ast_errors
stringlengths
0
3.2k
d_id
int64
44
121k
id
int64
70
338k
n_whitespaces
int64
3
14k
path
stringlengths
8
134
n_words
int64
4
4.82k
n_identifiers
int64
1
131
random_cut
stringlengths
16
15.8k
commit_message
stringlengths
2
15.3k
fun_name
stringlengths
1
84
commit_id
stringlengths
40
40
repo
stringlengths
3
28
file_name
stringlengths
5
79
ast_levels
int64
6
31
nloc
int64
1
548
url
stringlengths
31
59
complexity
int64
1
66
token_counts
int64
6
2.13k
n_ast_errors
int64
0
28
vocab_size
int64
4
1.11k
n_ast_nodes
int64
15
19.2k
language
stringclasses
1 value
documentation
dict
code
stringlengths
101
62.2k
13,236
63,296
207
.venv/lib/python3.8/site-packages/pip/_vendor/pyparsing.py
141
30
def replaceHTMLEntity(t): return _htmlEntityMap.get(t.entity) # it's easy to get these comment structures wrong - they're very common, so may as well make them available cStyleComment = Combine(Regex(r"/\*(?:[^*]|\*(?!/))*") + '*/').setName("C style comment") "Comment of the form ``/* ... */``" htmlComment = Regex(r"<!--[\s\S]*?-->").setName("HTML comment") "Comment of the form ``<!-- ... -->``" restOfLine = Regex(r".*").leaveWhitespace().setName("rest of line") dblSlashComment = Regex(r"//(?:\\\n|[^\n])*").setName("// comment") "Comment of the form ``// ... (to end of line)``" cppStyleComment = Combine(R
upd; format
replaceHTMLEntity
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
transferlearning
pyparsing.py
21
2
https://github.com/jindongwang/transferlearning.git
1
15
0
91
347
Python
{ "docstring": "Helper parser action to replace common HTML entities with their special characters(Deprecated) Predefined expression of 1 or more printable words or\nquoted strings, separated by commas.\n\nThis expression is deprecated in favor of :class:`pyparsing_common.comma_separated_list`.\n", "language": "en", "n_whitespaces": 31, "n_words": 34, "vocab_size": 31 }
def replaceHTMLEntity(t): return _htmlEntityMap.get(t.entity) # it's easy to get these comment structures wrong - they're very common, so may as well make them available cStyleComment = Combine(Regex(r"/\*(?:[^*]|\*(?!/))*") + '*/').setName("C style comment") "Comment of the form ``/* ... */``" htmlComment = Regex(r"<!--[\s\S]*?-->").setName("HTML comment") "Comment of the form ``<!-- ... -->``" restOfLine = Regex(r".*").leaveWhitespace().setName("rest of line") dblSlashComment = Regex(r"//(?:\\\n|[^\n])*").setName("// comment") "Comment of the form ``// ... (to end of line)``" cppStyleComment = Combine(Regex(r"/\*(?:[^*]|\*(?!/))*") + '*/' | dblSlashComment).setName("C++ style comment") "Comment of either form :class:`cStyleComment` or :class:`dblSlashComment`" javaStyleComment = cppStyleComment "Same as :class:`cppStyleComment`" pythonStyleComment = Regex(r"#.*").setName("Python style comment") "Comment of the form ``# ... (to end of line)``" _commasepitem = Combine(OneOrMore(Word(printables, excludeChars=',') + Optional(Word(" \t") + ~Literal(",") + ~LineEnd()))).streamline().setName("commaItem") commaSeparatedList = delimitedList(Optional(quotedString.copy() | _commasepitem, default="")).setName("commaSeparatedList") # some other useful expressions - using lower-case class name since we are really using this as a namespace
1,072
6,800
81
tests/integration_tests/utils.py
29
19
def read_csv_with_nan(path, nan_percent=0.0): df = pd.read_csv(path) if nan_percent > 0: num_rows = len(df) for col in df.columns: for row in random.sampl
Adds regression tests for #2020 (#2021) * fixes nans in dask df engine * adds tests * fixes with logs * fixes * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * cleanup * checking accuracy closeness * investigates ray batcher dropping samples with logs * clean up for PR review * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * cleanup * add missing test param * updated sampling to nan_percent% of rows in each col * cleanup Co-authored-by: Geoffrey Angus <[email protected]> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
read_csv_with_nan
9ae57a93ee4011c3d56cb0284ec07a861f3c88ff
ludwig
utils.py
16
8
https://github.com/ludwig-ai/ludwig.git
4
76
0
24
116
Python
{ "docstring": "Converts `nan_percent` of samples in each row of the CSV at `path` to NaNs.", "language": "en", "n_whitespaces": 13, "n_words": 14, "vocab_size": 13 }
def read_csv_with_nan(path, nan_percent=0.0): df = pd.read_csv(path) if nan_percent > 0: num_rows = len(df) for col in df.columns: for row in random.sample(range(num_rows), int(round(nan_percent * num_rows))): df[col].iloc[row] = np.nan return df
10,203
50,719
586
modules/image/text_to_image/stable_diffusion/diffusers/models/resnet.py
219
36
def _upsample_2d(self, x, w=None, k=None, factor=2, gain=1): assert isinstance(factor, int) and factor >= 1 # Setup filter kernel. if k is None: k = [1] * factor # setup kernel k = np.asarray(k, dtype=np.float32) if k.ndim == 1: k = np.outer(k, k) k /= np.sum(k) k = k * (gain * (factor**2)) if self.use_conv: convH = w.shape[2] convW = w.shape[3] inC = w.shape[1] p = (k.shape[0] - factor) - (convW - 1) stride = (factor, factor) # Determine data dimensions. stride = [1, 1, factor, factor] output_shape = ((x.shape[2] - 1) * factor + convH, (x.shape[3] - 1) * factor + convW) output_padding = ( output_shape[0] - (x.shape[2] - 1) * stride[0] - convH, output_shape[1] - (x.shape[3] - 1) * stride[1] - convW, ) assert output_padding[0] >= 0 and output_padding[1] >= 0 inC = w.shape[1] num_groups = x.shape[1] // inC # Transpose weights. w = paddle.reshape(w, (num_groups, -1, inC, convH, convW)) w = w[..., ::-1, ::-1].transpose([0, 2, 1, 3, 4]) w = paddle.reshape(w, (num_groups * inC, -1, convH, convW)) x = F.conv2d_transpose(x, w, st
Add stable diffusion module
_upsample_2d
a6790a651a12eb391060e533868bf0ba197f6f7e
PaddleHub
resnet.py
18
33
https://github.com/PaddlePaddle/PaddleHub.git
6
434
0
112
670
Python
{ "docstring": "Fused `upsample_2d()` followed by `Conv2d()`.\n\n Args:\n Padding is performed only once at the beginning, not between the operations. The fused op is considerably more\n efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of arbitrary:\n order.\n x: Input tensor of the shape `[N, C, H, W]` or `[N, H, W,\n C]`.\n w: Weight tensor of the shape `[filterH, filterW, inChannels,\n outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.\n k: FIR filter of the shape `[firH, firW]` or `[firN]`\n (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.\n factor: Integer upsampling factor (default: 2). gain: Scaling factor for signal magnitude (default: 1.0).\n\n Returns:\n Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same datatype as\n `x`.\n ", "language": "en", "n_whitespaces": 256, "n_words": 139, "vocab_size": 102 }
def _upsample_2d(self, x, w=None, k=None, factor=2, gain=1): assert isinstance(factor, int) and factor >= 1 # Setup filter kernel. if k is None: k = [1] * factor # setup kernel k = np.asarray(k, dtype=np.float32) if k.ndim == 1: k = np.outer(k, k) k /= np.sum(k) k = k * (gain * (factor**2)) if self.use_conv: convH = w.shape[2] convW = w.shape[3] inC = w.shape[1] p = (k.shape[0] - factor) - (convW - 1) stride = (factor, factor) # Determine data dimensions. stride = [1, 1, factor, factor] output_shape = ((x.shape[2] - 1) * factor + convH, (x.shape[3] - 1) * factor + convW) output_padding = ( output_shape[0] - (x.shape[2] - 1) * stride[0] - convH, output_shape[1] - (x.shape[3] - 1) * stride[1] - convW, ) assert output_padding[0] >= 0 and output_padding[1] >= 0 inC = w.shape[1] num_groups = x.shape[1] // inC # Transpose weights. w = paddle.reshape(w, (num_groups, -1, inC, convH, convW)) w = w[..., ::-1, ::-1].transpose([0, 2, 1, 3, 4]) w = paddle.reshape(w, (num_groups * inC, -1, convH, convW)) x = F.conv2d_transpose(x, w, stride=stride, output_padding=output_padding, padding=0) x = upfirdn2d_native(x, paddle.to_tensor(k), pad=((p + 1) // 2 + factor - 1, p // 2 + 1)) else: p = k.shape[0] - factor x = upfirdn2d_native(x, paddle.to_tensor(k), up=factor, pad=((p + 1) // 2 + factor - 1, p // 2)) return x
79,255
267,980
44
test/lib/ansible_test/_internal/docker_util.py
12
8
def get_network_names(self) -> t.Optional[t.List[str]]: i
ansible-test - Use more native type hints. (#78435) * ansible-test - Use more native type hints. Simple search and replace to switch from comments to native type hints for return types of functions with no arguments. * ansible-test - Use more native type hints. Conversion of simple single-line function annotation type comments to native type hints. * ansible-test - Use more native type hints. Conversion of single-line function annotation type comments with default values to native type hints. * ansible-test - Use more native type hints. Manual conversion of type annotation comments for functions which have pylint directives.
get_network_names
3eb0485dd92c88cc92152d3656d94492db44b183
ansible
docker_util.py
8
5
https://github.com/ansible/ansible.git
2
34
0
11
55
Python
{ "docstring": "Return a list of the network names the container is attached to.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 11 }
def get_network_names(self) -> t.Optional[t.List[str]]: if self.networks is None: return None return sorted(self.networks)
14,413
67,035
16
erpnext/projects/report/project_wise_stock_tracking/project_wise_stock_tracking.py
31
12
def get_delivered_items_cost(): dn_items = frappe.db.sql( , as_dict=1, ) si_items = frappe.db.sql( , as_dict=1, ) dn_item_map = {} for item in dn_items: dn_item_map.setdefault(item.project, item.amount) for item in si_items:
style: format code with black
get_delivered_items_cost
494bd9ef78313436f0424b918f200dab8fc7c20b
erpnext
project_wise_stock_tracking.py
10
22
https://github.com/frappe/erpnext.git
3
74
0
19
116
Python
{ "docstring": "select dn.project, sum(dn_item.base_net_amount) as amount\n\t\tfrom `tabDelivery Note` dn, `tabDelivery Note Item` dn_item\n\t\twhere dn.name = dn_item.parent and dn.docstatus = 1 and ifnull(dn.project, '') != ''\n\t\tgroup by dn.projectselect si.project, sum(si_item.base_net_amount) as amount\n\t\tfrom `tabSales Invoice` si, `tabSales Invoice Item` si_item\n\t\twhere si.name = si_item.parent and si.docstatus = 1 and si.update_stock = 1\n\t\tand si.is_pos = 1 and ifnull(si.project, '') != ''\n\t\tgroup by si.project", "language": "en", "n_whitespaces": 57, "n_words": 65, "vocab_size": 40 }
def get_delivered_items_cost(): dn_items = frappe.db.sql( , as_dict=1, ) si_items = frappe.db.sql( , as_dict=1, ) dn_item_map = {} for item in dn_items: dn_item_map.setdefault(item.project, item.amount) for item in si_items: dn_item_map.setdefault(item.project, item.amount) return dn_item_map
49,709
200,574
508
sympy/tensor/tensor.py
186
61
def __new__(cls, *args, **kw_args): is_canon_bp = kw_args.get('is_canon_bp', False) args = list(map(_sympify, args)) free = [get_free_indices(arg) for arg in args] free = set(itertools.chain(*free)) #flatten free newargs = [] for arg in args: dum_this = set(get_dummy_indices(arg)) dum_other = [get_dummy_indices(a) for a in newargs] dum_other = set(itertools.chain(*dum_other)) #flatten dum_other free_this = set(get_free_indices(arg)) if len(dum_this.intersect
move dummy index deduping to TensMul.__new__ Also removed _eval_subs and _xreplace. All tests pass.
__new__
6c55ca197b0f795047d8f8ee0d871ab36600d560
sympy
tensor.py
13
37
https://github.com/sympy/sympy.git
10
348
0
107
648
Python
{ "docstring": "\n If the internal dummy indices in one arg conflict with the free indices of the remaining args, we need to rename those internal dummy indices.\n ", "language": "en", "n_whitespaces": 40, "n_words": 25, "vocab_size": 20 }
def __new__(cls, *args, **kw_args): is_canon_bp = kw_args.get('is_canon_bp', False) args = list(map(_sympify, args)) free = [get_free_indices(arg) for arg in args] free = set(itertools.chain(*free)) #flatten free newargs = [] for arg in args: dum_this = set(get_dummy_indices(arg)) dum_other = [get_dummy_indices(a) for a in newargs] dum_other = set(itertools.chain(*dum_other)) #flatten dum_other free_this = set(get_free_indices(arg)) if len(dum_this.intersection(free)) > 0: exclude = free_this.union(free, dum_other) newarg = TensMul._dedupe_indices(arg, exclude, arg._index_structure) else: newarg = arg newargs.append(newarg) args = newargs # Flatten: args = [i for arg in args for i in (arg.args if isinstance(arg, (TensMul, Mul)) else [arg])] args, indices, free, dum = TensMul._tensMul_contract_indices(args, replace_indices=False) # Data for indices: index_types = [i.tensor_index_type for i in indices] index_structure = _IndexStructure(free, dum, index_types, indices, canon_bp=is_canon_bp) obj = TensExpr.__new__(cls, *args) obj._indices = indices obj._index_types = index_types[:] obj._index_structure = index_structure obj._free = index_structure.free[:] obj._dum = index_structure.dum[:] obj._free_indices = {x[0] for x in obj.free} obj._rank = len(obj.free) obj._ext_rank = len(obj._index_structure.free) + 2*len(obj._index_structure.dum) obj._coeff = S.One obj._is_canon_bp = is_canon_bp return obj index_types = property(lambda self: self._index_types) free = property(lambda self: self._free) dum = property(lambda self: self._dum) free_indices = property(lambda self: self._free_indices) rank = property(lambda self: self._rank) ext_rank = property(lambda self: self._ext_rank)
19,308
96,402
178
tests/sentry/incidents/test_action_handlers.py
38
19
def test_context_for_crash_rate_alert(self): status = TriggerStatus.ACTIVE incident = self.create_incident() alert_rule = self.create_alert_rule( aggregate="percentage(sessions_crashed, sessions) AS _crash_rate_alert_aggregate" ) alert_rule_trigger = self.create_alert_rule_trigger(alert_rule) action = self.create_alert_rule_trigger_action( alert_rule_trigger=alert_rule_trigger, triggered_for_incident=incident ) assert ( generate_incident_trigger_email_context( self.project, incident, action.alert_rule_trigger, status, IncidentStatus.CRITICAL )["aggregate"] == "percentage(sessions_crashed, sessions)" )
fix(metric_alerts): Make sure critical triggers resolve properly when no action is set on a warning trigger (#31883) ### Problem If we have an alert set up like: - Warning: 50. Action: None - Critical: 100. Action: Slack Then if we go from critical -> warning state the slack resolve action will fail to fire. ### Cause The reason this happens is related to a previous fix. For an alert like - Warning: 50. Action: Slack - Critical: 100. Action: Slack When going from critical -> warning the critical action would be marked as resolved. This would cause a slack notification with `Resolved` to be sent to the channel. This is misleading, because the alert is still active, just in the warning state. What we want here is to fire a warning notification instead. The initial fix for this was that when we resolved a critical trigger, we’d check and see whether there was an active warning trigger. If so, we’d send a warning trigger fire to our actions, rather than a critical trigger resolve. This works ok for many cases, but fails when the actions on the warning trigger are different to those on the critical trigger. ### Fix Substituting the warning trigger for the critical trigger causes us subtle bugs. So, instead of this, when triggering fires/resolves on our action handlers we will also pass along the incident state change that the trigger/resolve caused the incident to go into. So if a critical trigger resolves, we check what state it would have put the incident in. If there’s a warning trigger, then the state is warning. If no warning trigger, the state is closed. This state is then used to appropriately generate the messages that we send to users via our various actions. So now, If we have an alert set up like: - Warning: 50. Action: None - Critical: 100. Action: Slack If this goes from - critical -> warning OR critical -> resolved we will send `IncidentStatus.WARNING` to any actions related to the critical trigger. - warning -> resolved We do nothing since there are no actions on the warning trigger If we have an alert set up like: - Warning: 50. Action: Slack - Critical: 100. Action: Slack If this goes from: - critical -> warning: critical trigger, `IncidentStatus.Warning` - warning -> resolved: warning trigger, `IncidentStatus.Closed` - critical -> resolved: Since we de-dupe triggers to avoid spamming the user, we will select the warning trigger here, and send `IncidentStatus.closed` If we have an alert set up like: - Warning: 50. Action: Slack - Critical: 100. Action: Pagerduty If this goes from: - critical -> warning: critical trigger, `IncidentStatus.Warning` sent to Pagerduty. Nothing sent to Slack - warning -> resolved: warning trigger, `IncidentStatus.Closed` sent to Slack. Nothing sent to Pagerduty - critical -> resolved: Critical trigger, `IncidentStatus.Warning` sent to Pagerduty. Warning trigger, `IncidentStatus.Closed` sent to Slack. We don’t de-dupe here since the actions are different.
test_context_for_crash_rate_alert
146fba432a32568be7d0b884dae0c39a6c33a11f
sentry
test_action_handlers.py
11
16
https://github.com/getsentry/sentry.git
1
76
0
32
124
Python
{ "docstring": "\n Test that ensures the metric name for Crash rate alerts excludes the alias\n ", "language": "en", "n_whitespaces": 28, "n_words": 13, "vocab_size": 12 }
def test_context_for_crash_rate_alert(self): status = TriggerStatus.ACTIVE incident = self.create_incident() alert_rule = self.create_alert_rule( aggregate="percentage(sessions_crashed, sessions) AS _crash_rate_alert_aggregate" ) alert_rule_trigger = self.create_alert_rule_trigger(alert_rule) action = self.create_alert_rule_trigger_action( alert_rule_trigger=alert_rule_trigger, triggered_for_incident=incident ) assert ( generate_incident_trigger_email_context( self.project, incident, action.alert_rule_trigger, status, IncidentStatus.CRITICAL )["aggregate"] == "percentage(sessions_crashed, sessions)" )
51,471
206,293
302
django/template/loaders/base.py
49
13
def get_template(self, template_name, skip=None): tried = [] for origin in self.get_template_sources(template_name): if skip is n
Refs #33476 -- Reformatted code with Black.
get_template
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
base.py
14
19
https://github.com/django/django.git
5
98
0
43
155
Python
{ "docstring": "\n Call self.get_template_sources() and return a Template object for\n the first template matching template_name. If skip is provided, ignore\n template origins in skip. This is used to avoid recursion during\n template extending.\n ", "language": "en", "n_whitespaces": 67, "n_words": 31, "vocab_size": 28 }
def get_template(self, template_name, skip=None): tried = [] for origin in self.get_template_sources(template_name): if skip is not None and origin in skip: tried.append((origin, "Skipped to avoid recursion")) continue try: contents = self.get_contents(origin) except TemplateDoesNotExist: tried.append((origin, "Source does not exist")) continue else: return Template( contents, origin, origin.template_name, self.engine, ) raise TemplateDoesNotExist(template_name, tried=tried)
@keras_export("keras.optimizers.experimental.Optimizer", v1=[])
81,373
275,289
103
keras/optimizers/optimizer_experimental/optimizer.py
24
10
def from_config(cls, config): if "learning_rate" in config: if isinstance(config["learning_rate"], dict): config["learning_rate"] = learning_rate_schedule.deserialize( config["learning_rate"] ) return cls(
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
from_config
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
optimizer.py
14
7
https://github.com/keras-team/keras.git
3
44
1
21
104
Python
{ "docstring": "Creates an optimizer from its config.\n\n This method is the reverse of `get_config`, capable of instantiating the\n same optimizer from the config dictionary.\n\n Args:\n config: A Python dictionary, typically the output of get_config.\n\n Returns:\n An optimizer instance.\n name: String. The name to use\n for momentum accumulator weights created by\n the optimizer.\n clipnorm: Float. If set, the gradient of each weight is individually\n clipped so that its norm is no higher than this value.\n clipvalue: Float. If set, the gradient of each weight is clipped to be no\n higher than this value.\n global_clipnorm: Float. If set, the gradient of all weights is clipped so\n that their global norm is no higher than this value.\n use_ema: Boolean, defaults to False. If True, exponential moving average\n (EMA) is applied. EMA consists of computing an exponential moving\n average of the weights of the model (as the weight values change after\n each training batch), and periodically overwriting the weights with\n their moving average.\n ema_momentum: Float, defaults to 0.99. Only used if `use_ema=True`. This is\n the momentum to use when computing the EMA of the model's weights:\n `new_average = ema_momentum * old_average + (1 - ema_momentum) *\n current_variable_value`.\n ema_overwrite_frequency: Int or None, defaults to None. Only used if\n `use_ema=True`. Every `ema_overwrite_frequency` steps of iterations, we\n overwrite the model variable by its moving average. If None, the optimizer\n does not overwrite model variables in the middle of training, and you\n need to explicitly overwrite the variables at the end of training\n by calling `optimizer.finalize_variable_values()` (which updates the model\n variables in-place). When using the built-in `fit()` training loop, this\n happens automatically after the last epoch, and you don't need to do\n anything.\n jit_compile: Boolean, defaults to True. If True, the optimizer will use XLA\n compilation. If no GPU device is found, this flag will be ignored.\n **kwargs: keyword arguments only used for backward compatibility.", "language": "en", "n_whitespaces": 492, "n_words": 306, "vocab_size": 166 }
def from_config(cls, config): if "learning_rate" in config: if isinstance(config["learning_rate"], dict): config["learning_rate"] = learning_rate_schedule.deserialize( config["learning_rate"] ) return cls(**config) base_optimizer_keyword_args = # pylint: disable=g-classes-have-attributes @keras_export("keras.optimizers.experimental.Optimizer", v1=[])
7,726
42,764
238
airflow/providers/amazon/aws/log/s3_task_handler.py
92
19
def close(self): # When application exit, system shuts down all handlers by # calling close method. Here we check if logger is already # closed to prevent uploading the log to remote storage multiple # times when `logging.shutdown` is called. if self.closed: return super().close() if not self.upload_on_close: return local_loc = os.path.join(self.local_base, self.log_relative_path) remote_loc = os.path.join(self.remote_base, self.log_relative_path) if os.path.exists(local_loc): # read log and remove old logs to get just the latest additions log = pathlib.Path(local_loc).read_text() self.s3_write(log, remote_loc) # Mark closed so we don't double write if close is called twice self.clo
Light Refactor and Clean-up AWS Provider (#23907)
close
595981c8ad3cfeb4ad7a4514d00060e978aa9d81
airflow
s3_task_handler.py
12
12
https://github.com/apache/airflow.git
4
93
0
68
158
Python
{ "docstring": "Close and upload local log file to remote storage S3.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
def close(self): # When application exit, system shuts down all handlers by # calling close method. Here we check if logger is already # closed to prevent uploading the log to remote storage multiple # times when `logging.shutdown` is called. if self.closed: return super().close() if not self.upload_on_close: return local_loc = os.path.join(self.local_base, self.log_relative_path) remote_loc = os.path.join(self.remote_base, self.log_relative_path) if os.path.exists(local_loc): # read log and remove old logs to get just the latest additions log = pathlib.Path(local_loc).read_text() self.s3_write(log, remote_loc) # Mark closed so we don't double write if close is called twice self.closed = True
50,242
203,167
41
tests/view_tests/views.py
15
10
def safestring_in_template_exception(request): template = Template('{% extends "<script>alert(1);</script>" %}') try: template.render(Cont
Fixed #33461 -- Escaped template errors in the technical 500 debug page.
