|
|
|
|
|
|
|
"""WMT'16 Biomedical Translation Task - PubMed parallel datasets""" |
|
|
|
import gzip |
|
import datasets |
|
import pandas as pd |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """ |
|
@inproceedings{bojar-etal-2016-findings, |
|
title = Findings of the 2016 Conference on Machine Translation, |
|
author = { |
|
Bojar, Ondrej and |
|
Chatterjee, Rajen and |
|
Federmann, Christian and |
|
Graham, Yvette and |
|
Haddow, Barry and |
|
Huck, Matthias and |
|
Jimeno Yepes, Antonio and |
|
Koehn, Philipp and |
|
Logacheva, Varvara and |
|
Monz, Christof and |
|
Negri, Matteo and |
|
Neveol, Aurelie and |
|
Neves, Mariana and |
|
Popel, Martin and |
|
Post, Matt and |
|
Rubino, Raphael and |
|
Scarton, Carolina and |
|
Specia, Lucia and |
|
Turchi, Marco and |
|
Verspoor, Karin and |
|
Zampieri, Marcos |
|
}, |
|
booktitle = Proceedings of the First Conference on Machine Translation: Volume 2, Shared Task Papers, |
|
month = aug, |
|
year = 2016, |
|
address = Berlin, Germany, |
|
publisher = Association for Computational Linguistics, |
|
url = https://aclanthology.org/W16-2301, |
|
doi = 10.18653/v1/W16-2301, |
|
pages = 131--198, |
|
} |
|
""" |
|
|
|
_LANGUAGE_PAIRS = ['en-pt', 'en-es', 'en-fr'] |
|
_LANGUAGE_PAIRS_TUPLES = [('en','pt'), ('en','es'), ('en','fr')] |
|
|
|
_LICENSE = """ |
|
This work is licensed under a <a rel="license" href="https://creativecommons.org/licenses/by/4.0/">Attribution 4.0 International (CC BY 4.0) License</a>. |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
WMT'16 Biomedical Translation Task - PubMed parallel datasets |
|
http://www.statmt.org/wmt16/biomedical-translation-task.html |
|
""" |
|
|
|
_URL = "https://huggingface.co./datasets/qanastek/WMT-16-PubMed/resolve/main/WMT16.csv.gz" |
|
|
|
|
|
class WMT_16_CONFIG(datasets.BuilderConfig): |
|
def __init__(self, *args, lang1=None, lang2=None, **kwargs): |
|
super().__init__( |
|
*args, |
|
name=f"{lang1}-{lang2}", |
|
**kwargs, |
|
) |
|
self.name = f"{lang1}-{lang2}" |
|
self.lang1 = lang1 |
|
self.lang2 = lang2 |
|
|
|
class WMT_16_PubMed(datasets.GeneratorBasedBuilder): |
|
"""WMT-16-PubMed dataset.""" |
|
|
|
DEFAULT_CONFIG_NAME = "en-fr" |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
WMT_16_CONFIG( |
|
lang1=lang1, |
|
lang2=lang2, |
|
description=f"Translating {lang1} to {lang2} or vice versa", |
|
version=datasets.Version("16.0.0"), |
|
) |
|
for lang1, lang2 in _LANGUAGE_PAIRS_TUPLES |
|
] |
|
BUILDER_CONFIG_CLASS = WMT_16_CONFIG |
|
|
|
|
|
|
|
|
|
|
|
def _info(self): |
|
src, target = self.config.name.split("-") |
|
pair = (src, target) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{"translation": datasets.features.Translation(languages=pair)} |
|
), |
|
supervised_keys=(src, target), |
|
homepage="https://www.statmt.org/wmt16/biomedical-translation-task.html", |
|
citation=_CITATION, |
|
|
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
|
|
data_dir = dl_manager.download(_URL) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": data_dir, |
|
"split": "train", |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
|
|
key_ = 0 |
|
|
|
with open(filepath, 'rb') as fd: |
|
gzip_fd = gzip.GzipFile(fileobj=fd) |
|
df = pd.read_csv(gzip_fd) |
|
|
|
|
|
|
|
for index, row in df.loc[df['lang'] == self.config.name].iterrows(): |
|
|
|
|
|
src, target = str(row['lang']).split("-") |
|
|
|
yield key_, { |
|
"translation": { |
|
src: str(row['source_text']).strip(), |
|
target: str(row['target_text']).strip(), |
|
}, |
|
} |
|
|
|
key_ += 1 |
|
|