n\n attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):\n Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:\n - 1 for tokens that are **not masked**,\n - 0 for tokens that are **masked**.\n [What are attention masks?](../glossary#attention-mask)\n\n token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):\n Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,\n 1]`:\n - 0 corresponds to a *sentence A* token,\n - 1 corresponds to a *sentence B* token.\n [What are token type IDs?](../glossary#token-type-ids)\n\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`ViltFeatureExtractor`]. See\n [`ViltFeatureExtractor.__call__`] for details.\n\n pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*):\n Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:\n\n - 1 for pixels that are real (i.e. **not masked**),\n - 0 for pixels that are padding (i.e. **masked**).\n `What are attention masks? <../glossary.html#attention-mask>`__\n\n head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):\n Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:\n - 1 indicates the head is **not masked**,\n - 0 indicates the head is **masked**.\n\n inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):\n Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This\n is useful if you want more control over how to convert `input_ids` indices into associated vectors than the\n model's internal embedding lookup matrix.\n\n image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):\n Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation.\n This is useful if you want more control over how to convert `pixel_values` into patch embeddings.\n\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned\n tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n\n Args:\n input_ids (`torch.LongTensor` of shape `({0})`):\n Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`BertTokenizer`]. See\n [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input\n IDs?](../glossary#input-ids)\n\n attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):\n Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:\n - 1 for tokens that are **not masked**,\n - 0 for tokens that are **masked**.\n [What are attention masks?](../glossary#attention-mask)\n\n token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):\n Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,\n 1]`:\n - 0 corresponds to a *sentence A* token,\n - 1 corresponds to a *sentence B* token.\n [What are token type IDs?](../glossary#token-type-ids)\n\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_images, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`ViltFeatureExtractor`]. See\n [`ViltFeatureExtractor.__call__`] for details.\n\n pixel_mask (`torch.LongTensor` of shape `(batch_size, num_images, height, width)`, *optional*):\n Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`:\n\n - 1 for pixels that are real (i.e. **not masked**),\n - 0 for pixels that are padding (i.e. **masked**).\n `What are attention masks? <../glossary.html#attention-mask>`__\n\n head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):\n Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:\n - 1 indicates the head is **not masked**,\n - 0 indicates the head is **masked**.\n\n inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*):\n Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This\n is useful if you want more control over how to convert `input_ids` indices into associated vectors than the\n model's internal embedding lookup matrix.\n\n image_embeds (`torch.FloatTensor` of shape `(batch_size, num_patches, hidden_size)`, *optional*):\n Optionally, instead of passing `pixel_values`, you can choose to directly pass an embedded representation.\n This is useful if you want more control over how to convert `pixel_values` into patch embeddings.\n\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned\n tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n",
"language": "en",
"n_whitespaces": 1685,
"n_words": 802,
"vocab_size": 200
} | def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, ViltEncoder):
module.gradient_checkpointing = value
VILT_START_DOCSTRING = r
VILT_INPUTS_DOCSTRING = r
VILT_IMAGES_AND_TEXT_CLASSIFICATION_INPUTS_DOCSTRING = r
@add_start_docstrings(
"The bare ViLT Model transformer outputting raw hidden-states without any specific head on top.",
VILT_START_DOCSTRING,
) |
117,818 | 321,601 | 122 | qutebrowser/browser/greasemonkey.py | 29 | 13 | def needs_document_end_workaround(self):
if objects.backend == usertypes.Backend.QtWebKit:
return False
assert | Drop Qt < 5.15
Fixes #7091
TODO: Add changelog | needs_document_end_workaround | c5a51eb0bcbab0b68cdfbf3eba2e681cff2adf7a | qutebrowser | greasemonkey.py | 10 | 10 | https://github.com/qutebrowser/qutebrowser.git | 3 | 71 | 0 | 25 | 112 | Python | {