safestring_in_template_exception
c5c7a15b09368a58340d3a65ba9d1f1441e92dc8
django
views.py
13
6
https://github.com/django/django.git
2
37
0
15
67
Python
{ "docstring": "\n Trigger an exception in the template machinery which causes a SafeString\n to be inserted as args[0] of the Exception.\n ", "language": "en", "n_whitespaces": 29, "n_words": 19, "vocab_size": 18 }
def safestring_in_template_exception(request): template = Template('{% extends "<script>alert(1);</script>" %}') try: template.render(Context()) except Exception: return technical_500_response(request, *sys.exc_info())
115,017
316,439
18
tests/test_config_entries.py
9
6
async def test_unique_id_in_progress(hass, manager): mock_integration(hass, Mo
Search/replace RESULT_TYPE_* by FlowResultType enum (#74642)
test_unique_id_in_progress
7cd68381f1d4f58930ffd631dfbfc7159d459832
core
test_config_entries.py
10
17
https://github.com/home-assistant/core.git
1
127
0
9
45
Python
{ "docstring": "Test that we abort if there is already a flow in progress with same unique id.", "language": "en", "n_whitespaces": 15, "n_words": 16, "vocab_size": 16 }
async def test_unique_id_in_progress(hass, manager): mock_integration(hass, MockModule("comp")) mock_entity_platform(hass, "config_flow.comp", None)
73,285
250,140
2,689
tests/storage/test_event_chain.py
338
55
def test_simple(self) -> None: event_factory = self.hs.get_event_builder_factory() bob = "@creator:test" alice = "@alice:test" room_id = "!room:test" # Ensure that we have a rooms entry so that we generate the chain index. self.get_success( self.store.store_room( room_id=room_id, room_creator_user_id="", is_public=True, room_version=RoomVersions.V6, ) ) create = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Create, "state_key": "", "sender": bob, "room_id": room_id, "content": {"tag": "create"}, }, ).build(prev_event_ids=[], auth_event_ids=[]) ) bob_join = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": bob, "sender": bob, "room_id": room_id, "content": {"tag": "bob_join"}, }, ).build(prev_event_ids=[], auth_event_ids=[create.event_id]) ) power = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.PowerLevels, "state_key": "", "sender": bob, "room_id": room_id, "content": {"tag": "power"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, bob_join.event_id], ) ) alice_invite = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": alice, "sender": bob, "room_id": room_id, "content": {"tag": "alice_invite"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, bob_join.event_id, power.event_id], ) ) alice_join = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": alice, "sender": alice, "room_id": room_id, "content": {"tag": "alice_join"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, alice_invite.event_id, power.event_id], ) ) power_2 = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.PowerLevels, "state_key": "", "sender": bob, "room_id": room_id, "content": {"tag": "power_2"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, bob_join.event_id, power.event_id], ) ) bob_join_2 = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": bob, "sender": bob, "room_id": room_id, "content": {"tag": "bob_join_2"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, bob_join.event_id, power.event_id], ) ) alice_join2 = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": alice, "sender": alice, "room_id": room_id, "content": {"tag": "alice_join2"}, }, ).build( prev_event_ids=[], auth_event_ids=[ create.event_id, alice_join.event_id, power_2.event_id, ], ) ) events = [ create, bob_join, power, alice_invite, alice_join, bob_join_2, power_2, alice_join2, ] expected_links = [ (bob_join, create), (power, create), (power, bob_join), (alice_invite, create), (alice_invite, power), (alice_invite, bob_join), (bob_join_2, power), (alice_join2, power_2), ] self.persist(events) chain_map, link_map = self.fetch_chains(events) # Check that the expected links and only the expected links have been # added. self.assertEqual(len(expected_links), len(list(link_map.get_additions()))) for start, end in expected_links: start_id, start_seq = chain_map[start.event_id] end_id, end_seq = chain_map[end.event_id]
Require types in tests.storage. (#14646) Adds missing type hints to `tests.storage` package and does not allow untyped definitions.
test_simple
3ac412b4e2f8c5ba11dc962b8a9d871c1efdce9b
synapse
test_event_chain.py
17
175
https://github.com/matrix-org/synapse.git
3
808
0
148
1,276
Python
{ "docstring": "Test that the example in `docs/auth_chain_difference_algorithm.md`\n works.\n ", "language": "en", "n_whitespaces": 21, "n_words": 7, "vocab_size": 7 }
def test_simple(self) -> None: event_factory = self.hs.get_event_builder_factory() bob = "@creator:test" alice = "@alice:test" room_id = "!room:test" # Ensure that we have a rooms entry so that we generate the chain index. self.get_success( self.store.store_room( room_id=room_id, room_creator_user_id="", is_public=True, room_version=RoomVersions.V6, ) ) create = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Create, "state_key": "", "sender": bob, "room_id": room_id, "content": {"tag": "create"}, }, ).build(prev_event_ids=[], auth_event_ids=[]) ) bob_join = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": bob, "sender": bob, "room_id": room_id, "content": {"tag": "bob_join"}, }, ).build(prev_event_ids=[], auth_event_ids=[create.event_id]) ) power = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.PowerLevels, "state_key": "", "sender": bob, "room_id": room_id, "content": {"tag": "power"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, bob_join.event_id], ) ) alice_invite = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": alice, "sender": bob, "room_id": room_id, "content": {"tag": "alice_invite"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, bob_join.event_id, power.event_id], ) ) alice_join = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": alice, "sender": alice, "room_id": room_id, "content": {"tag": "alice_join"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, alice_invite.event_id, power.event_id], ) ) power_2 = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.PowerLevels, "state_key": "", "sender": bob, "room_id": room_id, "content": {"tag": "power_2"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, bob_join.event_id, power.event_id], ) ) bob_join_2 = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": bob, "sender": bob, "room_id": room_id, "content": {"tag": "bob_join_2"}, }, ).build( prev_event_ids=[], auth_event_ids=[create.event_id, bob_join.event_id, power.event_id], ) ) alice_join2 = self.get_success( event_factory.for_room_version( RoomVersions.V6, { "type": EventTypes.Member, "state_key": alice, "sender": alice, "room_id": room_id, "content": {"tag": "alice_join2"}, }, ).build( prev_event_ids=[], auth_event_ids=[ create.event_id, alice_join.event_id, power_2.event_id, ], ) ) events = [ create, bob_join, power, alice_invite, alice_join, bob_join_2, power_2, alice_join2, ] expected_links = [ (bob_join, create), (power, create), (power, bob_join), (alice_invite, create), (alice_invite, power), (alice_invite, bob_join), (bob_join_2, power), (alice_join2, power_2), ] self.persist(events) chain_map, link_map = self.fetch_chains(events) # Check that the expected links and only the expected links have been # added. self.assertEqual(len(expected_links), len(list(link_map.get_additions()))) for start, end in expected_links: start_id, start_seq = chain_map[start.event_id] end_id, end_seq = chain_map[end.event_id] self.assertIn( (start_seq, end_seq), list(link_map.get_links_between(start_id, end_id)) ) # Test that everything can reach the create event, but the create event # can't reach anything. for event in events[1:]: self.assertTrue( link_map.exists_path_from( chain_map[event.event_id], chain_map[create.event_id] ), ) self.assertFalse( link_map.exists_path_from( chain_map[create.event_id], chain_map[event.event_id], ), )
94,400
295,382
273
homeassistant/components/withings/common.py
69
14
async def _do_retry(self, func, attempts=3) -> Any: # pylint: disable=no-self-use exception = None for attempt in range(1, attempts + 1): _LOGGER.debug("Attempt %s of %s", attempt, attempts) try: return await func() except Exception as exception1: # pylint: disable=broad-except _LOGGER.debug( "Failed attempt %s of %s (%s)", attempt, attempts, exce
Fix withings race condition for access token (#69107)
_do_retry
ccd5ada3414b8b51835a7a29b2e5c2a70464987f
core
common.py
14
19
https://github.com/home-assistant/core.git
4
83
0
56
135
Python
{ "docstring": "Retry a function call.\n\n Withings' API occasionally and incorrectly throws errors. Retrying the call tends to work.\n ", "language": "en", "n_whitespaces": 31, "n_words": 17, "vocab_size": 17 }
async def _do_retry(self, func, attempts=3) -> Any: # pylint: disable=no-self-use exception = None for attempt in range(1, attempts + 1): _LOGGER.debug("Attempt %s of %s", attempt, attempts) try: return await func() except Exception as exception1: # pylint: disable=broad-except _LOGGER.debug( "Failed attempt %s of %s (%s)", attempt, attempts, exception1 ) # Make each backoff pause a little bit longer await asyncio.sleep(0.5 * attempt) exception = exception1 continue if exception: raise exception
55,526
218,881
343
python3.10.4/Lib/lib2to3/refactor.py
97
30
def refactor_doctest(self, block, lineno, indent, filename): try: tree = self.parse_block(block, lineno, indent) except Exception as err: if self.logger.isEnabledFor(logging.DEBUG): for line in block: self.log_debug("Source: %s", line.rstrip("\n")) self.log_error("Can't parse docstring in %s line %s: %s: %s", filename, lineno, err.__class__.__name__, err) return block if self.refactor_tree(tree, filename): new = str(tree).splitlines(keepends=True) # Undo the adjustment of the line numbers in wrap_toks() below. clipped, new = new[:lineno-1], new[lineno-1:] assert clipped == ["\n"] * (lineno-1), clipped if not new[-1].endswith("\n"): new[-1] += "\n" block = [indent + self.PS1 + new.pop(0)] if new:
add python 3.10.4 for windows
refactor_doctest
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
refactor.py
17
20
https://github.com/XX-net/XX-Net.git
8
195
0
66
313
Python
{ "docstring": "Refactors one doctest.\n\n A doctest is given as a block of lines, the first of which starts\n with \">>>\" (possibly indented), while the remaining lines start\n with \"...\" (identically indented).\n\n ", "language": "en", "n_whitespaces": 58, "n_words": 30, "vocab_size": 27 }
def refactor_doctest(self, block, lineno, indent, filename): try: tree = self.parse_block(block, lineno, indent) except Exception as err: if self.logger.isEnabledFor(logging.DEBUG): for line in block: self.log_debug("Source: %s", line.rstrip("\n")) self.log_error("Can't parse docstring in %s line %s: %s: %s", filename, lineno, err.__class__.__name__, err) return block if self.refactor_tree(tree, filename): new = str(tree).splitlines(keepends=True) # Undo the adjustment of the line numbers in wrap_toks() below. clipped, new = new[:lineno-1], new[lineno-1:] assert clipped == ["\n"] * (lineno-1), clipped if not new[-1].endswith("\n"): new[-1] += "\n" block = [indent + self.PS1 + new.pop(0)] if new: block += [indent + self.PS2 + line for line in new] return block
25,567
115,819
41
mindsdb/integrations/handlers/bigquery_handler/bigquery_handler.py
13
8
def get_tables(self, dataset_id) -> Response: client = self.connect()
Add handler
get_tables
cbe6767de6152a78348a8047244e5e3305b24e04
mindsdb
bigquery_handler.py
8
7
https://github.com/mindsdb/mindsdb.git
1
27
0
11
46
Python
{ "docstring": "\n Get a list with all of the tabels in BigQuery\n ", "language": "en", "n_whitespaces": 25, "n_words": 10, "vocab_size": 10 }
def get_tables(self, dataset_id) -> Response: client = self.connect() result = client.list_tables(dataset_id) return result
77,401
262,841
130
PyInstaller/depend/dylib.py
76
17
def mac_set_relative_dylib_deps(libname, distname): from macholib import util from macholib.MachO import MachO # Ignore bootloader; otherwise PyInstaller fails with exception like # 'ValueError: total_size > low_offset (288 > 0)' if os.path.basename(libname) in _BOOTLOADER_FNAMES: return # Determine how many directories up ('../') is the directory with shared dynamic libraries. # E.g., ./qt4_plugins/images/
Fix typos (#6782) [skip ci]
mac_set_relative_dylib_deps
1a7d704ffbabb433007e3ba04750c2f13ade48e5
pyinstaller
dylib.py
15
21
https://github.com/pyinstaller/pyinstaller.git
5
141
0
61
132
Python
{ "docstring": "\n On Mac OS set relative paths to dynamic library dependencies of `libname`.\n\n Relative paths allow to avoid using environment variable DYLD_LIBRARY_PATH. There are known some issues with\n DYLD_LIBRARY_PATH. Relative paths is more flexible mechanism.\n\n Current location of dependent libraries is derived from the location of the library path (paths start with\n '@loader_path').\n\n 'distname' path of the library relative to dist directory of frozen executable. We need this to determine the level\n of directory level for @loader_path of binaries not found in dist directory.\n\n For example, Qt5 plugins are not in the same directory as Qt*.dylib files. Without using\n '@loader_path/../..' for Qt plugins, Mac OS would not be able to resolve shared library dependencies,\n and Qt plugins will not be loaded.\n ", "language": "en", "n_whitespaces": 203, "n_words": 120, "vocab_size": 78 }
def mac_set_relative_dylib_deps(libname, distname): from macholib import util from macholib.MachO import MachO # Ignore bootloader; otherwise PyInstaller fails with exception like # 'ValueError: total_size > low_offset (288 > 0)' if os.path.basename(libname) in _BOOTLOADER_FNAMES: return # Determine how many directories up ('../') is the directory with shared dynamic libraries. # E.g., ./qt4_plugins/images/ -> ./../../ parent_dir = '' # Check if distname is not only base filename. if os.path.dirname(distname): parent_level = len(os.path.dirname(distname).split(os.sep)) parent_dir = parent_level * (os.pardir + os.sep)
81,643
276,381
90
keras/testing_infra/test_utils.py
23
9
def get_v2_optimizer(name, **kwargs): try: return _V2_OPTIMIZER_MAP[name](**kwargs) except KeyError:
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
get_v2_optimizer
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
test_utils.py
16
9
https://github.com/keras-team/keras.git
2
42
0
22
73
Python
{ "docstring": "Get the v2 optimizer requested.\n\n This is only necessary until v2 are the default, as we are testing in Eager,\n and Eager + v1 optimizers fail tests. When we are in v2, the strings alone\n should be sufficient, and this mapping can theoretically be removed.\n\n Args:\n name: string name of Keras v2 optimizer.\n **kwargs: any kwargs to pass to the optimizer constructor.\n\n Returns:\n Initialized Keras v2 optimizer.\n\n Raises:\n ValueError: if an unknown name was passed.\n ", "language": "en", "n_whitespaces": 116, "n_words": 75, "vocab_size": 58 }
def get_v2_optimizer(name, **kwargs): try: return _V2_OPTIMIZER_MAP[name](**kwargs) except KeyError: raise ValueError( "Could not find requested v2 optimizer: {}\nValid choices: {}".format( name, list(_V2_OPTIMIZER_MAP.keys()) ) )
55,366
218,525
197
python3.10.4/Lib/ipaddress.py
52
14
def _prefix_from_ip_int(cls, ip_int): trailing_zeroes = _count_righthand_zero_bits(ip_int, cls._max_prefixlen) prefixlen = cls._max_prefixlen - trailing_zeroes leading_ones = ip_int >> trailing_zeroes
add python 3.10.4 for windows
_prefix_from_ip_int
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
ipaddress.py
11
12
https://github.com/XX-net/XX-Net.git
2
74
0
40
120
Python
{ "docstring": "Return prefix length from the bitwise netmask.\n\n Args:\n ip_int: An integer, the netmask in expanded bitwise format\n\n Returns:\n An integer, the prefix length.\n\n Raises:\n ValueError: If the input intermingles zeroes & ones\n ", "language": "en", "n_whitespaces": 93, "n_words": 32, "vocab_size": 25 }
def _prefix_from_ip_int(cls, ip_int): trailing_zeroes = _count_righthand_zero_bits(ip_int, cls._max_prefixlen) prefixlen = cls._max_prefixlen - trailing_zeroes leading_ones = ip_int >> trailing_zeroes all_ones = (1 << prefixlen) - 1 if leading_ones != all_ones: byteslen = cls._max_prefixlen // 8 details = ip_int.to_bytes(byteslen, 'big') msg = 'Netmask pattern %r mixes zeroes & ones' raise ValueError(msg % details) return prefixlen
24,361
111,228
102
spacy/pipeline/entity_linker.py
21
11
def batch_has_learnable_example(self, examples): for eg in examples: for ent in eg.predicted.ents: candidates = list(self.get_candidates(self.kb, ent)) if candidates: return True return False
Fix entity linker batching (#9669) * Partial fix of entity linker batching * Add import * Better name * Add `use_gold_ents` option, docs * Change to v2, create stub v1, update docs etc. * Fix error type Honestly no idea what the right type to use here is. ConfigValidationError seems wrong. Maybe a NotImplementedError? * Make mypy happy * Add hacky fix for init issue * Add legacy pipeline entity linker * Fix references to class name * Add __init__.py for legacy * Attempted fix for loss issue * Remove placeholder V1 * formatting * slightly more interesting train data * Handle batches with no usable examples This adds a test for batches that have docs but not entities, and a check in the component that detects such cases and skips the update step as thought the batch were empty. * Remove todo about data verification Check for empty data was moved further up so this should be OK now - the case in question shouldn't be possible. * Fix gradient calculation The model doesn't know which entities are not in the kb, so it generates embeddings for the context of all of them. However, the loss does know which entities aren't in the kb, and it ignores them, as there's no sensible gradient. This has the issue that the gradient will not be calculated for some of the input embeddings, which causes a dimension mismatch in backprop. That should have caused a clear error, but with numpyops it was causing nans to happen, which is another problem that should be addressed separately. This commit changes the loss to give a zero gradient for entities not in the kb. * add failing test for v1 EL legacy architecture * Add nasty but simple working check for legacy arch * Clarify why init hack works the way it does * Clarify use_gold_ents use case * Fix use gold ents related handling * Add tests for no gold ents and fix other tests * Use aligned ents function (not working) This doesn't actually work because the "aligned" ents are gold-only. But if I have a different function that returns the intersection, *then* this will work as desired. * Use proper matching ent check This changes the process when gold ents are not used so that the intersection of ents in the pred and gold is used. * Move get_matching_ents to Example * Use model attribute to check for legacy arch * Rename flag * bump spacy-legacy to lower 3.0.9 Co-authored-by: svlandeg <[email protected]>
batch_has_learnable_example
91acc3ea75d219ad07ed2b106e7b8bdcb01516dd
spaCy
entity_linker.py
15
7
https://github.com/explosion/spaCy.git
4
44
0
18
69
Python
{ "docstring": "Check if a batch contains a learnable example.\n\n If one isn't present, then the update step needs to be skipped.\n ", "language": "en", "n_whitespaces": 34, "n_words": 20, "vocab_size": 19 }
def batch_has_learnable_example(self, examples): for eg in examples: for ent in eg.predicted.ents: candidates = list(self.get_candidates(self.kb, ent)) if candidates: return True return False
17,165
81,164
56
awx/main/tasks/callback.py
17
8
def get_delayed_update_fields(self): self.extra_update_fields['emitted_events'] = self.event_ct if 'got an unexpected keyword argument' in self.extra_update_fields.get('result_traceback', ''): self.delay_up
Delay update of artifacts and error fields until final job save (#11832) * Delay update of artifacts until final job save Save tracebacks from receptor module to callback object Move receptor traceback check up to be more logical Use new mock_me fixture to avoid DB call with me method Update the special runner message to the delay_update pattern * Move special runner message into post-processing of callback fields
get_delayed_update_fields
452744b67e02823879e722fe574984a2d760ed60
awx
callback.py
10
5
https://github.com/ansible/awx.git
2
42
0
17
76
Python
{ "docstring": "Return finalized dict of all fields that should be saved along with the job status change", "language": "en", "n_whitespaces": 15, "n_words": 16, "vocab_size": 16 }
def get_delayed_update_fields(self): self.extra_update_fields['emitted_events'] = self.event_ct if 'got an unexpected keyword argument' in self.extra_update_fields.get('result_traceback', ''): self.delay_update(result_traceback=ANSIBLE_RUNNER_NEEDS_UPDATE_MESSAGE) return self.extra_update_fields
15,508
70,442
89
wagtail/search/tests/test_indexed_class.py
20
7
def get_checks_result(warning_id=None): checks_result = checks.run_checks() if warning_id: return [ warning for warning in
add check for correct search_fields on pages - fixes #4940
get_checks_result
d964675ee8fcb7ea58681ac8869733a86d58e4ec
wagtail
test_indexed_class.py
11
7
https://github.com/wagtail/wagtail.git
4
34
0
15
56
Python
{ "docstring": "Run Django checks on any with the 'search' tag used when registering the check", "language": "en", "n_whitespaces": 13, "n_words": 14, "vocab_size": 13 }
def get_checks_result(warning_id=None): checks_result = checks.run_checks() if warning_id: return [ warning for warning in checks_result if warning.id == warning_id] return checks_result
40,077
167,693
16
pandas/core/config_init.py
11
9
def use_bottleneck_cb(key) -> None:
TYP: return values in core/*.py (#47587) * TYP: return values in core/*.py * fix test * to_html * to_html part 2 * DataFrame.query * more overloads * fix query? * increase stacklevel by one * fix rename_axis * and an overload for DataFrame.eval * address comments * fix typevar
use_bottleneck_cb
9612375ca28ade056f15d4338f1bfde5d045c9fc
pandas
config_init.py
9
3
https://github.com/pandas-dev/pandas.git
1
24
0
11
46
Python
{ "docstring": "\n: bool\n Use the numexpr library to accelerate computation if it is installed,\n the default is True\n Valid values: False,True\n", "language": "en", "n_whitespaces": 28, "n_words": 20, "vocab_size": 18 }
def use_bottleneck_cb(key) -> None: from pandas.core import nanops nanops.set_use_bottleneck(cf.get_option(key)) use_numexpr_doc =
39,578
164,647
92
pandas/tests/io/test_stata.py
19
10
def test_repeated_column_labels(self, datapath): # GH 13923, 2577
TST: Don't use autouse fixture in test_stata (#45831)
test_repeated_column_labels
c055dc4e6be9fc1b68d873a1ace286322dadd5e1
pandas
test_stata.py
12
16
https://github.com/pandas-dev/pandas.git
1
40
0
19
73
Python
{ "docstring": "\nValue labels for column ethnicsn are not unique. These cannot be converted to\npandas categoricals.\n\nEither read the file with `convert_categoricals` set to False or use the\nlow level interface in `StataReader` to separately read the values and the\nvalue_labels.\n\nThe repeated labels are:\\n-+\\nwolof\n", "language": "en", "n_whitespaces": 38, "n_words": 44, "vocab_size": 37 }
def test_repeated_column_labels(self, datapath): # GH 13923, 25772 msg = with pytest.raises(ValueError, match=msg): read_stata( datapath("io", "data", "stata", "stata15.dta"), convert_categoricals=True, )
53,306
212,643
190
PySimpleGUI.py
70
17
def string_width_in_pixels(cls, font, string): # if no windows have been created (there is no hidden master root to rely on) then temporarily make a window so the meas
Enable Text class methods to be called prior to any windows being created: string_width_in_pixels, char_height_in_pixels, char_width_in_pixels. Removed destruction of hidden master root from popup_get_file & popup_get_folder (was old code)
string_width_in_pixels
acaae54a1ade24b2e55f7274ae4db747160a38db
PySimpleGUI
PySimpleGUI.py
13
13
https://github.com/PySimpleGUI/PySimpleGUI.git
4
75
0
56
128
Python
{ "docstring": "\n Get the with of the supplied string in pixels for the font being passed in.\n If an error occurs, 0 will be returned\n :param font: specifies the font family, size, etc. Tuple or Single string format 'name size styles'. Styles: italic * roman bold normal underline overstrike, to be measured\n :type font: (str or (str, int[, str]) or None)\n :param string: the string to measure\n :type string: str\n :return: Width in pixels of string\n :rtype: (int)\n ", "language": "en", "n_whitespaces": 160, "n_words": 76, "vocab_size": 57 }
def string_width_in_pixels(cls, font, string): # if no windows have been created (there is no hidden master root to rely on) then temporarily make a window so the measurement can happen if Window.NumOpenWindows == 0: root = tk.Tk() else: root = None size = 0 try: size = tkinter.font.Font(font=font).measure(string) # string's width except Exception as e: _error_popup_with_traceback('Exception retrieving string width in pixels', e) if root is not None: root.destroy() return size
81,601
276,243
41
keras/saving/saving_utils.py
19
7
def model_call_inputs(model, keep_original_batch_size=False): input_specs = model.save_spec(dynamic_batch=not keep_original_batch_size) if input_specs is None: return None, None input_specs =
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
model_call_inputs
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
saving_utils.py
10
6
https://github.com/keras-team/keras.git
2
38
0
14
63
Python
{ "docstring": "Inspect model to get its input signature.\n\n The model's input signature is a list with a single (possibly-nested) object.\n This is due to the Keras-enforced restriction that tensor inputs must be\n passed in as the first argument.\n\n For example, a model with input {'feature1': <Tensor>, 'feature2': <Tensor>}\n will have input signature: [{'feature1': TensorSpec, 'feature2': TensorSpec}]\n\n Args:\n model: Keras Model object.\n keep_original_batch_size: A boolean indicating whether we want to keep using\n the original batch size or set it to None. Default is `False`, which means\n that the batch dim of the returned input signature will always be set to\n `None`.\n\n Returns:\n A tuple containing `(args, kwargs)` TensorSpecs of the model call function\n inputs.\n `kwargs` does not contain the `training` argument.\n ", "language": "en", "n_whitespaces": 189, "n_words": 119, "vocab_size": 87 }
def model_call_inputs(model, keep_original_batch_size=False): input_specs = model.save_spec(dynamic_batch=not keep_original_batch_size) if input_specs is None: return None, None input_specs = _enforce_names_consistency(input_specs) return input_specs
42,862
178,927
595
nuitka/plugins/standard/DataFileCollectorPlugin.py
139
40
def _getSubDirectoryFolders(self, module, sub_dirs): module_dir = module.getCompileTimeDirectory() file_list = [] data_dirs = [os.path.join(module_dir, subdir) for subdir in sub_dirs] # Gather the full file list, probably makes no sense to include bytecode files file_list = sum( ( getFileList( data_dir, ignore_dirs=("__pycache__",), ignore_suffixes=(".pyc",) ) for data_dir in data_dirs ), [], ) if not file_list: msg = "No files or folders found for '%s' in subfolder(s) %r (%r)." % ( module.getFullName(), sub_dirs, data_dirs, ) self.warning(msg) is_package = ( module.isCompiledPythonPackage() or module.isUncompiledPythonPackage() ) # We need to preserve the package target path in the dist folder. if is_package: package_part = module.getFullName().asPath() else: package = module.getFullName().getPackageName() if package is None: package_part = "" else: package_part = package.asPath() item_set = OrderedSet() for f in file_list: target = os.path.join(package_part, os.path.relpath(f, module_dir)) dir_name = os.path.dirname(target) item_set.
