--- language: - en dataset_info: features: - name: text dtype: string - name: id dtype: string - name: metadata struct: - name: date dtype: timestamp[us] - name: dump dtype: string - name: file_path dtype: string - name: int_score dtype: int64 - name: language dtype: string - name: language_score dtype: float64 - name: score dtype: float64 - name: token_count dtype: int64 - name: url dtype: string splits: - name: train num_bytes: 5292938151.266562 num_examples: 999245 download_size: 2716629909 dataset_size: 5292938151.266562 configs: - config_name: default data_files: - split: train path: data/train-* --- ## Qwark Corpus 1.3B+ high quality tokens from the internet, based on [HuggingFaceTB/smollm-corpus](https://huggingface.co./datasets/HuggingFaceTB/smollm-corpus)'s `fineweb-edu-dedup` subset as well as [FineMath-4+](HuggingFaceTB/finemath). Filtering process: | Step | Description | Rows | |--------------------------------------------------------|--------------------------------------------------------|----------------| | 1. Stream dataset until 600K samples have been selected from SmolLM Corpus | Keep only items with score >= 3.5 | 600,000 | | 2. Remove items with length > 50,000 | Filter items exceeding 50,000 characters in length | 597,142 | | 3. Combine with a selection of 4,000 TED transcripts | Add educational TED talk transcripts to the dataset | 601,147 | | 4. Stream 400K samples from FineMath-4+ | Keep only items with score >= 4.0 | 1,001,147 | | 5. Remove items with length > 50,000 | Filter items exceeding 50,000 characters in length | 999,245|