rtmindeye
/
generative_models
/configs
/example_training
/autoencoder
/kl-f4
/imagenet-attnfree-logvar.yaml
model: | |
base_learning_rate: 4.5e-6 | |
target: sgm.models.autoencoder.AutoencodingEngine | |
params: | |
input_key: jpg | |
monitor: val/rec_loss | |
loss_config: | |
target: sgm.modules.autoencoding.losses.GeneralLPIPSWithDiscriminator | |
params: | |
perceptual_weight: 0.25 | |
disc_start: 20001 | |
disc_weight: 0.5 | |
learn_logvar: True | |
regularization_weights: | |
kl_loss: 1.0 | |
regularizer_config: | |
target: sgm.modules.autoencoding.regularizers.DiagonalGaussianRegularizer | |
encoder_config: | |
target: sgm.modules.diffusionmodules.model.Encoder | |
params: | |
attn_type: none | |
double_z: True | |
z_channels: 4 | |
resolution: 256 | |
in_channels: 3 | |
out_ch: 3 | |
ch: 128 | |
ch_mult: [1, 2, 4] | |
num_res_blocks: 4 | |
attn_resolutions: [] | |
dropout: 0.0 | |
decoder_config: | |
target: sgm.modules.diffusionmodules.model.Decoder | |
params: ${model.params.encoder_config.params} | |
data: | |
target: sgm.data.dataset.StableDataModuleFromConfig | |
params: | |
train: | |
datapipeline: | |
urls: | |
- DATA-PATH | |
pipeline_config: | |
shardshuffle: 10000 | |
sample_shuffle: 10000 | |
decoders: | |
- pil | |
postprocessors: | |
- target: sdata.mappers.TorchVisionImageTransforms | |
params: | |
key: jpg | |
transforms: | |
- target: torchvision.transforms.Resize | |
params: | |
size: 256 | |
interpolation: 3 | |
- target: torchvision.transforms.ToTensor | |
- target: sdata.mappers.Rescaler | |
- target: sdata.mappers.AddOriginalImageSizeAsTupleAndCropToSquare | |
params: | |
h_key: height | |
w_key: width | |
loader: | |
batch_size: 8 | |
num_workers: 4 | |
lightning: | |
strategy: | |
target: pytorch_lightning.strategies.DDPStrategy | |
params: | |
find_unused_parameters: True | |
modelcheckpoint: | |
params: | |
every_n_train_steps: 5000 | |
callbacks: | |
metrics_over_trainsteps_checkpoint: | |
params: | |
every_n_train_steps: 50000 | |
image_logger: | |
target: main.ImageLogger | |
params: | |
enable_autocast: False | |
batch_frequency: 1000 | |
max_images: 8 | |
increase_log_steps: True | |
trainer: | |
devices: 0, | |
limit_val_batches: 50 | |
benchmark: True | |
accumulate_grad_batches: 1 | |
val_check_interval: 10000 |