Plugins: Massive cleanup of data file handling * Move data file handling out of standalone only, allowing support for other modes as well. * Attach logger and tags to data file objects.
_getSubDirectoryFolders
abfb99b0a05dd76d2ecc6ebc20732a271857c6c8
Nuitka
DataFileCollectorPlugin.py
14
42
https://github.com/Nuitka/Nuitka.git
8
232
0
95
376
Python
{ "docstring": "Get dirnames in given subdirs of the module.\n\n Notes:\n All dirnames in folders below one of the sub_dirs are recursively\n retrieved and returned shortened to begin with the string of subdir.\n Args:\n module: module object\n sub_dirs: sub folder name(s) - tuple\n Returns:\n makeIncludedEmptyDirectories of found dirnames.\n ", "language": "en", "n_whitespaces": 129, "n_words": 46, "vocab_size": 39 }
def _getSubDirectoryFolders(self, module, sub_dirs): module_dir = module.getCompileTimeDirectory() file_list = [] data_dirs = [os.path.join(module_dir, subdir) for subdir in sub_dirs] # Gather the full file list, probably makes no sense to include bytecode files file_list = sum( ( getFileList( data_dir, ignore_dirs=("__pycache__",), ignore_suffixes=(".pyc",) ) for data_dir in data_dirs ), [], ) if not file_list: msg = "No files or folders found for '%s' in subfolder(s) %r (%r)." % ( module.getFullName(), sub_dirs, data_dirs, ) self.warning(msg) is_package = ( module.isCompiledPythonPackage() or module.isUncompiledPythonPackage() ) # We need to preserve the package target path in the dist folder. if is_package: package_part = module.getFullName().asPath() else: package = module.getFullName().getPackageName() if package is None: package_part = "" else: package_part = package.asPath() item_set = OrderedSet() for f in file_list: target = os.path.join(package_part, os.path.relpath(f, module_dir)) dir_name = os.path.dirname(target) item_set.add(dir_name) return self.makeIncludedEmptyDirectories( source_path=module_dir, dest_paths=item_set, reason="Subdirectories of module %s" % module.getFullName(), tags="config", )
18,045
85,795
233
tests/sentry/api/endpoints/test_organization_metric_data.py
33
23
def test_orderby_percentile_with_many_fields_one_entity_no_data(self): for metric in [ TransactionMRI.MEASUREMENTS_FCP.value, "transaction", ]: perf_indexer_record(self.organization.id, metric) response = self.get_success_response( self.organization.slug, field=[ f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})", f"p50({TransactionMetricKey.MEASUREMENTS_FCP.value})", ], statsPeriod="1h", interval="1h", groupBy=["project_id", "transaction"], orderBy=f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})", useCase="performance", ) groups = response.data["groups"] assert
feat(metrics): Support rate for derived metric [TET-129 TET-127] (#38792) Adds support for operation `rate` to be able to compute performance related metrics such as tpm, tps, epm, eps This PR achieves this by: - Defining rate as a derived operation that produces its own SnQL rather than trying to compute the data sketch aggregate and using that directly - Replaces `filter_conditions_func` that used to just produce a snql condition to be used a conditional aggregate with `snql_func` that instead produces a SnQL function - Replaces the logic in `get_entity` on MetricsExpression to determine the entity from the MRI rather than from the aggregate applied
test_orderby_percentile_with_many_fields_one_entity_no_data
35ec251212b82e5d9468062a3ab5945d8e739002
sentry
test_organization_metric_data.py
14
20
https://github.com/getsentry/sentry.git
2
94
0
32
181
Python
{ "docstring": "\n Test that ensures that when metrics data is available then an empty response is returned\n gracefully\n ", "language": "en", "n_whitespaces": 38, "n_words": 16, "vocab_size": 14 }
def test_orderby_percentile_with_many_fields_one_entity_no_data(self): for metric in [ TransactionMRI.MEASUREMENTS_FCP.value, "transaction", ]: perf_indexer_record(self.organization.id, metric) response = self.get_success_response( self.organization.slug, field=[ f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})", f"p50({TransactionMetricKey.MEASUREMENTS_FCP.value})", ], statsPeriod="1h", interval="1h", groupBy=["project_id", "transaction"], orderBy=f"p50({TransactionMetricKey.MEASUREMENTS_LCP.value})", useCase="performance", ) groups = response.data["groups"] assert len(groups) == 0
20,973
101,563
133
lib/training/preview_tk.py
20
15
def _add_save_button(self) -> None: logger.debug("Adding save button") button = tk.Button(self, text="Save", cursor="hand2", command=lambda: self.save_var.set(True)) button.pack(side=tk.LEFT) logger.debug("Added save burron: '%s'", button)
Training - Use custom preview pop-out
_add_save_button
7da2cc3dd266aabebf41a31384cc2e0e7e5af6e5
faceswap
preview_tk.py
13
9
https://github.com/deepfakes/faceswap.git
1
61
0
19
104
Python
{ "docstring": " Add a save button for saving out original preview ", "language": "en", "n_whitespaces": 10, "n_words": 9, "vocab_size": 9 }
def _add_save_button(self) -> None: logger.debug("Adding save button") button = tk.Button(self, text="Save", cursor="hand2", command=lambda: self.save_var.set(True)) button.pack(side=tk.LEFT) logger.debug("Added save burron: '%s'", button)
10,804
53,433
145
src/prefect/context.py
38
11
def temporary_environ_defaults(**kwargs): old_env = os.environ.copy() try: for var in kwargs: # TODO: Consider warning on conflicts os.environ.setdefault(var, str(kwargs[var])) yield {var: os.environ[var] for var in kwargs} finally: for var in kwargs: if old_env.get(var): os.environ[var] = old_env[var] else: os.environ.pop(var, None)
Introduce basic profile context management
temporary_environ_defaults
a9e67e2311c1e4a056b9e740cc739360896aab92
prefect
context.py
16
12
https://github.com/PrefectHQ/prefect.git
6
92
0
29
147
Python
{ "docstring": "\n Temporarily override default values in os.environ.\n\n Yields a dictionary of the key/value pairs matching the provided keys.\n ", "language": "en", "n_whitespaces": 27, "n_words": 17, "vocab_size": 16 }
def temporary_environ_defaults(**kwargs): old_env = os.environ.copy() try: for var in kwargs: # TODO: Consider warning on conflicts os.environ.setdefault(var, str(kwargs[var])) yield {var: os.environ[var] for var in kwargs} finally: for var in kwargs: if old_env.get(var): os.environ[var] = old_env[var] else: os.environ.pop(var, None)
18,790
91,706
264
tests/sentry/api/endpoints/test_organization_metric_details.py
53
22
def test_same_entity_multiple_metric_ids_missing_data(self, mocked_derived_metrics): mocked_derived_metrics.return_value = MOCKED_DERIVED_METRICS_2 _indexer_record(self.organization.id, "metric_foo_doe") self.store_sessi
feat(metrics): make indexer more configurable (#35604) This makes the sentry_metrics indexer more configurable in the following ways, to enable indexing on the ingest-performance-metrics topic: - configurable input Kafka topic - configurable output Kafka topic - configurable model from which to pull index results - tags for internal metrics to distinguish between the two modes operationally
test_same_entity_multiple_metric_ids_missing_data
7f60db924ea37f34e0cfe6856777239e2a2ffe13
sentry
test_organization_metric_details.py
15
21
https://github.com/getsentry/sentry.git
1
97
0
43
169
Python
{ "docstring": "\n Test when not requested metrics have data in the dataset\n ", "language": "en", "n_whitespaces": 25, "n_words": 10, "vocab_size": 10 }
def test_same_entity_multiple_metric_ids_missing_data(self, mocked_derived_metrics): mocked_derived_metrics.return_value = MOCKED_DERIVED_METRICS_2 _indexer_record(self.organization.id, "metric_foo_doe") self.store_session( self.build_session( project_id=self.project.id, started=(time.time() // 60) * 60, status="ok", release="[email protected]", errors=2, ) ) response = self.get_response( self.organization.slug, "derived_metric.multiple_metrics", ) assert response.status_code == 404 assert response.json()["detail"] == ( "Not all the requested metrics or the constituent metrics in " "['derived_metric.multiple_metrics'] have data in the dataset" )
81,784
276,932
126
keras/utils/kernelized_utils.py
62
15
def _align_matrices(x, y): x_matrix = _to_matrix(x) y_matrix = _to_matrix(y) x_shape = x_matrix.shape y_shape = y_matrix.shape if y_shape[1] != x_shape[1]: # dimensions do
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
_align_matrices
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
kernelized_utils.py
13
13
https://github.com/keras-team/keras.git
2
104
0
51
176
Python
{ "docstring": "Aligns x and y tensors to allow computations over pairs of their rows.", "language": "en", "n_whitespaces": 12, "n_words": 13, "vocab_size": 13 }
def _align_matrices(x, y): x_matrix = _to_matrix(x) y_matrix = _to_matrix(y) x_shape = x_matrix.shape y_shape = y_matrix.shape if y_shape[1] != x_shape[1]: # dimensions do not match. raise ValueError( "The outermost dimensions of the input tensors should match. " f"Received y = {y_shape[1]} vs x = {x_shape[1]}." ) x_tile = tf.tile(tf.expand_dims(x_matrix, 1), [1, y_shape[0], 1]) y_tile = tf.tile(tf.expand_dims(y_matrix, 0), [x_shape[0], 1, 1]) return x_tile, y_tile
72,243
248,366
454
tests/storage/test_events.py
131
32
def test_prune_gap_if_dummy_local(self): body = self.helper.send(self.room_id, body="Test", tok=self.token) body = self.helper.send_event( self.room_id, type=EventTypes.Dummy, content={}, tok=self.token ) local_message_event_id = body["event_id"] self.assert_extremities([local_message_event_id]) # Advance the clock for many days to make the old extremity "old". We # also set the depth to "lots". self.reactor.advance(7 * 24 * 60 * 60) # Fudge a second event which points to an event we don't have. This is a # state event so that the state changes (otherwise we won't prune the # extremity as they'll have the same state group). remote_event_2 = event_from_pdu_json( { "type": EventTypes.Member, "state_key": "@user:other2", "content": {"membership": Membership.JOIN}, "room_id": self.room_id, "sender": "@user:other2", "depth": 10000, "prev_events": ["$some_unknown_message"], "auth
Pull out less state when handling gaps mk2 (#12852)
test_prune_gap_if_dummy_local
b83bc5fab57b37f75a79d02213d6032c586fd36e
synapse
test_events.py
13
27
https://github.com/matrix-org/synapse.git
1
191
0
96
320
Python
{ "docstring": "Test that we don't drop extremities after a gap when the previous\n extremity is a local dummy event and points to local events.\n ", "language": "en", "n_whitespaces": 37, "n_words": 23, "vocab_size": 21 }
def test_prune_gap_if_dummy_local(self): body = self.helper.send(self.room_id, body="Test", tok=self.token) body = self.helper.send_event( self.room_id, type=EventTypes.Dummy, content={}, tok=self.token ) local_message_event_id = body["event_id"] self.assert_extremities([local_message_event_id]) # Advance the clock for many days to make the old extremity "old". We # also set the depth to "lots". self.reactor.advance(7 * 24 * 60 * 60) # Fudge a second event which points to an event we don't have. This is a # state event so that the state changes (otherwise we won't prune the # extremity as they'll have the same state group). remote_event_2 = event_from_pdu_json( { "type": EventTypes.Member, "state_key": "@user:other2", "content": {"membership": Membership.JOIN}, "room_id": self.room_id, "sender": "@user:other2", "depth": 10000, "prev_events": ["$some_unknown_message"], "auth_events": [], "origin_server_ts": self.clock.time_msec(), }, RoomVersions.V6, ) state_before_gap = self.get_success( self.state.get_current_state_ids(self.room_id) ) self.persist_event(remote_event_2, state=state_before_gap) # Check the new extremity is just the new remote event. self.assert_extremities([remote_event_2.event_id, local_message_event_id])
79,929
269,147
64
keras/saving/saved_model/save_impl.py
27
9
def _reset_layer_losses(parent_layer): losses_dict = {} for layer in utils.list_all_layers_and_sublayers(parent_layer): losses_dict[layer] = { 'losses': layer._losses[:], 'eager_losses
Support Keras saving/loading for ShardedVariables with arbitrary partitions. PiperOrigin-RevId: 439837516
_reset_layer_losses
e61cbc52fd3b0170769c120e9b8dabc8c4205322
keras
save_impl.py
12
11
https://github.com/keras-team/keras.git
2
66
0
22
113
Python
{ "docstring": "Resets losses of layer and its sublayers, and returns original losses.", "language": "en", "n_whitespaces": 10, "n_words": 11, "vocab_size": 10 }
def _reset_layer_losses(parent_layer): losses_dict = {} for layer in utils.list_all_layers_and_sublayers(parent_layer): losses_dict[layer] = { 'losses': layer._losses[:], 'eager_losses': layer._eager_losses[:] } with utils.no_automatic_dependency_tracking_scope(layer): layer._losses = [] layer._eager_losses = [] return losses_dict
51,815
206,971
438
tests/admin_changelist/tests.py
139
40
def test_result_list_editable_html(self): new_parent = Parent.objects.create(name="parent") new_child = Child.objects.create(name="name", parent=new_parent) request = self.factory.get("/child/") request.user = self.superuser m = ChildAdmin(Child, custom_site) # Test with list_editable fields m.list_display = ["id", "name", "parent"] m.list_display_links = ["id"] m.list_editable = ["name"] cl = m.get_changelist_instance(request) FormSet = m.get_changelist_formset(request) cl.formset = FormSet(queryset=cl.result_list) template = Template( "{% load admin_list %}{% spaceless %}{% result_list cl %}{% endspaceless %}" ) context = Context({"cl": cl, "opts": Child._meta}) table_output = template.render(context) # make sure that hidden fields are in the correct place hiddenfields_div = ( '<div class="hiddenfields">' '<input type="hidden" name="form-0-id" value="%d" id="id_form-0-id">' "</div>" ) % new_child.id self.assertInHTML(
Refs #33476 -- Reformatted code with Black.
