Datasets:

Modalities:
Tabular
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
File size: 4,177 Bytes
314bfe0
47aa6b3
 
 
 
 
 
 
e8ffea5
 
 
 
47aa6b3
e8ffea5
47aa6b3
e8ffea5
47aa6b3
 
 
e8ffea5
 
 
cd689c6
e8ffea5
cd689c6
e8ffea5
cd689c6
 
 
e8ffea5
 
 
 
 
 
 
 
 
 
47aa6b3
cd689c6
47aa6b3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cd689c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0c972c9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
---
language:
- ko
license: cc-by-nc-2.0
size_categories:
- 10K<n<100K
task_categories:
- question-answering
configs:
- config_name: doctor
  data_files:
  - split: train
    path: doctor/train-*
  - split: dev
    path: doctor/dev-*
  - split: test
    path: doctor/test-*
  - split: fewshot
    path: doctor/fewshot-*
- config_name: nurse
  data_files:
  - split: train
    path: nurse/train-*
  - split: dev
    path: nurse/dev-*
  - split: test
    path: nurse/test-*
  - split: fewshot
    path: nurse/fewshot-*
- config_name: pharm
  data_files:
  - split: train
    path: data/pharm-train.csv
  - split: dev
    path: data/pharm-dev.csv
  - split: test
    path: data/pharm-test.csv
tags:
- medical
dataset_info:
- config_name: doctor
  features:
  - name: subject
    dtype: string
  - name: year
    dtype: int64
  - name: period
    dtype: int64
  - name: q_number
    dtype: int64
  - name: question
    dtype: string
  - name: A
    dtype: string
  - name: B
    dtype: string
  - name: C
    dtype: string
  - name: D
    dtype: string
  - name: E
    dtype: string
  - name: answer
    dtype: int64
  splits:
  - name: train
    num_bytes: 1129629
    num_examples: 1890
  - name: dev
    num_bytes: 110638
    num_examples: 164
  - name: test
    num_bytes: 313364
    num_examples: 435
  - name: fewshot
    num_bytes: 3373.109756097561
    num_examples: 5
  download_size: 861550
  dataset_size: 1557004.1097560977
- config_name: nurse
  features:
  - name: subject
    dtype: string
  - name: year
    dtype: int64
  - name: period
    dtype: int64
  - name: q_number
    dtype: int64
  - name: question
    dtype: string
  - name: A
    dtype: string
  - name: B
    dtype: string
  - name: C
    dtype: string
  - name: D
    dtype: string
  - name: E
    dtype: string
  - name: answer
    dtype: int64
  splits:
  - name: train
    num_bytes: 217655
    num_examples: 582
  - name: dev
    num_bytes: 109046
    num_examples: 291
  - name: test
    num_bytes: 323674
    num_examples: 878
  - name: fewshot
    num_bytes: 1873.6426116838488
    num_examples: 5
  download_size: 411733
  dataset_size: 652248.6426116838
---

# KorMedMCQA : Multi-Choice Question Answering Benchmark for Korean Healthcare Professional Licensing Examinations

We introduce KorMedMCQA, the first Korean multiple-choice question answering (MCQA) benchmark derived from Korean healthcare professional licensing examinations, covering from the year 2012 to year 2023. 
This dataset consists of a selection of questions from the license examinations for doctors, nurses, and pharmacists, featuring a diverse array of subjects. 
We conduct baseline experiments on various large language models, including proprietary/open-source, multilingual/Korean-additional pretrained, and clinical context pretrained models, highlighting the potential for further enhancements. 
We make our data publicly available on HuggingFace and provide a evaluation script via LM-Harness, inviting further exploration and advancement in Korean healthcare environments.

Paper : https://arxiv.org/abs/2403.01469

## Dataset Details

### Languages

Korean

### Subtask

```
from datasets import load_dataset
doctor = load_dataset(path = "sean0042/KorMedMCQA",name = "doctor")
nurse = load_dataset(path = "sean0042/KorMedMCQA",name = "nurse")
pharmacist = load_dataset(path = "sean0042/KorMedMCQA",name = "pharm")
```

### Statistics

| Category                     | # Questions (Train/Dev/Test) |
|------------------------------|------------------------------|
| Doctor                       | 2,339 (1,890/164/285)        |
| Nurse                        | 1,460 (582/291/587)          |
| Pharmacist                   | 1,546 (632/300/614)          |

### Data Fields


- `subject`: doctor, nurse, or pharm
- `year`: year of the examination
- `period`: period of the examination
- `q_number`: question number of the examination
- `question`: question
- `A`: First answer choice
- `B`: Second answer choice
- `C`: Third answer choice
- `D`: Fourth answer choice
- `E`: Fifth answer choice
- `answer` : Answer (1 to 5). 1 denotes answer A, and 5 denotes answer E


## Contact

```
[email protected]
```