File size: 22,362 Bytes
d7b858a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
import numpy as np
from torchvision import transforms
import torch
import torch.nn as nn
import torch.nn.functional as F
import PIL
import random
import os
import matplotlib.pyplot as plt
import pandas as pd
import math
import webdataset as wds
import tempfile
from torchvision.utils import make_grid

import json
from torchmetrics.image.fid import FrechetInceptionDistance
from PIL import Image
import requests
import io
import time 

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

def is_interactive():
    import __main__ as main
    return not hasattr(main, '__file__')

def seed_everything(seed=0, cudnn_deterministic=True):
    random.seed(seed)
    os.environ['PYTHONHASHSEED'] = str(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    if cudnn_deterministic:
        torch.backends.cudnn.deterministic = True
    else:
        ## needs to be False to use conv3D
        print('Note: not using cudnn.deterministic')

def np_to_Image(x):
    if x.ndim==4:
        x=x[0]
    return PIL.Image.fromarray((x.transpose(1, 2, 0)*127.5+128).clip(0,255).astype('uint8'))

def torch_to_Image(x):
    if x.ndim==4:
        x=x[0]
    return transforms.ToPILImage()(x)

def Image_to_torch(x):
    try:
        x = (transforms.ToTensor()(x)[:3].unsqueeze(0)-.5)/.5
    except:
        x = (transforms.ToTensor()(x[0])[:3].unsqueeze(0)-.5)/.5
    return x

def torch_to_matplotlib(x,device=device):
    if torch.mean(x)>10:
        x = (x.permute(0, 2, 3, 1)).clamp(0, 255).to(torch.uint8)
    else:
        x = (x.permute(0, 2, 3, 1) * 255).clamp(0, 255).to(torch.uint8)
    if device=='cpu':
        return x[0]
    else:
        return x.cpu().numpy()[0]

def pairwise_cosine_similarity(A, B, dim=1, eps=1e-8):
    #https://stackoverflow.com/questions/67199317/pytorch-cosine-similarity-nxn-elements
    numerator = A @ B.T
    A_l2 = torch.mul(A, A).sum(axis=dim)
    B_l2 = torch.mul(B, B).sum(axis=dim)
    denominator = torch.max(torch.sqrt(torch.outer(A_l2, B_l2)), torch.tensor(eps))
    return torch.div(numerator, denominator)

def batchwise_pearson_correlation(Z, B):
    # Calculate means
    Z_mean = torch.mean(Z, dim=1, keepdim=True)
    B_mean = torch.mean(B, dim=1, keepdim=True)

    # Subtract means
    Z_centered = Z - Z_mean
    B_centered = B - B_mean

    # Calculate Pearson correlation coefficient
    numerator = Z_centered @ B_centered.T
    Z_centered_norm = torch.linalg.norm(Z_centered, dim=1, keepdim=True)
    B_centered_norm = torch.linalg.norm(B_centered, dim=1, keepdim=True)
    denominator = Z_centered_norm @ B_centered_norm.T

    pearson_correlation = (numerator / denominator)
    return pearson_correlation

def batchwise_cosine_similarity(Z,B):
    Z = Z.flatten(1)
    B = B.flatten(1).T
    Z_norm = torch.linalg.norm(Z, dim=1, keepdim=True)  # Size (n, 1).
    B_norm = torch.linalg.norm(B, dim=0, keepdim=True)  # Size (1, b).
    cosine_similarity = ((Z @ B) / (Z_norm @ B_norm)).T
    return cosine_similarity

def prenormed_batchwise_cosine_similarity(Z,B):
    return (Z @ B.T).T

def cosine_similarity(Z,B,l=0):
    Z = nn.functional.normalize(Z, p=2, dim=1)
    B = nn.functional.normalize(B, p=2, dim=1)
    # if l>0, use distribution normalization
    # https://twitter.com/YifeiZhou02/status/1716513495087472880
    Z = Z - l * torch.mean(Z,dim=0)
    B = B - l * torch.mean(B,dim=0)
    cosine_similarity = (Z @ B.T).T
    return cosine_similarity

