Datasets:
rcds
/

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
File size: 5,150 Bytes
38963ec
 
3f5ef14
 
 
 
 
 
 
 
f826f3c
38963ec
3f5ef14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
456cc3a
 
820fd1c
3f5ef14
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c656d59
3f5ef14
c656d59
 
 
 
 
 
 
 
3f5ef14
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
---
license: cc-by-sa-4.0
task_categories:
- token-classification
language:
- de
- fr
- it
pretty_name: Swiss Citation Extraction
size_categories:
- 100K<n<1M
---

# Dataset Card for Swiss Citation Extraction

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:**
- **Repository:**
- **Paper:**
- **Leaderboard:**
- **Point of Contact:**

### Dataset Summary

Swiss Citation Extraction is a multilingual, diachronic dataset of 131K Swiss Federal Supreme Court (FSCS) cases. This dataset is part of a challenging token classification task.
### Supported Tasks and Leaderboards
### Languages

Switzerland has four official languages with three languages German, French and Italian being represenated. The decisions are written by the judges and clerks in the language of the proceedings.

| Language   | Subset     | Number of Documents  | 
|------------|------------|----------------------|  
| German     | **de**     | 85K                  |
| French     | **fr**     | 38K                  |
| Italian    | **it**     | 8K                   |

## Dataset Structure

### Data Fields

```
decision_id:
considerations: 
NER_labels: CITATION refers to a case citation or a reference to another court decision. LAW indicates a reference to a specific law. O is used for words or tokens that don't fall under the previous two labels. In accordance with the IOB format, each tag, apart from 'O', is accompanied by the 'B-' prefix if it marks the beginning of the span, or the 'I-' prefix if it's inside or at the end of the span.
law_area: (string)
language: (string)
year: (int64)
chamber: (string)
region: (string)
```

### Data Instances
[More Information Needed]
### Data Fields
[More Information Needed]
### Data Splits
## Dataset Creation
### Curation Rationale
### Source Data
#### Initial Data Collection and Normalization

The original data are published from the Swiss Federal Supreme Court (https://www.bger.ch) in unprocessed formats (HTML). The documents were downloaded from the Entscheidsuche portal (https://entscheidsuche.ch) in HTML. 

#### Who are the source language producers?

The decisions are written by the judges and clerks in the language of the proceedings.

### Annotations
#### Annotation process

#### Who are the annotators?

Metadata is published by the Swiss Federal Supreme Court (https://www.bger.ch).

### Personal and Sensitive Information

The dataset contains publicly available court decisions from the Swiss Federal Supreme Court. Personal or sensitive information has been anonymized by the court before publication according to the following guidelines: https://www.bger.ch/home/juridiction/anonymisierungsregeln.html.

## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information

We release the data under CC-BY-4.0 which complies with the court licensing (https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf)
© Swiss Federal Supreme Court, 2002-2022

The copyright for the editorial content of this website and the consolidated texts, which is owned by the Swiss Federal Supreme Court, is licensed under the Creative Commons Attribution 4.0 International licence. This means that you can re-use the content provided you acknowledge the source and indicate any changes you have made.
Source: https://www.bger.ch/files/live/sites/bger/files/pdf/de/urteilsveroeffentlichung_d.pdf

### Citation Information

Please cite our [ArXiv-Preprint](https://arxiv.org/abs/2306.09237)
```
@misc{rasiah2023scale,
      title={SCALE: Scaling up the Complexity for Advanced Language Model Evaluation}, 
      author={Vishvaksenan Rasiah and Ronja Stern and Veton Matoshi and Matthias Stürmer and Ilias Chalkidis and Daniel E. Ho and Joel Niklaus},
      year={2023},
      eprint={2306.09237},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

### Contributions