test_result_list_editable_html
9c19aff7c7561e3a82978a272ecdaad40dda5c00
django
tests.py
11
34
https://github.com/django/django.git
1
186
0
99
330
Python
{ "docstring": "\n Regression tests for #11791: Inclusion tag result_list generates a\n table and this checks that the items are nested within the table\n element tags.\n Also a regression test for #13599, verifies that hidden fields\n when list_editable is enabled are rendered in a div outside the\n table.\n ", "language": "en", "n_whitespaces": 95, "n_words": 45, "vocab_size": 37 }
def test_result_list_editable_html(self): new_parent = Parent.objects.create(name="parent") new_child = Child.objects.create(name="name", parent=new_parent) request = self.factory.get("/child/") request.user = self.superuser m = ChildAdmin(Child, custom_site) # Test with list_editable fields m.list_display = ["id", "name", "parent"] m.list_display_links = ["id"] m.list_editable = ["name"] cl = m.get_changelist_instance(request) FormSet = m.get_changelist_formset(request) cl.formset = FormSet(queryset=cl.result_list) template = Template( "{% load admin_list %}{% spaceless %}{% result_list cl %}{% endspaceless %}" ) context = Context({"cl": cl, "opts": Child._meta}) table_output = template.render(context) # make sure that hidden fields are in the correct place hiddenfields_div = ( '<div class="hiddenfields">' '<input type="hidden" name="form-0-id" value="%d" id="id_form-0-id">' "</div>" ) % new_child.id self.assertInHTML( hiddenfields_div, table_output, msg_prefix="Failed to find hidden fields" ) # make sure that list editable fields are rendered in divs correctly editable_name_field = ( '<input name="form-0-name" value="name" class="vTextField" ' 'maxlength="30" type="text" id="id_form-0-name">' ) self.assertInHTML( '<td class="field-name">%s</td>' % editable_name_field, table_output, msg_prefix='Failed to find "name" list_editable field', )
16,677
77,580
337
wagtail/admin/tests/ui/test_tables.py
51
27
def test_title_column(self): root_page = Page.objects.filter(depth=2).first() blog = Site.objects.create(
Allow passing arbitrary link attributes to TitleColumn
test_title_column
5994cc43dfc5cc1ed891ab78eff3a3bcf56f6830
wagtail
test_tables.py
15
51
https://github.com/wagtail/wagtail.git
1
136
0
40
223
Python
{ "docstring": "\n <table class=\"listing\">\n <thead>\n <tr><th>Hostname</th><th>Site name</th></tr>\n </thead>\n <tbody>\n <tr>\n <td class=\"title\">\n <div class=\"title-wrapper\">\n <a href=\"/admin/sites/%d/\" class=\"choose-site\" data-chooser=\"yes\">blog.example.com</a>\n </div>\n </td>\n <td>My blog</td>\n </tr>\n <tr>\n <td class=\"title\">\n <div class=\"title-wrapper\">\n <a href=\"/admin/sites/%d/\" class=\"choose-site\" data-chooser=\"yes\">gallery.example.com</a>\n </div>\n </td>\n <td>My gallery</td>\n </tr>\n </tbody>\n </table>\n ", "language": "en", "n_whitespaces": 530, "n_words": 37, "vocab_size": 25 }
def test_title_column(self): root_page = Page.objects.filter(depth=2).first() blog = Site.objects.create( hostname="blog.example.com", site_name="My blog", root_page=root_page ) gallery = Site.objects.create( hostname="gallery.example.com", site_name="My gallery", root_page=root_page ) data = [blog, gallery] table = Table( [ TitleColumn( "hostname", url_name="wagtailsites:edit", link_classname="choose-site", link_attrs={"data-chooser": "yes"}, ), Column("site_name", label="Site name"), ], data, ) html = self.render_component(table) self.assertHTMLEqual( html, % (blog.pk, gallery.pk), )
6,233
34,270
149
src/transformers/models/realm/tokenization_realm.py
32
11
def _clean_text(self, text): output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append
Add FastTokenizer to REALM (#15211) * Remove BertTokenizer abstraction * Add FastTokenizer to REALM * Fix config archive map * Fix copies * Update realm.mdx * Apply suggestions from code review
_clean_text
841d979190319098adc8101f9820a02ee3be4c8b
transformers
tokenization_realm.py
12
11
https://github.com/huggingface/transformers.git
6
65
0
26
112
Python
{ "docstring": "Performs invalid character removal and whitespace cleanup on text.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
def _clean_text(self, text): output = [] for char in text: cp = ord(char) if cp == 0 or cp == 0xFFFD or _is_control(char): continue if _is_whitespace(char): output.append(" ") else: output.append(char) return "".join(output)
84,941
284,723
258
openbb_terminal/cryptocurrency/crypto_controller.py
27
20
def call_candle(self, other_args): if self.symbol: parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="candle", description=, ) ns_parser = parse_known_args_and_warn( parser, other_args, EXPORT_BOTH_RAW_DATA_AND_FIGURES ) if ns_parser: plot_chart(
refactoring load, changed chart to candle (#1838) * refactoring load, changed chart to candle * updating load * refactor done, missing tests * fixed chart * refactor * linting * tests failing * fix minh issues * auto completion for load * linting * Tests : cryptocurrency/controller ; remove mocking of functions which are not used anymore * Cryptocurrency/Controller : call_headlines ; fix bug * Tests : cryptocurrency/controller ; mock function * Tests : cryptocurrency/due_diligence ; fix expected output * cryptocurrency/due_diligence ; mock functions Co-authored-by: Chavithra <[email protected]> Co-authored-by: minhhoang1023 <[email protected]> Co-authored-by: James Maslek <[email protected]>
call_candle
0e03b9e9e41aaa61cdec5d674a9f2c64ab8d3394
OpenBBTerminal
crypto_controller.py
13
18
https://github.com/OpenBB-finance/OpenBBTerminal.git
3
72
0
23
111
Python
{ "docstring": "Process candle commandDisplay chart for loaded coin. You can specify currency vs which you want\n to show chart and also number of days to get data for.", "language": "en", "n_whitespaces": 41, "n_words": 27, "vocab_size": 25 }
def call_candle(self, other_args): if self.symbol: parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="candle", description=, ) ns_parser = parse_known_args_and_warn( parser, other_args, EXPORT_BOTH_RAW_DATA_AND_FIGURES ) if ns_parser: plot_chart( symbol=self.symbol, currency=self.current_currency, prices_df=self.current_df, )
88,940
289,805
355
tests/components/bayesian/test_binary_sensor.py
72
14
async def test_load_values_when_added_to_hass(hass): config = { "binary_sensor": {
Bayesian - support `unique_id:` (#79879) * support unique_id * adds test for unique_ids
test_load_values_when_added_to_hass
fe7402375d2f899a7edd6ac326d2c1998b4c43da
core
test_binary_sensor.py
14
33
https://github.com/home-assistant/core.git
1
183
0
55
319
Python
{ "docstring": "Test that sensor initializes with observations of relevant entities.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
async def test_load_values_when_added_to_hass(hass): config = { "binary_sensor": { "name": "Test_Binary", "platform": "bayesian", "unique_id": "3b4c9563-5e84-4167-8fe7-8f507e796d72", "device_class": "connectivity", "observations": [ { "platform": "state", "entity_id": "sensor.test_monitored", "to_state": "off", "prob_given_true": 0.8, "prob_given_false": 0.4, } ], "prior": 0.2, "probability_threshold": 0.32, } } hass.states.async_set("sensor.test_monitored", "off") await hass.async_block_till_done() assert await async_setup_component(hass, "binary_sensor", config) await hass.async_block_till_done() entity_registry = async_get_entities(hass) assert ( entity_registry.entities["binary_sensor.test_binary"].unique_id == "bayesian-3b4c9563-5e84-4167-8fe7-8f507e796d72" ) state = hass.states.get("binary_sensor.test_binary") assert state.attributes.get("device_class") == "connectivity" assert state.attributes.get("observations")[0]["prob_given_true"] == 0.8 assert state.attributes.get("observations")[0]["prob_given_false"] == 0.4
9,308
47,940
157
tests/providers/databricks/operators/test_databricks_sql.py
24
16
def test_copy_with_target_credential(self): expression = "col1, col2" op = DatabricksCopyIntoOperator( file_location=COPY_FILE_LOCATION, file_format='CSV', table_name='test', task_id=TASK_ID, expression_list=expression, storage_credential='abc', credential={'AZURE_SAS_TOKEN': 'abc'}, ) asse
Update to the released version of DBSQL connector Also added additional parameters for further customization of connection if it's required
test_copy_with_target_credential
6a3d6cc32b4e3922d259c889460fe82e0ebf3663
airflow
test_databricks_sql.py
12
18
https://github.com/apache/airflow.git
1
60
0
22
109
Python
{ "docstring": "COPY INTO test WITH (CREDENTIAL abc)\nFROM (SELECT {expression} FROM '{COPY_FILE_LOCATION}' WITH (CREDENTIAL (AZURE_SAS_TOKEN = 'abc') ))\nFILEFORMAT = CSV\n", "language": "en", "n_whitespaces": 17, "n_words": 20, "vocab_size": 16 }
def test_copy_with_target_credential(self): expression = "col1, col2" op = DatabricksCopyIntoOperator( file_location=COPY_FILE_LOCATION, file_format='CSV', table_name='test', task_id=TASK_ID, expression_list=expression, storage_credential='abc', credential={'AZURE_SAS_TOKEN': 'abc'}, ) assert ( op._create_sql_query() == f.strip() )
12,219
60,607
189
.venv/lib/python3.8/site-packages/pip/_internal/commands/debug.py
58
12
def show_actual_vendor_versions(vendor_txt_versions): # type: (Dict[str, str]) -> None for module_name, expected_version in vendor_txt_versions.items(): extra_message = '' actual_version = get_vendor_version_from_module(module_name) if not actual_version: extra_message = ' (Un
upd; format
show_actual_vendor_versions
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
transferlearning
debug.py
15
12
https://github.com/jindongwang/transferlearning.git
4
71
0
45
126
Python
{ "docstring": "Log the actual version and print extra info if there is\n a conflict or if the actual version could not be imported.\n ", "language": "en", "n_whitespaces": 28, "n_words": 22, "vocab_size": 18 }
def show_actual_vendor_versions(vendor_txt_versions): # type: (Dict[str, str]) -> None for module_name, expected_version in vendor_txt_versions.items(): extra_message = '' actual_version = get_vendor_version_from_module(module_name) if not actual_version: extra_message = ' (Unable to locate actual module version, using'\ ' vendor.txt specified version)' actual_version = expected_version elif parse_version(actual_version) != parse_version(expected_version): extra_message = ' (CONFLICT: vendor.txt suggests version should'\ ' be {})'.format(expected_version) logger.info('%s==%s%s', module_name, actual_version, extra_message)
22,383
106,467
45
youtube_dl/utils.py
26
9
def escape_rfc3986(s): if sys.version_info < (3, 0) and isinstance(s, compat_str): s = s.encode('utf-
[utils] Ensure RFC3986 encoding result is unicode
escape_rfc3986
556862bc911bb54435b7b0b01451789b884b0390
youtube-dl
utils.py
11
4
https://github.com/ytdl-org/youtube-dl.git
3
45
0
26
75
Python
{ "docstring": "Escape non-ASCII characters as suggested by RFC 3986", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
def escape_rfc3986(s): if sys.version_info < (3, 0) and isinstance(s, compat_str): s = s.encode('utf-8') # ensure unicode: after quoting, it can always be converted return compat_str(compat_urllib_parse.quote(s, b"%/;:@&=+$,!~*'()?#[]"))
83,534
281,122
158
gamestonk_terminal/cryptocurrency/due_diligence/dd_controller.py
24
18
def call_social(self, other_args): parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="social", description=, ) ns_parser = parse_known_args_and_warn( parser, other_args, EXPORT_ONLY_RAW_DATA_ALLOWED ) if ns_parser: pycoingecko_view.display_social( self.coin_map_df["CoinGecko"
Crypto menu refactor (#1119) * enabled some crypto commands in dd to be called independent of source loaded * support for coin_map_df in all dd functions + load ta and plot chart refactor * updated tests and removed coingecko scrapping where possible * removed ref of command from hugo * updated pycoingecko version * refactoring load * refactored load to fetch prices; pred can run independent of source now * load by default usd on cp/cg and usdt on cb/bin * updated to rich for formatting and updated dependencies * fixed changes requested * update docs * revert discord requirements * removed absolute from calculate change for price * fixing pr issues * fix loading issue when similar coins exist, move coins to home, fill n/a * update docs for coins * adds load to ta and pred menu
call_social
ea964109d654394cc0a5237e6ec5510ba6404097
OpenBBTerminal
dd_controller.py
11
15
https://github.com/OpenBB-finance/OpenBBTerminal.git
2
63
0
21
100
Python
{ "docstring": "Process social commandShows social media corresponding to loaded coin. You can find there name of\n telegram channel, urls to twitter, reddit, bitcointalk, facebook and discord.", "language": "en", "n_whitespaces": 35, "n_words": 25, "vocab_size": 23 }
def call_social(self, other_args): parser = argparse.ArgumentParser( add_help=False, formatter_class=argparse.ArgumentDefaultsHelpFormatter, prog="social", description=, ) ns_parser = parse_known_args_and_warn( parser, other_args, EXPORT_ONLY_RAW_DATA_ALLOWED ) if ns_parser: pycoingecko_view.display_social( self.coin_map_df["CoinGecko"], export=ns_parser.export )
17,999
85,476
174
tests/snuba/api/endpoints/test_project_event_details.py
36
21
def test_ignores_different_group(self): url = reverse( "sentry-api-0-project-event-details", kwargs={ "event_id": self.next_transaction_event.event_id, "project_slug": self.next_transaction_event.project.slug, "organization_slug": self.next_transacti
feat(perf issues): Return prev/next for transaction events (#38274) * feat(perf issues): Return prev/next for transaction events
test_ignores_different_group
6d7681529f68a87e41d4c11a4aa1e6732cb15ade
sentry
test_project_event_details.py
15
14
https://github.com/getsentry/sentry.git
1
117
0
32
195
Python
{ "docstring": "Test that a different group's events aren't attributed to the one that was passed", "language": "en", "n_whitespaces": 13, "n_words": 14, "vocab_size": 13 }
def test_ignores_different_group(self): url = reverse( "sentry-api-0-project-event-details", kwargs={ "event_id": self.next_transaction_event.event_id, "project_slug": self.next_transaction_event.project.slug, "organization_slug": self.next_transaction_event.project.organization.slug, }, ) with self.feature("organizations:performance-issues"): response = self.client.get(url, format="json", data={"group_id": self.group.id}) assert response.status_code == 200, response.content assert response.data["id"] == str(self.next_transaction_event.event_id) assert response.data["nextEventID"] is None
49,706
200,571
258
sympy/tensor/tensor.py
67
26
def _dedupe_indices(new, exclude, index_structure): inds_self = set(exclude) dums_new = set(get_dummy_indices(new)) conflicts = dums_new.intersection(inds_self) if len(conflicts) == 0: return None inds_self.update(dums_new) self_args_free = [(i, None) for i in inds_self] gen = index_structure._get_generator_for_dummy_indices(self_args_free) repl = {} for d in conflicts: if -d in repl.keys(): continue newname = gen(d.te
_dedupe_indices: convert to staticmethod index_structure is now an additional argument
_dedupe_indices
b5f5ec455e7d003fa214a215475a3fa2407760cc
sympy
tensor.py
13
26
https://github.com/sympy/sympy.git
6
150
0
45
242
Python
{ "docstring": "\n exclude: set\n new: TensExpr\n index_structure: _IndexStructure (required to generate new dummy indices)\n\n If ``new`` has any dummy indices that are in ``exclude``, return a version\n of new with those indices replaced. If no replacements are needed,\n return None\n \n ``self_args_free`` is to be passed to ``_IndexStructure._get_generator_for_dummy_indices()``.\n Since the latter does not use the index position for anything, we just\n set it as ``None`` here.\n ", "language": "en", "n_whitespaces": 142, "n_words": 63, "vocab_size": 53 }
def _dedupe_indices(new, exclude, index_structure): inds_self = set(exclude) dums_new = set(get_dummy_indices(new)) conflicts = dums_new.intersection(inds_self) if len(conflicts) == 0: return None inds_self.update(dums_new) self_args_free = [(i, None) for i in inds_self] gen = index_structure._get_generator_for_dummy_indices(self_args_free) repl = {} for d in conflicts: if -d in repl.keys(): continue newname = gen(d.tensor_index_type) new_d = d.func(newname, *d.args[1:]) repl[d] = new_d repl[-d] = -new_d if len(repl) == 0: return None new_renamed = new._replace_indices(repl) return new_renamed
23,916
110,082
711
lib/matplotlib/spines.py
174
39
def get_window_extent(self, renderer=None): # make sure the location is updated so that transforms etc are correct: self._adjust_location() bb = super().get_window_extent(renderer=renderer) if self.axis is None or not self.axis.get_visible(): return bb bboxes = [bb] drawn_ticks = self.axis._update_ticks() major_tick = next(iter({*drawn_ticks} & {*self.axis.majorTicks}), None) minor_tick = next(iter({*drawn_ticks} & {*self.axis.minorTicks}), None) for tick in [major_tick, minor_tick]: if tick is None: continue bb0 = bb.frozen() tickl = tick._size tickdir = tick._tickdir if tickdir == 'out': padout = 1 padin = 0 elif tickdir == 'in': padout = 0 padin = 1 else: padout = 0.5 padin = 0.5 padout = padout * tickl / 72 * self.figure.dpi padin = padin * tickl / 72 * self.figure.dpi if tick.tick1line.get_visible(): if self.spine_type == 'left': bb0.x0 = bb0.x0 - padout bb0.x1 = bb0.x1 + padin elif self.spine_type == 'bottom': bb0.y0 = bb0.y0 - padout bb0.y1 = bb0.y1 + padin if tick.tick2line.get_visible(): if self.spine_type == 'right': bb0.x1 = bb0.x1 + padout bb0.x0 = bb0.x0 - padin elif self.spine_type == 'top': bb0.y1 = bb0.y1 + padout bb0.y0 = bb0.y0 - padout
Fix issue with space allocated for single tick that should not be there Co-authored-by: Antony Lee <[email protected]>
get_window_extent
3804cdd8f1771065f9c8616c57357c2b190c3a05
matplotlib
spines.py
15
42
https://github.com/matplotlib/matplotlib.git
13
330
0
80
534
Python
{ "docstring": "\n Return the window extent of the spines in display space, including\n padding for ticks (but not their labels)\n\n See Also\n --------\n matplotlib.axes.Axes.get_tightbbox\n matplotlib.axes.Axes.get_window_extent\n ", "language": "en", "n_whitespaces": 73, "n_words": 23, "vocab_size": 22 }
def get_window_extent(self, renderer=None): # make sure the location is updated so that transforms etc are correct: self._adjust_location() bb = super().get_window_extent(renderer=renderer) if self.axis is None or not self.axis.get_visible(): return bb bboxes = [bb] drawn_ticks = self.axis._update_ticks() major_tick = next(iter({*drawn_ticks} & {*self.axis.majorTicks}), None) minor_tick = next(iter({*drawn_ticks} & {*self.axis.minorTicks}), None) for tick in [major_tick, minor_tick]: if tick is None: continue bb0 = bb.frozen() tickl = tick._size tickdir = tick._tickdir if tickdir == 'out': padout = 1 padin = 0 elif tickdir == 'in': padout = 0 padin = 1 else: padout = 0.5 padin = 0.5 padout = padout * tickl / 72 * self.figure.dpi padin = padin * tickl / 72 * self.figure.dpi if tick.tick1line.get_visible(): if self.spine_type == 'left': bb0.x0 = bb0.x0 - padout bb0.x1 = bb0.x1 + padin elif self.spine_type == 'bottom': bb0.y0 = bb0.y0 - padout bb0.y1 = bb0.y1 + padin if tick.tick2line.get_visible(): if self.spine_type == 'right': bb0.x1 = bb0.x1 + padout bb0.x0 = bb0.x0 - padin elif self.spine_type == 'top': bb0.y1 = bb0.y1 + padout bb0.y0 = bb0.y0 - padout bboxes.append(bb0) return mtransforms.Bbox.union(bboxes)
48,985
198,533
157
sympy/physics/continuum_mechanics/truss.py
41
11
def apply_support(self, location, type): if location not in self._node_labels: raise ValueError("Support must be added on a known node") else: self._supports[location] = type if type == "pinned": self._loads['R_'+str(location)+'_x']= [] self._loads['R_'+
remove_load method added along with other changes
apply_support
99ede53223eafb56b2c2b4ab7b8a6764b628c9d9
sympy
truss.py
16
12
https://github.com/sympy/sympy.git
5
123
0
32
221
Python
{ "docstring": "\n This method adds a pinned or roller support at a particular node\n\n Parameters\n ==========\n\n location: String or Symbol\n Label of the Node at which support is added.\n\n type: String\n Type of the support being provided at the node.\n\n Examples\n ========\n\n >>> from sympy.physics.continuum_mechanics.truss import Truss\n >>> t = Truss()\n >>> t.add_node('A', 0, 0)\n >>> t.add_node('B', 3, 0)\n >>> t.apply_support('A', 'pinned')\n >>> t.supports\n {'A': 'pinned', 'B': 'none'}\n ", "language": "en", "n_whitespaces": 194, "n_words": 66, "vocab_size": 50 }
def apply_support(self, location, type): if location not in self._node_labels: raise ValueError("Support must be added on a known node") else: self._supports[location] = type if type == "pinned": self._loads['R_'+str(location)+'_x']= [] self._loads['R_'+str(location)+'_y']= [] elif type == "roller": self._loads['R_'+str(location)+'_y']= [] if 'R_'+str(location)+'_x' in list(self._loads): self._loads.pop('R_'+str(location)+'_x')
102,508
303,692
119
homeassistant/components/xiaomi_miio/vacuum.py
20
13
def timers(self) -> list[dict[str, Any]]: retu
Improve type hints in xiaomi_miio vacuum entities (#76563) Co-authored-by: Teemu R. <[email protected]>
timers
54fc17e10de0752c03d6b95153c3d8168f76ea44
core
vacuum.py
11
10
https://github.com/home-assistant/core.git
2
52
0
20
83
Python
{ "docstring": "Get the list of added timers of the vacuum cleaner.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 8 }
def timers(self) -> list[dict[str, Any]]: return [ { "enabled": timer.enabled, "cron": timer.cron, "next_schedule": as_utc(timer.next_schedule), } for timer in self.coordinator.data.timers ]
77,142
262,205
110
TTS/tts/utils/visual.py
51
27
def plot_avg_pitch(pitch, chars, fig_size=(30, 10), output_fig=False): old_fig_size = plt.rcParams["figure.figsize"] if fig_size is not None: plt.rcParams["figure.figsize"] = fig_size fig, ax = plt.subplots() x = np.array(range(len(chars)))
Plot pitch over input characters
plot_avg_pitch
5169d4eb32407ca0278046aaffc56ca6f9e9ef32
TTS
visual.py
12
26
https://github.com/coqui-ai/TTS.git
4
142
0
39
233
Python
{ "docstring": "Plot pitch curves on top of the input characters.\n\n Args:\n pitch (np.array): Pitch values.\n chars (str): Characters to place to the x-axis.\n\n Shapes:\n pitch: :math:`(T,)`\n ", "language": "en", "n_whitespaces": 55, "n_words": 25, "vocab_size": 22 }
def plot_avg_pitch(pitch, chars, fig_size=(30, 10), output_fig=False): old_fig_size = plt.rcParams["figure.figsize"] if fig_size is not None: plt.rcParams["figure.figsize"] = fig_size fig, ax = plt.subplots() x = np.array(range(len(chars))) my_xticks = [c for c in chars] plt.xticks(x, my_xticks) ax.set_xlabel("characters") ax.set_ylabel("freq") ax2 = ax.twinx() ax2.plot(pitch, linewidth=5.0, color="red") ax2.set_ylabel("F0") plt.rcParams["figure.figsize"] = old_fig_size if not output_fig: plt.close() return fig
48,304
197,047
402
sympy/ntheory/generate.py
170
23
def composite(nth): n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; composite(1) == 4") composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18] if n <= 10: return composite_arr[n - 1] a, b = 4, sieve._list[-1] if n <= b - primepi(b) - 1: while a < b - 1: mid = (a + b) >> 1
Refactored import ordering in functions
composite
e0dc14eca132f37c5f49369eb4051eae37c9b119
sympy
generate.py
15
36
https://github.com/sympy/sympy.git
12
250
0
76
389
Python
{ "docstring": " Return the nth composite number, with the composite numbers indexed as\n composite(1) = 4, composite(2) = 6, etc....\n\n Examples\n ========\n\n >>> from sympy import composite\n >>> composite(36)\n 52\n >>> composite(1)\n 4\n >>> composite(17737)\n 20000\n\n See Also\n ========\n\n sympy.ntheory.primetest.isprime : Test if n is prime\n primerange : Generate all primes in a given range\n primepi : Return the number of primes less than or equal to n\n prime : Return the nth prime\n compositepi : Return the number of positive composite numbers less than or equal to n\n ", "language": "en", "n_whitespaces": 210, "n_words": 87, "vocab_size": 53 }
def composite(nth): n = as_int(nth) if n < 1: raise ValueError("nth must be a positive integer; composite(1) == 4") composite_arr = [4, 6, 8, 9, 10, 12, 14, 15, 16, 18] if n <= 10: return composite_arr[n - 1] a, b = 4, sieve._list[-1] if n <= b - primepi(b) - 1: while a < b - 1: mid = (a + b) >> 1 if mid - primepi(mid) - 1 > n: b = mid else: a = mid if isprime(a): a -= 1 return a from sympy.functions.elementary.exponential import log from sympy.functions.special.error_functions import li a = 4 # Lower bound for binary search b = int(n*(log(n) + log(log(n)))) # Upper bound for the search. while a < b: mid = (a + b) >> 1 if mid - li(mid) - 1 > n: b = mid else: a = mid + 1 n_composites = a - primepi(a) - 1 while n_composites > n: if not isprime(a): n_composites -= 1 a -= 1 if isprime(a): a -= 1 return a
@set_module('numpy')
38,645
160,496
122
numpy/lib/twodim_base.py
64
19
def histogram2d(x, y, bins=10, range=None, density=None, weights=None): from numpy import histogramdd if len(x) != len(y): raise ValueError('x and y must have the same length.') try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, density, weights) return hist, edges[0], edges[1] @set_module('numpy')
DEP: Remove `normed=` keyword argument from histogroms The normed keyword argument has been deprecated for a long time. This removes it, replacing its position with the new density argument.
