File size: 7,980 Bytes
3bbab5f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 |
import requests
import re
def get_docket_ids(search_term):
url = f"https://api.regulations.gov/v4/dockets"
params = {
'filter[searchTerm]': search_term,
'api_key': "your-api-key"
}
response = requests.get(url, params=params)
if response.status_code == 200:
data = response.json()
dockets = data['data']
docket_ids = [docket['id'] for docket in dockets]
return docket_ids
else:
return f"Error: {response.status_code}"
class RegulationsDataFetcher:
API_KEY = "your-api-key"
BASE_COMMENT_URL = 'https://api.regulations.gov/v4/comments'
BASE_DOCKET_URL = 'https://api.regulations.gov/v4/dockets/'
HEADERS = {
'X-Api-Key': API_KEY,
'Content-Type': 'application/json'
}
def __init__(self, docket_id):
self.docket_id = docket_id
self.docket_url = self.BASE_DOCKET_URL + docket_id
self.dataset = []
def fetch_comments(self):
"""Fetch a single page of 25 comments."""
url = f'{self.BASE_COMMENT_URL}?filter[docketId]={self.docket_id}&page[number]=1&page[size]=25'
response = requests.get(url, headers=self.HEADERS)
if response.status_code == 200:
return response.json()
else:
print(f'Failed to retrieve comments: {response.status_code}')
return None
def get_docket_info(self):
"""Get docket information."""
response = requests.get(self.docket_url, headers=self.HEADERS)
if response.status_code == 200:
docket_data = response.json()
return (docket_data['data']['attributes']['agencyId'],
docket_data['data']['attributes']['title'],
docket_data['data']['attributes']['modifyDate'],
docket_data['data']['attributes']['docketType'],
docket_data['data']['attributes']['keywords'])
else:
print(f'Failed to retrieve docket info: {response.status_code}')
return None
def fetch_comment_details(self, comment_url):
"""Fetch detailed information of a comment."""
response = requests.get(comment_url, headers=self.HEADERS)
if response.status_code == 200:
return response.json()
else:
print(f'Failed to retrieve comment details: {response.status_code}')
return None
def collect_data(self):
"""Collect data and reshape into nested dictionary format."""
data = self.fetch_comments()
if not data:
return None
docket_info = self.get_docket_info()
if not docket_info:
return None
# Starting out with docket information
nested_data = {
"id": self.docket_id,
"agency": self.docket_id.split('-')[0],
"title": docket_info[1] if docket_info else "Unknown Title",
"update_date": docket_info[2].split('T')[0] if docket_info and docket_info[2] else "Unknown Update Date",
"update_time": docket_info[2].split('T')[1].strip('Z') if docket_info and docket_info[2] and 'T' in docket_info[2] else "Unknown Update Time",
"purpose": docket_info[3],
"keywords": docket_info[4],
"comments": []
}
# Going into each docket for comment information
if 'data' in data:
for comment in data['data']:
if len(nested_data["comments"]) >= 10:
break
comment_details = self.fetch_comment_details(comment['links']['self'])
if 'data' in comment_details and 'attributes' in comment_details['data']:
comment_data = comment_details['data']['attributes']
# Basic comment text cleaning
comment_text = (comment_data.get('comment', '') or '').strip()
comment_text = comment_text.replace("<br/>", "").replace("<span style='padding-left: 30px'></span>", "")
comment_text = re.sub(r'&[^;]+;', '', comment_text)
# Recording detailed comment information
if (comment_text and "attached" not in comment_text.lower() and "attachment" not in comment_text.lower() and comment_text.lower() != "n/a"):
nested_comment = {
"text": comment_text,
"comment_id": comment['id'],
"comment_url": comment['links']['self'],
"comment_date": comment['attributes']['postedDate'].split('T')[0],
"comment_time": comment['attributes']['postedDate'].split('T')[1].strip('Z'),
"commenter_fname": ((comment_data.get('firstName') or 'Anonymous').split(',')[0]).capitalize(),
"commenter_lname": ((comment_data.get('lastName') or 'Anonymous').split(',')[0]).capitalize(),
"comment_length": len(comment_text) if comment_text is not None else 0
}
nested_data["comments"].append(nested_comment)
return nested_data
# COLLECTING DATA
substance_related_terms = [
# Types of Opioids
"opioids",
"heroin",
"morphine",
"fentanyl",
"methadone",
"oxycodone",
"lofexidine",
"hydrocodone",
"codeine",
"tramadol",
"prescription opioids",
# Withdrawal Support
"lofexidine",
"buprenorphine",
"naloxone",
# Related Phrases
"opioid epidemic",
"opioid abuse",
"opioid crisis",
"opioid overdose",
"opioid tolerance",
"opioid treatment program",
"medication assisted treatment",
"substance abuse",
"narcotics",
"opioid addiction",
"opioid withdrawal",
"opioid dependence",
"opioid use disorder",
"opioid receptor",
"pain management",
"prescription drug abuse",
"drug addiction treatment",
"controlled substances",
"opioid analgesics",
# Additional Terms
"naltrexone",
"opioid detoxification",
"opioid therapy",
"chronic pain",
"opioid agonist",
"partial opioid agonist",
"opioid antagonist",
"drug rehabilitation",
"overdose prevention",
"opioid prescribing guidelines",
"opioid risk tool",
"opioid alternative",
"addiction recovery",
"addiction counseling",
"opioid education",
"opioid policy",
"opioid regulation",
# Types of Other Substances
"marijuana",
"cannabis",
"THC",
"CBD",
"synthetic cannabinoids",
"alcohol",
"ethanol",
"benzodiazepines",
"cocaine",
"amphetamine",
"methamphetamine",
"MDMA",
"ecstasy",
"hallucinogens",
"LSD",
"psilocybin",
"ketamine",
"inhalants",
"steroids",
"tobacco",
"nicotine",
# Related Phrases for Other Substances
"alcohol abuse",
"alcohol addiction",
"alcohol dependence",
"alcohol withdrawal",
"alcohol treatment",
"binge drinking",
"drug abuse",
"drug addiction",
"drug dependence",
"drug withdrawal",
"drug treatment",
"substance use disorder",
"chemical dependency",
"intoxication",
"sobriety",
"recovery program",
"detoxification",
"rehabilitation",
"12-step program",
"psychoactive drugs",
"addictive behavior",
"harm reduction",
"substance abuse counseling",
"addiction therapy",
"substance abuse prevention",
"drug education",
"drug policy",
"drug regulation"
]
docket_ids = set()
all_data = []
for term in substance_related_terms:
docket_ids.update(get_docket_ids(term))
for docket_id in docket_ids:
fetcher = RegulationsDataFetcher(docket_id)
docket_data = fetcher.collect_data()
if docket_data and len(docket_data["comments"]) != 0:
all_data.append(docket_data)
|