def topk(similarities,labels,k=5):
    if k > similarities.shape[0]:
        k = similarities.shape[0]
    topsum=0
    for i in range(k):
        topsum += torch.sum(torch.argsort(similarities,axis=1)[:,-(i+1)] == labels)/len(labels)
    return topsum

def get_non_diagonals(a):
    a = torch.triu(a,diagonal=1)+torch.tril(a,diagonal=-1)
    # make diagonals -1
    a=a.fill_diagonal_(-1)
    return a

def gather_features(image_features, voxel_features, accelerator):  
    all_image_features = accelerator.gather(image_features.contiguous())
    if voxel_features is not None:
        all_voxel_features = accelerator.gather(voxel_features.contiguous())
        return all_image_features, all_voxel_features
    return all_image_features

def soft_clip_loss(preds, targs, temp=0.125): #, distributed=False, accelerator=None):
    # if not distributed:
    clip_clip = (targs @ targs.T)/temp
    brain_clip = (preds @ targs.T)/temp
    # else:
    #     all_targs = gather_features(targs, None, accelerator)
    #     clip_clip = (targs @ all_targs.T)/temp
    #     brain_clip = (preds @ all_targs.T)/temp
    
    loss1 = -(brain_clip.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
    loss2 = -(brain_clip.T.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
    
    loss = (loss1 + loss2)/2
    return loss

def soft_siglip_loss(preds, targs, temp, bias):
    temp = torch.exp(temp)
    
    logits = (preds @ targs.T) * temp + bias
    # diagonals (aka paired samples) should be >0 and off-diagonals <0
    labels = (targs @ targs.T) - 1 + (torch.eye(len(targs)).to(targs.dtype).to(targs.device))

    loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels[:len(preds)])) / len(preds)
    loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels[:,:len(preds)])) / len(preds)
    loss = (loss1 + loss2)/2
    return loss

def mixco_hard_siglip_loss(preds, targs, temp, bias, perm, betas):
    temp = torch.exp(temp)
    
    probs = torch.diag(betas)
    probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas

    logits = (preds @ targs.T) * temp + bias
    labels = probs * 2 - 1
    #labels = torch.eye(len(targs)).to(targs.dtype).to(targs.device) * 2 - 1
    
    loss1 = -torch.sum(nn.functional.logsigmoid(logits * labels)) / len(preds)
    loss2 = -torch.sum(nn.functional.logsigmoid(logits.T * labels)) / len(preds)
    loss = (loss1 + loss2)/2
    return loss

def mixco(voxels, beta=0.15, s_thresh=0.5, perm=None, betas=None, select=None):
    if perm is None:
        perm = torch.randperm(voxels.shape[0])
    voxels_shuffle = voxels[perm].to(voxels.device,dtype=voxels.dtype)
    if betas is None:
        betas = torch.distributions.Beta(beta, beta).sample([voxels.shape[0]]).to(voxels.device,dtype=voxels.dtype)
    if select is None:
        select = (torch.rand(voxels.shape[0]) <= s_thresh).to(voxels.device)
    betas_shape = [-1] + [1]*(len(voxels.shape)-1)
    voxels[select] = voxels[select] * betas[select].reshape(*betas_shape) + \
        voxels_shuffle[select] * (1 - betas[select]).reshape(*betas_shape)
    betas[~select] = 1
    return voxels, perm, betas, select

def mixco_clip_target(clip_target, perm, select, betas):
    clip_target_shuffle = clip_target[perm]
    clip_target[select] = clip_target[select] * betas[select].reshape(-1, 1) + \
        clip_target_shuffle[select] * (1 - betas[select]).reshape(-1, 1)
    return clip_target

def mixco_nce(preds, targs, temp=0.1, perm=None, betas=None, select=None, distributed=False, 
              accelerator=None, local_rank=None, bidirectional=True):
    brain_clip = (preds @ targs.T)/temp
    