histogram2d
2215054472616df563faa4613734426c790d4217
numpy
twodim_base.py
11
13
https://github.com/numpy/numpy.git
5
114
1
50
184
Python
{ "docstring": "\n Compute the bi-dimensional histogram of two data samples.\n\n Parameters\n ----------\n x : array_like, shape (N,)\n An array containing the x coordinates of the points to be\n histogrammed.\n y : array_like, shape (N,)\n An array containing the y coordinates of the points to be\n histogrammed.\n bins : int or array_like or [int, int] or [array, array], optional\n The bin specification:\n\n * If int, the number of bins for the two dimensions (nx=ny=bins).\n * If array_like, the bin edges for the two dimensions\n (x_edges=y_edges=bins).\n * If [int, int], the number of bins in each dimension\n (nx, ny = bins).\n * If [array, array], the bin edges in each dimension\n (x_edges, y_edges = bins).\n * A combination [int, array] or [array, int], where int\n is the number of bins and array is the bin edges.\n\n range : array_like, shape(2,2), optional\n The leftmost and rightmost edges of the bins along each dimension\n (if not specified explicitly in the `bins` parameters):\n ``[[xmin, xmax], [ymin, ymax]]``. All values outside of this range\n will be considered outliers and not tallied in the histogram.\n density : bool, optional\n If False, the default, returns the number of samples in each bin.\n If True, returns the probability *density* function at the bin,\n ``bin_count / sample_count / bin_area``.\n weights : array_like, shape(N,), optional\n An array of values ``w_i`` weighing each sample ``(x_i, y_i)``.\n Weights are normalized to 1 if `density` is True. If `density` is\n False, the values of the returned histogram are equal to the sum of\n the weights belonging to the samples falling into each bin.\n\n Returns\n -------\n H : ndarray, shape(nx, ny)\n The bi-dimensional histogram of samples `x` and `y`. Values in `x`\n are histogrammed along the first dimension and values in `y` are\n histogrammed along the second dimension.\n xedges : ndarray, shape(nx+1,)\n The bin edges along the first dimension.\n yedges : ndarray, shape(ny+1,)\n The bin edges along the second dimension.\n\n See Also\n --------\n histogram : 1D histogram\n histogramdd : Multidimensional histogram\n\n Notes\n -----\n When `density` is True, then the returned histogram is the sample\n density, defined such that the sum over bins of the product\n ``bin_value * bin_area`` is 1.\n\n Please note that the histogram does not follow the Cartesian convention\n where `x` values are on the abscissa and `y` values on the ordinate\n axis. Rather, `x` is histogrammed along the first dimension of the\n array (vertical), and `y` along the second dimension of the array\n (horizontal). This ensures compatibility with `histogramdd`.\n\n Examples\n --------\n >>> from matplotlib.image import NonUniformImage\n >>> import matplotlib.pyplot as plt\n\n Construct a 2-D histogram with variable bin width. First define the bin\n edges:\n\n >>> xedges = [0, 1, 3, 5]\n >>> yedges = [0, 2, 3, 4, 6]\n\n Next we create a histogram H with random bin content:\n\n >>> x = np.random.normal(2, 1, 100)\n >>> y = np.random.normal(1, 1, 100)\n >>> H, xedges, yedges = np.histogram2d(x, y, bins=(xedges, yedges))\n >>> # Histogram does not follow Cartesian convention (see Notes),\n >>> # therefore transpose H for visualization purposes.\n >>> H = H.T\n\n :func:`imshow <matplotlib.pyplot.imshow>` can only display square bins:\n\n >>> fig = plt.figure(figsize=(7, 3))\n >>> ax = fig.add_subplot(131, title='imshow: square bins')\n >>> plt.imshow(H, interpolation='nearest', origin='lower',\n ... extent=[xedges[0], xedges[-1], yedges[0], yedges[-1]])\n <matplotlib.image.AxesImage object at 0x...>\n\n :func:`pcolormesh <matplotlib.pyplot.pcolormesh>` can display actual edges:\n\n >>> ax = fig.add_subplot(132, title='pcolormesh: actual edges',\n ... aspect='equal')\n >>> X, Y = np.meshgrid(xedges, yedges)\n >>> ax.pcolormesh(X, Y, H)\n <matplotlib.collections.QuadMesh object at 0x...>\n\n :class:`NonUniformImage <matplotlib.image.NonUniformImage>` can be used to\n display actual bin edges with interpolation:\n\n >>> ax = fig.add_subplot(133, title='NonUniformImage: interpolated',\n ... aspect='equal', xlim=xedges[[0, -1]], ylim=yedges[[0, -1]])\n >>> im = NonUniformImage(ax, interpolation='bilinear')\n >>> xcenters = (xedges[:-1] + xedges[1:]) / 2\n >>> ycenters = (yedges[:-1] + yedges[1:]) / 2\n >>> im.set_data(xcenters, ycenters, H)\n >>> ax.images.append(im)\n >>> plt.show()\n\n It is also possible to construct a 2-D histogram without specifying bin\n edges:\n\n >>> # Generate non-symmetric test data\n >>> n = 10000\n >>> x = np.linspace(1, 100, n)\n >>> y = 2*np.log(x) + np.random.rand(n) - 0.5\n >>> # Compute 2d histogram. Note the order of x/y and xedges/yedges\n >>> H, yedges, xedges = np.histogram2d(y, x, bins=20)\n\n Now we can plot the histogram using\n :func:`pcolormesh <matplotlib.pyplot.pcolormesh>`, and a\n :func:`hexbin <matplotlib.pyplot.hexbin>` for comparison.\n\n >>> # Plot histogram using pcolormesh\n >>> fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True)\n >>> ax1.pcolormesh(xedges, yedges, H, cmap='rainbow')\n >>> ax1.plot(x, 2*np.log(x), 'k-')\n >>> ax1.set_xlim(x.min(), x.max())\n >>> ax1.set_ylim(y.min(), y.max())\n >>> ax1.set_xlabel('x')\n >>> ax1.set_ylabel('y')\n >>> ax1.set_title('histogram2d')\n >>> ax1.grid()\n\n >>> # Create hexbin plot for comparison\n >>> ax2.hexbin(x, y, gridsize=20, cmap='rainbow')\n >>> ax2.plot(x, 2*np.log(x), 'k-')\n >>> ax2.set_title('hexbin')\n >>> ax2.set_xlim(x.min(), x.max())\n >>> ax2.set_xlabel('x')\n >>> ax2.grid()\n\n >>> plt.show()\n ", "language": "en", "n_whitespaces": 1295, "n_words": 747, "vocab_size": 356 }
def histogram2d(x, y, bins=10, range=None, density=None, weights=None): from numpy import histogramdd if len(x) != len(y): raise ValueError('x and y must have the same length.') try: N = len(bins) except TypeError: N = 1 if N != 1 and N != 2: xedges = yedges = asarray(bins) bins = [xedges, yedges] hist, edges = histogramdd([x, y], bins, range, density, weights) return hist, edges[0], edges[1] @set_module('numpy')
91,534
292,448
25
homeassistant/components/dlna_dms/dms.py
11
5
def available(self) -> bool: return self._device is not None and self._device.profile_device.available
Add dlna_dms integration to support DLNA Digital Media Servers (#66437)
available
b19bf9b147f4321e89d1f7f01e68337f2102f460
core
dms.py
9
3
https://github.com/home-assistant/core.git
2
23
0
11
38
Python
{ "docstring": "Device is available when we have a connection to it.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
def available(self) -> bool: return self._device is not None and self._device.profile_device.available
80,431
270,328
215
keras/distribute/distributed_training_utils_v1.py
115
16
def _get_input_from_iterator(iterator, model): next_element = iterator.get_next() # `len(nest.flatten(x))` is going to not count empty elements such as {}. # len(nest.flatten([[0,1,2], {}])) is 3 and not 4. The `next_element` is # going to get flattened in `_prepare_feed_values` to work around that. Empty # elements are going to get filtered out as part of the flattening. if len(tf.nest.flatten(next_element)) == len(model.inputs): x = next_element y = None sample_weights = None elif len(tf.nest.flatten(next_element)) == ( len(model.inputs) + len(model.outputs) ): x, y = next_element sample_weights = None else: x, y, sample_weights = next_element # Validate that all the elements in x and y are of the same type and shape. validate_distributed_dataset_inputs(
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
_get_input_from_iterator
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
distributed_training_utils_v1.py
12
17
https://github.com/keras-team/keras.git
3
108
0
67
176
Python
{ "docstring": "Get elements from the iterator and verify the input shape and type.", "language": "en", "n_whitespaces": 11, "n_words": 12, "vocab_size": 10 }
def _get_input_from_iterator(iterator, model): next_element = iterator.get_next() # `len(nest.flatten(x))` is going to not count empty elements such as {}. # len(nest.flatten([[0,1,2], {}])) is 3 and not 4. The `next_element` is # going to get flattened in `_prepare_feed_values` to work around that. Empty # elements are going to get filtered out as part of the flattening. if len(tf.nest.flatten(next_element)) == len(model.inputs): x = next_element y = None sample_weights = None elif len(tf.nest.flatten(next_element)) == ( len(model.inputs) + len(model.outputs) ): x, y = next_element sample_weights = None else: x, y, sample_weights = next_element # Validate that all the elements in x and y are of the same type and shape. validate_distributed_dataset_inputs( model._distribution_strategy, x, y, sample_weights ) return x, y, sample_weights
@array_function_from_c_func_and_dispatcher(_multiarray_umath.where)
38,647
160,501
12
numpy/core/multiarray.py
7
6
def inner(a, b): return (a, b) @array_function_from_c_func_and_dispatcher(_multiarray_umath.where)
DIC: Misc RST reformatting. This contains various RST reformatting. One, moving `(C)` one line up, is specific to a bug in tree-sitter-rst that mis parses this section. Another is adding one black line for a similar reason where `..` is seen as section underline by tree-sitter-rst. This is some shuffling of section underline: try to be consitant, `=`, then `-`, then `~`, with this refactor there is also no more section that use backticks as underline. Note in particular that non-consitency of underline lead to a problem in datetime64 section where "weekmasks" (underlined with `-`) were actually a level-4 heading instead of a level 2 or 3 I guess, and thus were nested under the `busday_count()` section. You'll note also 2 formulas that are under double-quotes as they are not references.
inner
84eeca630ec9c5bf580bc456035c87d8591c1389
numpy
multiarray.py
7
2
https://github.com/numpy/numpy.git
1
14
1
7
35
Python
{ "docstring": "\n inner(a, b, /)\n\n Inner product of two arrays.\n\n Ordinary inner product of vectors for 1-D arrays (without complex\n conjugation), in higher dimensions a sum product over the last axes.\n\n Parameters\n ----------\n a, b : array_like\n If `a` and `b` are nonscalar, their last dimensions must match.\n\n Returns\n -------\n out : ndarray\n If `a` and `b` are both\n scalars or both 1-D arrays then a scalar is returned; otherwise\n an array is returned.\n ``out.shape = (*a.shape[:-1], *b.shape[:-1])``\n\n Raises\n ------\n ValueError\n If both `a` and `b` are nonscalar and their last dimensions have\n different sizes.\n\n See Also\n --------\n tensordot : Sum products over arbitrary axes.\n dot : Generalised matrix product, using second last dimension of `b`.\n einsum : Einstein summation convention.\n\n Notes\n -----\n For vectors (1-D arrays) it computes the ordinary inner-product::\n\n np.inner(a, b) = sum(a[:]*b[:])\n\n More generally, if ``ndim(a) = r > 0`` and ``ndim(b) = s > 0``::\n\n np.inner(a, b) = np.tensordot(a, b, axes=(-1,-1))\n\n or explicitly::\n\n np.inner(a, b)[i0,...,ir-2,j0,...,js-2]\n = sum(a[i0,...,ir-2,:]*b[j0,...,js-2,:])\n\n In addition `a` or `b` may be scalars, in which case::\n\n np.inner(a,b) = a*b\n\n Examples\n --------\n Ordinary inner product for vectors:\n\n >>> a = np.array([1,2,3])\n >>> b = np.array([0,1,0])\n >>> np.inner(a, b)\n 2\n\n Some multidimensional examples:\n\n >>> a = np.arange(24).reshape((2,3,4))\n >>> b = np.arange(4)\n >>> c = np.inner(a, b)\n >>> c.shape\n (2, 3)\n >>> c\n array([[ 14, 38, 62],\n [ 86, 110, 134]])\n\n >>> a = np.arange(2).reshape((1,1,2))\n >>> b = np.arange(6).reshape((3,2))\n >>> c = np.inner(a, b)\n >>> c.shape\n (1, 1, 3)\n >>> c\n array([[[1, 3, 5]]])\n\n An example where `b` is a scalar:\n\n >>> np.inner(np.eye(2), 7)\n array([[7., 0.],\n [0., 7.]])\n\n ", "language": "en", "n_whitespaces": 521, "n_words": 260, "vocab_size": 162 }
def inner(a, b): return (a, b) @array_function_from_c_func_and_dispatcher(_multiarray_umath.where)
22,539
106,987
347
lib/matplotlib/collections.py
135
29
def contains(self, mouseevent): inside, info = self._default_contains(mouseevent) if inside is not None: return inside, info if not self.get_visible(): return False, {} pickradius = ( float(self._picker) if isinstance(self._picker, Number) and self._picker is not True # the bool, not just nonzero or 1 else self._pickradius) if self.axes: self.axes._unstale_viewLim() transform, offset_trf, offsets, paths = self._prepare_points() # Tests if the point is contained on one of the polygons formed # by the control points of each of the paths. A point is considered
Switch transOffset to offset_transform. Note that most APIs *previously* already accepted *offset_transform* as kwarg, due to the presence of the `set_offset_transform` setter. Prefer that name (shortening it to `offset_trf` for local variables). Backcompat for the old `transOffset` name is kept in most places by introducing a property alias.
contains
c25cf96cfb7e6fc9ad75347cb2a32193c501e82c
matplotlib
collections.py
12
19
https://github.com/matplotlib/matplotlib.git
6
148
0
89
231
Python
{ "docstring": "\n Test whether the mouse event occurred in the collection.\n\n Returns ``bool, dict(ind=itemlist)``, where every item in itemlist\n contains the event.\n ", "language": "en", "n_whitespaces": 49, "n_words": 20, "vocab_size": 17 }
def contains(self, mouseevent): inside, info = self._default_contains(mouseevent) if inside is not None: return inside, info if not self.get_visible(): return False, {} pickradius = ( float(self._picker) if isinstance(self._picker, Number) and self._picker is not True # the bool, not just nonzero or 1 else self._pickradius) if self.axes: self.axes._unstale_viewLim() transform, offset_trf, offsets, paths = self._prepare_points() # Tests if the point is contained on one of the polygons formed # by the control points of each of the paths. A point is considered # "on" a path if it would lie within a stroke of width 2*pickradius # following the path. If pickradius <= 0, then we instead simply check # if the point is *inside* of the path instead. ind = _path.point_in_path_collection( mouseevent.x, mouseevent.y, pickradius, transform.frozen(), paths, self.get_transforms(), offsets, offset_trf, pickradius <= 0) return len(ind) > 0, dict(ind=ind)
1,949
10,849
103
jina/orchestrate/deployments/__init__.py
15
7
def deployments(self) -> List[Dict]: return [ { 'name': self.name,
refactor: rename pod to deployment (#4230) * refactor: rename pod to deployment * style: fix overload and cli autocomplete * fix: undo daemon mistake * refactor: leftover cleanup * fix: more test fixes * fix: more fixes * fix: more fixes * fix: more fixes * fix: more tests * fix: fix more tests * refactor: fix more tests * refactor: more tests fixes * refactor: rename pea to pod * refactor: adjust docs * refactor: complete pea renaming * refactor: more fixes * fix: pea_type in k8s yamls * fix: adjust pod args name * refactor: rename peapods parser folder * fix: da init Co-authored-by: Jina Dev Bot <[email protected]>
deployments
13edc16d806fb5d77a6849551178ccc75937f25f
jina
__init__.py
9
12
https://github.com/jina-ai/jina.git
1
34
0
15
58
Python
{ "docstring": "Get deployments of the deployment. The BaseDeployment just gives one deployment.\n\n :return: list of deployments\n ", "language": "en", "n_whitespaces": 29, "n_words": 15, "vocab_size": 12 }
def deployments(self) -> List[Dict]: return [ { 'name': self.name, 'head_host': self.head_host, 'head_port_in': self.head_port_in, } ]
117,279
320,685
251
qutebrowser/browser/webkit/http.py
100
23
def parse_content_disposition(reply): is_inline = True filename = None content_disposition_header = b'Content-Disposition' # First check if the Content-Disposition header has a filename # attribute. if reply.hasRawHeader(content_disposition_header): # We use the unsafe variant of the filename as we sanitize it via # os.path.basename later. try: value = bytes(reply.rawHeader(content_disposition_header)) log.network.debug("Parsing Content-Disposition: {value!r}") content_disposition = ContentDisposition.parse(value) filename = content_disposition.filename() except ContentDispositionError as e: log.network.error(f"Error while parsing filenam
Simplify some syntax Found via pyupgrade
parse_content_disposition
bd8c940320b7d8476b422edd9c417703db64f603
qutebrowser
http.py
14
19
https://github.com/qutebrowser/qutebrowser.git
5
121
0
68
222
Python
{ "docstring": "Parse a content_disposition header.\n\n Args:\n reply: The QNetworkReply to get a filename for.\n\n Return:\n A (is_inline, filename) tuple.\n ", "language": "en", "n_whitespaces": 41, "n_words": 18, "vocab_size": 17 }
def parse_content_disposition(reply): is_inline = True filename = None content_disposition_header = b'Content-Disposition' # First check if the Content-Disposition header has a filename # attribute. if reply.hasRawHeader(content_disposition_header): # We use the unsafe variant of the filename as we sanitize it via # os.path.basename later. try: value = bytes(reply.rawHeader(content_disposition_header)) log.network.debug("Parsing Content-Disposition: {value!r}") content_disposition = ContentDisposition.parse(value) filename = content_disposition.filename() except ContentDispositionError as e: log.network.error(f"Error while parsing filename: {e}") else: is_inline = content_disposition.is_inline() # Then try to get filename from url if not filename: filename = reply.url().path().rstrip('/') # If that fails as well, use a fallback if not filename: filename = 'qutebrowser-download' return is_inline, os.path.basename(filename)
7,413
41,391
415
seaborn/_core/properties.py
124
32
def _get_categorical_mapping(self, scale, data): levels = categorical_order(data, scale.order) n = len(levels) values = scale.values if isinstance(values, dict): self._check_dict_entries(levels, values) # TODO where to ensure that dict values have consistent representation? colors = [values[x] for x in levels] elif isinstance(values, list): colors = self._check_list_length(levels, scale.values) elif isinstance(values, tuple): colors = blend_palette(values, n) elif isinstance(values, str): colors = color_palette(values, n) elif values is None: if n <= len(get_color_cycle()): # Use current (global) default palette colors = color_palette(n_colors=n) else: colors = color_palette("husl", n) else: scale_class = scale.__class__.__name__ msg = " ".join([ f"Scale values for {self.variable} with a {scale_class} mapping", f"must be string, lis
Transition mappings->properties, leaving a few loose ends
_get_categorical_mapping
a07ef69882ed76e09a0ed43d6f3ea33780c1b2be
seaborn
properties.py
17
28
https://github.com/mwaskom/seaborn.git
8
184
0
89
311
Python
{ "docstring": "Define mapping as lookup in list of discrete color values.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
def _get_categorical_mapping(self, scale, data): levels = categorical_order(data, scale.order) n = len(levels) values = scale.values if isinstance(values, dict): self._check_dict_entries(levels, values) # TODO where to ensure that dict values have consistent representation? colors = [values[x] for x in levels] elif isinstance(values, list): colors = self._check_list_length(levels, scale.values) elif isinstance(values, tuple): colors = blend_palette(values, n) elif isinstance(values, str): colors = color_palette(values, n) elif values is None: if n <= len(get_color_cycle()): # Use current (global) default palette colors = color_palette(n_colors=n) else: colors = color_palette("husl", n) else: scale_class = scale.__class__.__name__ msg = " ".join([ f"Scale values for {self.variable} with a {scale_class} mapping", f"must be string, list, tuple, or dict; not {type(scale.values)}." ]) raise TypeError(msg) # If color specified here has alpha channel, it will override alpha property colors = self._standardize_colors(colors)
22,712
107,367
28
lib/matplotlib/colorbar.py
7
6
def minorlocator(self, loc): self._long_axis().set_minor_locator(loc)
MNT: make colorbars locators and formatters properties
minorlocator
6010bb43ed01c48c7c403569dd210490b236a853
matplotlib
colorbar.py
9
3
https://github.com/matplotlib/matplotlib.git
1
23
0
7
40
Python
{ "docstring": "\n Set minor locator being used for colorbar\n ", "language": "en", "n_whitespaces": 22, "n_words": 7, "vocab_size": 7 }
def minorlocator(self, loc): self._long_axis().set_minor_locator(loc) self._minorlocator = loc
@pytest.mark.parametrize( "time_zone", ["Europe/Berlin", "America/Chicago", "US/Hawaii", "UTC"] )
99,327
300,467
71
tests/components/recorder/test_models.py
30
16
def test_process_datetime_to_timestamp_freeze_time(time_zone, hass): hass.config.set_time_zone(time_zone) utc_now = dt_util.utcnow() with freeze_time(utc_now): epoch = utc_now.timestamp() assert process_datetime_to_timestamp(dt_util.utcnow()) == epoch now = dt_util.now() assert process_datetime_to_timestamp(now) == epoch @pytest.mark.parametrize( "time_zone", ["Europe/Berlin", "America/Chicago", "US/Hawaii
Fix process_datetime_to_timestamp and add test coverage (#71755)
test_process_datetime_to_timestamp_freeze_time
1d9fb4bca871f97109684419f0f9526a0c151f2d
core
test_models.py
12
8
https://github.com/home-assistant/core.git
1
61
1
24
141
Python
{ "docstring": "Test we can handle processing database datatimes to timestamps.\n\n This test freezes time to make sure everything matches.\n ", "language": "en", "n_whitespaces": 24, "n_words": 18, "vocab_size": 17 }
def test_process_datetime_to_timestamp_freeze_time(time_zone, hass): hass.config.set_time_zone(time_zone) utc_now = dt_util.utcnow() with freeze_time(utc_now): epoch = utc_now.timestamp() assert process_datetime_to_timestamp(dt_util.utcnow()) == epoch now = dt_util.now() assert process_datetime_to_timestamp(now) == epoch @pytest.mark.parametrize( "time_zone", ["Europe/Berlin", "America/Chicago", "US/Hawaii", "UTC"] )
21,127
101,723
306
tools/alignments/jobs.py
68
19
def _spatially_filter(self) -> np.ndarray: logger.debug("Spatially Filter") assert self._shapes_model is not None landmarks_norm = self._normalized["l
Alignments Tool - Typing, Documentation + Re-org
_spatially_filter
e2a77e7c6e84e81f642cb22f528e25e3f2d2dbc1
faceswap
jobs.py
12
21
https://github.com/deepfakes/faceswap.git
1
126
0
53
203
Python
{ "docstring": " interpret the shapes using our shape model (project and reconstruct)\n\n Returns\n -------\n :class:`numpy.ndarray`\n The filtered landmarks in original coordinate space\n ", "language": "en", "n_whitespaces": 60, "n_words": 20, "vocab_size": 20 }
def _spatially_filter(self) -> np.ndarray: logger.debug("Spatially Filter") assert self._shapes_model is not None landmarks_norm = self._normalized["landmarks"] # Convert to matrix form landmarks_norm_table = np.reshape(landmarks_norm, [68 * 2, landmarks_norm.shape[2]]).T # Project onto shapes model and reconstruct landmarks_norm_table_rec = self._shapes_model.inverse_transform( self._shapes_model.transform(landmarks_norm_table)) # Convert back to shapes (numKeypoint, num_dims, numFrames) landmarks_norm_rec = np.reshape(landmarks_norm_table_rec.T, [68, 2, landmarks_norm.shape[2]]) # Transform back to image co-ordinates retval = self._normalized_to_original(landmarks_norm_rec, self._normalized["scale_factors"], self._normalized["mean_coords"]) logger.debug("Spatially Filtered: %s", retval) return retval