"docstring": "Check whether to force @run-at document-end.\n\n This needs to be done on QtWebEngine for known-broken scripts.\n\n On Qt 5.12, accessing the DOM isn't possible with \"@run-at\n document-start\". It was documented to be impossible before, but seems\n to work fine.\n\n However, some scripts do DOM access with \"@run-at document-start\". Fix\n those by forcing them to use document-end instead.\n ",
"language": "en",
"n_whitespaces": 106,
"n_words": 57,
"vocab_size": 48
} | def needs_document_end_workaround(self):
if objects.backend == usertypes.Backend.QtWebKit:
return False
assert objects.backend == usertypes.Backend.QtWebEngine, objects.backend
broken_scripts = [
('http://userstyles.org', None),
('https://github.com/ParticleCore', 'Iridium'),
]
return any(self._matches_id(namespace=namespace, name=name)
for namespace, name in broken_scripts)
|
|
112,812 | 314,204 | 67 | homeassistant/components/weather/__init__.py | 17 | 6 | def _temperature_unit(self) -> str:
if (
weather_option_temperature_unit := self._weather_o | Weather unit conversion (#73441)
Co-authored-by: Erik <[email protected]> | _temperature_unit | 90e1fb6ce2faadb9a35fdbe1774fce7b4456364f | core | __init__.py | 9 | 10 | https://github.com/home-assistant/core.git | 2 | 26 | 0 | 15 | 43 | Python | {
"docstring": "Return the converted unit of measurement for temperature.\n\n Should not be set by integrations.\n ",
"language": "en",
"n_whitespaces": 28,
"n_words": 14,
"vocab_size": 14
} | def _temperature_unit(self) -> str:
if (
weather_option_temperature_unit := self._weather_option_temperature_unit
) is not None:
return weather_option_temperature_unit
return self._default_temperature_unit
|
|
23,476 | 109,202 | 327 | lib/matplotlib/backends/backend_pdf.py | 78 | 23 | def fontName(self, fontprop):
if isinstance(fontprop, str):
filenames = [fontprop]
elif mpl.rcParams['pdf.use14corefonts']:
filenames = _fontManager._find_fonts_by_props(
fontprop, fontext='afm', directory=RendererPdf._afm_font_dir
)
else:
filenames = _fontManager._find_fonts_by_props(fontprop)
first_Fx = None
for fname | ENH: implement font fallback for PDF | fontName | c5fd8804204ee715ee008c35f96d6e95f8dfcc29 | matplotlib | backend_pdf.py | 13 | 21 | https://github.com/matplotlib/matplotlib.git | 7 | 122 | 0 | 53 | 200 | Python | {
"docstring": "\n Select a font based on fontprop and return a name suitable for\n Op.selectfont. If fontprop is a string, it will be interpreted\n as the filename of the font.\n ",
"language": "en",
"n_whitespaces": 57,
"n_words": 28,
"vocab_size": 24
} | def fontName(self, fontprop):
if isinstance(fontprop, str):
filenames = [fontprop]
elif mpl.rcParams['pdf.use14corefonts']:
filenames = _fontManager._find_fonts_by_props(
fontprop, fontext='afm', directory=RendererPdf._afm_font_dir
)
else:
filenames = _fontManager._find_fonts_by_props(fontprop)
first_Fx = None
for fname in filenames:
Fx = self.fontNames.get(fname)
if not first_Fx:
first_Fx = Fx
if Fx is None:
Fx = next(self._internal_font_seq)
self.fontNames[fname] = Fx
_log.debug('Assigning font %s = %r', Fx, fname)
if not first_Fx:
first_Fx = Fx
# find_fontsprop's first value always adheres to
# findfont's value, so technically no behaviour change
return first_Fx
|
|
5,912 | 32,353 | 45 | src/transformers/models/owlvit/feature_extraction_owlvit.py | 33 | 11 | def center_to_corners_format(x):
x_center, y_center, width, he | Add OWL-ViT model for zero-shot object detection (#17938)
* add owlvit model skeleton
* add class and box predictor heads
* convert modified flax clip to pytorch
* fix box and class predictors
* add OwlViTImageTextEmbedder
* convert class and box head checkpoints
* convert image text embedder checkpoints
* add object detection head
* fix bugs
* update conversion script
* update conversion script
* fix q,v,k,out weight conversion conversion
* add owlvit object detection output
* fix bug in image embedder
* fix bugs in text embedder
* fix positional embeddings
* fix bug in inference mode vision pooling
* update docs, init tokenizer and processor files
* support batch processing
* add OwlViTProcessor
* remove merge conflicts
* readd owlvit imports
* fix bug in OwlViTProcessor imports
* fix bugs in processor
* update docs
* fix bugs in processor
* update owlvit docs
* add OwlViTFeatureExtractor
* style changes, add postprocess method to feature extractor
* add feature extractor and processor tests
* add object detection tests
* update conversion script
* update config paths
* update config paths
* fix configuration paths and bugs
* fix bugs in OwlViT tests
* add import checks to processor
* fix docs and minor issues
* fix docs and minor issues
* fix bugs and issues
