File size: 4,177 Bytes
314bfe0 47aa6b3 e8ffea5 47aa6b3 e8ffea5 47aa6b3 e8ffea5 47aa6b3 e8ffea5 cd689c6 e8ffea5 cd689c6 e8ffea5 cd689c6 e8ffea5 47aa6b3 cd689c6 47aa6b3 cd689c6 0c972c9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 |
---
language:
- ko
license: cc-by-nc-2.0
size_categories:
- 10K<n<100K
task_categories:
- question-answering
configs:
- config_name: doctor
data_files:
- split: train
path: doctor/train-*
- split: dev
path: doctor/dev-*
- split: test
path: doctor/test-*
- split: fewshot
path: doctor/fewshot-*
- config_name: nurse
data_files:
- split: train
path: nurse/train-*
- split: dev
path: nurse/dev-*
- split: test
path: nurse/test-*
- split: fewshot
path: nurse/fewshot-*
- config_name: pharm
data_files:
- split: train
path: data/pharm-train.csv
- split: dev
path: data/pharm-dev.csv
- split: test
path: data/pharm-test.csv
tags:
- medical
dataset_info:
- config_name: doctor
features:
- name: subject
dtype: string
- name: year
dtype: int64
- name: period
dtype: int64
- name: q_number
dtype: int64
- name: question
dtype: string
- name: A
dtype: string
- name: B
dtype: string
- name: C
dtype: string
- name: D
dtype: string
- name: E
dtype: string
- name: answer
dtype: int64
splits:
- name: train
num_bytes: 1129629
num_examples: 1890
- name: dev
num_bytes: 110638
num_examples: 164
- name: test
num_bytes: 313364
num_examples: 435
- name: fewshot
num_bytes: 3373.109756097561
num_examples: 5
download_size: 861550
dataset_size: 1557004.1097560977
- config_name: nurse
features:
- name: subject
dtype: string
- name: year
dtype: int64
- name: period
dtype: int64
- name: q_number
dtype: int64
- name: question
dtype: string
- name: A
dtype: string
- name: B
dtype: string
- name: C
dtype: string
- name: D
dtype: string
- name: E
dtype: string
- name: answer
dtype: int64
splits:
- name: train
num_bytes: 217655
num_examples: 582
- name: dev
num_bytes: 109046
num_examples: 291
- name: test
num_bytes: 323674
num_examples: 878
- name: fewshot
num_bytes: 1873.6426116838488
num_examples: 5
download_size: 411733
dataset_size: 652248.6426116838
---
# KorMedMCQA : Multi-Choice Question Answering Benchmark for Korean Healthcare Professional Licensing Examinations
We introduce KorMedMCQA, the first Korean multiple-choice question answering (MCQA) benchmark derived from Korean healthcare professional licensing examinations, covering from the year 2012 to year 2023.
This dataset consists of a selection of questions from the license examinations for doctors, nurses, and pharmacists, featuring a diverse array of subjects.
We conduct baseline experiments on various large language models, including proprietary/open-source, multilingual/Korean-additional pretrained, and clinical context pretrained models, highlighting the potential for further enhancements.
We make our data publicly available on HuggingFace and provide a evaluation script via LM-Harness, inviting further exploration and advancement in Korean healthcare environments.
Paper : https://arxiv.org/abs/2403.01469
## Dataset Details
### Languages
Korean
### Subtask
```
from datasets import load_dataset
doctor = load_dataset(path = "sean0042/KorMedMCQA",name = "doctor")
nurse = load_dataset(path = "sean0042/KorMedMCQA",name = "nurse")
pharmacist = load_dataset(path = "sean0042/KorMedMCQA",name = "pharm")
```
### Statistics
| Category | # Questions (Train/Dev/Test) |
|------------------------------|------------------------------|
| Doctor | 2,339 (1,890/164/285) |
| Nurse | 1,460 (582/291/587) |
| Pharmacist | 1,546 (632/300/614) |
### Data Fields
- `subject`: doctor, nurse, or pharm
- `year`: year of the examination
- `period`: period of the examination
- `q_number`: question number of the examination
- `question`: question
- `A`: First answer choice
- `B`: Second answer choice
- `C`: Third answer choice
- `D`: Fourth answer choice
- `E`: Fifth answer choice
- `answer` : Answer (1 to 5). 1 denotes answer A, and 5 denotes answer E
## Contact
```
[email protected]
``` |