Datasets:
projectlosangeles
commited on
Upload 14 files
Browse files- Monster-MIDI-Dataset-main.zip +2 -2
- SyllablesSearch.py +0 -0
- TMELODIES.py +932 -0
- TMIDIX.py +144 -0
- TPLOTS.py +1369 -0
- tegridy-tools-main.zip +3 -0
- x_transformer_1_23_2.py +2481 -0
- x_transformer_1_27_16.py +23 -394
Monster-MIDI-Dataset-main.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e021400efc79006c854784a2739f31686373d42c916589169f1351b92f86a85
|
3 |
+
size 5812266
|
SyllablesSearch.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
TMELODIES.py
ADDED
@@ -0,0 +1,932 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
|
3 |
+
r'''############################################################################
|
4 |
+
################################################################################
|
5 |
+
#
|
6 |
+
#
|
7 |
+
# Tegridy MELODIES Python Module (TMELODIES)
|
8 |
+
# Version 1.0
|
9 |
+
#
|
10 |
+
# Project Los Angeles
|
11 |
+
#
|
12 |
+
# Tegridy Code 2024
|
13 |
+
#
|
14 |
+
# https://github.com/asigalov61/tegridy-tools
|
15 |
+
#
|
16 |
+
#
|
17 |
+
################################################################################
|
18 |
+
#
|
19 |
+
# All melodies in this module are licensed CC BY-NC-SA
|
20 |
+
#
|
21 |
+
################################################################################
|
22 |
+
#
|
23 |
+
# Copyright 2024 Project Los Angeles / Tegridy Code
|
24 |
+
#
|
25 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
26 |
+
# you may not use this file except in compliance with the License.
|
27 |
+
# You may obtain a copy of the License at
|
28 |
+
#
|
29 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
30 |
+
#
|
31 |
+
# Unless required by applicable law or agreed to in writing, software
|
32 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
33 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
34 |
+
# See the License for the specific language governing permissions and
|
35 |
+
# limitations under the License.
|
36 |
+
#
|
37 |
+
################################################################################
|
38 |
+
################################################################################
|
39 |
+
#
|
40 |
+
# You can decode all melodies easily with TMIDIX Python Module like so...
|
41 |
+
#
|
42 |
+
################################################################################
|
43 |
+
|
44 |
+
import random
|
45 |
+
import TMELODIES
|
46 |
+
import TMIDIX
|
47 |
+
|
48 |
+
melody = random.choice(TMELODIES.ALL_MELODIES)
|
49 |
+
|
50 |
+
mel_chords = TMELODIES.harmonize_melody(melody)
|
51 |
+
|
52 |
+
name, part, key, output_score = TMELODIES.melody_to_enhanced_score_notes(melody,
|
53 |
+
harmonized_tones_chords=mel_chords
|
54 |
+
)
|
55 |
+
|
56 |
+
print('=' * 70)
|
57 |
+
print('Song:', name+' '+part+' in '+key)
|
58 |
+
print('=' * 70)
|
59 |
+
|
60 |
+
midi_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(output_score,
|
61 |
+
output_signature = name+' '+part+' in '+key,
|
62 |
+
output_file_name = name+' '+part+' in '+key,
|
63 |
+
track_name='Project Los Angeles',
|
64 |
+
timings_multiplier=16
|
65 |
+
)
|
66 |
+
|
67 |
+
print('=' * 70)
|
68 |
+
|
69 |
+
################################################################################
|
70 |
+
'''
|
71 |
+
|
72 |
+
ALL_MELODIES = [['Arabian Nights', 'Verse', 'A', 'Minor',
|
73 |
+
[[0, 13, 48], [13, 13, 50], [14, 27, 52], [28, 13, 48], [13, 13, 50],
|
74 |
+
[14, 27, 52], [28, 13, 48], [13, 13, 52], [14, 19, 51], [20, 14, 47],
|
75 |
+
[15, 19, 49], [19, 28, 51], [29, 13, 47], [14, 13, 51], [14, 20, 50],
|
76 |
+
[20, 19, 50], [20, 18, 50], [18, 24, 50], [24, 27, 52], [28, 68, 48],
|
77 |
+
[82, 13, 52], [14, 13, 53], [14, 20, 55], [20, 20, 51], [21, 14, 53],
|
78 |
+
[14, 20, 55], [21, 20, 51], [20, 13, 55], [14, 20, 54], [21, 20, 50],
|
79 |
+
[20, 13, 52], [14, 27, 54], [28, 13, 50], [14, 13, 54], [13, 20, 53],
|
80 |
+
[21, 20, 53], [21, 13, 53], [13, 27, 53], [42, 13, 55], [14, 68, 52],
|
81 |
+
[82, 13, 57], [14, 13, 59], [14, 27, 60], [27, 13, 57], [14, 13, 59],
|
82 |
+
[14, 27, 60], [28, 13, 57], [13, 13, 59], [14, 27, 60], [28, 13, 57],
|
83 |
+
[13, 13, 59], [14, 27, 60], [28, 13, 57], [14, 13, 59], [14, 27, 60],
|
84 |
+
[27, 13, 57], [13, 13, 59], [14, 27, 60], [28, 27, 57], [28, 82, 52],
|
85 |
+
[82, 13, 48], [14, 13, 50], [14, 27, 52], [28, 13, 48], [13, 13, 50],
|
86 |
+
[14, 27, 52], [27, 13, 48], [14, 13, 52], [14, 19, 51], [19, 14, 47],
|
87 |
+
[15, 19, 49], [20, 28, 51], [29, 13, 47], [14, 13, 51], [14, 20, 52],
|
88 |
+
[20, 19, 52], [19, 18, 52], [19, 17, 60], [17, 20, 59], [21, 20, 57],
|
89 |
+
[20, 62, 57]]],
|
90 |
+
['Beard Barb', 'Chorus', 'F', 'Major',
|
91 |
+
[[0, 35, 81], [41, 42, 81], [42, 20, 83], [18, 20, 81], [19, 20, 79],
|
92 |
+
[20, 21, 81], [20, 61, 79], [61, 12, 76], [10, 11, 74], [11, 65, 72],
|
93 |
+
[82, 31, 81], [37, 43, 81], [42, 23, 83], [22, 20, 81], [20, 18, 79],
|
94 |
+
[17, 22, 81], [22, 94, 79], [163, 32, 81], [39, 40, 81], [39, 23, 83],
|
95 |
+
[21, 20, 81], [21, 20, 79], [18, 21, 81], [21, 82, 79], [83, 60, 72],
|
96 |
+
[81, 30, 77], [29, 11, 76], [10, 21, 77], [22, 18, 81], [19, 22, 79],
|
97 |
+
[21, 35, 81], [41, 11, 76], [9, 10, 74], [9, 77, 72]]],
|
98 |
+
['Beard Barb', 'Verse', 'A', 'Major',
|
99 |
+
[[0, 27, 76], [39, 28, 74], [40, 28, 72], [39, 21, 69], [20, 10, 72],
|
100 |
+
[12, 35, 67], [132, 20, 69], [19, 10, 72], [12, 29, 67], [49, 20, 69],
|
101 |
+
[20, 10, 72], [9, 32, 67], [72, 20, 76], [19, 25, 77], [125, 35, 77],
|
102 |
+
[42, 35, 74], [41, 34, 71], [40, 18, 76], [20, 11, 71], [11, 57, 72],
|
103 |
+
[69, 18, 76], [20, 12, 69], [22, 11, 69], [12, 8, 71], [8, 11, 72],
|
104 |
+
[13, 7, 71], [6, 11, 72], [13, 10, 69], [9, 17, 67], [17, 35, 76],
|
105 |
+
[82, 12, 69], [13, 7, 71], [7, 13, 72], [12, 8, 71], [8, 11, 72],
|
106 |
+
[12, 10, 69], [9, 16, 67], [18, 30, 76], [83, 13, 69], [13, 7, 71],
|
107 |
+
[8, 10, 72], [10, 8, 71], [8, 10, 72], [11, 10, 69], [10, 17, 67],
|
108 |
+
[19, 32, 76], [81, 5, 76], [13, 3, 76], [9, 5, 76], [13, 6, 76], [8, 5, 74],
|
109 |
+
[14, 7, 74], [6, 13, 72]]],
|
110 |
+
['Blue Railcart', 'Chorus', 'B-', 'Minor',
|
111 |
+
[[0, 23, 70], [26, 10, 65], [13, 10, 70], [13, 12, 68], [14, 12, 66],
|
112 |
+
[13, 25, 63], [26, 16, 66], [13, 13, 65], [15, 24, 60], [25, 13, 66],
|
113 |
+
[14, 13, 65], [14, 12, 61], [40, 12, 70], [12, 15, 69], [14, 13, 70],
|
114 |
+
[13, 14, 72], [14, 12, 70], [13, 23, 66], [27, 13, 65], [13, 12, 73],
|
115 |
+
[13, 12, 72], [13, 13, 73], [15, 34, 70], [56, 23, 70], [27, 13, 65],
|
116 |
+
[13, 13, 70], [12, 14, 68], [13, 15, 66], [14, 26, 63], [26, 16, 66],
|
117 |
+
[14, 13, 65], [14, 27, 60], [27, 14, 66], [12, 12, 65], [15, 13, 61],
|
118 |
+
[25, 24, 70], [27, 15, 69], [13, 13, 70], [13, 14, 72], [14, 13, 70],
|
119 |
+
[14, 24, 66], [26, 13, 65], [13, 11, 73], [13, 14, 72], [13, 12, 73],
|
120 |
+
[14, 38, 70]]],
|
121 |
+
['Blue Railcart', 'Verse', 'E-', 'Minor',
|
122 |
+
[[0, 11, 65], [13, 13, 70], [12, 13, 69], [13, 13, 70], [15, 14, 72],
|
123 |
+
[12, 13, 70], [14, 13, 68], [13, 13, 70], [14, 24, 68], [26, 23, 66],
|
124 |
+
[27, 36, 66], [56, 12, 63], [12, 13, 68], [13, 13, 67], [12, 13, 68],
|
125 |
+
[15, 13, 70], [12, 12, 68], [14, 13, 63], [13, 14, 66], [15, 46, 65],
|
126 |
+
[107, 11, 65], [12, 14, 70], [15, 14, 69], [12, 13, 70], [14, 15, 72],
|
127 |
+
[13, 12, 70], [13, 14, 68], [13, 14, 66], [15, 29, 65], [27, 24, 63],
|
128 |
+
[26, 14, 70], [55, 13, 65], [12, 13, 73], [13, 13, 72], [13, 12, 70],
|
129 |
+
[13, 15, 69], [14, 13, 70], [14, 12, 72], [13, 13, 69], [14, 57, 70]]],
|
130 |
+
['Bremen Musicians', 'Verse', 'C', 'Major',
|
131 |
+
[[0, 15, 60], [16, 15, 60], [15, 15, 60], [15, 15, 62], [15, 15, 64],
|
132 |
+
[16, 15, 64], [15, 15, 60], [15, 15, 64], [16, 30, 67], [30, 30, 64],
|
133 |
+
[31, 60, 67], [60, 15, 65], [16, 15, 65], [15, 15, 65], [15, 15, 64],
|
134 |
+
[15, 15, 62], [16, 15, 62], [15, 15, 65], [15, 15, 69], [15, 30, 67],
|
135 |
+
[31, 30, 65], [30, 61, 67], [61, 45, 64], [46, 15, 64], [15, 30, 67],