* fix bugs and issues
* fix bugs and issues
* fix bugs and issues
* update docs and examples
* fix bugs and issues
* update conversion script, fix positional embeddings
* process 2D input ids, update tests
* fix style and quality issues
* update docs
* update docs and imports
* update OWL-ViT index.md
* fix bug in OwlViT feature ext tests
* fix code examples, return_dict by default
* return_dict by default
* minor fixes, add tests to processor
* small fixes
* add output_attentions arg to main model
* fix bugs
* remove output_hidden_states arg from main model
* update self.config variables
* add option to return last_hidden_states
* fix bug in config variables
* fix copied from statements
* fix small issues and bugs
* fix bugs
* fix bugs, support greyscale images
* run fixup
* update repo name
* merge OwlViTImageTextEmbedder with obj detection head
* fix merge conflict
* fix merge conflict
* make fixup
* fix bugs
* fix bugs
* add additional processor test | center_to_corners_format | 12d66b47012c9258f9557e6d3a0c13bcd1c72871 | transformers | feature_extraction_owlvit.py | 10 | 4 | https://github.com/huggingface/transformers.git | 1 | 76 | 0 | 22 | 103 | Python | {
"docstring": "\n Converts a PyTorch tensor of bounding boxes of center format (center_x, center_y, width, height) to corners format\n (left, top, right, bottom).\n ",
"language": "en",
"n_whitespaces": 31,
"n_words": 21,
"vocab_size": 19
} | def center_to_corners_format(x):
x_center, y_center, width, height = x.unbind(-1)
boxes = [(x_center - 0.5 * width), (y_center - 0.5 * height), (x_center + 0.5 * width), (y_center + 0.5 * height)]
return torch.stack(boxes, dim=-1)
|
|
50,726 | 204,395 | 49 | django/core/cache/backends/base.py | 17 | 8 | def add(self, key, value, timeout=DEFAULT_TIMEOUT, version=None):
raise NotImplementedError(
"subclasses of BaseCache must pro | Refs #33476 -- Reformatted code with Black. | add | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | base.py | 8 | 4 | https://github.com/django/django.git | 1 | 23 | 0 | 17 | 37 | Python | {
"docstring": "\n Set a value in the cache if the key does not already exist. If\n timeout is given, use that timeout for the key; otherwise use the\n default cache timeout.\n\n Return True if the value was stored, False otherwise.\n ",
"language": "en",
"n_whitespaces": 74,
"n_words": 38,
"vocab_size": 29
} | def add(self, key, value, timeout=DEFAULT_TIMEOUT, version=None):
raise NotImplementedError(
"subclasses of BaseCache must provide an add() method"
)
|
|
42,351 | 177,332 | 156 | networkx/linalg/laplacianmatrix.py | 94 | 30 | def normalized_laplacian_matrix(G, nodelist=None, weight="weight"):
r
import numpy as np
import scipy as sp
import scipy.sparse # call as sp.sparse
if nodelist is None:
nodelist = list(G)
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
n, m = A.shape
diags = A.sum(axis=1)
# TODO: rm csr_array wrapper when spdiags can produce arrays
D = sp.sparse.csr_array(sp.sparse.spdiags(diags, 0, m, n, format="csr"))
L = D - A
with sp.errstate(divide="ignore"):
diags_sqrt = 1.0 / np.sqrt(diags)
diags_sqrt[np.isinf(diags_sqrt)] = 0
# TODO: rm csr_array wrapper when spdi | Use scipy.sparse array datastructure (#6037)
* Use scipy.sparse array datastructure
* Add reminder to rm wrapper when scipy adds creation fns.
* Rm mention of np matrix from code comment.
* Update networkx/algorithms/bipartite/matrix.py
Co-authored-by: Stefan van der Walt <[email protected]>
Co-authored-by: Ross Barnowski <[email protected]>
Co-authored-by: Stefan van der Walt <[email protected]> | normalized_laplacian_matrix | 8a325d26aa7fdd3a72580c4720fa97f971bbefcb | networkx | laplacianmatrix.py | 12 | 66 | https://github.com/networkx/networkx.git | 2 | 175 | 0 | 61 | 276 | Python | {
"docstring": "Returns the normalized Laplacian matrix of G.\n\n The normalized graph Laplacian is the matrix\n\n .. math::\n\n N = D^{-1/2} L D^{-1/2}\n\n where `L` is the graph Laplacian and `D` is the diagonal matrix of\n node degrees [1]_.\n\n Parameters\n ----------\n G : graph\n A NetworkX graph\n\n nodelist : list, optional\n The rows and columns are ordered according to the nodes in nodelist.\n If nodelist is None, then the ordering is produced by G.nodes().\n\n weight : string or None, optional (default='weight')\n The edge data key used to compute each value in the matrix.\n If None, then each edge has weight 1.\n\n Returns\n -------\n N : SciPy sparse array\n The normalized Laplacian matrix of G.\n\n Notes\n -----\n For MultiGraph, the edges weights are summed.\n See :func:`to_numpy_array` for other options.\n\n If the Graph contains selfloops, D is defined as ``diag(sum(A, 1))``, where A is\n the adjacency matrix [2]_.\n\n See Also\n --------\n laplacian_matrix\n normalized_laplacian_spectrum\n\n References\n ----------\n .. [1] Fan Chung-Graham, Spectral Graph Theory,\n CBMS Regional Conference Series in Mathematics, Number 92, 1997.\n .. [2] Steve Butler, Interlacing For Weighted Graphs Using The Normalized\n Laplacian, Electronic Journal of Linear Algebra, Volume 16, pp. 90-98,\n March 2007.\n ",