    if perm is not None and betas is not None and select is not None:
        probs = torch.diag(betas)
        probs[torch.arange(preds.shape[0]).to(preds.device), perm] = 1 - betas

        loss = -(brain_clip.log_softmax(-1) * probs).sum(-1).mean()
        if bidirectional:
            loss2 = -(brain_clip.T.log_softmax(-1) * probs.T).sum(-1).mean()
            loss = (loss + loss2)/2
        return loss
    else:
        loss =  F.cross_entropy(brain_clip, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
        if bidirectional:
            loss2 = F.cross_entropy(brain_clip.T, torch.arange(brain_clip.shape[0]).to(brain_clip.device))
            loss = (loss + loss2)/2
        return loss
    
def count_params(model):
    total = sum(p.numel() for p in model.parameters())
    trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
    print('param counts:\n{:,} total\n{:,} trainable'.format(total, trainable))
    return trainable

def image_grid(imgs, rows, cols):
    w, h = imgs[0].size
    grid = PIL.Image.new('RGB', size=(cols*w, rows*h))
    for i, img in enumerate(imgs):
        grid.paste(img, box=(i%cols*w, i//cols*h))
    return grid
    
def check_loss(loss):
    if loss.isnan().any():
        raise ValueError('NaN loss')

def cosine_anneal(start, end, steps):
    return end + (start - end)/2 * (1 + torch.cos(torch.pi*torch.arange(steps)/(steps-1)))

def resize(img, img_size=128):
    if img.ndim == 3: img = img[None]
    return nn.functional.interpolate(img, size=(img_size, img_size), mode='nearest')

import braceexpand
def get_dataloaders(
    batch_size,
    image_var='images',
    num_devices=None,
    num_workers=None,
    train_url=None,
    val_url=None,
    meta_url=None,
    num_train=None,
    num_val=None,
    cache_dir="/scratch/tmp/wds-cache",
    seed=0,
    voxels_key="nsdgeneral.npy",
    val_batch_size=None,
    to_tuple=["voxels", "images", "trial"],
    local_rank=0,
    world_size=1,
):
    print("Getting dataloaders...")
    assert image_var == 'images'
    
    def my_split_by_node(urls):
        return urls
    
    train_url = list(braceexpand.braceexpand(train_url))
    val_url = list(braceexpand.braceexpand(val_url))

    if num_devices is None:
        num_devices = torch.cuda.device_count()
    
    if num_workers is None:
        num_workers = num_devices
    
    if num_train is None:
        metadata = json.load(open(meta_url))
        num_train = metadata['totals']['train']
    if num_val is None:
        metadata = json.load(open(meta_url))
        num_val = metadata['totals']['val']

    if val_batch_size is None:
        val_batch_size = batch_size
        
    global_batch_size = batch_size * num_devices
    num_batches = math.floor(num_train / global_batch_size)
    num_worker_batches = math.floor(num_batches / num_workers)
    if num_worker_batches == 0: num_worker_batches = 1
    
    print("\nnum_train",num_train)
    print("global_batch_size",global_batch_size)
    print("batch_size",batch_size)
    print("num_workers",num_workers)
    print("num_batches",num_batches)
    print("num_worker_batches", num_worker_batches)
    
    # train_url = train_url[local_rank:world_size]
    train_data = wds.WebDataset(train_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
        .shuffle(500, initial=500, rng=random.Random(42))\
        .decode("torch")\
        .rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
        .to_tuple(*to_tuple)#\
        # .batched(batch_size, partial=True)#\
        # .with_epoch(num_worker_batches)
    
    # BATCH SIZE SHOULD BE NONE!!! FOR TRAIN AND VAL | resampled=True for train | .batched(val_batch_size, partial=False)
    train_dl = torch.utils.data.DataLoader(train_data, batch_size=batch_size, num_workers=1, shuffle=False)