|
136 |
+
[31, 30, 64], [31, 15, 69], [15, 15, 69], [15, 15, 69], [15, 15, 71],
|
137 |
+
[16, 30, 72], [30, 30, 69], [31, 15, 74], [15, 15, 74], [15, 15, 74],
|
138 |
+
[15, 15, 72], [16, 15, 71], [15, 15, 67], [15, 15, 71], [15, 15, 74],
|
139 |
+
[16, 30, 72], [30, 30, 71], [31, 61, 69], [61, 45, 65], [45, 15, 65],
|
140 |
+
[16, 30, 69], [30, 30, 72], [31, 30, 71], [30, 30, 69], [30, 30, 71],
|
141 |
+
[31, 30, 74], [30, 15, 76], [16, 15, 74], [15, 45, 72]]],
|
142 |
+
['Chunga Changa', 'Chorus', 'G', 'Major',
|
143 |
+
[[0, 7, 67], [16, 6, 72], [16, 15, 71], [20, 7, 69], [9, 7, 67], [17, 6, 69],
|
144 |
+
[14, 19, 71], [24, 6, 69], [6, 6, 67], [16, 6, 69], [15, 21, 69],
|
145 |
+
[22, 5, 67], [9, 6, 67], [14, 6, 69], [15, 21, 69], [23, 5, 67], [9, 6, 67],
|
146 |
+
[15, 5, 69], [15, 21, 69], [23, 4, 67], [7, 6, 67], [15, 6, 69],
|
147 |
+
[15, 21, 69], [22, 5, 67], [8, 5, 69], [15, 7, 71], [16, 19, 69],
|
148 |
+
[22, 7, 67], [70, 7, 67], [15, 6, 72], [15, 20, 71], [21, 6, 69], [8, 5, 67],
|
149 |
+
[16, 6, 69], [16, 21, 71], [23, 6, 69], [7, 5, 67], [14, 6, 69],
|
150 |
+
[16, 21, 69], [24, 4, 67], [6, 6, 67], [15, 6, 69], [16, 19, 69],
|
151 |
+
[22, 3, 67], [8, 6, 67], [15, 6, 69], [15, 22, 69], [24, 5, 67], [9, 7, 67],
|
152 |
+
[15, 5, 69], [13, 22, 69], [23, 6, 67], [7, 7, 65], [17, 7, 64],
|
153 |
+
[14, 20, 62], [24, 8, 60]]],
|
154 |
+
['Chunga Changa', 'Verse', 'C', 'Minor',
|
155 |
+
[[0, 4, 60], [15, 5, 63], [14, 6, 67], [16, 5, 67], [46, 20, 67], [23, 6, 65],
|
156 |
+
[6, 6, 67], [16, 7, 68], [14, 14, 67], [77, 23, 72], [30, 6, 63],
|
157 |
+
[15, 6, 62], [16, 6, 62], [47, 16, 62], [20, 6, 63], [7, 7, 65], [17, 6, 67],
|
158 |
+
[15, 13, 63], [91, 6, 60], [16, 6, 63], [14, 6, 67], [16, 6, 67],
|
159 |
+
[47, 17, 67], [21, 6, 65], [7, 6, 67], [16, 7, 68], [17, 28, 67],
|
160 |
+
[71, 22, 72], [32, 7, 63], [15, 7, 62], [16, 7, 62], [47, 15, 62],
|
161 |
+
[22, 6, 63], [6, 9, 65], [17, 7, 67], [16, 12, 60]]],
|
162 |
+
['Clouds', 'Chorus', 'E', 'Minor',
|
163 |
+
[[0, 15, 71], [13, 7, 76], [17, 6, 79], [15, 110, 83], [162, 5, 83],
|
164 |
+
[17, 15, 83], [13, 16, 84], [15, 17, 83], [16, 14, 81], [14, 13, 79],
|
165 |
+
[15, 45, 83], [45, 51, 78], [137, 16, 71], [14, 5, 75], [15, 6, 78],
|
166 |
+
[17, 123, 81], [165, 16, 83], [15, 6, 81], [15, 15, 83], [15, 6, 84],
|
167 |
+
[15, 5, 83], [15, 5, 81], [15, 38, 84], [45, 72, 83], [105, 16, 84],
|
168 |
+
[15, 16, 83], [15, 16, 84], [15, 15, 83], [15, 16, 81], [15, 15, 80],
|
169 |
+
[15, 30, 83], [30, 15, 81], [15, 76, 72], [135, 29, 83], [30, 30, 78],
|
170 |
+
[30, 60, 81], [60, 59, 79], [90, 12, 81], [15, 18, 79], [15, 17, 81],
|
171 |
+
[15, 17, 79], [15, 16, 78], [15, 16, 76], [15, 31, 83], [30, 15, 79],
|
172 |
+
[15, 72, 76], [135, 31, 79], [30, 28, 75], [30, 85, 76]]],
|
173 |
+
['Clouds', 'Verse', 'E', 'Minor',
|
174 |
+
[[0, 16, 71], [15, 15, 76], [15, 30, 79], [31, 16, 78], [14, 15, 76],
|
175 |
+
[14, 15, 75], [14, 17, 76], [15, 18, 78], [17, 15, 75], [14, 71, 76],
|
176 |
+
[89, 15, 71], [15, 17, 72], [17, 23, 74], [30, 5, 74], [14, 13, 74],
|
177 |
+
[13, 15, 76], [15, 15, 74], [16, 16, 72], [15, 17, 74], [15, 31, 72],
|
178 |
+
[32, 43, 71], [57, 17, 72], [17, 13, 71], [15, 27, 69], [28, 15, 72],
|
179 |
+
[17, 15, 76], [15, 16, 81], [15, 17, 79], [15, 16, 78], [14, 14, 76],
|
180 |
+
[15, 55, 79], [92, 17, 78], [15, 13, 76], [15, 30, 71], [30, 14, 76],
|
181 |
+
[13, 17, 78], [16, 13, 79], [13, 16, 78], [16, 14, 81], [14, 17, 79],
|
182 |
+
[16, 33, 78], [31, 20, 76]]],
|
183 |
+
['Daddys Song', 'Chorus', 'A-', 'Major',
|
184 |
+
[[0, 7, 73], [15, 6, 68], [14, 15, 70], [14, 5, 68], [15, 7, 73], [14, 5, 68],
|
185 |
+
[15, 14, 70], [14, 7, 68], [14, 15, 72], [29, 9, 72], [14, 4, 68],
|
186 |
+
[15, 27, 70], [29, 13, 68], [28, 6, 72], [15, 5, 68], [14, 14, 70],
|
187 |
+
[14, 6, 68], [15, 6, 72], [14, 5, 68], [15, 15, 70], [14, 6, 68],
|
188 |
+
[29, 15, 70], [14, 14, 68], [14, 14, 66], [15, 29, 65], [29, 19, 68],
|
189 |
+
[28, 6, 73], [15, 5, 68], [14, 16, 70], [14, 4, 68], [15, 5, 73],
|
190 |
+
[14, 5, 68], [14, 14, 70], [15, 8, 68], [14, 18, 73], [29, 15, 73],
|
191 |
+
[14, 14, 72], [15, 27, 75], [28, 19, 70], [29, 6, 73], [14, 16, 73],
|
192 |
+
[15, 17, 72], [14, 17, 70], [14, 6, 72], [15, 18, 72], [14, 20, 70],
|
193 |
+
[15, 11, 68], [28, 13, 66], [15, 15, 65], [14, 17, 63], [14, 34, 68],
|
194 |
+
[58, 4, 73], [14, 16, 73], [14, 15, 72], [15, 15, 70], [14, 7, 72],
|
195 |
+
[15, 16, 72], [14, 18, 70], [14, 13, 68], [29, 17, 68], [15, 17, 70],
|
196 |
+
[14, 20, 72], [14, 16, 73]]],
|
197 |
+
['Daddys Song', 'Verse', 'C#', 'Minor',
|
198 |
+
[[0, 23, 68], [29, 28, 68], [29, 30, 73], [29, 17, 68], [14, 13, 66],
|
199 |
+
[14, 30, 64], [29, 27, 66], [29, 31, 64], [28, 29, 63], [29, 29, 66],
|
200 |
+
[29, 31, 69], [29, 27, 68], [29, 13, 63], [14, 17, 64], [14, 31, 66],
|
201 |
+
[29, 31, 68], [29, 35, 64], [57, 20, 68], [29, 24, 68], [29, 31, 73],
|
202 |
+
[29, 10, 68], [14, 15, 69], [14, 27, 71], [29, 27, 73], [29, 28, 69],
|
203 |
+
[29, 18, 66], [28, 27, 73], [29, 29, 69], [29, 28, 68], [28, 12, 66],
|
204 |
+
[15, 13, 64], [14, 31, 66], [29, 27, 68], [29, 20, 61]]],
|
205 |
+
['Dreidel', 'Chorus', 'C', 'Major',
|
206 |
+
[[0, 6, 64], [14, 8, 67], [17, 6, 64], [14, 7, 67], [15, 6, 64], [14, 7, 67],
|
207 |
+
[17, 22, 64], [32, 6, 64], [15, 6, 67], [16, 6, 67], [14, 8, 65],
|
208 |
+
[16, 6, 64], [16, 35, 62], [49, 6, 62], [14, 7, 65], [16, 6, 62],
|
209 |
+
[14, 6, 65], [17, 6, 62], [15, 6, 65], [17, 20, 62], [30, 6, 62],
|
210 |
+
[15, 7, 67], [15, 7, 65], [16, 7, 64], [15, 7, 62], [15, 26, 60]]],
|
211 |
+
['Dreidel', 'Verse', 'C', 'Major',
|
212 |
+
[[0, 22, 55], [32, 6, 60], [15, 8, 60], [14, 8, 62], [15, 8, 62],
|
213 |
+
[15, 12, 64], [17, 25, 60], [31, 8, 64], [15, 7, 67], [15, 8, 67],
|
214 |
+
[15, 9, 65], [15, 8, 64], [17, 36, 62], [50, 6, 62], [14, 7, 62],
|
215 |
+
[15, 7, 62], [15, 6, 64], [16, 6, 64], [15, 7, 65], [15, 21, 62],
|
216 |
+
[32, 7, 62], [16, 7, 67], [16, 8, 65], [15, 8, 64], [15, 8, 62],
|
217 |
+
[16, 41, 60]]],
|
218 |
+
['Duck Tales', 'Chorus', 'A', 'Major',
|
219 |
+
[[0, 12, 68], [20, 11, 68], [31, 8, 59], [7, 22, 71], [21, 11, 68],
|
220 |
+
[75, 25, 64], [28, 12, 62], [21, 14, 60], [19, 13, 62], [21, 14, 64],
|
221 |
+
[20, 14, 62], [20, 14, 60], [20, 10, 62], [20, 13, 68], [22, 12, 68],
|
222 |
+
[32, 8, 59], [7, 23, 71], [24, 13, 68], [73, 25, 64], [29, 13, 62],
|
223 |
+
[19, 14, 60], [19, 12, 62], [20, 15, 64], [21, 12, 62], [20, 13, 60],
|
224 |
+
[20, 12, 62], [22, 12, 68], [21, 12, 68]]],
|
225 |
+
['Duck Tales', 'Verse', 'F#', 'Major',
|
226 |
+
[[0, 12, 52], [20, 13, 56], [22, 13, 59], [19, 11, 61], [20, 8, 62],
|
227 |
+
[14, 10, 61], [20, 23, 61], [29, 10, 59], [20, 24, 57], [31, 30, 56],
|
228 |
+
[51, 23, 57], [32, 24, 56], [48, 15, 52], [21, 17, 56], [21, 14, 59],
|
229 |
+
[20, 14, 61], [20, 9, 62], [14, 12, 61], [19, 16, 61], [22, 16, 59],
|
230 |
+
[28, 24, 62], [30, 28, 61], [49, 26, 62], [34, 26, 61], [69, 16, 54],
|
231 |
+
[21, 13, 57], [21, 12, 61], [20, 26, 61], [34, 28, 59], [67, 15, 61],
|
232 |
+
[21, 14, 64], [20, 13, 66], [21, 26, 68], [32, 7, 66], [12, 15, 66]]],
|
233 |
+
['Eagles Learn to Fly', 'Verse', 'F#', 'Minor',
|
234 |
+
[[0, 28, 68], [29, 17, 73], [14, 15, 68], [43, 12, 66], [21, 9, 66],
|
235 |
+
[8, 16, 64], [14, 14, 63], [14, 33, 61], [73, 14, 61], [14, 15, 64],
|
236 |
+
[14, 17, 68], [14, 40, 73], [44, 14, 68], [14, 48, 73], [43, 14, 68],
|
237 |
+
[15, 27, 71], [28, 36, 66], [43, 16, 59], [15, 15, 62], [14, 5, 66],
|
238 |
+
[15, 41, 71], [43, 14, 66], [14, 27, 71], [29, 29, 73], [29, 29, 69],
|
239 |
+
[28, 34, 64], [44, 7, 73], [14, 8, 73], [14, 15, 73], [15, 67, 71],
|
240 |
+
[72, 15, 71], [14, 14, 69], [14, 14, 68], [15, 13, 66], [28, 26, 68],
|
241 |
+
[29, 14, 69], [29, 26, 68], [29, 15, 73], [14, 20, 68], [43, 14, 66],
|
242 |
+
[22, 8, 66], [7, 14, 64], [14, 15, 63], [15, 28, 61]]],
|
243 |
+
['Freak', 'Chorus', 'D', 'Minor',
|
244 |
+
[[0, 17, 76], [19, 6, 81], [19, 20, 81], [37, 4, 69], [8, 9, 69],
