revanth7667 commited on
Commit
6e55cce
1 Parent(s): 6a0acc8
.01_Data/Missing_vs_Population.png ADDED
.gitattributes CHANGED
@@ -47,7 +47,7 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
47
  # Image files - uncompressed
48
  *.bmp filter=lfs diff=lfs merge=lfs -text
49
  *.gif filter=lfs diff=lfs merge=lfs -text
50
- *.png filter=lfs diff=lfs merge=lfs -text
51
  *.tiff filter=lfs diff=lfs merge=lfs -text
52
  # Image files - compressed
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
 
47
  # Image files - uncompressed
48
  *.bmp filter=lfs diff=lfs merge=lfs -text
49
  *.gif filter=lfs diff=lfs merge=lfs -text
50
+ #*.png filter=lfs diff=lfs merge=lfs -text
51
  *.tiff filter=lfs diff=lfs merge=lfs -text
52
  # Image files - compressed
53
  *.jpg filter=lfs diff=lfs merge=lfs -text
02_Codes/05_master_eda.ipynb ADDED
The diff for this file is too large to render. See raw diff
 
02_Codes/06_master_script.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ To impute the missing death data based on the state level mortality.
3
+
4
+ Saves final dataset as data.parquet
5
+
6
+ refer to the 05_master_eda.ipynb for EDA and other details like how the data was imputed.
7
+ """
8
+
9
+ # importing libraries and setting default option
10
+ import pandas as pd
11
+ import numpy as np
12
+
13
+ pd.set_option("mode.copy_on_write", True)
14
+
15
+ # reading the data files
16
+ df = pd.read_parquet(".01_Data/02_Processed/02_Mortality.parquet")
17
+ population = pd.read_parquet(".01_Data/02_Processed/01_Population.parquet")
18
+
19
+ # ------------------------------------------
20
+ # initial Cleaning
21
+ df = df[df["State"] != "AK"] # dropping ALASKA since it is Out of Scope (OOS)
22
+
23
+ # We will consider only unintentional drug related deaths since other have very few values
24
+ df = df[df["Cause"] == "Drug poisonings (overdose) Unintentional (X40-X44)"]
25
+
26
+ df = (
27
+ df.dropna()
28
+ ) # dropping rows with missing values since they are very few and will be imputed later
29
+
30
+ # ------------------------------------------
31
+ # Merge with population data
32
+ combined = pd.merge(
33
+ df,
34
+ population,
35
+ on=["State", "State_Code", "County", "County_Code", "Year"],
36
+ how="left",
37
+ validate="1:1",
38
+ indicator=True,
39
+ )
40
+
41
+ # ------------------------------------------
42
+ # Clean the Merged Data
43
+ df2 = combined[
44
+ [
45
+ "State",
46
+ "State_Code",
47
+ "County",
48
+ "County_Code",
49
+ "Year",
50
+ "Population",
51
+ "Deaths",
52
+ ]
53
+ ]
54
+
55
+ # ------------------------------------------
56
+ # calculating Mortality Rate (County Level)
57
+ df3 = df2.copy()
58
+ df3["Mortality_Rate"] = df3["Deaths"] / df3["Population"]
59
+
60
+ # ------------------------------------------
61
+ # Mortality Rate (State Level)
62
+
63
+ # aggregate at state-cause level
64
+ df4 = (
65
+ df3.groupby(["State", "Year"])
66
+ .agg({"Deaths": "sum", "Population": "sum"})
67
+ .reset_index()
68
+ )
69
+
70
+ # clacualting mortality rate
71
+ df4["State_Mortality_Rate"] = df4["Deaths"] / df4["Population"]
72
+
73
+ # ------------------------------------------
74
+ # Creating a list of State-Counties from the POPULATION dataset
75
+ st_county = population[
76
+ ["State", "State_Code", "County", "County_Code", "Year"]
77
+ ].drop_duplicates()
78
+
79
+ # ------------------------------------------
80
+ # Merging State Mortality Rate with State-County list
81
+ master = pd.merge(st_county, df4, on=["State", "Year"], how="left", indicator=True)
82
+
83
+ # dropping NA rows since we have no state level data for them
84
+ master = master[master["_merge"] == "both"]
85
+
86
+ # Cleaning the merged data
87
+ master_2 = master[
88
+ [
89
+ "State",
90
+ "State_Code",
91
+ "County",
92
+ "County_Code",
93
+ "Year",
94
+ "State_Mortality_Rate",
95
+ ]
96
+ ]
97
+
98
+ # ------------------------------------------
99
+ # merge with the county level data
100
+ df5 = pd.merge(
101
+ master_2,
102
+ df3,
103
+ on=["State", "State_Code", "County", "County_Code", "Year"],
104
+ how="left",
105
+ indicator=True,
106
+ validate="1:1",
107
+ )
108
+
109
+ # adding a new flag to identify if original data or not
110
+ df5["Original"] = df5["_merge"] == "both"
111
+
112
+ # ------------------------------------------
113
+ # Remap with population data to get county population
114
+ df6 = pd.merge(
115
+ df5,
116
+ population[["County_Code", "Year", "Population"]],
117
+ on=["County_Code", "Year"],
118
+ how="left",
119
+ validate="1:1",
120
+ indicator="merge2",
121
+ )
122
+
123
+
124
+ # ------------------------------------------
125
+ def new_death(row):
126
+ """Function to Calcuate the deaths in county using the State Mortality Rate and County Population
127
+ if the deaths are missing in the original dataset.
128
+ Max value is limited to 9 since we know that it can't be 10 or more"""
129
+
130
+ if pd.isna(row["Deaths"]):
131
+ return min(int(row["Population_y"] * row["State_Mortality_Rate"]), 9)
132
+ else:
133
+ return row["Deaths"]
134
+
135
+
136
+ # ------------------------------------------
137
+ # calautating the Final Deaths by using the new_death function
138
+ df7 = df6.copy()
139
+ df7["Deaths_2"] = df7.apply(new_death, axis=1)
140
+
141
+ # ------------------------------------------
142
+ # Cleaning the dataset
143
+ df8 = df7[
144
+ [
145
+ "State",
146
+ "State_Code",
147
+ "County",
148
+ "County_Code",
149
+ "Year",
150
+ "Population_y",
151
+ "Deaths_2",
152
+ "Original",
153
+ "State_Mortality_Rate",
154
+ ]
155
+ ]
156
+
157
+ # Renaming columns
158
+ df8 = df8.rename(columns={"Population_y": "Population", "Deaths_2": "Deaths"})
159
+
160
+ # ------------------------------------------
161
+ # Calculating Mortality Rate for each county, if population is 0 then mortality rate is 0
162
+ df8["County_Mortality_Rate"] = np.where(
163
+ df8["Population"] == 0, 0, df8["Deaths"] / df8["Population"]
164
+ )
165
+
166
+ # sorting the rows
167
+ df9 = df8.sort_values(by=["State", "County", "Year"]).reset_index(drop=True)
168
+
169
+
170
+ # ------------------------------------------
171
+ # Saving the Final Dataset
172
+ df9.to_parquet("data.parquet", index=False)
data.parquet ADDED
Binary file (589 kB). View file