Datasets:
senaK-quasara
commited on
Upload read_dataset.py
Browse files- read_dataset.py +49 -0
read_dataset.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pyarrow.parquet as pq
|
2 |
+
|
3 |
+
METADATA_FILEPATH = 'path/to/your/metadata_file.parquet'
|
4 |
+
EMBEDDINGS_FILEPATH = 'path/to/your/embeddings.dat'
|
5 |
+
|
6 |
+
|
7 |
+
def read_embeddings(filepath):
|
8 |
+
|
9 |
+
# Read the lines from the file
|
10 |
+
with open(filepath, 'rb') as f:
|
11 |
+
lines = f.readlines()
|
12 |
+
|
13 |
+
embedding_dict = {}
|
14 |
+
|
15 |
+
for index, line in enumerate(lines):
|
16 |
+
line_as_list = line.split()
|
17 |
+
|
18 |
+
# Decode the byte string to a regular string and convert to float
|
19 |
+
float_list = [float(byte_string.decode('utf-8')) for byte_string in line_as_list]
|
20 |
+
|
21 |
+
# Save the float list (embeddings) to the dictionary with the index as the key
|
22 |
+
embedding_dict[index] = float_list
|
23 |
+
|
24 |
+
return embedding_dict
|
25 |
+
|
26 |
+
|
27 |
+
#Read the metadata file
|
28 |
+
metadata_df = pq.read_table(METADATA_FILEPATH).to_pandas()
|
29 |
+
|
30 |
+
## How to reach embeddings - example for a specific row
|
31 |
+
unique_id = '390U_535R_2021-08-21064631_69'
|
32 |
+
|
33 |
+
# Get the row with the unique_id
|
34 |
+
row = metadata_df.loc[metadata_df['unique_id'] == unique_id]
|
35 |
+
|
36 |
+
# Get the values for 'data_row' and 'embedding_file'
|
37 |
+
dat_row_value = row['dat_row'] # index of the row in the embedding file
|
38 |
+
embedding_file_value = row['embedding_file'] # specific embedding file for the row
|
39 |
+
|
40 |
+
# Read the embeddings in the embedding file
|
41 |
+
embeddings = read_embeddings(EMBEDDINGS_FILEPATH)
|
42 |
+
vector = embeddings[dat_row_value]
|
43 |
+
|
44 |
+
print(f"Row: {row}, Dat Row: {dat_row_value}, Embedding File: {embedding_file_value}, Vector length: {len(vector)}")
|
45 |
+
#print(f"Vector: {vector}")
|
46 |
+
|
47 |
+
|
48 |
+
|
49 |
+
|