    # Validation 
    print("val_batch_size",val_batch_size)
    val_data = wds.WebDataset(val_url, resampled=False, cache_dir=cache_dir, nodesplitter=my_split_by_node)\
        .shuffle(500, initial=500, rng=random.Random(42))\
        .decode("torch")\
        .rename(images="jpg;png", voxels=voxels_key, trial="trial.npy", coco="coco73k.npy", reps="num_uniques.npy")\
        .to_tuple(*to_tuple)#\
        # .batched(val_batch_size, partial=True)
    val_dl = torch.utils.data.DataLoader(val_data, batch_size=val_batch_size, num_workers=1, shuffle=False, drop_last=True)

    return train_dl, val_dl, num_train, num_val

pixcorr_preprocess = transforms.Compose([
    transforms.Resize(425, interpolation=transforms.InterpolationMode.BILINEAR),
])
def pixcorr(images,brains,nan=True):
    all_images_flattened = pixcorr_preprocess(images).reshape(len(images), -1)
    all_brain_recons_flattened = pixcorr_preprocess(brains).view(len(brains), -1)
    if nan:
        corrmean = torch.nanmean(torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)))
    else:
        corrmean = torch.mean(torch.diag(batchwise_pearson_correlation(all_images_flattened, all_brain_recons_flattened)))
    return corrmean

def select_annotations(annots, random=True):
    """
    There are 5 annotations per image. Select one of them for each image.
    """
    for i, b in enumerate(annots):
        t = ''
        if random:
            # select random non-empty annotation
            while t == '':
                rand = torch.randint(5, (1,1))[0][0]
                t = b[rand]
        else:
            # select first non-empty annotation
            for j in range(5):
                if b[j] != '':
                    t = b[j]
                    break
        if i == 0:
            txt = np.array(t)
        else:
            txt = np.vstack((txt, t))
    txt = txt.flatten()
    return txt

def add_saturation(image, alpha=2):
    gray_image = 0.2989 * image[:, 0, :, :] + 0.5870 * image[:, 1, :, :] + 0.1140 * image[:, 2, :, :]
    gray_image = gray_image.unsqueeze(1).expand_as(image)
    saturated_image = alpha * image + (1 - alpha) * gray_image
    return torch.clamp(saturated_image, 0, 1)

def find_prompt_by_image_number(image_number, data):
    target_image_filename = f"img_t{image_number}.jpg"
    for entry in data:
        if 'target' in entry and entry['target'].endswith(target_image_filename):
            return entry['prompt']
    return -1

def compute_negative_l1_losses(preds, targets):
    batch_size = preds.size(0)
    
    # Expand dimensions for broadcasting
    expanded_preds = preds.unsqueeze(1)        # Shape: [batch_size, 1, 100]
    expanded_targets = targets.unsqueeze(0)    # Shape: [1, batch_size, 100]
    
    # Compute pairwise L1 differences
    l1_diffs = torch.abs(expanded_preds - expanded_targets)  # Shape: [batch_size, batch_size, 100]
    
    # Mask the diagonal to exclude positive pairs
    mask = torch.eye(batch_size).bool().to(l1_diffs.device)
    l1_diffs[mask] = 0
    
    # Sum L1 differences for each sample against all negatives
    negative_losses = l1_diffs.sum(dim=-1).mean()
    
    return negative_losses


def unclip_recon(x, diffusion_engine, vector_suffix,
                 num_samples=1, offset_noise_level=0.04):
    from generative_models.sgm.util import append_dims
    assert x.ndim==3
    if x.shape[0]==1:
        x = x[[0]]
    with torch.no_grad(), torch.cuda.amp.autocast(dtype=torch.float16), diffusion_engine.ema_scope():
        z = torch.randn(num_samples,4,96,96).to(device) # starting noise, can change to VAE outputs of initial image for img2img