|
245 |
+
[11, 23, 77], [28, 14, 74], [28, 17, 74], [19, 6, 79], [17, 18, 79],
|
246 |
+
[20, 18, 74], [19, 21, 77], [19, 37, 76], [39, 6, 73], [17, 20, 79],
|
247 |
+
[18, 19, 77], [18, 12, 74], [59, 17, 76], [19, 14, 72], [56, 17, 76],
|
248 |
+
[16, 6, 74], [19, 6, 71], [20, 18, 72], [17, 25, 69]]],
|
249 |
+
['Freak', 'Verse', 'C', 'Minor',
|
250 |
+
[[0, 19, 76], [18, 20, 77], [19, 21, 76], [21, 17, 72], [17, 18, 69],
|
251 |
+
[20, 33, 72], [35, 19, 71], [20, 21, 74], [19, 20, 76], [19, 20, 74],
|
252 |
+
[20, 17, 71], [17, 20, 74], [20, 35, 77], [36, 17, 76], [18, 19, 79],
|
253 |
+
[19, 18, 81], [18, 20, 79], [21, 19, 76], [20, 17, 72], [18, 34, 76],
|
254 |
+
[37, 6, 74], [17, 18, 74], [20, 19, 76], [19, 18, 74], [20, 17, 76],
|
255 |
+
[17, 20, 77], [19, 37, 79]]],
|
256 |
+
['Friend Song', 'Chorus', 'A', 'Minor',
|
257 |
+
[[0, 14, 71], [13, 15, 69], [14, 18, 62], [28, 15, 62], [13, 11, 65],
|
258 |
+
[14, 27, 69], [28, 14, 67], [14, 11, 65], [14, 6, 64], [13, 6, 64],
|
259 |
+
[14, 16, 64], [14, 14, 69], [14, 29, 72], [41, 15, 72], [14, 5, 71],
|
260 |
+
[14, 3, 71], [13, 12, 71], [14, 12, 67], [14, 27, 69], [28, 26, 71],
|
261 |
+
[27, 40, 72], [56, 26, 71], [27, 27, 69], [28, 16, 62], [27, 12, 62],
|
262 |
+
[14, 12, 65], [14, 27, 69], [28, 14, 67], [13, 13, 65], [14, 6, 64],
|
263 |
+
[14, 6, 64], [14, 14, 64], [14, 12, 69], [14, 27, 72], [41, 13, 72],
|
264 |
+
[14, 4, 71], [14, 3, 71], [14, 13, 71], [14, 12, 74], [13, 17, 72],
|
265 |
+
[28, 24, 71], [28, 11, 69]]],
|
266 |
+
['Friend Song', 'Verse', 'A', 'Minor',
|
267 |
+
[[0, 3, 69], [14, 3, 71], [14, 13, 72], [13, 4, 74], [14, 4, 72], [14, 4, 71],
|
268 |
+
[14, 4, 69], [55, 54, 64], [55, 23, 60], [27, 4, 69], [14, 4, 71],
|
269 |
+
[14, 54, 72], [55, 51, 74], [56, 24, 72], [27, 31, 71], [28, 25, 59],
|
270 |
+
[27, 5, 67], [14, 4, 69], [14, 13, 71], [14, 3, 72], [14, 5, 71],
|
271 |
+
[13, 5, 69], [14, 6, 68], [55, 55, 65], [55, 18, 64], [28, 3, 68],
|
272 |
+
[14, 4, 69], [13, 52, 71], [56, 52, 72], [55, 22, 71], [27, 26, 69],
|
273 |
+
[28, 26, 57]]],
|
274 |
+
['Gang Dance', 'Chorus', 'D', 'Minor',
|
275 |
+
[[0, 11, 64], [21, 23, 64], [25, 7, 70], [49, 6, 69], [23, 23, 69],
|
276 |
+
[24, 12, 64], [68, 43, 65], [45, 6, 64], [23, 8, 65], [14, 7, 64],
|
277 |
+
[10, 6, 65], [11, 8, 67], [12, 13, 69], [50, 7, 67], [24, 25, 67],
|
278 |
+
[22, 11, 74], [48, 6, 73], [23, 25, 73], [24, 10, 69], [47, 6, 74],
|
279 |
+
[23, 54, 74]]],
|
280 |
+
['Gang Dance', 'Verse', 'D', 'Minor',
|
281 |
+
[[0, 27, 69], [35, 5, 68], [10, 27, 69], [35, 6, 68], [10, 9, 69],
|
282 |
+
[24, 11, 65], [24, 12, 64], [22, 11, 62], [49, 43, 67], [47, 6, 62],
|
283 |
+
[25, 5, 67], [11, 5, 67], [12, 6, 67], [10, 7, 69], [12, 13, 67],
|
284 |
+
[72, 43, 67], [46, 7, 60], [24, 7, 67], [20, 23, 70], [25, 11, 69],
|
285 |
+
[22, 15, 67], [24, 9, 65], [24, 8, 65], [48, 4, 65], [11, 4, 65],
|
286 |
+
[11, 5, 65], [12, 5, 65], [11, 6, 65], [12, 9, 67], [13, 12, 65]]],
|
287 |
+
['Gang Song', 'Chorus', 'C', 'Minor',
|
288 |
+
[[0, 24, 62], [38, 22, 62], [38, 25, 62], [38, 23, 63], [37, 24, 60],
|
289 |
+
[38, 24, 55], [38, 9, 63], [19, 11, 63], [19, 12, 62], [19, 9, 63],
|
290 |
+
[19, 30, 65], [38, 25, 65], [38, 32, 65], [38, 27, 65], [38, 28, 67],
|
291 |
+
[37, 14, 55], [39, 6, 67], [18, 12, 67], [19, 14, 65], [19, 10, 67],
|
292 |
+
[19, 31, 68], [38, 10, 70], [19, 22, 72], [38, 13, 72], [19, 9, 70],
|
293 |
+
[19, 9, 68], [19, 30, 67], [38, 10, 68], [19, 22, 70], [37, 11, 70],
|
294 |
+
[19, 10, 68], [20, 11, 67], [18, 20, 65], [19, 10, 64], [19, 12, 65],
|
295 |
+
[19, 11, 68], [19, 30, 67], [38, 13, 67], [19, 11, 67], [19, 34, 65],
|
296 |
+
[38, 71, 63]]],
|
297 |
+
['Gang Song', 'Verse', 'C', 'Minor',
|
298 |
+
[[0, 9, 55], [19, 13, 60], [19, 12, 62], [19, 12, 63], [19, 10, 60],
|
299 |
+
[19, 15, 59], [19, 10, 60], [19, 11, 62], [19, 11, 59], [19, 32, 60],
|
300 |
+
[95, 11, 60], [18, 11, 63], [19, 10, 67], [20, 41, 72], [56, 12, 72],
|
301 |
+
[19, 13, 70], [19, 14, 68], [19, 12, 67], [19, 13, 65], [19, 19, 68],
|
302 |
+
[19, 41, 67], [114, 9, 67], [19, 14, 70], [18, 10, 68], [19, 11, 65],
|
303 |
+
[20, 13, 62], [18, 12, 60], [19, 10, 59], [19, 14, 67], [19, 13, 65],
|
304 |
+
[19, 27, 63], [133, 13, 60], [19, 14, 62], [19, 9, 62], [19, 15, 62],
|
305 |
+
[56, 8, 62], [20, 14, 62], [18, 11, 63], [19, 13, 62], [19, 17, 60]]],
|
306 |
+
['Gang Stop', 'Chorus', 'F', 'Minor',
|
307 |
+
[[0, 13, 72], [25, 3, 67], [13, 13, 63], [25, 2, 62], [13, 14, 60],
|
308 |
+
[27, 14, 72], [25, 2, 67], [12, 12, 63], [26, 3, 62], [12, 14, 60],
|
309 |
+
[26, 4, 72], [13, 2, 72], [5, 2, 72], [6, 2, 72], [13, 3, 72], [13, 24, 73],
|
310 |
+
[26, 19, 72], [27, 12, 73], [14, 4, 72], [13, 3, 68], [12, 3, 67],
|
311 |
+
[12, 46, 65], [54, 23, 68], [25, 2, 65], [14, 24, 68], [27, 2, 65],
|
312 |
+
[12, 9, 68], [11, 3, 65], [12, 24, 68], [27, 2, 65], [14, 22, 68],
|
313 |
+
[25, 3, 65], [13, 10, 68], [12, 2, 65], [13, 3, 67], [13, 1, 67], [6, 2, 67],
|
314 |
+
[5, 2, 67], [14, 2, 67], [12, 24, 68], [27, 17, 67], [27, 24, 63],
|
315 |
+
[27, 21, 62], [26, 32, 60]]],
|
316 |
+
['Gang Stop', 'Verse', 'F', 'Minor',
|
317 |
+
[[0, 14, 66], [26, 3, 67], [14, 12, 68], [25, 3, 67], [13, 3, 66],
|
318 |
+
[14, 2, 67], [12, 12, 70], [24, 4, 69], [15, 13, 68], [26, 3, 67],
|
319 |
+
[13, 2, 66], [13, 2, 67], [11, 22, 70], [26, 2, 69], [13, 12, 68],
|
320 |
+
[26, 3, 67], [11, 2, 66], [13, 2, 67], [12, 18, 67], [28, 22, 60],
|
321 |
+
[25, 42, 59], [54, 21, 68], [25, 3, 65], [14, 13, 68], [25, 9, 65],
|
322 |
+
[12, 9, 68], [12, 3, 65], [13, 22, 68], [26, 2, 65], [15, 12, 68],
|
323 |
+
[24, 8, 65], [12, 11, 68], [14, 3, 65], [12, 23, 68], [25, 3, 65],
|
324 |
+
[14, 23, 68], [25, 11, 65], [14, 10, 68], [11, 10, 65], [12, 24, 62],
|
325 |
+
[27, 22, 67], [26, 23, 63], [26, 16, 60]]],
|
326 |
+
['Grasshopper', 'Chorus', 'B-', 'Minor',
|
327 |
+
[[0, 6, 70], [19, 6, 72], [19, 4, 72], [9, 5, 72], [10, 6, 72], [18, 5, 72],
|
328 |
+
[19, 6, 73], [19, 4, 73], [9, 5, 73], [10, 6, 73], [18, 6, 73], [19, 10, 73],
|
329 |
+
[19, 7, 72], [19, 7, 70], [18, 7, 69], [19, 7, 70], [19, 9, 70], [37, 6, 70],
|
330 |
+
[19, 6, 72], [19, 4, 72], [9, 6, 72], [10, 7, 72], [18, 6, 72], [19, 6, 73],
|
331 |
+
[19, 4, 73], [9, 5, 73], [10, 7, 73], [18, 5, 73], [19, 8, 73], [19, 7, 72],
|
332 |
+
[19, 7, 70], [18, 7, 69], [19, 9, 70]]],
|
333 |
+
['Grasshopper', 'Verse', 'F', 'Minor',
|
334 |
+
[[0, 8, 70], [19, 10, 65], [19, 9, 70], [19, 9, 65], [18, 7, 70], [19, 9, 69],
|
335 |
+
[19, 10, 69], [37, 8, 69], [19, 11, 65], [19, 9, 69], [19, 9, 65],
|
336 |
+
[18, 9, 69], [19, 9, 70], [19, 10, 70], [37, 7, 70], [19, 11, 65],
|
337 |
+
[19, 8, 70], [19, 9, 65], [18, 8, 70], [19, 9, 69], [19, 9, 69], [37, 8, 69],
|
338 |
+
[19, 9, 65], [19, 8, 69], [19, 9, 65], [18, 8, 69], [19, 14, 70]]],
|
339 |
+
['Gummy Bears', 'Chorus', 'B-', 'Major',
|
340 |
+
[[0, 18, 74], [24, 8, 75], [14, 36, 77], [40, 26, 77], [35, 9, 77],
|
341 |
+
[15, 8, 77], [13, 7, 77], [13, 10, 77], [13, 8, 75], [13, 7, 74],
|
342 |
+
[13, 8, 72], [13, 20, 74], [23, 10, 77], [14, 33, 70], [38, 11, 70],
|
343 |
+
[26, 4, 70], [14, 7, 77], [12, 7, 77], [13, 7, 77], [14, 9, 77], [13, 8, 75],
|
344 |
+
[13, 8, 74], [12, 10, 72], [12, 5, 70], [26, 5, 77], [18, 8, 74], [8, 5, 70],
|
345 |
+
[25, 4, 74], [26, 4, 70], [14, 10, 75], [13, 11, 74], [15, 22, 72],
|
346 |
+
[27, 23, 74], [35, 10, 70], [27, 9, 70], [23, 10, 70], [26, 10, 70],
|
347 |
+
[26, 9, 70], [26, 10, 70], [25, 11, 70], [26, 11, 70]]],
|
348 |
+
['Gummy Bears', 'Verse', 'B-', 'Major',
|
349 |
+
[[0, 12, 62], [19, 12, 58], [18, 10, 62], [16, 12, 65], [18, 11, 62],
|
350 |
+
[16, 10, 65], [16, 14, 67], [17, 12, 69], [17, 11, 70], [17, 21, 65],
|
351 |
+
[26, 9, 62], [25, 12, 67], [18, 14, 65], [19, 10, 63], [16, 12, 65],
|
352 |
+
[18, 12, 63], [17, 8, 62], [16, 12, 63], [18, 10, 62], [17, 10, 60],
|
353 |
+
[16, 27, 65], [50, 14, 62], [21, 12, 58], [17, 11, 62], [16, 13, 65],
|
354 |
+
[18, 11, 62], [17, 12, 65], [16, 14, 67], [17, 16, 69], [16, 13, 70],