"language": "en",
"n_whitespaces": 331,
"n_words": 190,
"vocab_size": 126
} | def normalized_laplacian_matrix(G, nodelist=None, weight="weight"):
r
import numpy as np
import scipy as sp
import scipy.sparse # call as sp.sparse
if nodelist is None:
nodelist = list(G)
A = nx.to_scipy_sparse_array(G, nodelist=nodelist, weight=weight, format="csr")
n, m = A.shape
diags = A.sum(axis=1)
# TODO: rm csr_array wrapper when spdiags can produce arrays
D = sp.sparse.csr_array(sp.sparse.spdiags(diags, 0, m, n, format="csr"))
L = D - A
with sp.errstate(divide="ignore"):
diags_sqrt = 1.0 / np.sqrt(diags)
diags_sqrt[np.isinf(diags_sqrt)] = 0
# TODO: rm csr_array wrapper when spdiags can produce arrays
DH = sp.sparse.csr_array(sp.sparse.spdiags(diags_sqrt, 0, m, n, format="csr"))
return DH @ (L @ DH)
|
|
76,282 | 260,486 | 293 | sklearn/feature_extraction/image.py | 136 | 28 | def extract_patches_2d(image, patch_size, *, max_patches=None, random_state=None):
i_h, i_w = image.shape[:2]
p_h, p_w = patch_size
if p_h > i_h:
raise ValueError(
"Height of the patch should be less than the height of the image."
)
if p_w > i_w:
raise ValueError(
"Width of the patch should be less than the width of the image."
)
image = check_array(image, allow_nd=True)
image = image.reshape((i_h, i_w, -1))
n_colors = image.shape[-1]
extracted_patches = _extract_patches(
image, patch_shape=(p_h, p_w, n_colors), extraction_step=1
)
n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches)
if max_patches:
rng = check_random_state(random_state)
i_s = rng.randint(i_h - p_h + 1, size=n_patches)
j_s = rng.randint(i_w - p_w + 1, size=n_patches)
patches = extracted_patches[i_s, j_s, 0]
else:
patches = extracted_patches
patches = patches.reshape(-1, p_h, p_w, n_colors)
# remove the color dimension if useless
if patches.s | DOC Ensures that extract_patches_2d passes numpydoc validation (#23926)
Co-authored-by: Olivor Holman <[email protected]> | extract_patches_2d | 01e6449e653a058206e7a2a1aa3270f851769c4b | scikit-learn | image.py | 12 | 30 | https://github.com/scikit-learn/scikit-learn.git | 5 | 221 | 0 | 80 | 336 | Python | {
"docstring": "Reshape a 2D image into a collection of patches.\n\n The resulting patches are allocated in a dedicated array.\n\n Read more in the :ref:`User Guide <image_feature_extraction>`.\n\n Parameters\n ----------\n image : ndarray of shape (image_height, image_width) or \\\n (image_height, image_width, n_channels)\n The original image data. For color images, the last dimension specifies\n the channel: a RGB image would have `n_channels=3`.\n\n patch_size : tuple of int (patch_height, patch_width)\n The dimensions of one patch.\n\n max_patches : int or float, default=None\n The maximum number of patches to extract. If `max_patches` is a float\n between 0 and 1, it is taken to be a proportion of the total number\n of patches.\n\n random_state : int, RandomState instance, default=None\n Determines the random number generator used for random sampling when\n `max_patches` is not None. Use an int to make the randomness\n deterministic.\n See :term:`Glossary <random_state>`.\n\n Returns\n -------\n patches : array of shape (n_patches, patch_height, patch_width) or \\\n (n_patches, patch_height, patch_width, n_channels)\n The collection of patches extracted from the image, where `n_patches`\n is either `max_patches` or the total number of patches that can be\n extracted.\n\n Examples\n --------\n >>> from sklearn.datasets import load_sample_image\n >>> from sklearn.feature_extraction import image\n >>> # Use the array data from the first image in this dataset:\n >>> one_image = load_sample_image(\"china.jpg\")\n >>> print('Image shape: {}'.format(one_image.shape))\n Image shape: (427, 640, 3)\n >>> patches = image.extract_patches_2d(one_image, (2, 2))\n >>> print('Patches shape: {}'.format(patches.shape))\n Patches shape: (272214, 2, 2, 3)\n >>> # Here are just two of these patches:\n >>> print(patches[1])\n [[[174 201 231]\n [174 201 231]]\n [[173 200 230]\n [173 200 230]]]\n >>> print(patches[800])\n [[[187 214 243]\n [188 215 244]]\n [[187 214 243]\n [188 215 244]]]\n ",
"language": "en",
"n_whitespaces": 483,
"n_words": 266,
"vocab_size": 165
} | def extract_patches_2d(image, patch_size, *, max_patches=None, random_state=None):
i_h, i_w = image.shape[:2]
p_h, p_w = patch_size
if p_h > i_h:
raise ValueError(
"Height of the patch should be less than the height of the image."