        # clip_img_tokenized = clip_img_embedder(image) 
        # tokens = clip_img_tokenized
        token_shape = x.shape
        tokens = x
        c = {"crossattn": tokens.repeat(num_samples,1,1), "vector": vector_suffix.repeat(num_samples,1)}

        tokens = torch.randn_like(x)
        uc = {"crossattn": tokens.repeat(num_samples,1,1), "vector": vector_suffix.repeat(num_samples,1)}

        for k in c:
            c[k], uc[k] = map(lambda y: y[k][:num_samples].to(device), (c, uc))

        noise = torch.randn_like(z)
        sigmas = diffusion_engine.sampler.discretization(diffusion_engine.sampler.num_steps)
        sigma = sigmas[0].to(z.device)

        if offset_noise_level > 0.0:
            noise = noise + offset_noise_level * append_dims(
                torch.randn(z.shape[0], device=z.device), z.ndim
            )
        noised_z = z + noise * append_dims(sigma, z.ndim)
        noised_z = noised_z / torch.sqrt(
            1.0 + sigmas[0] ** 2.0
        )  # Note: hardcoded to DDPM-like scaling. need to generalize later.

        def denoiser(x, sigma, c):
            return diffusion_engine.denoiser(diffusion_engine.model, x, sigma, c)

        samples_z = diffusion_engine.sampler(denoiser, noised_z, cond=c, uc=uc)
        samples_x = diffusion_engine.decode_first_stage(samples_z)
        samples = torch.clamp((samples_x*.8+.2), min=0.0, max=1.0)
        # samples = torch.clamp((samples_x + .5) / 2.0, min=0.0, max=1.0)
        return samples
    
def soft_cont_loss(student_preds, teacher_preds, teacher_aug_preds, temp=0.125):
    teacher_teacher_aug = (teacher_preds @ teacher_aug_preds.T)/temp
    teacher_teacher_aug_t = (teacher_aug_preds @ teacher_preds.T)/temp
    student_teacher_aug = (student_preds @ teacher_aug_preds.T)/temp
    student_teacher_aug_t = (teacher_aug_preds @ student_preds.T)/temp

    loss1 = -(student_teacher_aug.log_softmax(-1) * teacher_teacher_aug.softmax(-1)).sum(-1).mean()
    loss2 = -(student_teacher_aug_t.log_softmax(-1) * teacher_teacher_aug_t.softmax(-1)).sum(-1).mean()
    
    loss = (loss1 + loss2)/2
    return loss

def iterate_range(start, length, batchsize):
    batch_count = int(length // batchsize )
    residual = int(length % batchsize)
    for i in range(batch_count):
        yield range(start+i*batchsize, start+(i+1)*batchsize),batchsize
    if(residual>0):
        yield range(start+batch_count*batchsize,start+length),residual 
        
        
# Torch fwRF
def get_value(_x):
    return np.copy(_x.data.cpu().numpy())


#subject: nsd subject index between 1-8
#mode: vision, imagery
#stimtype: all, simple, complex, concepts
#average: whether to average across trials, will produce x that is (stimuli, 1, voxels)
#nest: whether to nest the data according to stimuli, will produce x that is (stimuli, trials, voxels)
import pickle
def condition_average(x, y, cond, nest=False):
    idx, idx_count = np.unique(cond, return_counts=True)
    idx_list = [np.array(cond)==i for i in np.sort(idx)]
    if nest:
        avg_x = torch.zeros((len(idx), idx_count.max(), x.shape[1]), dtype=torch.float32)
    else:
        avg_x = torch.zeros((len(idx), 1, x.shape[1]), dtype=torch.float32)
    for i, m in enumerate(idx_list):
        if nest:
            avg_x[i] = x[m]
        else:
            avg_x[i] = torch.mean(x[m], axis=0)
        
