# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import datasets # Description of the dataset _DESCRIPTION = """\ United States governmental agencies often make proposed regulations open to the public for comment. Proposed regulations are organized into "dockets". This project will use Regulation.gov public API to aggregate and clean public comments for dockets that mention opioid use. Each example will consist of one docket, and include metadata such as docket id, docket title, etc. Each docket entry will also include information about the top 10 comments, including comment metadata and comment text. """ # Homepage URL of the dataset _HOMEPAGE = "https://www.regulations.gov/" # URL to download the dataset _URLS = {"url": "https://huggingface.co./datasets/ro-h/regulatory_comments/raw/main/docket_comments_v3.json"} # Class definition for handling the dataset class RegComments(datasets.GeneratorBasedBuilder): # Version of the dataset VERSION = datasets.Version("1.1.0") # Method to define the structure of the dataset def _info(self): # Defining the structure of the dataset features = datasets.Features({ "id": datasets.Value("string"), "title": datasets.Value("string"), "context": datasets.Value("string"), "purpose": datasets.Value("string"), "keywords": datasets.Sequence(datasets.Value("string")), "comments": datasets.Sequence({ "text": datasets.Value("string"), "comment_id": datasets.Value("string"), "comment_url": datasets.Value("string"), "comment_date": datasets.Value("string"), "comment_title": datasets.Value("string"), "commenter_fname": datasets.Value("string"), "commenter_lname": datasets.Value("string"), "comment_length": datasets.Value("int32") }) }) # Returning the dataset structure return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE ) # Method to handle dataset splitting (e.g., train/test) def _split_generators(self, dl_manager): print("split generators called") urls = _URLS["url"] data_dir = dl_manager.download_and_extract(urls) print("urls accessed") # Defining the split (here, only train split is defined) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "filepath": data_dir, }, ), ] # Method to generate examples from the dataset def _generate_examples(self, filepath): """This function returns the examples in the raw (text) form.""" print("enter generate") key = 0 with open(filepath, 'r', encoding='utf-8') as f: data = json.load(f) for docket in data: # Extracting data fields from each docket docket_id = docket["id"] docket_title = docket["title"] docket_context = docket["context"] docket_purpose = docket.get("purpose", "unspecified") docket_keywords = docket.get("keywords", []) comments = docket["comments"] # Yielding each docket with its information yield key, { "id": docket_id, "title": docket_title, "context": docket_context, "purpose": docket_purpose, "keywords": docket_keywords, "comments": comments } key += 1