Modify to be nested
Browse files- docket_comments.json +0 -0
- regulatory_comments.py +58 -54
docket_comments.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
regulatory_comments.py
CHANGED
@@ -35,7 +35,7 @@ _HOMEPAGE = "https://www.regulations.gov/"
|
|
35 |
# TODO: Add link to the official dataset URLs here
|
36 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
37 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
38 |
-
_URLS = {"url": "https://huggingface.co/datasets/ro-h/regulatory_comments/raw/main/
|
39 |
|
40 |
}
|
41 |
|
@@ -62,71 +62,75 @@ class RegComments(datasets.GeneratorBasedBuilder):
|
|
62 |
# comment_text = comment_data['data']['attributes']['comment'],
|
63 |
# commenter_name = comment_data['data']['attributes'].get('firstName', '') + " " + comment_data['data']['attributes'].get('lastName', '')
|
64 |
# ) #use pandas
|
65 |
-
|
66 |
def _info(self):
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
return datasets.DatasetInfo(
|
84 |
-
# This is the description that will appear on the datasets page.
|
85 |
description=_DESCRIPTION,
|
86 |
-
|
87 |
-
features=features, # Here we define them above because they are different between the two configurations
|
88 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
89 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
90 |
-
# supervised_keys=("sentence", "label"),
|
91 |
-
# Homepage of the dataset for documentaxtion
|
92 |
homepage=_HOMEPAGE
|
93 |
)
|
94 |
|
95 |
def _split_generators(self, dl_manager):
|
96 |
print("split generators called")
|
97 |
-
#
|
98 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
99 |
-
|
100 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
101 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
102 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
103 |
urls = _URLS["url"]
|
104 |
-
data_dir = dl_manager.download_and_extract(urls)
|
105 |
print("urls accessed")
|
106 |
print(data_dir)
|
107 |
-
|
108 |
-
return [
|
109 |
-
|
|
|
110 |
gen_kwargs={
|
111 |
-
"filepath": data_dir,
|
112 |
-
|
113 |
-
|
|
|
114 |
|
115 |
-
#method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
116 |
def _generate_examples(self, filepath):
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
yield key, {
|
122 |
-
"
|
123 |
-
"
|
124 |
-
"
|
125 |
-
"
|
126 |
-
|
127 |
-
|
128 |
-
"comment_title": row["comment_title"],
|
129 |
-
"commenter_name": row["commenter_name"],
|
130 |
-
"comment_length": int(row["comment_length"]),
|
131 |
-
"comment_text": row["comment_text"],
|
132 |
-
}
|
|
|
35 |
# TODO: Add link to the official dataset URLs here
|
36 |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
37 |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
38 |
+
_URLS = {"url": "https://huggingface.co/datasets/ro-h/regulatory_comments/raw/main/docket_comments.json"
|
39 |
|
40 |
}
|
41 |
|
|
|
62 |
# comment_text = comment_data['data']['attributes']['comment'],
|
63 |
# commenter_name = comment_data['data']['attributes'].get('firstName', '') + " " + comment_data['data']['attributes'].get('lastName', '')
|
64 |
# ) #use pandas
|
65 |
+
|
66 |
def _info(self):
|
67 |
+
features = datasets.Features({
|
68 |
+
"id": datasets.Value("string"),
|
69 |
+
"title": datasets.Value("string"),
|
70 |
+
"context": datasets.Value("string"),
|
71 |
+
"comments": datasets.Sequence({
|
72 |
+
"text": datasets.Value("string"),
|
73 |
+
"comment_id": datasets.Value("string"),
|
74 |
+
"comment_url": datasets.Value("string"),
|
75 |
+
"comment_date": datasets.Value("string"),
|
76 |
+
"comment_title": datasets.Value("string"),
|
77 |
+
"commenter_fname": datasets.Value("string"),
|
78 |
+
"commenter_lname": datasets.Value("string"),
|
79 |
+
"comment_length": datasets.Value("int32")
|
80 |
+
})
|
81 |
+
})
|
82 |
+
|
83 |
return datasets.DatasetInfo(
|
|
|
84 |
description=_DESCRIPTION,
|
85 |
+
features=features,
|
|
|
|
|
|
|
|
|
|
|
86 |
homepage=_HOMEPAGE
|
87 |
)
|
88 |
|
89 |
def _split_generators(self, dl_manager):
|
90 |
print("split generators called")
|
91 |
+
# URLS should point to where your dataset is located
|
|
|
|
|
|
|
|
|
|
|
92 |
urls = _URLS["url"]
|
93 |
+
data_dir = dl_manager.download_and_extract(urls)
|
94 |
print("urls accessed")
|
95 |
print(data_dir)
|
96 |
+
|
97 |
+
return [
|
98 |
+
datasets.SplitGenerator(
|
99 |
+
name=datasets.Split.TRAIN,
|
100 |
gen_kwargs={
|
101 |
+
"filepath": os.path.join(data_dir, 'docket_comments.json'),
|
102 |
+
},
|
103 |
+
),
|
104 |
+
]
|
105 |
|
|
|
106 |
def _generate_examples(self, filepath):
|
107 |
+
"""This function returns the examples in the raw (text) form."""
|
108 |
+
logger.info("generating examples from = %s", filepath)
|
109 |
+
key = 0
|
110 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
111 |
+
data = json.load(f)
|
112 |
+
for docket in data:
|
113 |
+
docket_id = docket["id"]
|
114 |
+
docket_title = docket["title"]
|
115 |
+
docket_context = docket["context"]
|
116 |
+
comments = []
|
117 |
+
for comment in docket["comments"]:
|
118 |
+
comment_data = {
|
119 |
+
"text": comment["text"],
|
120 |
+
"comment_id": comment["comment_id"],
|
121 |
+
"comment_url": comment["comment_url"],
|
122 |
+
"comment_date": comment["comment_date"],
|
123 |
+
"comment_title": comment["comment_title"],
|
124 |
+
"commenter_fname": comment["commenter_fname"],
|
125 |
+
"commenter_lname": comment["commenter_lname"],
|
126 |
+
"comment_length": comment["comment_length"]
|
127 |
+
}
|
128 |
+
comments.append(comment_data)
|
129 |
+
|
130 |
yield key, {
|
131 |
+
"id": docket_id,
|
132 |
+
"title": docket_title,
|
133 |
+
"context": docket_context,
|
134 |
+
"comments": comments
|
135 |
+
}
|
136 |
+
key += 1
|
|
|
|
|
|
|
|
|
|