|
355 |
+
[17, 13, 65], [18, 12, 62], [16, 10, 58], [17, 13, 67], [18, 13, 65],
|
356 |
+
[17, 14, 63], [18, 11, 65], [16, 11, 62], [19, 11, 65], [16, 13, 67],
|
357 |
+
[17, 12, 69], [16, 11, 70], [17, 32, 72]]],
|
358 |
+
['Hava Nagilah', 'Chorus', 'C', 'Minor',
|
359 |
+
[[0, 9, 66], [24, 35, 66], [50, 10, 63], [24, 10, 62], [25, 8, 62],
|
360 |
+
[25, 46, 62], [49, 7, 63], [25, 35, 63], [49, 12, 62], [12, 10, 63],
|
361 |
+
[13, 10, 60], [24, 5, 60], [25, 29, 60], [49, 41, 60], [50, 30, 63],
|
362 |
+
[37, 8, 62], [12, 9, 60], [23, 12, 60], [23, 34, 67], [46, 42, 66],
|
363 |
+
[46, 8, 63], [11, 9, 66], [11, 9, 63], [12, 11, 62], [11, 69, 66]]],
|
364 |
+
['Hava Nagilah', 'Verse', 'D', 'Minor',
|
365 |
+
[[0, 34, 62], [49, 69, 62], [74, 18, 66], [25, 18, 63], [25, 17, 62],
|
366 |
+
[24, 36, 66], [50, 66, 66], [74, 22, 69], [24, 14, 67], [25, 17, 66],
|
367 |
+
[25, 36, 67], [49, 69, 67], [74, 21, 70], [25, 20, 69], [25, 17, 67],
|
368 |
+
[24, 48, 66], [50, 10, 63], [12, 8, 66], [12, 11, 63], [25, 83, 62]]],
|
369 |
+
['It Too Shall Pass', 'Verse', 'C', 'Minor',
|
370 |
+
[[0, 4, 75], [18, 4, 72], [18, 4, 79], [36, 4, 75], [18, 4, 72], [18, 6, 79],
|
371 |
+
[36, 4, 72], [18, 4, 74], [18, 3, 75], [18, 4, 77], [18, 4, 75], [36, 4, 74],
|
372 |
+
[36, 4, 74], [18, 4, 71], [18, 4, 79], [36, 4, 74], [18, 6, 71], [18, 4, 79],
|
373 |
+
[36, 4, 74], [18, 3, 75], [18, 4, 77], [18, 4, 79], [18, 4, 77], [36, 3, 75],
|
374 |
+
[36, 4, 79], [18, 6, 76], [18, 4, 84], [36, 4, 79], [18, 6, 76], [18, 4, 84],
|
375 |
+
[36, 6, 79], [18, 4, 80], [18, 4, 82], [18, 4, 84], [18, 4, 82],
|
376 |
+
[36, 12, 80], [36, 4, 80], [18, 6, 84], [1, 12, 84], [17, 6, 82],
|
377 |
+
[18, 4, 80], [19, 3, 80], [35, 6, 79], [36, 4, 77], [1, 17, 77], [17, 5, 80],
|
378 |
+
[18, 9, 79], [18, 6, 74], [18, 4, 75], [72, 4, 80], [18, 6, 84], [18, 4, 82],
|
379 |
+
[18, 4, 80], [18, 4, 80], [36, 4, 79], [36, 4, 77], [18, 6, 80], [18, 4, 79],
|
380 |
+
[18, 4, 71], [18, 3, 72]]],
|
381 |
+
['Learn at School', 'Chorus', 'E', 'Minor',
|
382 |
+
[[0, 14, 64], [14, 8, 74], [15, 15, 74], [14, 7, 72], [15, 17, 72],
|
383 |
+
[15, 9, 71], [14, 24, 71], [29, 12, 64], [15, 9, 72], [14, 18, 72],
|
384 |
+
[15, 8, 71], [14, 16, 71], [15, 6, 69], [15, 30, 69], [29, 16, 67],
|
385 |
+
[14, 18, 69], [15, 14, 72], [14, 17, 71], [15, 13, 67], [14, 14, 64],
|
386 |
+
[15, 16, 67], [15, 16, 66], [14, 18, 71], [15, 16, 63], [14, 29, 66],
|
387 |
+
[29, 36, 64]]],
|
388 |
+
['Learn at School', 'Verse', 'E', 'Minor',
|
389 |
+
[[0, 15, 59], [15, 9, 67], [14, 18, 67], [15, 8, 66], [14, 16, 66],
|
390 |
+
[15, 7, 64], [14, 19, 64], [29, 14, 59], [15, 8, 67], [15, 15, 67],
|
391 |
+
[14, 8, 66], [15, 17, 66], [14, 7, 64], [15, 19, 64], [29, 14, 64],
|
392 |
+
[15, 15, 67], [14, 8, 71], [15, 13, 71], [14, 17, 69], [15, 18, 67],
|
393 |
+
[14, 8, 71], [15, 17, 71], [15, 14, 69], [14, 18, 67], [15, 31, 69],
|
394 |
+
[29, 46, 71]]],
|
395 |
+
['Let Them Run', 'Chorus', 'E', 'Minor',
|
396 |
+
[[0, 7, 61], [15, 11, 61], [17, 9, 64], [15, 30, 64], [32, 28, 63],
|
397 |
+
[59, 10, 63], [14, 8, 66], [15, 26, 66], [31, 32, 64], [61, 12, 64],
|
398 |
+
[14, 8, 68], [15, 30, 68], [33, 28, 66], [60, 12, 69], [14, 12, 68],
|
399 |
+
[17, 45, 71], [90, 11, 68], [14, 10, 71], [18, 30, 71], [33, 24, 69],
|
400 |
+
[59, 11, 66], [16, 8, 69], [16, 29, 69], [31, 23, 68], [62, 11, 64],
|
401 |
+
[13, 10, 68], [15, 54, 66], [61, 56, 68], [62, 14, 61]]],
|
402 |
+
['Let Them Run', 'Verse', 'C#', 'Minor',
|
403 |
+
[[0, 7, 68], [15, 7, 69], [16, 13, 68], [30, 9, 61], [14, 7, 63], [16, 9, 64],
|
404 |
+
[15, 6, 61], [16, 8, 68], [15, 7, 69], [14, 17, 68], [29, 8, 63],
|
405 |
+
[14, 8, 64], [18, 10, 66], [15, 5, 63], [16, 8, 68], [15, 9, 69],
|
406 |
+
[15, 20, 68], [31, 8, 63], [15, 6, 64], [16, 18, 66], [30, 7, 68],
|
407 |
+
[13, 10, 69], [16, 38, 68], [93, 7, 73], [14, 9, 74], [17, 19, 73],
|
408 |
+
[31, 8, 68], [14, 9, 69], [16, 11, 71], [15, 7, 68], [16, 8, 73],
|
409 |
+
[15, 8, 74], [15, 19, 73], [32, 10, 66], [14, 8, 68], [14, 10, 69],
|
410 |
+
[17, 10, 73], [16, 11, 71], [16, 8, 69], [16, 19, 73], [29, 10, 68],
|
411 |
+
[16, 8, 64], [15, 20, 63], [30, 10, 66], [16, 10, 64], [15, 60, 61]]],
|
412 |
+
['Lullaby', 'Chorus', 'E-', 'Major',
|
413 |
+
[[0, 22, 70], [30, 31, 70], [30, 30, 72], [30, 29, 70], [30, 25, 75],
|
414 |
+
[29, 32, 75], [31, 31, 72], [30, 25, 70], [44, 21, 63], [30, 16, 63],
|
415 |
+
[16, 27, 68], [29, 31, 70], [30, 25, 72], [29, 32, 72], [31, 30, 70],
|
416 |
+
[30, 30, 68], [32, 20, 67], [29, 32, 67], [30, 30, 68], [30, 33, 67],
|
417 |
+
[31, 87, 70], [120, 59, 68], [59, 57, 65], [60, 80, 63]]],
|
418 |
+
['Lullaby', 'Verse', 'E-', 'Major',
|
419 |
+
[[0, 27, 70], [25, 19, 67], [16, 45, 70], [44, 16, 67], [15, 26, 70],
|
420 |
+
[30, 32, 70], [31, 28, 68], [29, 31, 67], [32, 30, 65], [30, 30, 67],
|
421 |
+
[30, 67, 70], [180, 46, 70], [45, 15, 65], [14, 45, 70], [46, 16, 65],
|
422 |
+
[14, 32, 70], [32, 30, 68], [29, 29, 67], [28, 31, 65], [30, 29, 63],
|
423 |
+
[30, 32, 67], [31, 66, 70]]],
|
424 |
+
['Mamonthy Song', 'Chorus', 'F', 'Minor',
|
425 |
+
[[0, 15, 72], [14, 15, 77], [14, 7, 79], [15, 5, 80], [14, 25, 79],
|
426 |
+
[28, 14, 77], [29, 15, 72], [14, 15, 77], [14, 5, 79], [15, 5, 80],
|
427 |
+
[14, 30, 79], [28, 11, 77], [29, 14, 72], [14, 15, 77], [14, 5, 79],
|
428 |
+
[14, 7, 80], [15, 29, 79], [28, 24, 77], [29, 15, 72], [14, 16, 75],
|
429 |
+
[14, 11, 73], [14, 8, 72], [14, 27, 75], [29, 19, 73], [28, 14, 73],
|
430 |
+
[15, 16, 82], [14, 15, 80], [14, 16, 82], [14, 30, 80], [29, 26, 79],
|
431 |
+
[28, 7, 77], [14, 29, 77], [29, 24, 72], [71, 6, 72], [14, 17, 72],
|
432 |
+
[15, 15, 76], [14, 15, 79], [14, 30, 82], [29, 26, 80], [29, 15, 79],
|
433 |
+
[15, 15, 80], [16, 12, 79], [12, 31, 77]]],
|
434 |
+
['Mamonthy Song', 'Verse', 'A-', 'Major',
|
435 |
+
[[0, 15, 72], [14, 4, 75], [14, 4, 75], [14, 3, 75], [15, 28, 75],
|
436 |
+
[28, 30, 77], [29, 15, 72], [14, 5, 75], [14, 4, 75], [14, 4, 75],
|
437 |
+
[15, 29, 75], [57, 13, 68], [14, 9, 77], [14, 4, 77], [14, 4, 77],
|
438 |
+
[14, 27, 77], [29, 28, 80], [28, 14, 79], [15, 16, 77], [14, 5, 75],
|
439 |
+
[14, 3, 75], [14, 20, 75], [57, 16, 75], [15, 16, 80], [14, 15, 79],
|
440 |
+
[14, 11, 80], [14, 30, 79], [29, 30, 77], [28, 16, 79], [15, 30, 77],
|
441 |
+
[28, 27, 75], [71, 13, 75], [14, 15, 80], [15, 14, 70], [14, 15, 72],
|
442 |
+
[14, 30, 73], [29, 28, 77], [28, 16, 75], [14, 27, 73], [29, 34, 72]]],
|
443 |
+
['New Year Song', 'Verse', 'C', 'Major',
|
444 |
+
[[0, 49, 79], [53, 8, 76], [27, 25, 76], [27, 50, 79], [53, 7, 76],
|
445 |
+
[27, 13, 76], [27, 23, 79], [26, 26, 77], [27, 22, 76], [27, 25, 74],
|
446 |
+
[27, 80, 72], [107, 45, 81], [53, 19, 84], [27, 18, 81], [26, 45, 79],
|
447 |
+
[54, 8, 76], [27, 17, 76], [26, 27, 79], [27, 26, 77], [27, 23, 76],
|
448 |
+
[26, 28, 74], [27, 87, 72], [108, 46, 81], [53, 16, 84], [27, 17, 81],
|
449 |
+
[27, 46, 79], [53, 7, 76], [27, 16, 76], [26, 28, 79], [27, 27, 77],
|
450 |
+
[27, 29, 76], [27, 28, 74], [26, 52, 72]]],
|
451 |
+
['Open Secret', 'Chorus', 'G', 'Minor',
|
452 |
+
[[0, 4, 79], [12, 3, 84], [13, 13, 83], [26, 4, 77], [13, 4, 80],
|
453 |
+
[13, 11, 79], [25, 4, 79], [13, 4, 84], [13, 13, 83], [26, 4, 77],
|
454 |
+
[12, 3, 80], [13, 14, 79], [25, 5, 79], [14, 4, 84], [13, 4, 83],
|
455 |
+
[13, 4, 83], [13, 4, 79], [12, 3, 83], [13, 2, 84], [11, 4, 84], [13, 4, 84],
|
456 |
+
[13, 6, 86], [13, 10, 87], [12, 6, 86], [9, 4, 86], [3, 7, 84], [15, 4, 83],
|
457 |
+
[13, 8, 84]]],
|
458 |
+
['Open Secret', 'Verse', 'E-', 'Minor',
|
459 |
+
[[0, 15, 79], [51, 13, 79], [52, 4, 79], [12, 4, 79], [13, 14, 80],
|
460 |
+
[13, 3, 75], [13, 14, 79], [13, 3, 77], [13, 12, 77], [26, 15, 77],
|
461 |
+
[51, 15, 77], [52, 4, 77], [13, 5, 80], [13, 12, 79], [13, 5, 74],
|
462 |
+
[12, 12, 77], [13, 3, 75], [13, 11, 75], [26, 15, 75], [52, 15, 75],
|
463 |
+
[51, 3, 75], [13, 4, 75], [13, 12, 77], [13, 4, 75], [13, 4, 74],
|
464 |
+
[13, 4, 72], [12, 51, 82], [52, 14, 80], [39, 5, 84], [13, 3, 82],
