import datetime import gc import itertools import multiprocessing import pathlib import random from typing import Generator, Optional from urllib.parse import urlparse import natural.number import orjson import peewee import tqdm import typer from loguru import logger from loguru._logger import Logger from playhouse.sqlite_ext import JSONField, SqliteExtDatabase app = typer.Typer() GB = 2**30 logger.add("RedditThreader_{time}.log",rotation="10 MB",enqueue=True) def read_lines_jsonl(file_name, chunk_size=GB // 2): with open(file_name, "rb") as file_handle: buffer = b"" while True: chunk = file_handle.read(chunk_size) if not chunk: break lines = (buffer + chunk).split(b"\n") for line in lines[:-1]: yield line.strip() buffer = lines[-1] def grouper(n, iterable: Generator): """ >>> list(grouper(3, 'ABCDEFG')) [['A', 'B', 'C'], ['D', 'E', 'F'], ['G']] """ return iter(lambda: list(itertools.islice(iterable, n)), []) def base36encode(number): if not isinstance(number, (int)): raise TypeError("number must be an integer") is_negative = number < 0 number = abs(number) alphabet, base36 = ["0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ", ""] while number: number, i = divmod(number, 36) base36 = alphabet[i] + base36 if is_negative: base36 = "-" + base36 return base36 or alphabet[0] # Sometimes pushshift might send int ids. Fix for those. def transform_ids(post_id: str | int): if isinstance(post_id, int): return base36encode(post_id).lower() return post_id SHN_NETLOC_REWRITE = { "x.com": "twitter.com", "v.redd.it": "video.reddit.com", "i.redd.it": "image.reddit.com", } # Default Reddit filter for comment threads with < -4 upvotes RDT_SCORE = -4 # RES: Custom Comment Depth # 50 Comments: Minimum to activate this feature. # 6: Any comment more than depth 6 is purged RES_DEPTH = [50, 6] # Minimum No. of Comments to consider adding a thread: # - We have at least 5 comments OR # - The root submission's text is more than 2500 characters. (Probably worth fetching) SHN_MIN_REPLIES = 5 SINGLE_COMMENT_MIN = 2500 # fuzzy selection to prune stuff arund this range. FUZZY_SUBREDDIT = (5, 20) def flatten_thread(reply_thread: dict, working_list: list[dict]): # Add the current reply to the list working_list.append({k: v for k, v in reply_thread.items() if k != "children"}) if reply_thread["children"]: for sub_reply in reply_thread["children"]: working_list = flatten_thread(sub_reply, working_list) return working_list def try_get_netloc(url:str): try: return urlparse(url).netloc except Exception: return url def rethread_subreddit( db_path: pathlib.Path, submissions: pathlib.Path, comments: pathlib.Path, subreddit_file: pathlib.Path, global_logger: Optional[Logger] = None, hide_pbars: bool = False, wipe_db_afterdone: bool = True, ): if global_logger: globals()["logger"] = global_logger if db_path.is_file(): db_path.unlink() db_sqlite = SqliteExtDatabase( str(db_path.resolve()), pragmas={"journal_mode": "off", "locking_mode": "exclusive", "synchronous": 0}, ) class BaseModel(peewee.Model): class Meta: database = db_sqlite class SubComment(BaseModel): id = peewee.CharField(unique=True) thread_id = peewee.CharField(index=True) parent_id = peewee.CharField( index=True, ) subreddit = peewee.CharField() is_sub = peewee.BooleanField() data = JSONField() SubComment.create_table() def jsonl_generator(file: pathlib.Path): for line in read_lines_jsonl(file, chunk_size=GB): yield orjson.loads(line) for batch in tqdm.tqdm( grouper(30_000, jsonl_generator(submissions)), desc="Submission Batches", disable=hide_pbars, ): # fixup for ids for sub in batch: sub["id"] = transform_ids(sub["id"]) batch = [ dict( id=f't3_{sub["id"]}', thread_id=f't3_{sub["id"]}', parent_id="", subreddit=sub["sub"]["name"], data=sub, is_sub=True, ) for sub in batch ] # print(len(batch)) with db_sqlite.transaction(): SubComment.insert_many(batch).execute() # print(r) del batch gc.collect() for batch in tqdm.tqdm( grouper(30_000, jsonl_generator(comments)), desc="Comment Batches", disable=hide_pbars, ): # fixup for ids for sub in batch: sub["id"] = transform_ids(sub["id"]) batch = [ dict( id=f't1_{sub["id"]}', thread_id=sub["thread_id"], parent_id=sub["parent_id"] if sub["parent_id"] else "", subreddit=sub["sub"]["name"], data=sub, is_sub=False, ) for sub in batch ] # print(batch) SubComment.insert_many(batch).on_conflict_replace().execute() del batch gc.collect() thread_query = ( SubComment.select(SubComment.thread_id, SubComment.data, SubComment.subreddit) .where(SubComment.is_sub == True) .distinct() ) # Default Reddit filter for comment threads with < -4 upvotes depth_defaults = [0, 0, 0, "", "", {}] thread_count = thread_query.count() logger.debug( f"Making Threads for /r/{db_path.stem} {thread_count} Threads found. Init pass for potential threads" ) # Inital pass usable_threads = 0 for _, prethread_row in enumerate(db_sqlite.execute(thread_query)): # Get comment counts comment_query = SubComment.select( SubComment.id, SubComment.parent_id, SubComment.data ).where(SubComment.thread_id == prethread_row[0], SubComment.is_sub == False, SubComment.parent_id != "") # Count number of comments. pretotal_comments = comment_query.count() preroot_submission = orjson.loads(prethread_row[1]) if pretotal_comments >= SHN_MIN_REPLIES or ( preroot_submission["text"] and len(preroot_submission["text"]) > SINGLE_COMMENT_MIN ): usable_threads += 1 # Check for subreddit inclusion fuzz_threads = random.randrange(FUZZY_SUBREDDIT[0], FUZZY_SUBREDDIT[1]) if usable_threads <= fuzz_threads: logger.debug( f"/r/{db_path.stem} has {usable_threads}, which is less than {fuzz_threads} (fuzzy {FUZZY_SUBREDDIT}) to be worth including. Skipping subreddit entirely..." ) db_sqlite.close() if db_path.is_file(): db_path.unlink() return logger.debug( f"Init Search Done. Found {usable_threads} for /r/{db_path.stem}. Making threads..." ) with open(subreddit_file, "wb") as subreddit_fp: for thread_idx, thread_row in enumerate(db_sqlite.execute(thread_query)): # Get comment counts comment_query = SubComment.select( SubComment.id, SubComment.parent_id, SubComment.data ).where(SubComment.thread_id == thread_row[0], SubComment.is_sub == False) # Count number of comments. total_comments = comment_query.count() root_submission = orjson.loads(thread_row[1]) # logger.debug("Compute Depth Stats") depth_counter = {} if total_comments >= SHN_MIN_REPLIES or ( root_submission["text"] and len(root_submission["text"]) > SINGLE_COMMENT_MIN ): pass else: continue # Compute depth mapping for comment_id, _, comment_data in db_sqlite.execute(comment_query): comment_data = orjson.loads(comment_data) parent_depth_data = depth_counter.get( comment_data["parent_id"], depth_defaults ) # There is probably a better way to do this, but whatever lol. depth_data = [ parent_depth_data[0] + 1, parent_depth_data[1] + comment_data["score"], comment_data["score"], parent_depth_data[3], comment_data["parent_id"], comment_data, ] if not depth_data[3]: if depth_data[2] <= RDT_SCORE: depth_data[3] = f"[Rdt] <{RDT_SCORE} Votes" elif total_comments > RES_DEPTH[0] and depth_data[0] > RES_DEPTH[1]: depth_data[3] = "[RES] TComment Thr" elif depth_data[1] < 0 and depth_data[2] != depth_data[3]: depth_data[3] = "[Shn] Accumulated Score" else: depth_data[3] = "Purged from Parent" depth_counter.setdefault( comment_id, depth_data, ) # thread_file.write_bytes(orjson.dumps(depth_counter, option=orjson.OPT_INDENT_2)) comments_lookup = {} all_comments_data = [] for comment_id, parent_id, comment_data in tqdm.tqdm( db_sqlite.execute(comment_query), desc="Rewire query...", disable=hide_pbars, ): # Yes we do a 2nd json load but it's fast. comment_data = orjson.loads(comment_data) if depth_counter.get(comment_id, depth_defaults)[3]: continue comments_lookup[comment_id] = comment_data all_comments_data.append(comment_data) # Mark as "Purgable". We don't use it anymore here del depth_counter gc.collect() # A bit of code was from chatgpt but I have to rewrite a bunch of it anyway # As all comments should have have a reply to "Something", it's a safe assumption to sort it by creation time. comments_lookup = { k: v for k, v in sorted( comments_lookup.items(), key=lambda item: int(item[1]["created"]) ) } for comment in all_comments_data: comment["children"] = [] root_comments = [] for post in tqdm.tqdm( all_comments_data, desc="Make sorted", disable=hide_pbars ): # parent_id or id's can be int's. # We drop all int's since we now do resolve all int's before hand. parent_id = post["parent_id"] if isinstance(parent_id, int) or isinstance(post["id"], int): continue subdebug = f"" if not isinstance(parent_id, str): # logger.warning(f"{parent_id} is not a valid string. {subdebug}") continue if parent_id.startswith("t3_"): root_comments.append(post) else: if parent_id not in comments_lookup: if len(comments_lookup) < 10: logger.warning(comments_lookup) # This *Should* not happen but if it does then we just warn and skip it. # In practice, it does happen but it's kinda uncommon. logger.warning( f"{parent_id} doesn't seem to exist for {subdebug}" ) continue parent_post = comments_lookup[parent_id] # I still have no idea how does this work. # It *works* though. Though internally probably some pointer magic. parent_post["children"].append(post) # Again, we clear up 2 unused variables. del comments_lookup, all_comments_data gc.collect() # After depth sorting, we reflatten it into a list. # Sort roots by parent main score. # This sorts it based on "Top". # Reddit stopped exposing downvotes to public so we can't replicate "Best" # Else I would have just used "Best" root_comments = sorted(root_comments, key=lambda comment: comment["score"]) flatten_comments = [] for root_comment in root_comments: flatten_comments.extend(flatten_thread(root_comment, [])) flatten_comments.insert(0, root_submission) # Conversion to namedconversation. def to_namedconversation(): conversation = [] for comment in flatten_comments: time = datetime.datetime.fromtimestamp( int(comment["created"]), tz=datetime.UTC ).strftime("%d %b %Y, %H:%m:%S") comment_fmt = { "sender": comment["author"]["name"] if comment["author"] else "[deleted]", "message": "", } if "title" in comment: text = f"[{time}] {comment['title']}\n\n" if "M" in comment["flags"]: text = "[R-18] " + text if "url" in comment and comment["url"]: netloc = try_get_netloc(comment["url"]) if not netloc.endswith(("www.reddit.com", "reddit.com")): netloc = SHN_NETLOC_REWRITE.get(netloc.lower(), netloc) text += f"Link: {netloc}\n\n" text = text.rstrip("\n") else: text = f"[{time}] " if "url" in comment and comment["url"]: netloc = try_get_netloc(comment["url"]) text += f"Link: {netloc}\n\n" added_text = False if "text" in comment and comment["text"]: text += f"{comment['text']}\n\n" added_text = True elif ( "text" in comment and not comment["text"] and comment_fmt["sender"].lower() in ["[removed]", "[deleted]"] ): text += "[Deleted]\n\n" added_text = True else: text += "[No Comment]" logger.warning(f"Empty Text: {comment}") added_text = True if not added_text: logger.warning(f"Invalid comment data? {comment}") text = text.rstrip("\n") comment_fmt["message"] = text conversation.append(comment_fmt) return conversation thread_data = { "thread_id": thread_row[0], "subreddit": thread_row[2], "namedconversation": to_namedconversation(), "submission": root_submission, "comments": root_comments, } usable_threads += 1 subreddit_fp.write( orjson.dumps(thread_data, option=orjson.OPT_APPEND_NEWLINE) ) if thread_idx % 1000 == 0 and thread_idx > 0: logger.debug( f"/r/{db_path.stem} Threading: {round((thread_idx/thread_count)*100,ndigits=2)}% ({natural.number.number(thread_count-thread_idx)} to go...) done." ) logger.debug(f"/r/{db_path.stem} Threads: {100}% done.") if wipe_db_afterdone: try: db_sqlite.close() db_path.unlink() except Exception as e: logger.error(e) @app.command() def file( db_file: pathlib.Path, submission: pathlib.Path, comments: pathlib.Path, thread_output: pathlib.Path, ): rethread_subreddit( db_file, submission, comments, thread_output, wipe_db_afterdone=False ) def main_err_cb(err): logger.exception(err) @app.command() def folder( m700_folder: pathlib.Path, export_folder: pathlib.Path, subfilter_file: pathlib.Path ): reddit_db_tmp = pathlib.Path(".reddit_tmp") if not reddit_db_tmp.is_dir(): reddit_db_tmp.mkdir(exist_ok=True, parents=True) with multiprocessing.Pool(processes=96) as pool: futures = [] selected_subs = set() with open(subfilter_file, "rb") as f: for line in f: selected_subs.add("_".join(orjson.loads(line)["file"].split("_")[:-1])) for sub in [i for i in m700_folder.iterdir() if i.stem.endswith("_Submission")]: root_sub = sub.with_stem(sub.stem[: -len("_Submission")]) comments = root_sub.with_stem(root_sub.stem + "_Comments") if sub.exists() and comments.exists(): if root_sub.stem in selected_subs: # logger.debug(f"Subreddit: /r/{root_sub} was selected.") futures.append( pool.apply_async( rethread_subreddit, args=( reddit_db_tmp / f"{root_sub.stem}.sqlite.db", sub, comments, export_folder / f"{root_sub.stem}.jsonl", None, True, True, ), error_callback=main_err_cb, ) ) else: pass # logger.warning(f"Mismatched: {sub} {comments}") # sub.unlink() if sub.exists() else None # comments.unlink() if comments.exists() else None logger.debug(f"Waiting for {len(futures)}") [i.wait() for i in futures] if __name__ == "__main__": app()