)
if p_w > i_w:
raise ValueError(
"Width of the patch should be less than the width of the image."
)
image = check_array(image, allow_nd=True)
image = image.reshape((i_h, i_w, -1))
n_colors = image.shape[-1]
extracted_patches = _extract_patches(
image, patch_shape=(p_h, p_w, n_colors), extraction_step=1
)
n_patches = _compute_n_patches(i_h, i_w, p_h, p_w, max_patches)
if max_patches:
rng = check_random_state(random_state)
i_s = rng.randint(i_h - p_h + 1, size=n_patches)
j_s = rng.randint(i_w - p_w + 1, size=n_patches)
patches = extracted_patches[i_s, j_s, 0]
else:
patches = extracted_patches
patches = patches.reshape(-1, p_h, p_w, n_colors)
# remove the color dimension if useless
if patches.shape[-1] == 1:
return patches.reshape((n_patches, p_h, p_w))
else:
return patches
|
|
51,124 | 205,422 | 694 | django/db/models/base.py | 165 | 37 | def refresh_from_db(self, using=None, fields=None):
if fields is None:
self._prefetched_objects_cache = {}
else:
prefetched_objects_cache = getattr(self, "_prefetched_objects_cache", ())
for field in fields:
if field in prefetched_objects_cache:
del prefetched_objects_cache[field]
fields.remove(field)
if not fields:
return
if a | Refs #33476 -- Reformatted code with Black. | refresh_from_db | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | base.py | 15 | 43 | https://github.com/django/django.git | 17 | 278 | 0 | 101 | 448 | Python | {
"docstring": "\n Reload field values from the database.\n\n By default, the reloading happens from the database this instance was\n loaded from, or by the read router if this instance wasn't loaded from\n any database. The using parameter will override the default.\n\n Fields can be used to specify which fields to reload. The fields\n should be an iterable of field attnames. If fields is None, then\n all non-deferred fields are reloaded.\n\n When accessing deferred fields of an instance, the deferred loading\n of the field will call this method.\n ",
"language": "en",
"n_whitespaces": 156,
"n_words": 85,
"vocab_size": 58
} | def refresh_from_db(self, using=None, fields=None):
if fields is None:
self._prefetched_objects_cache = {}
else:
prefetched_objects_cache = getattr(self, "_prefetched_objects_cache", ())
for field in fields:
if field in prefetched_objects_cache:
del prefetched_objects_cache[field]
fields.remove(field)
if not fields:
return
if any(LOOKUP_SEP in f for f in fields):
raise ValueError(
'Found "%s" in fields argument. Relations and transforms '
"are not allowed in fields." % LOOKUP_SEP
)
hints = {"instance": self}
db_instance_qs = self.__class__._base_manager.db_manager(
using, hints=hints
).filter(pk=self.pk)
# Use provided fields, if not set then reload all non-deferred fields.
deferred_fields = self.get_deferred_fields()
if fields is not None:
fields = list(fields)
db_instance_qs = db_instance_qs.only(*fields)
elif deferred_fields:
fields = [
f.attname
for f in self._meta.concrete_fields
if f.attname not in deferred_fields
]
db_instance_qs = db_instance_qs.only(*fields)
db_instance = db_instance_qs.get()
non_loaded_fields = db_instance.get_deferred_fields()
for field in self._meta.concrete_fields:
if field.attname in non_loaded_fields:
# This field wasn't refreshed - skip ahead.
continue
setattr(self, field.attname, getattr(db_instance, field.attname))
# Clear cached foreign keys.
if field.is_relation and field.is_cached(self):
field.delete_cached_value(self)