|
465 |
+
[13, 4, 80], [13, 10, 79], [13, 4, 77], [13, 3, 75], [13, 5, 74],
|
466 |
+
[12, 7, 72]]],
|
467 |
+
['Righteous Road', 'Chorus', 'E-', 'Minor',
|
468 |
+
[[0, 20, 67], [18, 23, 68], [19, 19, 70], [17, 36, 71], [35, 37, 68],
|
469 |
+
[35, 23, 64], [20, 38, 65], [36, 19, 71], [19, 4, 70], [18, 5, 70],
|
470 |
+
[16, 4, 66], [19, 5, 66], [18, 9, 63], [17, 28, 63], [38, 6, 63],
|
471 |
+
[17, 21, 63], [18, 17, 62], [16, 21, 63], [18, 22, 65], [18, 21, 66],
|
472 |
+
[18, 20, 68], [18, 23, 70], [18, 22, 68], [18, 7, 66], [19, 6, 66],
|
473 |
+
[19, 5, 58], [19, 18, 58], [17, 9, 63]]],
|
474 |
+
['Righteous Road', 'Verse', 'E-', 'Minor',
|
475 |
+
[[0, 5, 66], [18, 21, 66], [20, 6, 65], [17, 5, 65], [18, 5, 65],
|
476 |
+
[18, 22, 65], [19, 19, 66], [35, 21, 66], [20, 20, 68], [16, 20, 66],
|
477 |
+
[18, 21, 65], [18, 6, 63], [18, 24, 63], [20, 21, 58], [36, 19, 58],
|
478 |
+
[18, 19, 63], [18, 18, 62], [17, 20, 63], [17, 21, 65], [19, 21, 66],
|
479 |
+
[19, 20, 65], [16, 21, 66], [19, 20, 68], [18, 20, 70], [18, 21, 71],
|
480 |
+
[17, 19, 70], [16, 22, 68], [20, 23, 70]]],
|
481 |
+
['Snow Maiden', 'Chorus', 'G', 'Major',
|
482 |
+
[[0, 17, 62], [26, 26, 62], [27, 10, 70], [54, 25, 67], [29, 21, 60],
|
483 |
+
[24, 12, 69], [54, 22, 65], [23, 25, 58], [30, 12, 67], [13, 11, 65],
|
484 |
+
[27, 10, 64], [13, 26, 67], [14, 12, 65], [13, 15, 65], [105, 14, 60],
|
485 |
+
[27, 6, 58], [13, 6, 58], [13, 18, 58], [54, 16, 62], [26, 6, 60],
|
486 |
+
[14, 9, 60], [13, 17, 60], [54, 19, 64], [26, 6, 62], [14, 13, 62],
|
487 |
+
[13, 21, 61], [26, 12, 59], [14, 10, 61], [13, 12, 62]]],
|
488 |
+
['Snow Maiden', 'Verse', 'D', 'Major',
|
489 |
+
[[0, 6, 66], [13, 5, 66], [14, 4, 69], [13, 5, 69], [13, 28, 69], [25, 5, 67],
|
490 |
+
[15, 5, 67], [12, 17, 71], [27, 27, 71], [28, 26, 69], [53, 9, 66],
|
491 |
+
[14, 8, 66], [13, 3, 69], [12, 6, 69], [14, 25, 69], [27, 6, 67],
|
492 |
+
[14, 6, 67], [13, 19, 71], [27, 15, 71], [13, 29, 69], [67, 5, 66],
|
493 |
+
[14, 4, 66], [13, 4, 66], [13, 4, 66], [13, 23, 66], [27, 5, 62],
|
494 |
+
[14, 4, 62], [13, 12, 64], [27, 22, 64], [26, 15, 62], [53, 4, 62],
|
495 |
+
[13, 4, 62], [14, 5, 62], [13, 7, 64], [13, 20, 66], [27, 5, 62],
|
496 |
+
[13, 5, 62], [14, 17, 62], [26, 20, 61], [27, 12, 62]]],
|
497 |
+
['Sun Circle', 'Chorus', 'G', 'Major',
|
498 |
+
[[0, 17, 62], [30, 16, 62], [29, 51, 67], [60, 20, 69], [30, 21, 71],
|
499 |
+
[30, 21, 69], [30, 12, 67], [30, 14, 62], [29, 16, 62], [30, 51, 67],
|
500 |
+
[60, 21, 69], [30, 21, 71], [29, 19, 71], [30, 14, 69], [30, 18, 62],
|
501 |
+
[30, 20, 62], [30, 51, 69], [59, 21, 71], [30, 20, 72], [30, 22, 74],
|
502 |
+
[30, 18, 69], [30, 19, 69], [30, 18, 71], [30, 54, 72], [59, 20, 67],
|
503 |
+
[30, 18, 69], [30, 49, 71]]],
|
504 |
+
['Sun Circle', 'Verse', 'G', 'Minor',
|
505 |
+
[[0, 29, 62], [29, 20, 63], [20, 9, 62], [9, 58, 67], [59, 31, 69],
|
506 |
+
[31, 22, 70], [21, 8, 69], [8, 44, 62], [60, 27, 62], [29, 17, 70],
|
507 |
+
[21, 4, 70], [7, 31, 70], [30, 21, 69], [22, 2, 69], [8, 30, 67],
|
508 |
+
[32, 67, 66], [91, 28, 65], [29, 21, 67], [21, 7, 65], [8, 55, 70],
|
509 |
+
[60, 30, 72], [29, 23, 74], [22, 6, 72], [7, 48, 65], [62, 28, 65],
|
510 |
+
[29, 17, 69], [18, 8, 70], [10, 30, 72], [31, 15, 70], [17, 13, 72],
|
511 |
+
[15, 45, 74]]],
|
512 |
+
['Sunbath', 'Verse', 'F', 'Major',
|
513 |
+
[[0, 11, 72], [19, 10, 70], [11, 9, 69], [31, 8, 65], [31, 7, 62],
|
514 |
+
[29, 7, 64], [19, 105, 65], [106, 12, 72], [20, 12, 70], [10, 11, 69],
|
515 |
+
[32, 9, 65], [30, 10, 62], [32, 8, 64], [19, 95, 65], [105, 9, 69],
|
516 |
+
[18, 13, 72], [12, 87, 67], [96, 10, 69], [18, 11, 72], [10, 86, 65],
|
517 |
+
[94, 11, 67], [20, 8, 69], [11, 8, 70], [32, 9, 67], [30, 10, 64],
|
518 |
+
[31, 10, 67], [17, 101, 65], [107, 10, 69], [22, 11, 72], [13, 86, 67],
|
519 |
+
[91, 10, 69], [21, 12, 72], [11, 80, 65], [91, 9, 67], [20, 8, 69],
|
520 |
+
[11, 7, 70], [32, 7, 67], [31, 9, 64], [31, 9, 67], [18, 79, 65]]],
|
521 |
+
['Tail Spin', 'Chorus', 'G', 'Major',
|
522 |
+
[[0, 6, 67], [16, 8, 71], [16, 6, 62], [16, 5, 65], [8, 5, 67], [15, 4, 67],
|
523 |
+
[8, 6, 71], [16, 5, 62], [16, 5, 65], [16, 5, 67], [16, 7, 71], [16, 5, 62],
|
524 |
+
[15, 5, 65], [8, 6, 67], [19, 7, 67], [16, 7, 67], [15, 14, 67], [21, 6, 67],
|
525 |
+
[16, 7, 71], [16, 6, 62], [16, 5, 65], [8, 5, 67], [16, 3, 67], [8, 6, 71],
|
526 |
+
[15, 5, 62], [16, 5, 65], [16, 5, 67], [16, 7, 71], [16, 5, 62], [15, 5, 65],
|
527 |
+
[8, 6, 67]]],
|
528 |
+
['Tail Spin', 'Verse', 'C', 'Major',
|
529 |
+
[[0, 14, 62], [14, 17, 67], [16, 17, 64], [32, 3, 64], [8, 6, 64],
|
530 |
+
[16, 25, 66], [41, 15, 60], [15, 17, 64], [15, 17, 62], [30, 2, 62],
|
531 |
+
[10, 6, 62], [16, 22, 64], [71, 4, 60], [8, 5, 60], [15, 7, 60], [16, 6, 64],
|
532 |
+
[17, 7, 64], [17, 6, 62], [16, 7, 62], [21, 2, 62], [8, 3, 62], [8, 7, 64],
|
533 |
+
[14, 3, 64], [10, 6, 66], [13, 5, 66], [9, 13, 67]]],
|
534 |
+
['Thirty Three Cows', 'Chorus', 'A', 'Major',
|
535 |
+
[[0, 8, 76], [20, 6, 76], [9, 8, 76], [20, 5, 76], [10, 18, 76], [20, 28, 72],
|
536 |
+
[39, 8, 74], [19, 4, 74], [10, 8, 74], [20, 6, 74], [10, 17, 74],
|
537 |
+
[19, 26, 71], [40, 7, 72], [19, 4, 72], [10, 8, 72], [19, 5, 72],
|
538 |
+
[10, 16, 72], [20, 29, 69], [39, 18, 70], [20, 12, 72], [10, 20, 70],
|
539 |
+
[19, 13, 69], [10, 23, 67], [59, 19, 69], [19, 4, 72], [10, 17, 72],
|
540 |
+
[20, 11, 69], [10, 19, 72], [19, 28, 74], [40, 8, 67], [20, 13, 67],
|
541 |
+
[9, 18, 69], [20, 11, 68], [10, 17, 67], [19, 23, 76], [40, 7, 76],
|
542 |
+
[19, 5, 76], [10, 8, 76], [20, 4, 76], [10, 15, 76], [19, 5, 72],
|
543 |
+
[10, 18, 72], [20, 12, 76], [10, 17, 74]]],
|
544 |
+
['Thirty Three Cows', 'Verse', 'A', 'Major',
|
545 |
+
[[0, 9, 64], [19, 8, 62], [10, 12, 60], [28, 17, 60], [31, 13, 64],
|
546 |
+
[28, 16, 67], [17, 18, 72], [31, 14, 72], [72, 11, 71], [19, 13, 69],
|
547 |
+
[11, 12, 67], [26, 12, 69], [30, 11, 67], [30, 16, 64], [17, 14, 62],
|
548 |
+
[102, 11, 64], [19, 10, 62], [11, 13, 60], [27, 13, 60], [31, 11, 64],
|
549 |
+
[28, 16, 67], [17, 17, 72], [31, 16, 72], [72, 11, 71], [18, 11, 72],
|
550 |
+
[10, 15, 74], [29, 12, 71], [28, 13, 69], [31, 17, 71], [17, 17, 67],
|
551 |
+
[100, 18, 64], [19, 10, 62], [10, 13, 60], [29, 15, 60], [30, 12, 64],
|
552 |
+
[29, 17, 67], [18, 18, 72], [30, 16, 72], [71, 9, 71], [20, 13, 69],
|
553 |
+
[12, 13, 67], [27, 12, 69], [28, 13, 67], [30, 19, 64], [18, 19, 62],
|
554 |
+
[101, 11, 64], [18, 10, 62], [10, 15, 60], [28, 13, 60], [29, 13, 64],
|
555 |
+
[31, 18, 72], [17, 19, 71], [31, 18, 69], [71, 12, 64], [18, 12, 62],
|
556 |
+
[10, 14, 60], [29, 15, 60], [30, 12, 64], [29, 18, 72], [19, 17, 71],
|
557 |
+
[29, 17, 69], [69, 19, 69], [18, 12, 69], [12, 13, 74], [30, 12, 74],
|
558 |
+
[29, 14, 74], [31, 16, 76], [15, 59, 77]]],
|
559 |
+
['USSR Anthem', 'Chorus', 'C', 'Major',
|
560 |
+
[[0, 23, 67], [23, 46, 76], [47, 35, 74], [35, 11, 72], [12, 46, 74],
|
561 |
+
[47, 23, 71], [23, 23, 67], [24, 46, 72], [46, 35, 71], [36, 11, 69],
|
562 |
+
[11, 46, 71], [47, 23, 64], [24, 23, 64], [23, 46, 69], [47, 23, 67],
|
563 |
+
[23, 23, 65], [24, 46, 67], [47, 23, 60], [23, 23, 60], [24, 46, 72],
|
564 |
+
[46, 35, 71], [36, 11, 69], [11, 93, 67]]],
|
565 |
+
['USSR Anthem', 'Verse', 'C', 'Major',
|
566 |
+
[[0, 23, 67], [23, 46, 72], [47, 35, 67], [35, 11, 69], [12, 46, 71],
|
567 |
+
[47, 23, 64], [23, 23, 64], [24, 46, 69], [46, 35, 67], [36, 11, 65],
|
568 |
+
[11, 46, 67], [47, 23, 60], [24, 23, 60], [23, 46, 62], [47, 23, 62],
|
569 |
+
[23, 23, 64], [24, 46, 65], [47, 23, 65], [23, 23, 67], [24, 46, 69],
|
570 |
+
[46, 23, 71], [24, 23, 72], [23, 70, 74]]],
|
571 |
+
['White Ships', 'Chorus', 'G', 'Minor',
|
572 |
+
[[0, 9, 81], [18, 9, 81], [19, 9, 81], [19, 9, 83], [19, 9, 81], [9, 9, 83],
|
573 |
+
[9, 9, 81], [19, 18, 80], [19, 9, 76], [19, 9, 79], [18, 9, 79], [19, 9, 79],
|
574 |
+
[19, 9, 81], [19, 9, 79], [9, 9, 81], [9, 9, 79], [19, 18, 78], [19, 9, 74],
|
575 |
+