    return avg_x, y, len(idx_count)
def load_nsd_mental_imagery(subject, mode, stimtype="all", average=False, nest=False):
    # This file has a bunch of information about the stimuli and cue associations that will make loading it easier
    img_stim_file = "imagery/nsd_imagery/data/nsddata_stimuli/stimuli/nsdimagery_stimuli.pkl3"
    ex_file = open(img_stim_file, 'rb')
    imagery_dict = pickle.load(ex_file)
    ex_file.close()
    # Indicates what experiments trials belong to
    exps = imagery_dict['exps']
    # Indicates the cues for different stimuli
    cues = imagery_dict['cues']
    # Maps the cues to the stimulus image information
    image_map  = imagery_dict['image_map']
    # Organize the indices of the trials according to the modality and the type of stimuli
    cond_idx = {
    'visionsimple': np.arange(len(exps))[exps=='visA'],
    'visioncomplex': np.arange(len(exps))[exps=='visB'],
    'visionconcepts': np.arange(len(exps))[exps=='visC'],
    'visionall': np.arange(len(exps))[np.logical_or(np.logical_or(exps=='visA', exps=='visB'), exps=='visC')],
    'imagerysimple': np.arange(len(exps))[np.logical_or(exps=='imgA_1', exps=='imgA_2')],
    'imagerycomplex': np.arange(len(exps))[np.logical_or(exps=='imgB_1', exps=='imgB_2')],
    'imageryconcepts': np.arange(len(exps))[np.logical_or(exps=='imgC_1', exps=='imgC_2')],
    'imageryall': np.arange(len(exps))[np.logical_or(
                                        np.logical_or(
                                            np.logical_or(exps=='imgA_1', exps=='imgA_2'), 
                                            np.logical_or(exps=='imgB_1', exps=='imgB_2')), 
                                        np.logical_or(exps=='imgC_1', exps=='imgC_2'))]}
    # Load normalized betas
    x = torch.load("imagery/nsd_imagery/data/preprocessed_data/subject{}/nsd_imagery.pt".format(subject)).requires_grad_(False).to("cpu")
    # Find the trial indices conditioned on the type of trials we want to load
    cond_im_idx = {n: [image_map[c] for c in cues[idx]] for n,idx in cond_idx.items()}
    conditionals = cond_im_idx[mode+stimtype]
    # Stimuli file is of shape (18,3,425,425), these can be converted back into PIL images using transforms.ToPILImage()
    y = torch.load("imagery/nsd_imagery/data/nsddata_stimuli/stimuli/imagery_stimuli_18.pt").requires_grad_(False).to("cpu")
    # Prune the beta file down to specific experimental mode/stimuli type
    x = x[cond_idx[mode+stimtype]]
    # If stimtype is not all, then prune the image data down to the specific stimuli type
    if stimtype == "simple":
        y = y[:6]
    elif stimtype == "complex":
        y = y[6:12]
    elif stimtype == "concepts":
        y = y[12:]
    
    # Average or nest the betas across trials
    if average or nest:
        x, y, sample_count = condition_average(x, y, conditionals, nest=nest)
    else:
        x = x.reshape((x.shape[0], 1, x.shape[1]))
    
    # print(x.shape)
    return x, y
    
def bb_soft_clip_loss(preds, targs, temp=0.125):
    temp = np.exp(temp)
    clip_clip = (targs @ targs.T)/temp
    brain_brain = (preds @ preds.T)/temp
    
#     loss1 = -(brain_brain.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
#     loss2 = -(brain_brain.T.log_softmax(-1) * clip_clip.softmax(-1)).sum(-1).mean()
#     loss = (loss1 + loss2)/2
    
    loss = nn.functional.kl_div(brain_brain.log_softmax(-1), clip_clip.softmax(-1), reduction='batchmean')
    return loss #* 1e5

def bb_cossim_loss(preds, targs, temp=None):
    clip_clip = (targs @ targs.T)
    brain_brain = (preds @ preds.T)
    loss = 1 - nn.functional.cosine_similarity(brain_brain, clip_clip).mean()
    return loss 

def load_images_to_numpy(folder_path):
    file_names = [f for f in os.listdir(folder_path) if (f.endswith('.png') or f.endswith('.jpg') or f.endswith('.jpeg'))]
    image_data = []
    image_names = []
    for file_name in file_names:
        image_path = os.path.join(folder_path, file_name)
        image_names.append(file_name)
        with Image.open(image_path) as img:
            img_array = np.array(img)
            if img_array.shape[1] != 224:
                img = img.resize((224,224))
                img_array = np.array(img)
            image_data.append(img_array)
    images_np = np.stack(image_data, axis=0)
    return images_np, image_names