# Clear cached relations.
for field in self._meta.related_objects:
if field.is_cached(self):
field.delete_cached_value(self)
self._state.db = db_instance._state.db
|
|
54,894 | 217,711 | 95 | python3.10.4/Lib/http/client.py | 27 | 12 | def set_tunnel(self, host, port=None, headers=None):
if self.sock:
raise RuntimeError("Can't set up tunnel for established connection")
self._tunnel_host, self._tunnel_port = self._get_hostport(host, port)
if headers | add python 3.10.4 for windows | set_tunnel | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | client.py | 11 | 8 | https://github.com/XX-net/XX-Net.git | 3 | 59 | 0 | 25 | 96 | Python | {
"docstring": "Set up host and port for HTTP CONNECT tunnelling.\n\n In a connection that uses HTTP CONNECT tunneling, the host passed to the\n constructor is used as a proxy server that relays all communication to\n the endpoint passed to `set_tunnel`. This done by sending an HTTP\n CONNECT request to the proxy server when the connection is established.\n\n This method must be called before the HTTP connection has been\n established.\n\n The headers argument should be a mapping of extra HTTP headers to send\n with the CONNECT request.\n ",
"language": "en",
"n_whitespaces": 148,
"n_words": 85,
"vocab_size": 54
} | def set_tunnel(self, host, port=None, headers=None):
if self.sock:
raise RuntimeError("Can't set up tunnel for established connection")
self._tunnel_host, self._tunnel_port = self._get_hostport(host, port)
if headers:
self._tunnel_headers = headers
else:
self._tunnel_headers.clear()
|
|
26,780 | 120,111 | 31 | jax/_src/config.py | 19 | 7 | def explicit_device_get_scope() -> Iterator[None]:
state = transfer_ | Bump minimum jaxlib version to 0.3.2 and remove transfer guard compatibility code | explicit_device_get_scope | 36df8619d74672b0072e7880bcdd257c4a83e9f1 | jax | config.py | 10 | 9 | https://github.com/google/jax.git | 2 | 37 | 0 | 13 | 66 | Python | {
"docstring": "Indicates that the current context is an explicit device_get() call.",
"language": "en",
"n_whitespaces": 9,
"n_words": 10,
"vocab_size": 10
} | def explicit_device_get_scope() -> Iterator[None]:
state = transfer_guard_lib.thread_local_state()
prev = state.explicit_device_get
state.explicit_device_get = True
try:
yield
finally:
state.explicit_device_get = prev
|
|
102,302 | 303,482 | 40 | homeassistant/components/homekit_controller/entity.py | 8 | 9 | def accessory_info(self) -> Service:
return self.accessory.services.first(
service_type=ServicesTypes.ACCESSORY_INFORMATION
)
| Move HKC entity classes into entity.py (#76333) | accessory_info | c580bce879b6c2f68c4ea45707b5a05ee88c6ecc | core | entity.py | 9 | 5 | https://github.com/home-assistant/core.git | 1 | 23 | 0 | 8 | 39 | Python | {
"docstring": "Information about the make and model of an accessory.",
"language": "en",
"n_whitespaces": 8,
"n_words": 9,
"vocab_size": 9
} | def accessory_info(self) -> Service:
return self.accessory.services.first(
service_type=ServicesTypes.ACCESSORY_INFORMATION
)
|
|
13,188 | 63,181 | 29 | .venv/lib/python3.8/site-packages/pip/_vendor/pkg_resources/__init__.py | 13 | 3 | def _always_object(classes):
if object not in classes:
return classes + (o | upd; format | _always_object | f638f5d0e6c8ebed0e69a6584bc7f003ec646580 | transferlearning | __init__.py | 9 | 4 | https://github.com/jindongwang/transferlearning.git | 2 | 21 | 0 | 11 | 35 | Python | {
"docstring": "\n Ensure object appears in the mro even\n for old-style classes.\n ",
"language": "en",
"n_whitespaces": 20,
"n_words": 10,
"vocab_size": 10
} | def _always_object(classes):
if object not in classes:
return classes + (object,)
return classes
|
|
42,857 | 178,909 | 20 | nuitka/freezer/IncludedDataFiles.py | 7 | 4 | def addIncludedDataFilesFromFileOptions():
for included_datafile in _addIncludedDataFilesFromFileOptions():
ad | Plugins: Massive cleanup of data file handling
* Move data file handling out of standalone only, allowing support
for other modes as well.