[19, 18, 74], [37, 28, 74], [38, 9, 73], [18, 9, 74], [19, 9, 76],
|
576 |
+
[19, 9, 78], [19, 75, 71]]],
|
577 |
+
['White Ships', 'Verse', 'B', 'Minor',
|
578 |
+
[[0, 18, 71], [28, 9, 71], [9, 9, 71], [19, 9, 74], [19, 28, 78],
|
579 |
+
[37, 18, 76], [19, 9, 74], [19, 18, 76], [28, 9, 76], [9, 9, 76],
|
580 |
+
[19, 9, 78], [19, 28, 76], [37, 18, 74], [19, 9, 73], [19, 28, 74],
|
581 |
+
[37, 28, 71], [38, 28, 79], [37, 28, 76], [38, 112, 78]]],
|
582 |
+
['Winged Swing', 'Chorus', 'D', 'Major',
|
583 |
+
[[0, 27, 57], [22, 37, 66], [43, 70, 66], [86, 25, 66], [22, 23, 67],
|
584 |
+
[21, 46, 66], [43, 79, 64], [108, 21, 64], [22, 95, 71], [107, 25, 71],
|
585 |
+
[22, 20, 69], [22, 23, 68], [21, 91, 69], [130, 54, 62], [43, 89, 74],
|
586 |
+
[107, 20, 74], [22, 23, 72], [22, 14, 70], [21, 42, 70], [43, 88, 69],
|
587 |
+
[108, 23, 69], [22, 23, 71], [21, 22, 69], [22, 83, 71], [84, 42, 73],
|
588 |
+
[43, 106, 74]]],
|
589 |
+
['Winged Swing', 'Verse', 'D', 'Minor',
|
590 |
+
[[0, 27, 69], [32, 8, 70], [11, 7, 69], [11, 11, 65], [10, 9, 64],
|
591 |
+
[11, 14, 62], [11, 20, 65], [22, 36, 64], [64, 30, 69], [33, 11, 70],
|
592 |
+
[10, 7, 69], [11, 10, 65], [11, 10, 64], [11, 16, 62], [10, 59, 64],
|
593 |
+
[86, 29, 66], [33, 12, 67], [11, 3, 69], [10, 12, 69], [11, 11, 70],
|
594 |
+
[11, 5, 72], [11, 23, 72], [21, 28, 70], [43, 12, 70], [11, 5, 69],
|
595 |
+
[11, 18, 69], [21, 29, 67], [43, 12, 62], [11, 5, 64], [11, 68, 64]]],
|
596 |
+
['With a Smile', 'Chorus', 'C#', 'Minor',
|
597 |
+
[[0, 14, 61], [17, 7, 64], [17, 7, 68], [17, 7, 68], [17, 7, 68], [17, 7, 68],
|
598 |
+
[17, 20, 68], [35, 17, 73], [17, 17, 61], [17, 17, 64], [17, 8, 63],
|
599 |
+
[17, 10, 63], [17, 10, 63], [17, 21, 63], [34, 18, 63], [17, 17, 64],
|
600 |
+
[17, 20, 68], [17, 18, 66], [17, 16, 68], [18, 18, 69], [17, 17, 68],
|
601 |
+
[17, 18, 66], [17, 17, 68], [17, 18, 69], [17, 34, 73], [34, 49, 71],
|
602 |
+
[68, 15, 73], [17, 18, 68], [17, 18, 71], [17, 7, 69], [17, 5, 69],
|
603 |
+
[17, 7, 69], [18, 23, 69], [34, 17, 73], [17, 17, 66], [17, 17, 69],
|
604 |
+
[17, 8, 68], [17, 7, 68], [17, 7, 68], [17, 25, 68], [34, 15, 73],
|
605 |
+
[17, 19, 64], [17, 17, 63], [17, 19, 64], [17, 18, 66], [17, 17, 69],
|
606 |
+
[17, 15, 68], [18, 18, 66], [17, 17, 64], [17, 17, 66], [17, 37, 69],
|
607 |
+
[34, 51, 68]]],
|
608 |
+
['With a Smile', 'Verse', 'B-', 'Major',
|
609 |
+
[[0, 20, 68], [17, 20, 65], [18, 32, 70], [34, 33, 68], [34, 20, 63],
|
610 |
+
[17, 18, 66], [17, 19, 65], [17, 19, 63], [17, 72, 61], [102, 21, 65],
|
611 |
+
[17, 20, 68], [17, 13, 70], [18, 11, 70], [17, 18, 70], [17, 18, 72],
|
612 |
+
[17, 20, 75], [17, 19, 73], [17, 21, 72], [17, 20, 70], [17, 38, 73],
|
613 |
+
[34, 51, 68], [68, 19, 70], [17, 19, 72], [17, 51, 73], [51, 20, 72],
|
614 |
+
[17, 18, 70], [17, 20, 65], [18, 19, 68], [17, 20, 66], [17, 82, 70],
|
615 |
+
[102, 20, 72], [17, 19, 70], [17, 18, 73], [17, 18, 68], [17, 19, 72],
|
616 |
+
[17, 10, 70], [17, 23, 70], [17, 18, 68], [17, 19, 63], [18, 19, 65],
|
617 |
+
[17, 37, 63], [34, 41, 61]]],
|
618 |
+
['Wizard of Oz', 'Verse', 'F', 'Major',
|
619 |
+
[[0, 25, 69], [30, 6, 72], [17, 5, 72], [15, 5, 77], [16, 9, 77],
|
620 |
+
[16, 28, 81], [30, 6, 79], [16, 6, 79], [16, 15, 81], [17, 5, 79],
|
621 |
+
[16, 5, 76], [16, 7, 72], [15, 29, 79], [31, 13, 77], [15, 14, 69],
|
622 |
+
[17, 5, 72], [15, 6, 72], [14, 6, 77], [17, 6, 77], [16, 28, 81],
|
623 |
+
[32, 5, 79], [15, 6, 79], [15, 12, 81], [15, 6, 79], [17, 5, 76],
|
624 |
+
[15, 10, 72], [14, 37, 77], [48, 10, 81], [16, 24, 84], [31, 24, 84],
|
625 |
+
[31, 24, 84], [32, 24, 84], [31, 21, 77], [28, 12, 77], [17, 62, 77],
|
626 |
+
[62, 12, 82], [18, 22, 86], [31, 23, 86], [31, 25, 86], [31, 22, 86],
|
627 |
+
[31, 30, 86], [33, 38, 84], [76, 8, 81], [16, 9, 84], [14, 8, 82],
|
628 |
+
[15, 8, 77], [16, 8, 74], [15, 27, 82], [32, 27, 81], [141, 7, 72],
|
629 |
+
[16, 19, 79], [31, 21, 79], [30, 44, 79], [48, 5, 77], [16, 63, 77]]]]
|
630 |
+
|
631 |
+
################################################################################
|
632 |
+
|
633 |
+
FILTERED_CHORDS = [[0], [0, 3], [0, 3, 5], [0, 3, 5, 8], [0, 3, 5, 9], [0, 3, 5, 10], [0, 3, 7],
|
634 |
+
[0, 3, 7, 10], [0, 3, 8], [0, 3, 9], [0, 3, 10], [0, 4], [0, 4, 6],
|
635 |
+
[0, 4, 6, 9], [0, 4, 6, 10], [0, 4, 7], [0, 4, 7, 10], [0, 4, 8], [0, 4, 9],
|
636 |
+
[0, 4, 10], [0, 5], [0, 5, 8], [0, 5, 9], [0, 5, 10], [0, 6], [0, 6, 9],
|
637 |
+
[0, 6, 10], [0, 7], [0, 7, 10], [0, 8], [0, 9], [0, 10], [1], [1, 4],
|
638 |
+
[1, 4, 6], [1, 4, 6, 9], [1, 4, 6, 10], [1, 4, 6, 11], [1, 4, 7],
|
639 |
+
[1, 4, 7, 10], [1, 4, 7, 11], [1, 4, 8], [1, 4, 8, 11], [1, 4, 9], [1, 4, 10],
|
640 |
+
[1, 4, 11], [1, 5], [1, 5, 8], [1, 5, 8, 11], [1, 5, 9], [1, 5, 10],
|
641 |
+
[1, 5, 11], [1, 6], [1, 6, 9], [1, 6, 10], [1, 6, 11], [1, 7], [1, 7, 10],
|
642 |
+
[1, 7, 11], [1, 8], [1, 8, 11], [1, 9], [1, 10], [1, 11], [2], [2, 5],
|
643 |
+
[2, 5, 8], [2, 5, 8, 11], [2, 5, 9], [2, 5, 10], [2, 5, 11], [2, 6], [2, 6, 9],
|
644 |
+
[2, 6, 10], [2, 6, 11], [2, 7], [2, 7, 10], [2, 7, 11], [2, 8], [2, 8, 11],
|
645 |
+
[2, 9], [2, 10], [2, 11], [3], [3, 5], [3, 5, 8], [3, 5, 8, 11], [3, 5, 9],
|
646 |
+
[3, 5, 10], [3, 5, 11], [3, 7], [3, 7, 10], [3, 7, 11], [3, 8], [3, 8, 11],
|
647 |
+
[3, 9], [3, 10], [3, 11], [4], [4, 6], [4, 6, 9], [4, 6, 10], [4, 6, 11],
|
648 |
+
[4, 7], [4, 7, 10], [4, 7, 11], [4, 8], [4, 8, 11], [4, 9], [4, 10], [4, 11],
|
649 |
+
[5], [5, 8], [5, 8, 11], [5, 9], [5, 10], [5, 11], [6], [6, 9], [6, 10],
|
650 |
+
[6, 11], [7], [7, 10], [7, 11], [8], [8, 11], [9], [10], [11]]
|
651 |
+
|
652 |
+
################################################################################
|
653 |
+
|
654 |
+
import copy
|
655 |
+
from collections import Counter
|
656 |
+
from itertools import groupby
|
657 |
+
|
658 |
+
################################################################################
|
659 |
+
|
660 |
+
def ordered_set(seq):
|
661 |
+
dic = {}
|
662 |
+
return [k for k, v in dic.fromkeys(seq).items()]
|
663 |
+
|
664 |
+
################################################################################
|
665 |
+
|
666 |
+
def grouped_set(seq):
|
667 |
+
return [k for k, v in groupby(seq)]
|
668 |
+
|
669 |
+
################################################################################
|
670 |
+
|
671 |
+
def melody_pitches(melody):
|
672 |
+
return [p[2] for p in melody[4]]
|
673 |
+
|
674 |
+
################################################################################
|
675 |
+
|
676 |
+
def melody_tones(melody):
|
677 |
+
return [t[2] % 12 for t in melody[4]]
|
678 |
+
|
679 |
+
################################################################################
|
680 |
+
|
681 |
+
def melody_pitches_counts(melody):
|
682 |
+
return [list(c) for c in Counter(melody_pitches(melody)).most_common()]
|
683 |
+
|
684 |
+
################################################################################
|
685 |
+
|
686 |
+
def melody_tones_counts(melody):
|
687 |
+
return [list(c) for c in Counter(melody_tones(melody)).most_common()]
|
688 |
+
|
689 |
+
################################################################################
|
690 |
+
|
691 |
+
def transpose_melody(melody, transpose_value):
|
692 |
+
|
693 |
+
mel = copy.deepcopy(melody)
|
694 |
+
|
695 |
+
score = mel[4]
|
696 |
+
|
697 |
+
for note in score:
|
698 |
+
note[2] += transpose_value
|
699 |
+
|
700 |
+
return mel[:4] + [score]
|
701 |
+
|
702 |
+
################################################################################
|
703 |
+
|
704 |
+
def adjust_melody_average_timings(melody, average_time):
|
705 |
+
|
706 |
+
mel = copy.deepcopy(melody)
|
707 |
+
|
708 |
+
score = mel[4]
|
709 |
+
|
710 |
+
dtimes = [d[1] for d in score]
|
711 |
+
old_avg_dtime = sum(dtimes) / len(dtimes)
|
712 |
+
|
713 |
+
tadjk = old_avg_dtime / average_time
|
714 |
+
|
715 |
+
for note in score:
|
716 |
+
note[1] = int(note[1] / tadjk)
|
717 |
+
note[2] = int(note[2] / tadjk)
|
718 |
+
|
719 |
+
dtimes = [d[1] for d in score]