47,587
196,087
48
sympy/combinatorics/free_groups.py
15
7
def letter_form(self): return tuple(flatten([(i,)*j if j > 0 else (-i,)*(-j) for i, j in se
Updated import locations
letter_form
498015021131af4dbb07eb110e5badaba8250c7b
sympy
free_groups.py
14
3
https://github.com/sympy/sympy.git
3
44
0
14
69
Python
{ "docstring": "\n The letter representation of a ``FreeGroupElement`` is a tuple\n of generator symbols, with each entry corresponding to a group\n generator. Inverses of the generators are represented by\n negative generator symbols.\n\n Examples\n ========\n\n >>> from sympy.combinatorics import free_group\n >>> f, a, b, c, d = free_group(\"a b c d\")\n >>> (a**3).letter_form\n (a, a, a)\n >>> (a**2*d**-2*a*b**-4).letter_form\n (a, a, -d, -d, a, -b, -b, -b, -b)\n >>> (a**-2*b**3*d).letter_form\n (-a, -a, b, b, b, d)\n\n See Also\n ========\n\n array_form\n\n ", "language": "en", "n_whitespaces": 203, "n_words": 76, "vocab_size": 56 }
def letter_form(self): return tuple(flatten([(i,)*j if j > 0 else (-i,)*(-j) for i, j in self.array_form]))
34,858
150,868
26
freqtrade/rpc/rpc.py
12
6
def _handle_default_message(self, type, data): logger.debug(f"Received message from Leader
Refactoring, minor improvements, data provider improvements
_handle_default_message
2b5f0678772bea0abaf4abe93efc55de43ea3e0e
freqtrade
rpc.py
9
2
https://github.com/freqtrade/freqtrade.git
1
17
0
12
37
Python
{ "docstring": "\n Default leader message handler, just logs it. We should never have to\n run this unless the leader sends us some weird message.\n ", "language": "en", "n_whitespaces": 44, "n_words": 22, "vocab_size": 21 }
def _handle_default_message(self, type, data): logger.debug(f"Received message from Leader of type {type}: {data}")
24,885
113,318
170
nni/nas/oneshot/pytorch/base_lightning.py
37
14
def export_probs(self) -> dict[str, Any]: result = {} for module in self.nas_modules: try: result.update(module.export_probs(memo=result)) except NotImplementedE
Enhancement of one-shot NAS (v2.9) (#5049)
export_probs
f77db747d07d5c90a3a9f70bb17f71d4573f329e
nni
base_lightning.py
14
22
https://github.com/microsoft/nni.git
3
52
0
36
86
Python
{ "docstring": "\n Export the probability of every choice in the search space got chosen.\n\n .. note:: If such method of some modules is not implemented, they will be simply ignored.\n\n Returns\n -------\n dict\n In most cases, keys are names of ``nas_modules`` suffixed with ``/`` and choice name.\n Values are the probability / logits depending on the implementation.\n ", "language": "en", "n_whitespaces": 120, "n_words": 55, "vocab_size": 47 }
def export_probs(self) -> dict[str, Any]: result = {} for module in self.nas_modules: try: result.update(module.export_probs(memo=result)) except NotImplementedError: warnings.warn( 'Some super-modules you have used did not implement export_probs. You might find some logs are missing.', UserWarning ) return result
@region_silo_endpoint
18,323
87,624
636
src/sentry/api/endpoints/organization_releases.py
265
48
def debounce_update_release_health_data(organization, project_ids): # Figure out which projects need to get updates from the snuba. should_update = {} cache_keys = ["debounce-health:%d" % id for id in project_ids] cache_data = cache.get_many(cache_keys) for project_id, cache_key in zip(project_ids, cache_keys): if cache_data.get(cache_key) is None: should_update[project_id] = cache_key if not should_update: return projects = {p.id: p for p in Project.objects.get_many_from_cache(should_update.keys())} # This gives us updates for all release-projects which have seen new # health data over the last days. It will miss releases where the last # date is longer than what `get_changed_project_release_model_adoptions` # considers recent. project_releases = release_health.get_changed_project_release_model_adoptions( should_update.keys() ) # Check which we already have rows for. existing = set( ReleaseProject.objects.filter( project_id__in=[x[0] for x in project_releases], release__version__in=[x[1] for x in project_releases], ).values_list("project_id", "release__version") ) to_upsert = [] for key in project_releases: if key not in existing: to_upsert.append(key) if to_upsert: dates = release_health.get_oldest_health_data_for_releases(to_upsert) for project_id, version in to_upsert: project = projects.get(project_id) if project is None: # should not happen continue # Ignore versions that were saved with an empty string before validation was added
fix(releases): Use Release.is_valid_version on adding releases (#40930)
debounce_update_release_health_data
0cfac5c8bd83bcc7b96f3294c41a96524b883786
sentry
organization_releases.py
16
36
https://github.com/getsentry/sentry.git
14
268
1
161
440
Python
{ "docstring": "This causes a flush of snuba health data to the postgres tables once\n per minute for the given projects.\n ", "language": "en", "n_whitespaces": 25, "n_words": 19, "vocab_size": 18 }
def debounce_update_release_health_data(organization, project_ids): # Figure out which projects need to get updates from the snuba. should_update = {} cache_keys = ["debounce-health:%d" % id for id in project_ids] cache_data = cache.get_many(cache_keys) for project_id, cache_key in zip(project_ids, cache_keys): if cache_data.get(cache_key) is None: should_update[project_id] = cache_key if not should_update: return projects = {p.id: p for p in Project.objects.get_many_from_cache(should_update.keys())} # This gives us updates for all release-projects which have seen new # health data over the last days. It will miss releases where the last # date is longer than what `get_changed_project_release_model_adoptions` # considers recent. project_releases = release_health.get_changed_project_release_model_adoptions( should_update.keys() ) # Check which we already have rows for. existing = set( ReleaseProject.objects.filter( project_id__in=[x[0] for x in project_releases], release__version__in=[x[1] for x in project_releases], ).values_list("project_id", "release__version") ) to_upsert = [] for key in project_releases: if key not in existing: to_upsert.append(key) if to_upsert: dates = release_health.get_oldest_health_data_for_releases(to_upsert) for project_id, version in to_upsert: project = projects.get(project_id) if project is None: # should not happen continue # Ignore versions that were saved with an empty string before validation was added if not Release.is_valid_version(version): continue # We might have never observed the release. This for instance can # happen if the release only had health data so far. For these cases # we want to create the release the first time we observed it on the # health side. release = Release.get_or_create( project=project, version=version, date_added=dates.get((project_id, version)) ) # Make sure that the release knows about this project. Like we had before # the project might not have been associated with this release yet. release.add_project(project) # Debounce updates for a minute cache.set_many(dict(zip(should_update.values(), [True] * len(should_update))), 60) @region_silo_endpoint
56,613
222,520
95
python3.10.4/Lib/dis.py
96
19
def show_code(co, *, file=None): print(code_info(co), file=file) _Instruction = collections.namedtuple("_Instruction", "opname opcode arg argval argrepr offset starts_line is_jump_target") _Instruction.opname.__doc__ = "Human readable name for operation" _Instruction.opcode.__doc__ = "Numeric co
add python 3.10.4 for windows
show_code
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
dis.py
9
2
https://github.com/XX-net/XX-Net.git
1
23
0
67
171
Python
{ "docstring": "Print details of methods, functions, or code to *file*.\n\n If *file* is not provided, the output is printed on stdout.\n ", "language": "en", "n_whitespaces": 26, "n_words": 20, "vocab_size": 19 }
def show_code(co, *, file=None): print(code_info(co), file=file) _Instruction = collections.namedtuple("_Instruction", "opname opcode arg argval argrepr offset starts_line is_jump_target") _Instruction.opname.__doc__ = "Human readable name for operation" _Instruction.opcode.__doc__ = "Numeric code for operation" _Instruction.arg.__doc__ = "Numeric argument to operation (if any), otherwise None" _Instruction.argval.__doc__ = "Resolved arg value (if known), otherwise same as arg" _Instruction.argrepr.__doc__ = "Human readable description of operation argument" _Instruction.offset.__doc__ = "Start index of operation within bytecode sequence" _Instruction.starts_line.__doc__ = "Line started by this opcode (if any), otherwise None" _Instruction.is_jump_target.__doc__ = "True if other code jumps to here, otherwise False" _OPNAME_WIDTH = 20 _OPARG_WIDTH = 5
@_copy_docstring_and_deprecators(matplotlib.image.imread)
23,562
109,381
38
lib/matplotlib/pyplot.py
17
11
def set_cmap(cmap): cmap = colormaps[cmap] rc('image', cmap=cmap.name) im = gci() if im is not None: im.set_cmap(cmap)
MNT: convert tests and internal usage way from using mpl.cm.get_cmap
set_cmap
a17f4f3bd63e3ca3754f96d7db4ce5197720589b
matplotlib
pyplot.py
9
6
https://github.com/matplotlib/matplotlib.git
2
39
1
15
82
Python
{ "docstring": "\n Set the default colormap, and applies it to the current image if any.\n\n Parameters\n ----------\n cmap : `~matplotlib.colors.Colormap` or str\n A colormap instance or the name of a registered colormap.\n\n See Also\n --------\n colormaps\n matplotlib.cm.register_cmap\n matplotlib.cm.get_cmap\n ", "language": "en", "n_whitespaces": 74, "n_words": 36, "vocab_size": 33 }
def set_cmap(cmap): cmap = colormaps[cmap] rc('image', cmap=cmap.name) im = gci() if im is not None: im.set_cmap(cmap) @_copy_docstring_and_deprecators(matplotlib.image.imread)
117,343
320,776
608
qutebrowser/completion/completionwidget.py
114
38
def completion_item_focus(self, which, history=False): if history: if (self._cmd.text() == ':' or self._cmd.history.is_browsing() or not self._active): if which == 'next': self._cmd.command_history_next() return
mypy: Upgrade to PyQt5-stubs 5.15.6.0 For some unknown reason, those new stubs cause a *lot* of things now to be checked by mypy which formerly probably got skipped due to Any being implied somewhere. The stubs themselves mainly improved, with a couple of regressions too. In total, there were some 337 (!) new mypy errors. This commit fixes almost all of them, and the next commit improves a fix to get things down to 0 errors again. Overview of the changes: ==== qutebrowser/app.py - Drop type ignore due to improved stubs. ==== qutebrowser/browser/browsertab.py - Specify the type of _widget members more closely than just QWidget. This is debatable: I suppose the abstract stuff shouldn't need to know anything about the concrete backends at all. But it seems like we cut some corners when initially implementing things, and put some code in browsertab.py just because the APIs of both backends happened to be compatible. Perhaps something to reconsider once we drop QtWebKit and hopefully implement a dummy backend. - Add an additional assertion in AbstractAction.run_string. This is already covered by the isinstance(member, self.action_base) above it, but that's too dynamic for mypy to understand. - Fix the return type of AbstractScroller.pos_px, which is a QPoint (with x and y components), not a single int. - Fix the return type of AbstractScroller.pos_perc, which is a Tuple (with x and y components), not a single int. - Fix the argument types of AbstractScroller.to_perc, as it's possible to pass fractional percentages too. - Specify the type for AbstractHistoryPrivate._history. See above (_widget) re this being debatable. - Fix the return type of AbstractTabPrivate.event_target(), which can be None (see #3888). - Fix the return type of AbstractTabPrivate.run_js_sync, which is Any (the JS return value), not None. - Fix the argument type for AbstractTabPrivate.toggle_inspector: position can be None to use the last used position. - Declare the type of sub-objects of AbstractTab. - Fix the return value of AbstractTab.icon(), which is the QIcon, not None. ==== qutebrowser/browser/commands.py - Make sure the active window is a MainWindow (with a .win_id attribute). ==== qutebrowser/browser/downloadview.py - Add _model() which makes sure that self.model() is a DownloadModel, not None or any other model. This is needed because other methods access a variety of custom attributes on it, e.g. last_index(). ==== qutebrowser/browser/greasemonkey.py - Add an ignore for AbstractDownload.requested_url which we patch onto the downloads. Probably would be nicer to add it as a proper attribute which always gets set by the DownloadManager. ==== qutebrowser/browser/hints.py - Remove type ignores for QUrl.toString(). - Add a new type ignore for combining different URL flags (which works, but is not exactly type safe... still probably a regression in the stubs). - Make sure the things we get back from self._get_keyparser are what we actually expect. Probably should introduce a TypedDict (and/or overloads for _get_keyparser with typing.Literal) to teach mypy about the exact return value. See #7098. This is needed because we access Hint/NormalKeyParser-specific attributes such as .set_inhibited_timout() or .update_bindings(). ==== qutebrowser/browser/inspector.py - Similar changes than in browsertab.py to make some types where we share API (e.g. .setPage()) more concrete. Didn't work out unfortunately, see next commit. ==== qutebrowser/browser/network/pac.py - Remove now unneeded type ignore for signal. ==== qutebrowser/browser/qtnetworkdownloads.py - Make sure that downloads is a qtnetworkdownloads.DownloadItem (rather than an AbstractDownload), so that we can call ._uses_nam() on it. ==== qutebrowser/browser/qutescheme.py - Remove now unneeded type ignore for QUrl flags. ==== qutebrowser/browser/urlmarks.py - Specify the type of UrlMarkManager._lineparser, as those only get initialized in _init_lineparser of subclasses, so mypy doesn't know it's supposed to exist. ==== qutebrowser/browser/webelem.py - New casts to turn single KeyboardModifier (enum) entries into KeyboardModifiers (flags). Might not be needed anymore with Qt 6. - With that, casting the final value is now unneeded. ==== qutebrowser/browser/webengine/notification.py - Remove now unneeded type ignore for signal. - Make sure the self.sender() we get in HerbeNotificationAdapter._on_finished() is a QProcess, not just any QObject. ==== qutebrowser/browser/webengine/webenginedownloads.py - Remove now unneeded type ignores for signals. ==== qutebrowser/browser/webengine/webengineelem.py - Specify the type of WebEngineElement._tab. - Remove now unneeded type ignore for mixed flags. ==== qutebrowser/browser/webengine/webengineinspector.py - See changes to inspector.py and next commit. - Remove now unneeded type ignore for signal. ==== qutebrowser/browser/webengine/webenginequtescheme.py - Remove now unneeded type ignore for mixed flags. ==== qutebrowser/browser/webengine/webenginesettings.py - Ignore access of .setter attribute which we patch onto QWebEngineProfile. Would be nice to have a subclass or wrapper-class instead. ==== qutebrowser/browser/webengine/webenginetab.py - Specified the type of _widget members more closely than just QWidget. See browsertab.py changes for details. - Remove some now-unneeded type ignores for creating FindFlags. - Specify more concrete types for WebEngineTab members where we actually need to access WebEngine-specific attributes. - Make sure the page we get is our custom WebEnginePage subclass, not just any QWebEnginePage. This is needed because we access custom attributes on it. ==== qutebrowser/browser/webengine/webview.py - Make sure the page we get is our custom WebEnginePage subclass, not just any QWebEnginePage. This is needed because we access custom attributes on it. ==== qutebrowser/browser/webkit/network/networkreply.py - Remove now unneeded type ignores for signals. ==== qutebrowser/browser/webkit/webkitinspector.py - See changes to inspector.py and next commit. ==== qutebrowser/browser/webkit/webkittab.py - Specify the type of _widget members more closely than just QWidget. See browsertab.py changes for details. - Add a type ignore for WebKitAction because our workaround needs to treat them as ints (which is allowed by PyQt, even if not type-safe). - Add new ignores for findText calls: The text is a QString and can be None; the flags are valid despite mypy thinking they aren't (stubs regression?). - Specify the type for WebKitHistoryPrivate._history, because we access WebKit-specific attributes. See above (_widget) re this being debatable. - Make mypy aware that .currentFrame() and .frameAt() can return None (stubs regression?). - Make sure the .page() and .page().networkAccessManager() are our subclasses rather than the more generic QtWebKit objects, as we use custom attributes. - Add new type ignores for signals (stubs regression!) ==== qutebrowser/browser/webkit/webpage.py - Make sure the .networkAccessManager() is our subclass rather than the more generic QtWebKit object, as we use custom attributes. - Replace a cast by a type ignore. The cast didn't work anymore. ==== qutebrowser/browser/webkit/webview.py - Make sure the .page() is our subclass rather than the more generic QtWebKit object, as we use custom attributes. ==== qutebrowser/commands/userscripts.py - Remove now unneeded type ignore for signal. ==== qutebrowser/completion/completer.py - Add a new _completion() getter (which ensures it actually gets the completion view) rather than accessing the .parent() directly (which could be any QObject). ==== qutebrowser/completion/completiondelegate.py - Make sure self.parent() is a CompletionView (no helper method as there is only one instance). - Remove a now-unneeded type ignore for adding QSizes. ==== qutebrowser/completion/completionwidget.py - Add a ._model() getter which ensures that we get a CompletionModel (with custom attributes) rather than Qt's .model() which can be any QAbstractItemModel (or None). - Removed a now-unneeded type ignore for OR-ing flags. ==== qutebrowser/completion/models/completionmodel.py - Remove now unneeded type ignores for signals. - Ignore a complaint about .set_pattern() not being defined. Completion categories don't share any common parent class, so it would be good to introduce a typing.Protocol for this. See #7098. ==== qutebrowser/components/misccommands.py - Removed a now-unneeded type ignore for OR-ing flags. ==== qutebrowser/components/readlinecommands.py - Make sure QApplication.instance() is a QApplication (and not just a QCoreApplication). This includes the former "not None" check. ==== qutebrowser/components/scrollcommands.py - Add basic annotation for "funcs" dict. Could have a callable protocol to specify it needs a count kwarg, see #7098. ==== qutebrowser/config/stylesheet.py - Correctly specify that stylesheet apply to QWidgets, not any QObject. - Ignore an attr-defined for obj.STYLESHEET. Perhaps could somehow teach mypy about this with overloads and protocols (stylesheet for set_register being None => STYLESHEET needs to be defined, otherwise anything goes), but perhaps not worth the troble. See #7098. ==== qutebrowser/keyinput/keyutils.py - Remove some now-unneeded type ignores and add a cast for using a single enum value as flags. Might need to look at this again with Qt 6 support. ==== qutebrowser/keyinput/modeman.py - Add a FIXME for using a TypedDict, see comments for hints.py above. ==== qutebrowser/mainwindow/mainwindow.py - Remove now-unneeded type ignores for calling with OR-ed flags. - Improve where we cast from WindowType to WindowFlags, no int needed - Use new .tab_bar() getter, see below. ==== qutebrowser/mainwindow/prompt.py - Remove now-unneeded type ignores for calling with OR-ed flags. ==== qutebrowser/mainwindow/statusbar/bar.py - Adjust type ignores around @pyqtProperty. The fact one is still needed seems like a stub regression. ==== qutebrowser/mainwindow/statusbar/command.py - Fix type for setText() override (from QLineEdit): text can be None (QString in C++). ==== qutebrowser/mainwindow/statusbar/url.py - Adjust type ignores around @pyqtProperty. The fact one is still needed seems like a stub regression. ==== qutebrowser/mainwindow/tabbedbrowser.py - Specify that TabDeque manages browser tabs, not any QWidgets. It accesses AbstractTab-specific attributes. - Make sure that the .tabBar() we get is a tabwidget.TabBar, as we access .maybe_hide. - Fix the annotations for stored marks: Scroll positions are a QPoint, not int. - Add _current_tab() and _tab_by_idx() wrappers for .currentWidget() and .widget(), which ensures that the return values are valid AbstractTabs (or None for _tab_by_idx). This is needed because we access AbstractTab-specific attributes. - For some places, where the tab can be None, continue using .currentTab() but add asserts. - Remove some now-unneeded [unreachable] ignores, as mypy knows about the None possibility now. ==== qutebrowser/mainwindow/tabwidget.py - Add new tab_bar() and _tab_by_idx() helpers which check that the .tabBar() and .widget() are of type TabBar and AbstractTab, respectively. - Add additional assertions where we expect ._tab_by_idx() to never be None. - Remove dead code in get_tab_fields for handling a None y scroll position. I was unable to find any place in the code where this could be set to None. - Remove some now-unneeded type ignores and casts, as mypy now knows that _type_by_idx() could be None. - Work around a strange instance where mypy complains about not being able to find the type of TabBar.drag_in_progress from TabWidget._toggle_visibility, despite it clearly being shown as a bool *inside* that class without any annotation. - Add a ._tab_widget() getter in TabBar which ensures that the .parent() is in fact a TabWidget. ==== qutebrowser/misc/crashsignal.py - Remove now unneeded type ignores for signals. ==== qutebrowser/misc/editor.py - Remove now unneeded type ignores for signals. ==== qutebrowser/misc/ipc.py - Remove now unneeded type ignores for signals. - Add new type ignores for .error() which is both a signal and a getter (stub regression?). Won't be relevant for Qt 6 anymore, as the signal was renamed to errorOccurred in 5.15. ==== qutebrowser/misc/objects.py - Make sure mypy knows that objects.app is our custom Application (with custom attributes) rather than any QApplication. ==== qutebrowser/utils/objreg.py - Ignore attr-defined for .win_id attributes. Maybe could add a typing.Protocol, but ideally, the whole objreg stuff should die one day anyways. ==== tests/unit/completion/test_completer.py - Make CompletionWidgetStub inherit from CompletionView so that it passes the new isinstance() asserts in completer.py (see above).