* Attach logger and tags to data file objects. | addIncludedDataFilesFromFileOptions | abfb99b0a05dd76d2ecc6ebc20732a271857c6c8 | Nuitka | IncludedDataFiles.py | 9 | 3 | https://github.com/Nuitka/Nuitka.git | 2 | 16 | 0 | 7 | 30 | Python | {
"docstring": "Early data files, from user options that work with file system.",
"language": "en",
"n_whitespaces": 10,
"n_words": 11,
"vocab_size": 11
} | def addIncludedDataFilesFromFileOptions():
for included_datafile in _addIncludedDataFilesFromFileOptions():
addIncludedDataFile(included_datafile)
|
|
78,617 | 266,837 | 24 | lib/ansible/utils/_junit_xml.py | 18 | 7 | def _attributes(**kwargs) -> dict[str, str]:
return {key: str(value) for key, valu | Simplify existing type hints. | _attributes | 871b2ca73adcba3a35551247cf839246cf121231 | ansible | _junit_xml.py | 9 | 3 | https://github.com/ansible/ansible.git | 3 | 38 | 0 | 17 | 60 | Python | {
"docstring": "Return the given kwargs as a dictionary with values converted to strings. Items with a value of None will be omitted.",
"language": "en",
"n_whitespaces": 20,
"n_words": 21,
"vocab_size": 19
} | def _attributes(**kwargs) -> dict[str, str]:
return {key: str(value) for key, value in kwargs.items() if value is not None}
|
|
56,530 | 222,132 | 105 | python3.10.4/Lib/ctypes/test/test_pointers.py | 35 | 16 | def test_charpp(self):
dll = CDLL(_ctypes_test.__file__)
func = dll._testfunc_c_p_p
func.restype = c_char_p
argv = (c_char_p * 2)()
argc = c_int( 2 )
arg | add python 3.10.4 for windows | test_charpp | 8198943edd73a363c266633e1aa5b2a9e9c9f526 | XX-Net | test_pointers.py | 10 | 10 | https://github.com/XX-net/XX-Net.git | 1 | 73 | 0 | 26 | 120 | Python | {
"docstring": "Test that a character pointer-to-pointer is correctly passed",
"language": "en",
"n_whitespaces": 7,
"n_words": 8,
"vocab_size": 8
} | def test_charpp(self):
dll = CDLL(_ctypes_test.__file__)
func = dll._testfunc_c_p_p
func.restype = c_char_p
argv = (c_char_p * 2)()
argc = c_int( 2 )
argv[0] = b'hello'
argv[1] = b'world'
result = func( byref(argc), argv )
self.assertEqual(result, b'world')
|
|
38,792 | 160,904 | 145 | numpy/testing/tests/test_utils.py | 50 | 18 | def test_error_message_unsigned(self):
# Ensure to test for potential overflow in the case of:
# x - y
| TST: Add a failing test case to demonstrate the bug gh2176 | test_error_message_unsigned | 57d04d883e874c611091933c4c36e1cd43ea0e04 | numpy | test_utils.py | 11 | 7 | https://github.com/numpy/numpy.git | 1 | 84 | 0 | 39 | 143 | Python | {
"docstring": "Check the the message is formatted correctly when overflow can occur\n (gh21768)",
"language": "en",
"n_whitespaces": 21,
"n_words": 12,
"vocab_size": 11
} | def test_error_message_unsigned(self):
# Ensure to test for potential overflow in the case of:
# x - y
# and
# y - x
x = np.asarray([0, 1, 8], dtype='uint8')
y = np.asarray([4, 4, 4], dtype='uint8')
with pytest.raises(AssertionError) as exc_info:
assert_allclose(x, y, atol=3)
msgs = str(exc_info.value).split('\n')
assert_equal(msgs[4], 'Max absolute difference: 4')
|
|
92,712 | 293,655 | 292 | homeassistant/components/matrix/__init__.py | 64 | 18 | def _join_or_get_room(self, room_id_or_alias):
rooms = self._client.get_rooms()
if room_id_or_alias in rooms:
_LOGGER.debug("Already in room %s", room_id_or_alias)
return rooms[room_id_or_alias]
for r | Fix finding matrix room that is already joined (#67967)
After some debugging, it seems room.canonical_alias contains the
room alias that matches the room_id_or_alias value but is not
contained in room.aliases (which is empty). As a result, the
matrix component thought the room wasn't alread joined, joins
again, and this replaces the previous room which had the listener.
This resulted in the component callback not being called for new
messages in the room.