|
720 |
+
new_avg_dtime = sum(dtimes) / len(dtimes)
|
721 |
+
|
722 |
+
return [mel[:4] + [score], new_avg_dtime, old_avg_dtime]
|
723 |
+
|
724 |
+
################################################################################
|
725 |
+
|
726 |
+
def most_common_melody_pitch_and_tone(melody):
|
727 |
+
|
728 |
+
mel_pitches = melody_pitches(melody)
|
729 |
+
mel_tones = [t % 12 for t in mel_pitches]
|
730 |
+
|
731 |
+
return [list(Counter(mel_pitches).most_common()[0]), list(Counter(mel_tones).most_common()[0])]
|
732 |
+
|
733 |
+
################################################################################
|
734 |
+
|
735 |
+
def melody_dtimes_counts(melody):
|
736 |
+
return [list(c) for c in Counter([n[0] for n in melody[4]]).most_common()]
|
737 |
+
|
738 |
+
################################################################################
|
739 |
+
|
740 |
+
def melody_durations_counts(melody):
|
741 |
+
return [list(c) for c in Counter([n[1] for n in melody[4]]).most_common()]
|
742 |
+
|
743 |
+
################################################################################
|
744 |
+
|
745 |
+
def melody_notes_count(melody):
|
746 |
+
return len(melody[4])
|
747 |
+
|
748 |
+
################################################################################
|
749 |
+
|
750 |
+
def most_common_melody_dtime_and_duration(melody):
|
751 |
+
return [melody_dtimes_counts(melody)[0], melody_durations_counts(melody)[0]]
|
752 |
+
|
753 |
+
################################################################################
|
754 |
+
|
755 |
+
def melody_run_time(melody):
|
756 |
+
dtimes = [n[0] for n in melody[4]]
|
757 |
+
last_dur = melody[4][-1][1]
|
758 |
+
|
759 |
+
rel_run_time = sum(dtimes)+last_dur
|
760 |
+
ms_run_time = rel_run_time * 16
|
761 |
+
sec_run_time = ms_run_time / 1000
|
762 |
+
min_run_time = sec_run_time / 60
|
763 |
+
|
764 |
+
return [rel_run_time, ms_run_time, sec_run_time, min_run_time]
|
765 |
+
|
766 |
+
################################################################################
|
767 |
+
|
768 |
+
def harmonize_melody(melody):
|
769 |
+
|
770 |
+
mel_tones = melody_tones(melody)
|
771 |
+
|
772 |
+
cur_chord = []
|
773 |
+
|
774 |
+
harmonized_chords = []
|
775 |
+
|
776 |
+
for i, m in enumerate(mel_tones):
|
777 |
+
cur_chord.append(m)
|
778 |
+
cc = sorted(set(cur_chord))
|
779 |
+
|
780 |
+
if cc in FILTERED_CHORDS:
|
781 |
+
harmonized_chords.append(cc)
|
782 |
+
|
783 |
+
else:
|
784 |
+
while sorted(set(cur_chord)) not in FILTERED_CHORDS:
|
785 |
+
cur_chord.pop(0)
|
786 |
+
cc = sorted(set(cur_chord))
|
787 |
+
harmonized_chords.append(cc)
|
788 |
+
|
789 |
+
return harmonized_chords
|
790 |
+
|
791 |
+
################################################################################
|
792 |
+
|
793 |
+
def melody_range(melody):
|
794 |
+
|
795 |
+
mel_pitches = melody_pitches(melody)
|
796 |
+
|
797 |
+
max_pitch = max(mel_pitches)
|
798 |
+
avg_pitch = sum(mel_pitches) / len(mel_pitches)
|
799 |
+
min_pitch = min(mel_pitches)
|
800 |
+
|
801 |
+
pitch_range = max_pitch - min_pitch
|
802 |
+
|
803 |
+
return [max_pitch, avg_pitch, min_pitch, pitch_range]
|
804 |
+
|
805 |
+
################################################################################
|
806 |
+
|
807 |
+
def melody_octave(melody):
|
808 |
+
return int(melody_range(melody)[1] // 12)
|
809 |
+
|
810 |
+
################################################################################
|
811 |
+
|
812 |
+
def melody_to_enhanced_score_notes(melody,
|
813 |
+
melody_channel=3,
|
814 |
+
melody_velocity=-1,
|
815 |
+
melody_patch=40,
|
816 |
+
harmonized_tones_chords=[],
|
817 |
+
harmonized_tones_chords_base_octave=-1,
|
818 |
+
harmonized_tones_chords_channel=0,
|
819 |
+
harmonized_tones_chords_velocity=-1,
|
820 |
+
harmonized_tones_chords_patch=0
|
821 |
+
):
|
822 |
+
|
823 |
+
name = melody[0]
|
824 |
+
part = melody[1]
|
825 |
+
key1 = melody[2]
|
826 |
+
key2 = melody[3]
|
827 |
+
|
828 |
+
if harmonized_tones_chords_base_octave > -1:
|
829 |
+
mel_base_octave = harmonized_tones_chords_base_octave
|
830 |
+
|
831 |
+
else:
|
832 |
+
mel_base_octave = melody_octave(melody) - 1
|
833 |
+
|
834 |
+
escore_notes = []
|
835 |
+
|
836 |
+
time = 0
|
837 |
+
|
838 |
+
for i, note in enumerate(melody[4]):
|
839 |
+
|
840 |
+
time += note[0]
|
841 |
+
dur = note[1]
|
842 |
+
ptc = note[2]
|
843 |
+
|
844 |
+
if melody_velocity == -1:
|
845 |
+
vel = int(110 + ((ptc % 12) * 1.5))
|
846 |
+
else:
|
847 |
+
vel = melody_velocity
|
848 |
+
|
849 |
+
escore_notes.append(['note', time, dur, melody_channel, ptc, vel, melody_patch])
|
850 |
+
|
851 |
+
if harmonized_tones_chords and i < len(harmonized_tones_chords):
|
852 |
+
|
853 |
+
for t in harmonized_tones_chords[i]:
|
854 |
+
|
855 |
+
ptc = (mel_base_octave * 12) + t
|
856 |
+
|
857 |
+
if harmonized_tones_chords_velocity == -1:
|
858 |
+
vel = int(80 + ((ptc % 12) * 1.5))
|
859 |
+
else:
|
860 |
+
vel = harmonized_tones_chords_velocity
|
861 |
+
|
862 |
+
escore_notes.append(['note', time, dur, harmonized_tones_chords_channel, ptc, vel, harmonized_tones_chords_patch])
|
863 |
+
|
864 |
+
return [name, part, key1 + ' ' + key2, escore_notes]
|
865 |
+
|
866 |
+
################################################################################
|
867 |
+
|
868 |
+
def flip_melody(melody):
|
869 |
+
|
870 |
+
mel = copy.deepcopy(melody)
|
871 |
+
|
872 |
+
old_mel_range = melody_range(melody)
|
873 |
+
|
874 |
+
for note in mel[4]:
|
875 |
+
note[2] = 127 - note[2]
|
876 |
+
|
877 |
+
new_mel_range = melody_range(mel)
|
878 |
+
|
879 |
+
transpose_value = int(old_mel_range[1] - new_mel_range[1])
|
880 |
+
|
881 |
+
new_melody = transpose_melody(mel, transpose_value)
|
882 |
+
|
883 |
+
return melody[:4] + [new_melody[4]]
|
884 |
+
|
885 |
+
################################################################################
|
886 |
+
|
887 |
+
def reverse_melody(melody, full_reverse=True):
|
888 |
+
|
889 |
+
mel = copy.deepcopy(melody)
|
890 |
+
|
891 |
+
if full_reverse:
|
892 |
+
|
893 |
+
abs_times = []
|
894 |
+
|
895 |
+
atime = 0
|
896 |
+
|
897 |
+
for t in mel[4]:
|
898 |
+
atime += t[0]
|
899 |
+
abs_times.append(atime)
|
900 |
+
|
901 |
+
abs_dtimes = []
|
902 |
+
|
903 |
+
for i, t in enumerate(mel[4]):
|
904 |
+
abs_dtimes.append(abs_times[i]+t[1])
|
905 |
+
|
906 |
+
new_dtimes = []
|
907 |
+
pt = abs_dtimes[-1]
|
908 |
+
|
909 |
+
for t in abs_dtimes[::-1]:
|
910 |
+
new_dtimes.append(pt-t)
|
911 |
+
pt = t
|
912 |
+
|
913 |
+
new_mel = copy.deepcopy(mel[4][::-1])
|
914 |
+
|
915 |
+
for i, t in enumerate(new_mel):
|
916 |
+
t[0] = new_dtimes[i]
|
917 |
+
|
918 |
+
return melody[:4] + [new_mel]
|
919 |
+
|
920 |
+
else:
|
921 |
+
mel_pitches = melody_pitches(melody)[::-1]
|
922 |
+
|
923 |
+
for i, note in enumerate(mel[4]):
|
924 |
+
note[2] = mel_pitches[i]
|
925 |
+
|
926 |
+
return melody[:4] + [mel[4]]
|
927 |
+
|
928 |
+
################################################################################
|
929 |
+
#
|
930 |
+
# This is the end of TMELODIES Python module
|
931 |
+
#
|
932 |
+
################################################################################
|
TMIDIX.py
CHANGED
@@ -9381,6 +9381,150 @@ def advanced_add_drums_to_escore_notes(escore_notes,
|
|
9381 |
|
9382 |
return delta_score_to_abs_score(drums_score)
|
9383 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9384 |
###################################################################################
|
9385 |
#
|
9386 |
# This is the end of the TMIDI X Python module
|
|
|
9381 |
|
9382 |
return delta_score_to_abs_score(drums_score)
|
9383 |
|
9384 |
+
###################################################################################
|
9385 |
+
|
9386 |
+
MIDI_TEXT_EVENTS = ['text_event',
|
9387 |
+
'copyright_text_event',
|
9388 |
+
'track_name',
|
9389 |
+
'instrument_name',
|
9390 |
+
'lyric',
|
9391 |
+
'marker',
|
9392 |
+
'cue_point',
|
9393 |
+
'text_event_08',
|
9394 |
+
'text_event_09',
|
9395 |
+
'text_event_0a',
|
9396 |
+