completion_item_focus
a20bb67a878b2e68abf8268c1b0a27f018d01352
qutebrowser
completionwidget.py
18
41
https://github.com/qutebrowser/qutebrowser.git
14
292
0
78
494
Python
{ "docstring": "Shift the focus of the completion menu to another item.\n\n Args:\n which: 'next', 'prev',\n 'next-category', 'prev-category',\n 'next-page', or 'prev-page'.\n history: Navigate through command history if no text was typed.\n ", "language": "en", "n_whitespaces": 101, "n_words": 29, "vocab_size": 28 }
def completion_item_focus(self, which, history=False): if history: if (self._cmd.text() == ':' or self._cmd.history.is_browsing() or not self._active): if which == 'next': self._cmd.command_history_next() return elif which == 'prev': self._cmd.command_history_prev() return else: raise cmdutils.CommandError("Can't combine --history with " "{}!".format(which)) if not self._active: return selmodel = self.selectionModel() indices = { 'next': lambda: self._next_idx(upwards=False), 'prev': lambda: self._next_idx(upwards=True), 'next-category': lambda: self._next_category_idx(upwards=False), 'prev-category': lambda: self._next_category_idx(upwards=True), 'next-page': lambda: self._next_page(upwards=False), 'prev-page': lambda: self._next_page(upwards=True), } idx = indices[which]() if not idx.isValid(): return selmodel.setCurrentIndex( idx, QItemSelectionModel.ClearAndSelect | QItemSelectionModel.Rows) # if the last item is focused, try to fetch more next_idx = self.indexBelow(idx) if not self.visualRect(next_idx).isValid(): self.expandAll() count = self._model().count() if count == 0: self.hide() elif count == 1 and config.val.completion.quick: self.hide() elif config.val.completion.show == 'auto': self.show()
20,679
101,259
575
tools/manual/detected_faces.py
65
58
def _background_extract(self, output_folder, progress_queue): _io = dict(saver=ImagesSaver(get_folder(output_folder), as_bytes=True), loader=ImagesLoader(self._input_location, count=self._alignments.frames_count)) for frame_idx, (filename, image) in enumerate(_io["loader"].load()): logger.trace("Outputting frame: %s: %s", frame_idx, filename) src_filename = os.path.basename(filename) frame_name = os.path.splitext(src_filename)[0] progress_queue.put(1) for face_idx, face in enumerate(self._frame_faces[frame_idx]): output = f"{frame_name}_{face_idx}.png" aligned = AlignedFace(face.landmarks_xy, image=image, centering="head", size=512) # TODO user selectable size meta = dict(alignments=face.to_png_meta(), source=dict(alignments_version=self._alignments.version, original_filename=output, face_index=face_idx, source_filename=src_filename, source_is_video=self._globals.is_video, source_frame_dims=image.shape[:2]))
lib.align updates: - alignments.py - Add typed dicts for imported alignments - Explicitly check for presence of thumb value in alignments dict - linting - detected_face.py - Typing - Linting - Legacy support for pre-aligned face - Update dependencies to new property names
_background_extract
5e73437be47f2410439a3c6716de96354e6a0c94
faceswap
detected_faces.py
18
24
https://github.com/deepfakes/faceswap.git
3
232
0
56
366
Python
{ "docstring": " Perform the background extraction in a thread so GUI doesn't become unresponsive.\n\n Parameters\n ----------\n output_folder: str\n The location to save the output faces to\n progress_queue: :class:`queue.Queue`\n The queue to place incremental counts to for updating the GUI's progress bar\n ", "language": "en", "n_whitespaces": 97, "n_words": 39, "vocab_size": 33 }
def _background_extract(self, output_folder, progress_queue): _io = dict(saver=ImagesSaver(get_folder(output_folder), as_bytes=True), loader=ImagesLoader(self._input_location, count=self._alignments.frames_count)) for frame_idx, (filename, image) in enumerate(_io["loader"].load()): logger.trace("Outputting frame: %s: %s", frame_idx, filename) src_filename = os.path.basename(filename) frame_name = os.path.splitext(src_filename)[0] progress_queue.put(1) for face_idx, face in enumerate(self._frame_faces[frame_idx]): output = f"{frame_name}_{face_idx}.png" aligned = AlignedFace(face.landmarks_xy, image=image, centering="head", size=512) # TODO user selectable size meta = dict(alignments=face.to_png_meta(), source=dict(alignments_version=self._alignments.version, original_filename=output, face_index=face_idx, source_filename=src_filename, source_is_video=self._globals.is_video, source_frame_dims=image.shape[:2])) b_image = encode_image(aligned.face, ".png", metadata=meta) _io["saver"].save(output, b_image) _io["saver"].close()
117,149
320,361
40
src/paperless_tesseract/tests/test_checks.py
12
8
def test_multi_part_language(self, m): m.return_value = ["chi_sim", "eng"] msgs = check_default_language_available(None) self.assertEqual(len
Fixes language code checks around two part languages
test_multi_part_language
55ef0d4a1b62c3abe8500cad97ddeecf9f746b84
paperless-ngx
test_checks.py
9
4
https://github.com/paperless-ngx/paperless-ngx.git
1
34
0
11
59
Python
{ "docstring": "\n GIVEN:\n - An OCR language which is multi part (ie chi-sim)\n - The language is correctly formatted\n WHEN:\n - Installed packages are checked\n THEN:\n - No errors are reported\n ", "language": "en", "n_whitespaces": 102, "n_words": 29, "vocab_size": 23 }
def test_multi_part_language(self, m): m.return_value = ["chi_sim", "eng"] msgs = check_default_language_available(None) self.assertEqual(len(msgs), 0)
17,072
80,512
84
awx/main/tasks/callback.py
16
12
def finished_callback(self, runner_obj):
Decoupled callback functions from BaseTask Class --- Removed all callback functions from 'jobs.py' and put them in a new file '/awx/main/tasks/callback.py' --- Modified Unit tests unit moved --- Moved 'update_model' from jobs.py to /awx/main/utils/update_model.py
finished_callback
443bdc1234682dd0004bae372078512fcf37cce9
awx
callback.py
9
8
https://github.com/ansible/awx.git
1
50
0
16
85
Python
{ "docstring": "\n Ansible runner callback triggered on finished run\n ", "language": "en", "n_whitespaces": 22, "n_words": 7, "vocab_size": 7 }
def finished_callback(self, runner_obj): event_data = { 'event': 'EOF', 'final_counter': self.event_ct, 'guid': self.guid, } event_data.setdefault(self.event_data_key, self.instance.id) self.dispatcher.dispatch(event_data)
@pytest.mark.parametrize( "sensitive_fields", [ {"NonExistingType": {}}, {"Product": {"nonExistingField"}}, {"Node": {"id"}}, ], )
5,117
27,579
79
saleor/webhook/observability/tests/test_obfuscation.py
33
11
def test_anonymize_gql_operation_response_with_fragment_spread(gql_operation_factory): query = result = {"data": "result"} sensitive_fields = {"
Observability reporter (#9803) * Initial commit * Add observability celery beat task * Add observability_reporter_task and observability_send_events * Convert payload to camel case * Add fakeredis to dev dependencies * Add redis buffer tests * Refactor buffer * Update * Optimize buffer * Add tests * Add types-redis to dev dependencies * Refactor * Fix after rebase * Refactor opentracing * Add opentracing to observability tasks * Add more tests * Fix buffer fixtures * Report dropped events * Fix buffer tests * Refactor get_buffer * Refactor unit tests * Set Redis connection client_name * Refactor redis tests * Fix test_get_or_create_connection_pool * Fix JsonTruncText comparison * Add more generate_event_delivery_attempt_payload tests
test_anonymize_gql_operation_response_with_fragment_spread
7ea7916c65357741c3911e307acb58d547a5e91a
saleor
test_obfuscation.py
11
23
https://github.com/saleor/saleor.git
1
49
1
29
152
Python
{ "docstring": "\n fragment ProductFragment on Product {\n id\n name\n }\n query products($first: Int){\n products(channel: \"channel-pln\", first:$first){\n edges{\n node{\n ... ProductFragment\n variants {\n variantName: name\n }\n }\n }\n }\n }", "language": "en", "n_whitespaces": 139, "n_words": 27, "vocab_size": 19 }
def test_anonymize_gql_operation_response_with_fragment_spread(gql_operation_factory): query = result = {"data": "result"} sensitive_fields = {"Product": {"name"}} operation_result = gql_operation_factory(query, result=result) anonymize_gql_operation_response(operation_result, sensitive_fields) assert operation_result.result["data"] == MASK @pytest.mark.parametrize( "sensitive_fields", [ {"NonExistingType": {}}, {"Product": {"nonExistingField"}}, {"Node": {"id"}}, ], )
@py_random_state(3)
42,003
176,620
130
networkx/algorithms/bipartite/generators.py
74
23
def complete_bipartite_graph(n1, n2, create_using=None): G = nx.empty_g
Adjust the usage of nodes_or_number decorator (#5599) * recorrect typo in decorators.py * Update tests to show troubles in current code * fix troubles with usage of nodes_or_number * fix typo * remove nodes_or_number where that makes sense * Reinclude nodes_or_numbers and add some tests for nonstandard usage * fix typowq * hopefully final tweaks (no behavior changes * Update test_classic.py Co-authored-by: Jarrod Millman <[email protected]>
complete_bipartite_graph
de1d00f20e0bc14f1cc911b3486e50225a8fa168
networkx
generators.py
10
15
https://github.com/networkx/networkx.git
8
148
1
54
250
Python
{ "docstring": "Returns the complete bipartite graph `K_{n_1,n_2}`.\n\n The graph is composed of two partitions with nodes 0 to (n1 - 1)\n in the first and nodes n1 to (n1 + n2 - 1) in the second.\n Each node in the first is connected to each node in the second.\n\n Parameters\n ----------\n n1, n2 : integer or iterable container of nodes\n If integers, nodes are from `range(n1)` and `range(n1, n1 + n2)`.\n If a container, the elements are the nodes.\n create_using : NetworkX graph instance, (default: nx.Graph)\n Return graph of this type.\n\n Notes\n -----\n Nodes are the integers 0 to `n1 + n2 - 1` unless either n1 or n2 are\n containers of nodes. If only one of n1 or n2 are integers, that\n integer is replaced by `range` of that integer.\n\n The nodes are assigned the attribute 'bipartite' with the value 0 or 1\n to indicate which bipartite set the node belongs to.\n\n This function is not imported in the main namespace.\n To use it use nx.bipartite.complete_bipartite_graph\n ", "language": "en", "n_whitespaces": 237, "n_words": 166, "vocab_size": 93 }
def complete_bipartite_graph(n1, n2, create_using=None): G = nx.empty_graph(0, create_using) if G.is_directed(): raise nx.NetworkXError("Directed Graph not supported") n1, top = n1 n2, bottom = n2 if isinstance(n1, numbers.Integral) and isinstance(n2, numbers.Integral): bottom = [n1 + i for i in bottom] G.add_nodes_from(top, bipartite=0) G.add_nodes_from(bottom, bipartite=1) if len(G) != len(top) + len(bottom): raise nx.NetworkXError("Inputs n1 and n2 must contain distinct nodes") G.add_edges_from((u, v) for u in top for v in bottom) G.graph["name"] = f"complete_bipartite_graph({n1}, {n2})" return G @py_random_state(3)
56,088
220,698
130
python3.10.4/Lib/asyncio/sslproto.py
45
13
def shutdown(self, callback=None): if self._state == _UNWRAPPED: raise RuntimeError('no security layer present') if self._state == _SHUTDOWN: raise RuntimeError('shutdown in progress') assert self._state in (_WRAPPED, _DO_HANDSHAKE) self._state = _SHUTDOWN self._shutdown_cb = callback ssldata, ap
add python 3.10.4 for windows
shutdown
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
sslproto.py
10
11
https://github.com/XX-net/XX-Net.git
4
79
0
31
130
Python
{ "docstring": "Start the SSL shutdown sequence.\n\n Return a list of ssldata. A ssldata element is a list of buffers\n\n The optional *callback* argument can be used to install a callback that\n will be called when the shutdown is complete. The callback will be\n called without arguments.\n ", "language": "en", "n_whitespaces": 80, "n_words": 45, "vocab_size": 32 }
def shutdown(self, callback=None): if self._state == _UNWRAPPED: raise RuntimeError('no security layer present') if self._state == _SHUTDOWN: raise RuntimeError('shutdown in progress') assert self._state in (_WRAPPED, _DO_HANDSHAKE) self._state = _SHUTDOWN self._shutdown_cb = callback ssldata, appdata = self.feed_ssldata(b'') assert appdata == [] or appdata == [b''] return ssldata
54,359
216,053
154
salt/cloud/clouds/proxmox.py
46
18
def preferred_ip(vm_, ips): proto = config.get_cloud_config_value( "protocol", vm_, __opts__, default="ipv4", search_global=False ) family = socket.AF_INET if proto == "ipv6": family = socket.AF_INET6 for ip in ips: ignore_ip = ignore_cidr(vm_, ip) if ignore_ip: continue try: socket.inet_pton(family, ip) return ip except Exception: # pylint: disable=broad-except continue return False
Add support for get IP-address from agent
preferred_ip
a5679caf65c7c79cd72841b6e5793b9b693744c9
salt
proxmox.py
11
17
https://github.com/saltstack/salt.git
5
78
0
36
128
Python
{ "docstring": "\n Return either an 'ipv4' (default) or 'ipv6' address depending on 'protocol' option.\n The list of 'ipv4' IPs is filtered by ignore_cidr() to remove any unreachable private addresses.\n ", "language": "en", "n_whitespaces": 37, "n_words": 27, "vocab_size": 26 }
def preferred_ip(vm_, ips): proto = config.get_cloud_config_value( "protocol", vm_, __opts__, default="ipv4", search_global=False ) family = socket.AF_INET if proto == "ipv6": family = socket.AF_INET6 for ip in ips: ignore_ip = ignore_cidr(vm_, ip) if ignore_ip: continue try: socket.inet_pton(family, ip) return ip except Exception: # pylint: disable=broad-except continue return False
14,866
68,785
17
erpnext/accounts/doctype/account/account.py
23
11
def get_parent_account(doctype, txt, searchfield, start, page_len, filters): return frappe.db.sql( % ("%s", searchfield, "%s", "%s", "%s"), (filters["company"], "%%%s%%" % txt, page_len, start), as_list=1,
refactor: use db independent offset syntax (#31345) * chore: use db independent offset syntax * fix: typo * style: reformat code to black spec Co-authored-by: Ankush Menat <[email protected]>
get_parent_account
00ef499739959630cd7cf97419fbb6ca59be05f2
erpnext
account.py
10
9
https://github.com/frappe/erpnext.git
1
56
0
18
85
Python
{ "docstring": "select name from tabAccount\n\t\twhere is_group = 1 and docstatus != 2 and company = %s\n\t\tand %s like %s order by name limit %s offset %s", "language": "en", "n_whitespaces": 24, "n_words": 27, "vocab_size": 19 }
def get_parent_account(doctype, txt, searchfield, start, page_len, filters): return frappe.db.sql( % ("%s", searchfield, "%s", "%s", "%s"), (filters["company"], "%%%s%%" % txt, page_len, start), as_list=1, )
81,783
276,930
30
keras/utils/kernelized_utils.py
19
13
def exact_laplacian_kernel(x, y, stddev): r x_aligned, y_aligned = _align_matrices(x, y) diff_l1_norm = tf.reduce_sum(tf.abs(tf.subtract(x_aligned, y_aligned)), 2)
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
exact_laplacian_kernel
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
kernelized_utils.py
12
27
https://github.com/keras-team/keras.git
1
53
0
18
81
Python
{ "docstring": "Computes exact Laplacian kernel value(s) for tensors x and y using stddev.\n\n The Laplacian kernel for vectors u, v is defined as follows:\n K(u, v) = exp(-||u-v|| / stddev)\n where the norm is the l1-norm. x, y can be either vectors or matrices. If they\n are vectors, they must have the same dimension. If they are matrices, they\n must have the same number of columns. In the latter case, the method returns\n (as a matrix) K(u, v) values for all pairs (u, v) where u is a row from x and\n v is a row from y.\n\n Args:\n x: a tensor of rank 1 or 2. It's shape should be either [dim] or [m, dim].\n y: a tensor of rank 1 or 2. It's shape should be either [dim] or [n, dim].\n stddev: The width of the Gaussian kernel.\n\n Returns:\n A single value (scalar) with shape (1, 1) if x, y are vectors or a matrix\n of shape (m, n) with entries K(u, v) (where K is the Laplacian kernel) for\n all (u,v) pairs where u, v are rows from x and y respectively.\n\n Raises:\n ValueError: if the shapes of x, y are not compatible.\n ", "language": "en", "n_whitespaces": 269, "n_words": 195, "vocab_size": 106 }
def exact_laplacian_kernel(x, y, stddev): r x_aligned, y_aligned = _align_matrices(x, y) diff_l1_norm = tf.reduce_sum(tf.abs(tf.subtract(x_aligned, y_aligned)), 2) return tf.exp(-diff_l1_norm / stddev)
75,534
259,028
232
sklearn/manifold/_isomap.py
93
23
def transform(self, X): check_is_fitted(self) if self.n_neighbors is not None: distances, indices = self.nbrs_.kneighbors(X, return_dis
ENH Isomap supports radius-based neighbors (#19794) Co-authored-by: Tom Dupré la Tour <[email protected]> Co-authored-by: Olivier Grisel <[email protected]> Co-authored-by: Thomas J. Fan <[email protected]> Co-authored-by: Julien Jerphanion <[email protected]>
transform
71656844586f212324678804ace73f7a266deb00
scikit-learn
_isomap.py
13
14
https://github.com/scikit-learn/scikit-learn.git
3
140
0
75
213
Python
{ "docstring": "Transform X.\n\n This is implemented by linking the points X into the graph of geodesic\n distances of the training data. First the `n_neighbors` nearest\n neighbors of X are found in the training data, and from these the\n shortest geodesic distances from each point in X to each point in\n the training data are computed in order to construct the kernel.\n The embedding of X is the projection of this kernel onto the\n embedding vectors of the training set.\n\n Parameters\n ----------\n X : array-like, shape (n_queries, n_features)\n If neighbors_algorithm='precomputed', X is assumed to be a\n distance matrix or a sparse graph of shape\n (n_queries, n_samples_fit).\n\n Returns\n -------\n X_new : array-like, shape (n_queries, n_components)\n X transformed in the new space.\n ", "language": "en", "n_whitespaces": 260, "n_words": 118, "vocab_size": 69 }
def transform(self, X): check_is_fitted(self) if self.n_neighbors is not None: distances, indices = self.nbrs_.kneighbors(X, return_distance=True) else: distances, indices = self.nbrs_.radius_neighbors(X, return_distance=True) # Create the graph of shortest distances from X to # training data via the nearest neighbors of X. # This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: n_samples_fit = self.nbrs_.n_samples_fit_ n_queries = distances.shape[0] G_X = np.zeros((n_queries, n_samples_fit)) for i in range(n_queries): G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
46,283
189,989
212
manim/mobject/svg/svg_mobject.py
48
12
def generate_config_style_dict(self) -> dict[str, str]: keys_converting_dict = { "fill": ("color", "fill_color"), "fill-opacity": ("opacity", "fill_opacity"), "stroke": ("color", "stroke_color"), "stroke-opacity": ("opacity", "stroke_opacity"), "stroke-width": ("stroke_width",), } svg_default_dict = self.svg_default result = {} for
Ported improved implementation of :class:`.SVGMobject` from 3b1b/manim (#2898) * port SVGMobject from 3b1b/manim * added svgelements as dependency * revert change of default values * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * set default stroke_width of svg elements to 0 if not set * fix handling of circles with different rx/ry * turn more methods into staticmethods * removed duplicated method * set/adapt stroke-width of some test SVGs * updated control data * forgot some control data * fixed init_colors in tex_mobject and text_mobject * minor changes, added docstrings * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * module docstring, removed import * vector_to_coords changed again * nail sphinx version to below 5.1 to fix rtd (?) * update test_text control data for science * changed Brace to use VMobjectFromSVGPath * remove unused classes and methods depending on old SVG path implementation * remove style_utils and svg_path modules * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * change test_text to use monospace font * restore geometry.polygram * added get_mobject_type_class auxiliary method; changed polyline implementation to ad-hoc approach * restore test_text to previous version * skip Use tags as svgelements already populates them Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
generate_config_style_dict
309c9d41eb734ca85a7aea5533f88a6d4ee7c944
manim
svg_mobject.py
13
17
https://github.com/ManimCommunity/manim.git
4
104
0
40
180
Python
{ "docstring": "Generate a dictionary holding the default style information.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
def generate_config_style_dict(self) -> dict[str, str]: keys_converting_dict = { "fill": ("color", "fill_color"), "fill-opacity": ("opacity", "fill_opacity"), "stroke": ("color", "stroke_color"), "stroke-opacity": ("opacity", "stroke_opacity"), "stroke-width": ("stroke_width",), } svg_default_dict = self.svg_default result = {} for svg_key, style_keys in keys_converting_dict.items(): for style_key in style_keys: if svg_default_dict[style_key] is None: continue result[svg_key] = str(svg_default_dict[style_key]) return result
78,524
266,709
110
test/lib/ansible_test/_internal/bootstrap.py
22
13
def get_variables(self): # type: () -> t.Dict[str, t.Union[str, t.List[str]]] return dict(
ansible-test - Code cleanup and refactoring. (#77169) * Remove unnecessary PyCharm ignores. * Ignore intentional undefined attribute usage. * Add missing type hints. Fix existing type hints. * Fix docstrings and comments. * Use function to register completion handler. * Pass strings to display functions. * Fix CompositeAction handling of dest argument. * Use consistent types in expressions/assignments. * Use custom function to keep linters happy. * Add missing raise for custom exception. * Clean up key/value type handling in cloud plugins. * Use dataclass instead of dict for results. * Add custom type_guard function to check lists. * Ignore return type that can't be checked (yet). * Avoid changing types on local variables.
