File size: 2,949 Bytes
8627a01
 
 
6485673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a39fc07
6485673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47fe254
 
 
 
4f55c1f
47fe254
 
4f55c1f
47fe254
 
 
 
6485673
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49068c5
6485673
 
 
 
 
 
 
49068c5
 
6485673
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
---
license: cc-by-4.0
---
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
# Doc / guide: https://huggingface.co./docs/hub/datasets-cards
{}
---

# Dataset Card for Dataset Name

## Dataset Description

- **Homepage:**
- https://github.com/AARSynth/Dataset
- **Repository:**
- https://github.com/AARSynth/Dataset
- **Paper:**
- App-Aware Response Synthesis for User Reviews.
  Umar Farooq, A.B. Siddique, Fuad Jamour, Zahijia Zhao and Vagelis Hristidis, “App-Aware Response Synthesis for User Reviews,” 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 699-708, DOI: https://doi.org/10.1109/BigData50022.2020.9377983.
- **Point of Contact:**
- Umar Farooq ([email protected])
- Abubakar Siddique ([email protected])

### Dataset Summary

AARSynth is a large-scale app review dataset. There are 570K review-response pairs and more than 2 million user
reviews for 103 popular applications. 


### Supported Tasks and Leaderboards

Question Answer
Response Generation

### Languages
English

## How to use the dataset?
```
from datasets import load_dataset
import pandas as pd

# load the dataset 
mbr_data = load_dataset('recmeapp/AARSynth', data_dir='replies')

# Save dataset to .csv file for creating pandas dataframe
mbr_data['train'].to_csv('./mbr_data.csv', sep='***') 

# Convert to pandas dataframe
aarsynth_df = pd.read_csv('./mbr_data.csv', sep='***')

# How many interactions are there in the AARSynth dataset?
print(f'There are {len(aarsynth_df)} interactions in AARSynth dataset.')

```

[More Information Needed]

## Dataset Structure

### Data Instances

[More Information Needed]

### Data Fields

[More Information Needed]

### Data Splits

[More Information Needed]

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

Umar Farooq and A.B. Siddique

### Licensing Information

[More Information Needed]

### Citation Information

- App-Aware Response Synthesis for User Reviews.
  Umar Farooq, A.B. Siddique, Fuad Jamour, Zahijia Zhao and Vagelis Hristidis, “App-Aware Response Synthesis for User Reviews,” 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 699-708, DOI: https://doi.org/10.1109/BigData50022.2020.9377983.

### Contributions

[More Information Needed]