This fixes #66372 | _join_or_get_room | 2aaeb1fa99f3f691a5c4adfff984e25bf96d787d | core | __init__.py | 12 | 20 | https://github.com/home-assistant/core.git | 6 | 122 | 0 | 39 | 196 | Python | {
"docstring": "Join a room or get it, if we are already in the room.\n\n We can't just always call join_room(), since that seems to crash\n the client if we're already in the room.\n ",
"language": "en",
"n_whitespaces": 53,
"n_words": 32,
"vocab_size": 26
} | def _join_or_get_room(self, room_id_or_alias):
rooms = self._client.get_rooms()
if room_id_or_alias in rooms:
_LOGGER.debug("Already in room %s", room_id_or_alias)
return rooms[room_id_or_alias]
for room in rooms.values():
if room.room_id not in self._aliases_fetched_for:
room.update_aliases()
self._aliases_fetched_for.add(room.room_id)
if (
room_id_or_alias in room.aliases
or room_id_or_alias == room.canonical_alias
):
_LOGGER.debug(
"Already in room %s (known as %s)", room.room_id, room_id_or_alias
)
return room
room = self._client.join_room(room_id_or_alias)
_LOGGER.info("Joined room %s (known as %s)", room.room_id, room_id_or_alias)
return room
|
|
48,321 | 197,067 | 192 | sympy/solvers/solveset.py | 52 | 18 | def _is_function_class_equation(func_class, f, symbol):
if f.is_Mul or f.is_A | Refactored import ordering in functions | _is_function_class_equation | e0dc14eca132f37c5f49369eb4051eae37c9b119 | sympy | solveset.py | 14 | 19 | https://github.com/sympy/sympy.git | 9 | 119 | 0 | 35 | 185 | Python | {
"docstring": " Tests whether the equation is an equation of the given function class.\n\n The given equation belongs to the given function class if it is\n comprised of functions of the function class which are multiplied by\n or added to expressions independent of the symbol. In addition, the\n arguments of all such functions must be linear in the symbol as well.\n\n Examples\n ========\n\n >>> from sympy.solvers.solveset import _is_function_class_equation\n >>> from sympy import tan, sin, tanh, sinh, exp\n >>> from sympy.abc import x\n >>> from sympy.functions.elementary.trigonometric import TrigonometricFunction\n >>> from sympy.functions.elementary.hyperbolic import HyperbolicFunction\n >>> _is_function_class_equation(TrigonometricFunction, exp(x) + tan(x), x)\n False\n >>> _is_function_class_equation(TrigonometricFunction, tan(x) + sin(x), x)\n True\n >>> _is_function_class_equation(TrigonometricFunction, tan(x**2), x)\n False\n >>> _is_function_class_equation(TrigonometricFunction, tan(x + 2), x)\n True\n >>> _is_function_class_equation(HyperbolicFunction, tanh(x) + sinh(x), x)\n True\n ",
"language": "en",
"n_whitespaces": 190,
"n_words": 123,
"vocab_size": 73
} | def _is_function_class_equation(func_class, f, symbol):
if f.is_Mul or f.is_Add:
return all(_is_function_class_equation(func_class, arg, symbol)
for arg in f.args)
if f.is_Pow:
if not f.exp.has(symbol):
return _is_function_class_equation(func_class, f.base, symbol)
else:
return False
if not f.has(symbol):
return True
if isinstance(f, func_class):
try:
g = Poly(f.args[0], symbol)
return g.degree() <= 1
except PolynomialError:
return False
else:
return False
|
|
75,349 | 258,647 | 30 | sklearn/isotonic.py | 9 | 11 | def get_feature_names_out(self, input_features=None):
class_name = self.__class__.__name__.lower()
return np.as | ENH Adds get_feature_names to isotonic module (#22249) | get_feature_names_out | 8991c3d7870df692fe01510e0fe6de62ea550cad | scikit-learn | isotonic.py | 10 | 3 | https://github.com/scikit-learn/scikit-learn.git | 1 | 35 | 0 | 9 | 61 | Python | {
"docstring": "Get output feature names for transformation.\n\n Parameters\n ----------\n input_features : array-like of str or None, default=None\n Ignored.\n\n Returns\n -------\n feature_names_out : ndarray of str objects\n An ndarray with one string i.e. [\"isotonicregression0\"].\n ",
"language": "en",
"n_whitespaces": 103,
"n_words": 32,
"vocab_size": 28
} | def get_feature_names_out(self, input_features=None):
class_name = self.__class__.__name__.lower()
return np.asarray([f"{class_name}0"], dtype=object)
|
|
50,555 | 203,847 | 376 | django/contrib/gis/db/backends/postgis/operations.py | 80 | 17 | def get_distance(self, f, dist_val, lookup_type):
# Getting | Refs #33476 -- Reformatted code with Black. | get_distance | 9c19aff7c7561e3a82978a272ecdaad40dda5c00 | django | operations.py | 18 | 21 | https://github.com/django/django.git | 5 | 99 | 0 | 57 | 167 | Python | {
"docstring": "\n Retrieve the distance parameters for the given geometry field,\n distance lookup value, and the distance lookup type.\n\n This is the most complex implementation of the spatial backends due to\n what is supported on geodetic geometry columns vs. what's available on\n projected geometry columns. In addition, it has to take into account\n the geography column type.\n ",
"language": "en",
"n_whitespaces": 106,
"n_words": 55,
"vocab_size": 41
} | def get_distance(self, f, dist_val, lookup_type):
# Getting the distance parameter
value = dist_val[0]
# Shorthand boolean flags.
geodetic = f.geodetic(self.connection)
geography = f.geography
if isinstance(value, Distance):
if geography:
dist_param = value.m
elif geodetic:
if lookup_type == "dwithin":
raise ValueError(
"Only numeric values of degree units are "
"allowed on geographic DWithin queries."
)
dist_param = value.m
else:
dist_param = getattr(
value, Distance.unit_attname(f.units_name(self.connection))
)
else:
# Assuming the distance is in the units of the field.
dist_param = value
return [dist_param]
|