get_variables
a06fa496d3f837cca3c437ab6e9858525633d147
ansible
bootstrap.py
10
9
https://github.com/ansible/ansible.git
2
56
0
22
87
Python
{ "docstring": "The variables to template in the bootstrapping script.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
def get_variables(self): # type: () -> t.Dict[str, t.Union[str, t.List[str]]] return dict( bootstrap_type=self.bootstrap_type, controller='yes' if self.controller else '', python_versions=self.python_versions, ssh_key_type=self.ssh_key.KEY_TYPE, ssh_private_key=self.ssh_key.key_contents, ssh_public_key=self.ssh_key.pub_contents, )
54,718
217,321
224
python3.10.4/Lib/enum.py
71
16
def _create_pseudo_member_(cls, value): pseudo_member = cls._value2member_map_.get(value, None) if pseudo_member is None:
add python 3.10.4 for windows
_create_pseudo_member_
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
enum.py
14
11
https://github.com/XX-net/XX-Net.git
3
83
0
54
136
Python
{ "docstring": "\n Create a composite member iff value contains only members.\n ", "language": "en", "n_whitespaces": 24, "n_words": 9, "vocab_size": 9 }
def _create_pseudo_member_(cls, value): pseudo_member = cls._value2member_map_.get(value, None) if pseudo_member is None: # verify all bits are accounted for _, extra_flags = _decompose(cls, value) if extra_flags: raise ValueError("%r is not a valid %s" % (value, cls.__qualname__)) # construct a singleton enum pseudo-member pseudo_member = object.__new__(cls) pseudo_member._name_ = None pseudo_member._value_ = value # use setdefault in case another thread already created a composite # with this value pseudo_member = cls._value2member_map_.setdefault(value, pseudo_member) return pseudo_member
75,639
259,201
237
sklearn/preprocessing/_encoders.py
78
26
def _identify_infrequent(self, category_count, n_samples, col_idx): if isinstance(self.min_frequency, numbers.Integral): infrequent_mask = category_count < self.min_frequency elif isinstance(self.min_frequency, numbers.Real): min_frequency_abs = n_samples * self.min_frequency infrequent_mask = category_count < min_frequency_abs else: infrequent_mask = np.zeros(category_count.shape[0], dtype=bool) n_current_features = category_count.size - infrequent_mask.sum() + 1 if self.max_categories is not None and self.max_categories < n_current_features: # stable sort to preserve original co
ENH Adds infrequent categories to OneHotEncoder (#16018) * ENH Completely adds infrequent categories * STY Linting * STY Linting * DOC Improves wording * DOC Lint * BUG Fixes * CLN Address comments * CLN Address comments * DOC Uses math to description float min_frequency * DOC Adds comment regarding drop * BUG Fixes method name * DOC Clearer docstring * TST Adds more tests * FIX Fixes mege * CLN More pythonic * CLN Address comments * STY Flake8 * CLN Address comments * DOC Fix * MRG * WIP * ENH Address comments * STY Fix * ENH Use functiion call instead of property * ENH Adds counts feature * CLN Rename variables * DOC More details * CLN Remove unneeded line * CLN Less lines is less complicated * CLN Less diffs * CLN Improves readiabilty * BUG Fix * CLN Address comments * TST Fix * CLN Address comments * CLN Address comments * CLN Move docstring to userguide * DOC Better wrapping * TST Adds test to handle_unknown='error' * ENH Spelling error in docstring * BUG Fixes counter with nan values * BUG Removes unneeded test * BUG Fixes issue * ENH Sync with main * DOC Correct settings * DOC Adds docstring * DOC Immprove user guide * DOC Move to 1.0 * DOC Update docs * TST Remove test * DOC Update docstring * STY Linting * DOC Address comments * ENH Neater code * DOC Update explaination for auto * Update sklearn/preprocessing/_encoders.py Co-authored-by: Roman Yurchak <[email protected]> * TST Uses docstring instead of comments * TST Remove call to fit * TST Spelling error * ENH Adds support for drop + infrequent categories * ENH Adds infrequent_if_exist option * DOC Address comments for user guide * DOC Address comments for whats_new * DOC Update docstring based on comments * CLN Update test with suggestions * ENH Adds computed property infrequent_categories_ * DOC Adds where the infrequent column is located * TST Adds more test for infrequent_categories_ * DOC Adds docstring for _compute_drop_idx * CLN Moves _convert_to_infrequent_idx into its own method * TST Increases test coverage * TST Adds failing test * CLN Careful consideration of dropped and inverse_transform * STY Linting * DOC Adds docstrinb about dropping infrequent * DOC Uses only * DOC Numpydoc * TST Includes test for get_feature_names_out * DOC Move whats new * DOC Address docstring comments * DOC Docstring changes * TST Better comments * TST Adds check for handle_unknown='ignore' for infrequent * CLN Make _infrequent_indices private * CLN Change min_frequency default to None * DOC Adds comments * ENH adds support for max_categories=1 * ENH Describe lexicon ordering for ties * DOC Better docstring * STY Fix * CLN Error when explicity dropping an infrequent category * STY Grammar Co-authored-by: Joel Nothman <[email protected]> Co-authored-by: Roman Yurchak <[email protected]> Co-authored-by: Guillaume Lemaitre <[email protected]>
_identify_infrequent
7f0006c8aad1a09621ad19c3db19c3ff0555a183
scikit-learn
_encoders.py
13
16
https://github.com/scikit-learn/scikit-learn.git
6
146
0
56
227
Python
{ "docstring": "Compute the infrequent indices.\n\n Parameters\n ----------\n category_count : ndarray of shape (n_cardinality,)\n Category counts.\n\n n_samples : int\n Number of samples.\n\n col_idx : int\n Index of the current category. Only used for the error message.\n\n Returns\n -------\n output : ndarray of shape (n_infrequent_categories,) or None\n If there are infrequent categories, indices of infrequent\n categories. Otherwise None.\n ", "language": "en", "n_whitespaces": 173, "n_words": 55, "vocab_size": 41 }
def _identify_infrequent(self, category_count, n_samples, col_idx): if isinstance(self.min_frequency, numbers.Integral): infrequent_mask = category_count < self.min_frequency elif isinstance(self.min_frequency, numbers.Real): min_frequency_abs = n_samples * self.min_frequency infrequent_mask = category_count < min_frequency_abs else: infrequent_mask = np.zeros(category_count.shape[0], dtype=bool) n_current_features = category_count.size - infrequent_mask.sum() + 1 if self.max_categories is not None and self.max_categories < n_current_features: # stable sort to preserve original count order smallest_levels = np.argsort(category_count, kind="mergesort")[ : -self.max_categories + 1 ] infrequent_mask[smallest_levels] = True output = np.flatnonzero(infrequent_mask) return output if output.size > 0 else None
8,405
44,892
76
airflow/providers/google/cloud/hooks/kubernetes_engine.py
27
9
def get_conn(self) -> container_v1.ClusterManagerClient: if self._client is None: credentials = self._get_credentials() self._client = container_v1.ClusterManagerClient(credentials=credent
Extract ClientInfo to module level (#21554)
get_conn
1b568d73e1dfb838a3a0446e3a6063b9f27f04b8
airflow
kubernetes_engine.py
11
10
https://github.com/apache/airflow.git
2
44
0
23
74
Python
{ "docstring": "\n Returns ClusterManagerCLinet object.\n\n :rtype: google.cloud.container_v1.ClusterManagerClient\n ", "language": "en", "n_whitespaces": 27, "n_words": 5, "vocab_size": 5 }
def get_conn(self) -> container_v1.ClusterManagerClient: if self._client is None: credentials = self._get_credentials() self._client = container_v1.ClusterManagerClient(credentials=credentials, client_info=CLIENT_INFO) return self._client # To preserve backward compatibility # TODO: remove one day
55,985
220,414
60
python3.10.4/Lib/asyncio/coroutines.py
28
15
def iscoroutinefunction(func): return (inspect.isco
add python 3.10.4 for windows
iscoroutinefunction
8198943edd73a363c266633e1aa5b2a9e9c9f526
XX-Net
coroutines.py
11
3
https://github.com/XX-net/XX-Net.git
2
26
0
26
81
Python
{ "docstring": "Return True if func is a decorated coroutine function.", "language": "en", "n_whitespaces": 8, "n_words": 9, "vocab_size": 9 }
def iscoroutinefunction(func): return (inspect.iscoroutinefunction(func) or getattr(func, '_is_coroutine', None) is _is_coroutine) # Prioritize native coroutine check to speed-up # asyncio.iscoroutine. _COROUTINE_TYPES = (types.CoroutineType, types.GeneratorType, collections.abc.Coroutine, CoroWrapper) _iscoroutine_typecache = set()
115,428
316,852
49
homeassistant/helpers/storage.py
17
7
async def async_load(self) -> _T | None: if self._load_task is None: self._load_task = self.hass.async_create_task(self._async_load()) return await self._load_task
Make Store a generic class (#74617)
async_load
16900dcef15bdb9016feabd12bfec94d61ed4df6
core
storage.py
12
12
https://github.com/home-assistant/core.git
2
38
0
14
65
Python
{ "docstring": "Load data.\n\n If the expected version and minor version do not match the given versions, the\n migrate function will be invoked with migrate_func(version, minor_version, config).\n\n Will ensure that when a call comes in while another one is in progress,\n the second call will wait and return the result of the first call.\n ", "language": "en", "n_whitespaces": 87, "n_words": 52, "vocab_size": 42 }
async def async_load(self) -> _T | None: if self._load_task is None: self._load_task = self.hass.async_create_task(self._async_load()) return await self._load_task
108,897
310,210
81
homeassistant/components/vera/lock.py
28
13
def extra_state_attributes(self) -> dict[str, Any] | None: data = super().extra
Remove vera from mypy ignore list (#64474) * Remove vera from mypy ignore list * Fix pylint
extra_state_attributes
03bf2cdd56eb9a0a9ed56d7afb700d5f7d9cf75e
core
lock.py
10
13
https://github.com/home-assistant/core.git
3
63
0
22
101
Python
{ "docstring": "Who unlocked the lock and did a low battery alert fire.\n\n Reports on the previous poll cycle.\n changed_by_name is a string like 'Bob'.\n low_battery is 1 if an alert fired, 0 otherwise.\n ", "language": "en", "n_whitespaces": 60, "n_words": 32, "vocab_size": 28 }
def extra_state_attributes(self) -> dict[str, Any] | None: data = super().extra_state_attributes or {} last_user = self.vera_device.get_last_user_alert() if last_user is not None: data[ATTR_LAST_USER_NAME] = last_user[1] data[ATTR_LOW_BATTERY] = self.vera_device.get_low_battery_alert() return data
52,421
208,620
153
IPython/core/interactiveshell.py
51
16
def magic(self, arg_s): warnings.warn( "`magic(...)` is deprecated since IPython 0.13 (warning added in " "8.1), use run_line_magic(magic_name, parameter_s).", DeprecationWarning, stacklevel=2, ) # TODO: should we issue a loud deprecation warning here? magic_name, _, magic_arg_s = arg_s.partition(' ') magic_name = magic_name.lstrip(prefilter.ESC_MAGIC) return self.run_line_magic(magic_name, magic_arg_s, _stack_depth=2) #------------------------------------------------------------------------- # Th
Update old deprecation
magic
e306c9d3f707de42b47a1e7c4c8034d6862fba5f
ipython
interactiveshell.py
9
10
https://github.com/ipython/ipython.git
1
57
0
48
97
Python
{ "docstring": "\n DEPRECATED\n\n Deprecated since IPython 0.13 (warning added in\n 8.1), use run_line_magic(magic_name, parameter_s).\n\n Call a magic function by name.\n\n Input: a string containing the name of the magic function to call and\n any additional arguments to be passed to the magic.\n\n magic('name -opt foo bar') is equivalent to typing at the ipython\n prompt:\n\n In[1]: %name -opt foo bar\n\n To call a magic without arguments, simply use magic('name').\n\n This provides a proper Python function to call IPython's magics in any\n valid Python code you can type at the interpreter, including loops and\n compound statements.\n ", "language": "en", "n_whitespaces": 191, "n_words": 92, "vocab_size": 67 }
def magic(self, arg_s): warnings.warn( "`magic(...)` is deprecated since IPython 0.13 (warning added in " "8.1), use run_line_magic(magic_name, parameter_s).", DeprecationWarning, stacklevel=2, ) # TODO: should we issue a loud deprecation warning here? magic_name, _, magic_arg_s = arg_s.partition(' ') magic_name = magic_name.lstrip(prefilter.ESC_MAGIC) return self.run_line_magic(magic_name, magic_arg_s, _stack_depth=2) #------------------------------------------------------------------------- # Things related to macros #-------------------------------------------------------------------------
12,211
60,572
49
.venv/lib/python3.8/site-packages/pip/_internal/commands/__init__.py
28
13
def create_command(name, **kwargs): # type: (str, **Any) -> Command module_path, class_name, summary = commands_dict[name] module = importlib.import_module(module_path) command_class = getattr(module, class_name) command = command_cl
upd; format
create_command
f638f5d0e6c8ebed0e69a6584bc7f003ec646580
transferlearning
__init__.py
9
6
https://github.com/jindongwang/transferlearning.git
1
52
0
24
82
Python
{ "docstring": "\n Create an instance of the Command class with the given name.\n ", "language": "en", "n_whitespaces": 18, "n_words": 11, "vocab_size": 10 }
def create_command(name, **kwargs): # type: (str, **Any) -> Command module_path, class_name, summary = commands_dict[name] module = importlib.import_module(module_path) command_class = getattr(module, class_name) command = command_class(name=name, summary=summary, **kwargs) return command
29,316
130,580
34
python/ray/data/dataset.py
13
11
def to_pandas_refs(self) -> List[ObjectRef["pandas.DataFrame"]]: block_to_df = cached_remote_fn(_block_to_df) return [block_to_df.remote(b
[CI] Format Python code with Black (#21975) See #21316 and #21311 for the motivation behind these changes.
to_pandas_refs
7f1bacc7dc9caf6d0ec042e39499bbf1d9a7d065
ray
dataset.py
10
15
https://github.com/ray-project/ray.git
2
39
0
13
65
Python
{ "docstring": "Convert this dataset into a distributed set of Pandas dataframes.\n\n This is only supported for datasets convertible to Arrow records.\n This function induces a copy of the data. For zero-copy access to the\n underlying data, consider using ``.to_arrow()`` or\n ``.get_internal_block_refs()``.\n\n Time complexity: O(dataset size / parallelism)\n\n Returns:\n A list of remote Pandas dataframes created from this dataset.\n ", "language": "en", "n_whitespaces": 117, "n_words": 57, "vocab_size": 49 }
def to_pandas_refs(self) -> List[ObjectRef["pandas.DataFrame"]]: block_to_df = cached_remote_fn(_block_to_df) return [block_to_df.remote(block) for block in self._blocks.get_blocks()]
@array_function_dispatch(_hvdsplit_dispatcher)
38,466
160,008
64
numpy/lib/shape_base.py
32
9
def hsplit(ary, indices_or_sections): if _nx.ndim(ary) == 0: raise ValueError('hsplit only works on arrays of 1 or more dimensions') if ary.ndim > 1: return split(ary, indices_or_sections, 1) else: retur
DOC: Include special case in `hsplit` doc (#20974)
hsplit
1cacb2ffb1113167a4995f4f4c183f9a8356c2f0
numpy
shape_base.py
10
7
https://github.com/numpy/numpy.git
3
50
1
28
89
Python
{ "docstring": "\n Split an array into multiple sub-arrays horizontally (column-wise).\n\n Please refer to the `split` documentation. `hsplit` is equivalent\n to `split` with ``axis=1``, the array is always split along the second\n axis except for 1-D arrays, where it is split at ``axis=0``.\n\n See Also\n --------\n split : Split an array into multiple sub-arrays of equal size.\n\n Examples\n --------\n >>> x = np.arange(16.0).reshape(4, 4)\n >>> x\n array([[ 0., 1., 2., 3.],\n [ 4., 5., 6., 7.],\n [ 8., 9., 10., 11.],\n [12., 13., 14., 15.]])\n >>> np.hsplit(x, 2)\n [array([[ 0., 1.],\n [ 4., 5.],\n [ 8., 9.],\n [12., 13.]]),\n array([[ 2., 3.],\n [ 6., 7.],\n [10., 11.],\n [14., 15.]])]\n >>> np.hsplit(x, np.array([3, 6]))\n [array([[ 0., 1., 2.],\n [ 4., 5., 6.],\n [ 8., 9., 10.],\n [12., 13., 14.]]),\n array([[ 3.],\n [ 7.],\n [11.],\n [15.]]),\n array([], shape=(4, 0), dtype=float64)]\n\n With a higher dimensional array the split is still along the second axis.\n\n >>> x = np.arange(8.0).reshape(2, 2, 2)\n >>> x\n array([[[0., 1.],\n [2., 3.]],\n [[4., 5.],\n [6., 7.]]])\n >>> np.hsplit(x, 2)\n [array([[[0., 1.]],\n [[4., 5.]]]),\n array([[[2., 3.]],\n [[6., 7.]]])]\n\n With a 1-D array, the split is along axis 0.\n\n >>> x = np.array([0, 1, 2, 3, 4, 5])\n >>> np.hsplit(x, 2)\n [array([0, 1, 2]), array([3, 4, 5])]\n\n ", "language": "en", "n_whitespaces": 562, "n_words": 203, "vocab_size": 116 }
def hsplit(ary, indices_or_sections): if _nx.ndim(ary) == 0: raise ValueError('hsplit only works on arrays of 1 or more dimensions') if ary.ndim > 1: return split(ary, indices_or_sections, 1) else: return split(ary, indices_or_sections, 0) @array_function_dispatch(_hvdsplit_dispatcher)
13,748
64,884
36
erpnext/accounts/doctype/loyalty_program/test_loyalty_program.py
59
27
def get_points_earned(self): def get_returned_amount(): returned_amount = frappe.db.sql( , self.name, ) return abs(flt(returned_amount[0][0])) if returned_amount else 0 lp_details = get_loyalty_program_details_with_points( self.customer, company=self.company, loyalty_program=self.loyalty_program, expiry_date=self.posting_date, include_expired_entry=True, ) if ( lp_details and getdate(lp_details.
style: format code with black
get_points_earned
494bd9ef78313436f0424b918f200dab8fc7c20b
erpnext
test_loyalty_program.py
14
18
https://github.com/frappe/erpnext.git
6
114
0
42
231
Python
{ "docstring": "\n\t\t\tselect sum(grand_total)\n\t\t\tfrom `tabSales Invoice`\n\t\t\twhere docstatus=1 and is_return=1 and ifnull(return_against, '')=%s\n\t\t", "language": "en", "n_whitespaces": 9, "n_words": 12, "vocab_size": 11 }
def get_points_earned(self): def get_returned_amount(): returned_amount = frappe.db.sql( , self.name, ) return abs(flt(returned_amount[0][0])) if returned_amount else 0 lp_details = get_loyalty_program_details_with_points( self.customer, company=self.company, loyalty_program=self.loyalty_program, expiry_date=self.posting_date, include_expired_entry=True, ) if ( lp_details and getdate(lp_details.from_date) <= getdate(self.posting_date) and (not lp_details.to_date or getdate(lp_details.to_date) >= getdate(self.posting_date)) ): returned_amount = get_returned_amount() eligible_amount = flt(self.grand_total) - cint(self.loyalty_amount) - returned_amount points_earned = cint(eligible_amount / lp_details.collection_factor) return points_earned or 0
20,326
100,875
119
lib/model/losses_plaid.py
49
17
def _get_kernel(self) -> plaidml.tile.Value: coords = np.arange(self._filter_size, dtype="float32") coords -= (self._filter_size - 1) / 2. kernel = np.square(coords) kernel *= -0.5 / np.square(self._filter_sigma) kernel = np.reshape(kernel, (1, -1)) + np.reshape(kernel, (-1, 1)) kernel = K.constant(np.reshape(kernel, (1, -1))) kernel = K.softmax(kernel) kernel = K.reshape(kernel, (
SSIM Updates - Standardize DSSIM Function - Implement MSSIM function for AMD
_get_kernel
04337e0c5efd442c1ce3e2da193dd8749f1e30d8
faceswap
losses_plaid.py
12
17
https://github.com/deepfakes/faceswap.git
1
143
0
33
214
Python
{ "docstring": " Obtain the base kernel for performing depthwise convolution.\n\n Returns\n -------\n :class:`plaidml.tile.Value`\n The gaussian kernel based on selected size and sigma\n ", "language": "en", "n_whitespaces": 60, "n_words": 20, "vocab_size": 19 }
def _get_kernel(self) -> plaidml.tile.Value: coords = np.arange(self._filter_size, dtype="float32") coords -= (self._filter_size - 1) / 2. kernel = np.square(coords) kernel *= -0.5 / np.square(self._filter_sigma) kernel = np.reshape(kernel, (1, -1)) + np.reshape(kernel, (-1, 1)) kernel = K.constant(np.reshape(kernel, (1, -1))) kernel = K.softmax(kernel) kernel = K.reshape(kernel, (self._filter_size, self._filter_size, 1, 1)) return kernel
15,499
70,351
55
wagtail/core/tests/test_blocks.py
13
13
def test_default_default(self): block = blocks.ListBlock(blocks.CharBlock(default='chocolate')) self.assertEqual(list(block.get_default()), ['chocolate']) block.set_name('test_shoppinglistblock')
Implement a ListValue type for ListBlocks
test_default_default
4a848bfb4e3ec1a84a3d36fda577c1ed784de498
wagtail
test_blocks.py
12
6
https://github.com/wagtail/wagtail.git
1
65
0
12
115
Python
{ "docstring": "\n if no explicit 'default' is set on the ListBlock, it should fall back on\n a single instance of the child block in its default state.\n ", "language": "en", "n_whitespaces": 47, "n_words": 25, "vocab_size": 23 }
def test_default_default(self): block = blocks.ListBlock(blocks.CharBlock(default='chocolate')) self.assertEqual(list(block.get_default()), ['chocolate']) block.set_name('test_shoppinglistblock') js_args = ListBlockAdapter().js_args(block) self.assertEqual(js_args[2], 'chocolate')
39,674
165,521
39
pandas/io/formats/xml.py
14
5
def convert_empty_str_key(self) -> None:
CLN/DOC: typos (#46328) * fix typos * fix typo * fix typo * fix typo
convert_empty_str_key
a72fa1b400234d3a05342f17c3c0b1e3993a6bd8
pandas
xml.py
11
9
https://github.com/pandas-dev/pandas.git
3
40
0
14
71
Python
{ "docstring": "\n Replace zero-length string in `namespaces`.\n\n This method will replace '' with None to align to `lxml`\n requirement that empty string prefixes are not allowed.\n ", "language": "en", "n_whitespaces": 53, "n_words": 24, "vocab_size": 22 }
def convert_empty_str_key(self) -> None: if self.namespaces and "" in self.namespaces.keys(): self.namespaces[None] = self.namespaces.pop("", "default")
16,399
75,353
149
wagtail/images/tests/tests.py
30
13
def test_get_with_custom_key_using_default_key(self): # Generate signature signature = generate_signature(self.image.id, "fill-800x600") # Get the image response = self.client.get( reverse( "wagtailimages_serve_custom_key", args=(signature, self.image.id, "fill-800x600"),
Reformat with black
test_get_with_custom_key_using_default_key
d10f15e55806c6944827d801cd9c2d53f5da4186
wagtail
tests.py
15
10
https://github.com/wagtail/wagtail.git
1
58
0
24
100
Python
{ "docstring": "\n Test that that the key can be changed on the view\n\n This tests that the default key no longer works when the key is changed on the view\n ", "language": "en", "n_whitespaces": 50, "n_words": 28, "vocab_size": 17 }
def test_get_with_custom_key_using_default_key(self): # Generate signature signature = generate_signature(self.image.id, "fill-800x600") # Get the image response = self.client.get( reverse( "wagtailimages_serve_custom_key", args=(signature, self.image.id, "fill-800x600"), ) + "test.png" ) # Check response self.assertEqual(response.status_code, 403)
11,033
54,348
22
tests/test_engine.py
8
7
async def test_timeouts_do_not_hide_crashes(self, flow_run, orion_client): started = anyio.Event()
Fix engine tests; move function to other crash handleres
test_timeouts_do_not_hide_crashes
3e657b429b967fa532d2f97ed7e6809112db3107
prefect
test_engine.py
8
24
https://github.com/PrefectHQ/prefect.git
1
121
0
8
30
Python
{ "docstring": "\n Since timeouts capture anyio cancellations, we want to ensure that something\n still ends up in a 'Crashed' state if it is cancelled independently from our\n timeout cancellation.\n ", "language": "en", "n_whitespaces": 56, "n_words": 27, "vocab_size": 27 }
async def test_timeouts_do_not_hide_crashes(self, flow_run, orion_client): started = anyio.Event()
24,437
111,556
258
spacy/tests/pipeline/test_pipe_methods.py
72
17
def test_enable_disable_conflict_with_config(): nlp = English() nlp.add_pipe("tagger") nlp.add_pipe("senter") nlp.add_pipe("sentencizer") with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) # Expected to fail, as config and arguments conflict. with
Simplify and clarify enable/disable behavior of spacy.load() (#11459) * Change enable/disable behavior so that arguments take precedence over config options. Extend error message on conflict. Add warning message in case of overwriting config option with arguments. * Fix tests in test_serialize_pipeline.py to reflect changes to handling of enable/disable. * Fix type issue. * Move comment. * Move comment. * Issue UserWarning instead of printing wasabi message. Adjust test. * Added pytest.warns(UserWarning) for expected warning to fix tests. * Update warning message. * Move type handling out of fetch_pipes_status(). * Add global variable for default value. Use id() to determine whether used values are default value. * Fix default value for disable. * Rename DEFAULT_PIPE_STATUS to _DEFAULT_EMPTY_PIPES.
test_enable_disable_conflict_with_config
aea16719be04d4d6ab889cd20fe0e323b2c7ffee
spaCy
test_pipe_methods.py
18
19
https://github.com/explosion/spaCy.git
1
127
0
49
235
Python
{ "docstring": "Test conflict between enable/disable w.r.t. `nlp.disabled` set in the config.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
def test_enable_disable_conflict_with_config(): nlp = English() nlp.add_pipe("tagger") nlp.add_pipe("senter") nlp.add_pipe("sentencizer") with make_tempdir() as tmp_dir: nlp.to_disk(tmp_dir) # Expected to fail, as config and arguments conflict. with pytest.raises(ValueError): spacy.load( tmp_dir, enable=["tagger"], config={"nlp": {"disabled": ["senter"]}} ) # Expected to succeed without warning due to the lack of a conflicting config option. spacy.load(tmp_dir, enable=["tagger"]) # Expected to succeed with a warning, as disable=[] should override the config setting. with pytest.warns(UserWarning): spacy.load( tmp_dir, enable=["tagger"], disable=[], config={"nlp": {"disabled": ["senter"]}}, )
@pytest.mark.asyncio
28,233
126,689
51
dashboard/modules/job/tests/test_job_manager.py
23
13
async def test_logs_streaming(job_manager): stream_logs_script = stream_logs_cmd = f'python -c "{stream_logs_script}"' job_id = await job_manager.submit_job(entrypoint=stream_logs_cmd) await async_wait_for_condition( lambda: "STREAMED" i
Convert job_manager to be async (#27123) Updates jobs api Updates snapshot api Updates state api Increases jobs api version to 2 Signed-off-by: Alan Guo [email protected] Why are these changes needed? follow-up for #25902 (comment)
test_logs_streaming
326b5bd1acc6d3d00ab0546e4ae45da6bed501f7
ray
test_job_manager.py
12
13
https://github.com/ray-project/ray.git
1
44
1
20
95
Python
{ "docstring": "Test that logs are streamed during the job, not just at the end.\nimport time\nprint('STREAMED')\nwhile True:\n time.sleep(1)\n", "language": "en", "n_whitespaces": 18, "n_words": 19, "vocab_size": 18 }
async def test_logs_streaming(job_manager): stream_logs_script = stream_logs_cmd = f'python -c "{stream_logs_script}"' job_id = await job_manager.submit_job(entrypoint=stream_logs_cmd) await async_wait_for_condition( lambda: "STREAMED" in job_manager.get_job_logs(job_id) ) job_manager.stop_job(job_id) @pytest.mark.asyncio
80,978
272,209
159
keras/integration_test/gradient_checkpoint_test.py
60
31
def _train_no_recompute(n_steps): img_dim, n_channels, batch_size = 256, 1, 4 x, y = _get_dummy_data(img_dim, n_channels, batch_size) model = _get_big_cnn_model( img_dim, n_channels, num_partitions=3, blocks_per_partition=2 ) optimizer = optimizers.SGD() losses = [] tr_vars = model.traina
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
_train_no_recompute
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
gradient_checkpoint_test.py
12
18
https://github.com/keras-team/keras.git
2
123
0
46
195
Python
{ "docstring": "Trains a single large model without gradient checkpointing.", "language": "en", "n_whitespaces": 7, "n_words": 8, "vocab_size": 8 }
def _train_no_recompute(n_steps): img_dim, n_channels, batch_size = 256, 1, 4 x, y = _get_dummy_data(img_dim, n_channels, batch_size) model = _get_big_cnn_model( img_dim, n_channels, num_partitions=3, blocks_per_partition=2 ) optimizer = optimizers.SGD() losses = [] tr_vars = model.trainable_variables for _ in range(n_steps): with tf.GradientTape() as tape: logits = model(x) loss = _compute_loss(logits, y) losses.append(loss) grads = tape.gradient(loss, tr_vars) # tr_vars optimizer.apply_gradients(zip(grads, tr_vars)) del grads return losses
80,457
270,367
44
keras/distribute/distributed_training_utils_v1.py
18
9
def _make_replica_execution_function(model, mode):
Reformatting the codebase with black. PiperOrigin-RevId: 450093126
_make_replica_execution_function
84afc5193d38057e2e2badf9c889ea87d80d8fbf
keras
distributed_training_utils_v1.py
10
11
https://github.com/keras-team/keras.git
4
60
0
14
57
Python
{ "docstring": "A single step of the distributed execution on a replica.", "language": "en", "n_whitespaces": 9, "n_words": 10, "vocab_size": 10 }
def _make_replica_execution_function(model, mode): if mode == ModeKeys.TRAIN: func = model.train_on_batch elif mode == ModeKeys.TEST: func = model.test_on_batch else: