File size: 2,949 Bytes
8627a01 6485673 a39fc07 6485673 47fe254 4f55c1f 47fe254 4f55c1f 47fe254 6485673 49068c5 6485673 49068c5 6485673 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 |
---
license: cc-by-4.0
---
---
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/datasetcard.md?plain=1
# Doc / guide: https://huggingface.co./docs/hub/datasets-cards
{}
---
# Dataset Card for Dataset Name
## Dataset Description
- **Homepage:**
- https://github.com/AARSynth/Dataset
- **Repository:**
- https://github.com/AARSynth/Dataset
- **Paper:**
- App-Aware Response Synthesis for User Reviews.
Umar Farooq, A.B. Siddique, Fuad Jamour, Zahijia Zhao and Vagelis Hristidis, “App-Aware Response Synthesis for User Reviews,” 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 699-708, DOI: https://doi.org/10.1109/BigData50022.2020.9377983.
- **Point of Contact:**
- Umar Farooq ([email protected])
- Abubakar Siddique ([email protected])
### Dataset Summary
AARSynth is a large-scale app review dataset. There are 570K review-response pairs and more than 2 million user
reviews for 103 popular applications.
### Supported Tasks and Leaderboards
Question Answer
Response Generation
### Languages
English
## How to use the dataset?
```
from datasets import load_dataset
import pandas as pd
# load the dataset
mbr_data = load_dataset('recmeapp/AARSynth', data_dir='replies')
# Save dataset to .csv file for creating pandas dataframe
mbr_data['train'].to_csv('./mbr_data.csv', sep='***')
# Convert to pandas dataframe
aarsynth_df = pd.read_csv('./mbr_data.csv', sep='***')
# How many interactions are there in the AARSynth dataset?
print(f'There are {len(aarsynth_df)} interactions in AARSynth dataset.')
```
[More Information Needed]
## Dataset Structure
### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
[More Information Needed]
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Umar Farooq and A.B. Siddique
### Licensing Information
[More Information Needed]
### Citation Information
- App-Aware Response Synthesis for User Reviews.
Umar Farooq, A.B. Siddique, Fuad Jamour, Zahijia Zhao and Vagelis Hristidis, “App-Aware Response Synthesis for User Reviews,” 2020 IEEE International Conference on Big Data (Big Data), 2020, pp. 699-708, DOI: https://doi.org/10.1109/BigData50022.2020.9377983.
### Contributions
[More Information Needed] |