--- license: cc-by-4.0 --- --- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1 # Doc / guide: https://huggingface.co./docs/hub/datasets-cards {} --- # Dataset Card for Dataset Name ## Dataset Description - **Homepage:** - https://github.com/AARSynth/Dataset - **Repository:** - https://github.com/AARSynth/Dataset - **Paper:** - App-Aware Response Synthesis for User Reviews. Umar Farooq, A.B. Siddique, Fuad Jamour, Zahijia Zhao and Vagelis Hristidis, “App-Aware Response Synthesis for User Reviews,” 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 699-708, DOI: https://doi.org/10.1109/BigData50022.2020.9377983. - **Point of Contact:** - Umar Farooq (ufarooq.cs@gmail.com) - Abubakar Siddique (abubakar.ucr@gmail.com) ### Dataset Summary AARSynth is a large-scale app review dataset. There are 570K review-response pairs and more than 2 million user reviews for 103 popular applications. ### Supported Tasks and Leaderboards Question Answer Response Generation ### Languages English ## How to use the dataset? ``` from datasets import load_dataset import pandas as pd # load the dataset mbr_data = load_dataset('recmeapp/AARSynth', data_dir='replies') # Save dataset to .csv file for creating pandas dataframe mbr_data['train'].to_csv('./mbr_data.csv', sep='***') # Convert to pandas dataframe aarsynth_df = pd.read_csv('./mbr_data.csv', sep='***') # How many interactions are there in the AARSynth dataset? print(f'There are {len(aarsynth_df)} interactions in AARSynth dataset.') ``` [More Information Needed] ## Dataset Structure ### Data Instances [More Information Needed] ### Data Fields [More Information Needed] ### Data Splits [More Information Needed] ## Dataset Creation ### Curation Rationale [More Information Needed] ### Source Data #### Initial Data Collection and Normalization [More Information Needed] #### Who are the source language producers? [More Information Needed] ### Annotations #### Annotation process [More Information Needed] #### Who are the annotators? [More Information Needed] ### Personal and Sensitive Information [More Information Needed] ## Considerations for Using the Data ### Social Impact of Dataset [More Information Needed] ### Discussion of Biases [More Information Needed] ### Other Known Limitations [More Information Needed] ## Additional Information ### Dataset Curators Umar Farooq and A.B. Siddique ### Licensing Information [More Information Needed] ### Citation Information - App-Aware Response Synthesis for User Reviews. Umar Farooq, A.B. Siddique, Fuad Jamour, Zahijia Zhao and Vagelis Hristidis, “App-Aware Response Synthesis for User Reviews,” 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 699-708, DOI: https://doi.org/10.1109/BigData50022.2020.9377983. ### Contributions [More Information Needed]