'text_event_0b',
|
9397 |
+
'text_event_0c',
|
9398 |
+
'text_event_0d',
|
9399 |
+
'text_event_0e',
|
9400 |
+
'text_event_0f'
|
9401 |
+
]
|
9402 |
+
|
9403 |
+
###################################################################################
|
9404 |
+
|
9405 |
+
import hashlib
|
9406 |
+
import re
|
9407 |
+
|
9408 |
+
###################################################################################
|
9409 |
+
|
9410 |
+
def get_md5_hash(data):
|
9411 |
+
return hashlib.md5(data).hexdigest()
|
9412 |
+
|
9413 |
+
###################################################################################
|
9414 |
+
|
9415 |
+
def is_valid_md5_hash(string):
|
9416 |
+
return bool(re.match(r'^[a-fA-F0-9]{32}$', string))
|
9417 |
+
|
9418 |
+
###################################################################################
|
9419 |
+
|
9420 |
+
def clean_string(original_string,
|
9421 |
+
regex=r'[^a-zA-Z0-9 ]',
|
9422 |
+
remove_duplicate_spaces=True,
|
9423 |
+
title=False
|
9424 |
+
):
|
9425 |
+
|
9426 |
+
cstr1 = re.sub(regex, '', original_string)
|
9427 |
+
|
9428 |
+
if title:
|
9429 |
+
cstr1 = cstr1.title()
|
9430 |
+
|
9431 |
+
if remove_duplicate_spaces:
|
9432 |
+
return re.sub(r'\s+', ' ', cstr1).strip()
|
9433 |
+
|
9434 |
+
else:
|
9435 |
+
return cstr1
|
9436 |
+
|
9437 |
+
###################################################################################
|
9438 |
+
|
9439 |
+
def encode_to_ord(text, chars_range=[], sub_char='', chars_shift=0):
|
9440 |
+
|
9441 |
+
if not chars_range:
|
9442 |
+
chars_range = [32] + list(range(65, 91)) + list(range(97, 123))
|
9443 |
+
|
9444 |
+
if sub_char:
|
9445 |
+
chars_range.append(ord(sub_char))
|
9446 |
+
|
9447 |
+
chars_range = sorted(set(chars_range))
|
9448 |
+
|
9449 |
+
encoded = []
|
9450 |
+
|
9451 |
+
for char in text:
|
9452 |
+
if ord(char) in chars_range:
|
9453 |
+
encoded.append(chars_range.index(ord(char)) + chars_shift)
|
9454 |
+
|
9455 |
+
else:
|
9456 |
+
if sub_char:
|
9457 |
+
encoded.append(chars_range.index(ord(sub_char)) + chars_shift)
|
9458 |
+
|
9459 |
+
|
9460 |
+
return [encoded, chars_range]
|
9461 |
+
|
9462 |
+
###################################################################################
|
9463 |
+
|
9464 |
+
def decode_from_ord(ord_list, chars_range=[], sub_char='', chars_shift=0):
|
9465 |
+
|
9466 |
+
if not chars_range:
|
9467 |
+
chars_range = [32] + list(range(65, 91)) + list(range(97, 123))
|
9468 |
+
|
9469 |
+
if sub_char:
|
9470 |
+
chars_range.append(ord(sub_char))
|
9471 |
+
|
9472 |
+
chars_range = sorted(set(chars_range))
|
9473 |
+
|
9474 |
+
return ''.join(chr(chars_range[num-chars_shift]) if 0 <= num-chars_shift < len(chars_range) else sub_char for num in ord_list)
|
9475 |
+
|
9476 |
+
###################################################################################
|
9477 |
+
|
9478 |
+
def lists_similarity(list1, list2, by_elements=True, by_sum=True):
|
9479 |
+
|
9480 |
+
if len(list1) != len(list2) or len(list1) % 2 != 0:
|
9481 |
+
return -1
|
9482 |
+
|
9483 |
+
element_ratios = []
|
9484 |
+
total_counts1 = sum(list1)
|
9485 |
+
total_counts2 = sum(list2)
|
9486 |
+
|
9487 |
+
for a, b in zip(list1, list2):
|
9488 |
+
if a == 0 and b == 0:
|
9489 |
+
element_ratios.append(1)
|
9490 |
+
elif a == 0 or b == 0:
|
9491 |
+
element_ratios.append(0)
|
9492 |
+
else:
|
9493 |
+
element_ratios.append(min(a, b) / max(a, b))
|
9494 |
+
|
9495 |
+
average_element_ratio = sum(element_ratios) / len(element_ratios)
|
9496 |
+
|
9497 |
+
total_counts_ratio = min(total_counts1, total_counts2) / max(total_counts1, total_counts2)
|
9498 |
+
|
9499 |
+
if by_elements and by_sum:
|
9500 |
+
return (average_element_ratio + total_counts_ratio) / 2
|
9501 |
+
|
9502 |
+
elif by_elements and not by_sum:
|
9503 |
+
return average_element_ratio
|
9504 |
+
|
9505 |
+
elif not by_elements and by_sum:
|
9506 |
+
return total_counts_ratio
|
9507 |
+
|
9508 |
+
else:
|
9509 |
+
return -1
|
9510 |
+
|
9511 |
+
###################################################################################
|
9512 |
+
|
9513 |
+
def find_indexes(lst, value, mode='equal', dual_mode=True):
|
9514 |
+
|
9515 |
+
indexes = []
|
9516 |
+
|
9517 |
+
if mode == 'equal' or dual_mode:
|
9518 |
+
indexes.extend([index for index, elem in enumerate(lst) if elem == value])
|
9519 |
+
|
9520 |
+
if mode == 'smaller':
|
9521 |
+
indexes.extend([index for index, elem in enumerate(lst) if elem < value])
|
9522 |
+
|
9523 |
+
if mode == 'larger':
|
9524 |
+
indexes.extend([index for index, elem in enumerate(lst) if elem > value])
|
9525 |
+
|
9526 |
+
return sorted(set(indexes))
|
9527 |
+
|
9528 |
###################################################################################
|
9529 |
#
|
9530 |
# This is the end of the TMIDI X Python module
|
TPLOTS.py
ADDED
@@ -0,0 +1,1369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/python3
|
2 |
+
|
3 |
+
r'''############################################################################
|
4 |
+
################################################################################
|
5 |
+
#
|
6 |
+
#
|
7 |
+
# Tegridy Plots Python Module (TPLOTS)
|
8 |
+
# Version 1.0
|
9 |
+
#
|
10 |
+
# Project Los Angeles
|
11 |
+
#
|
12 |
+
# Tegridy Code 2024
|
13 |
+
#
|
14 |
+
# https://github.com/asigalov61/tegridy-tools
|
15 |
+
#
|
16 |
+
#
|
17 |
+
################################################################################
|
18 |
+
#
|
19 |
+
# Copyright 2024 Project Los Angeles / Tegridy Code
|
20 |
+
#
|
21 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
22 |
+
# you may not use this file except in compliance with the License.
|
23 |
+
# You may obtain a copy of the License at
|
24 |
+
#
|
25 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
26 |
+
#
|
27 |
+
# Unless required by applicable law or agreed to in writing, software
|
28 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
29 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
30 |
+
# See the License for the specific language governing permissions and
|
31 |
+
# limitations under the License.
|
32 |
+
#
|
33 |
+
################################################################################
|
34 |
+
################################################################################
|
35 |
+
#
|
36 |
+
# Critical dependencies
|
37 |
+
#
|
38 |
+
# !pip install numpy
|
39 |
+
# !pip install scipy
|
40 |
+
# !pip install matplotlib
|
41 |
+
# !pip install networkx
|
42 |
+
# !pip3 install scikit-learn
|
43 |
+
#
|
44 |
+
################################################################################
|
45 |
+
#
|
46 |
+
# Future critical dependencies
|
47 |
+
#
|
48 |
+
# !pip install umap-learn
|
49 |
+
# !pip install alphashape
|
50 |
+
#
|
51 |
+
################################################################################
|
52 |
+
'''
|
53 |
+
|
54 |
+
################################################################################
|
55 |
+
# Modules imports
|
56 |
+
################################################################################
|
57 |
+
|
58 |
+
import os
|
59 |
+
from collections import Counter
|
60 |
+
from itertools import groupby
|
61 |
+
|
62 |
+
import numpy as np
|
63 |
+
|
64 |
+
import networkx as nx
|
65 |
+
|
66 |
+
from sklearn.manifold import TSNE
|
67 |
+
from sklearn import metrics
|
68 |
+
from sklearn.preprocessing import MinMaxScaler
|
69 |
+
from sklearn.decomposition import PCA
|
70 |
+
|
71 |
+
from scipy.ndimage import zoom
|
72 |
+
from scipy.spatial import distance_matrix
|
73 |
+
from scipy.sparse.csgraph import minimum_spanning_tree
|
74 |
+
from scipy.stats import zscore
|
75 |
+
|
76 |
+
import matplotlib.pyplot as plt
|
77 |
+
from PIL import Image
|
78 |
+
|
79 |
+
################################################################################
|
80 |
+
# Constants
|
81 |
+
################################################################################
|
82 |
+
|
83 |
+
ALL_CHORDS_FULL = [[0], [0, 3], [0, 3, 5], [0, 3, 5, 8], [0, 3, 5, 9], [0, 3, 5, 10], [0, 3, 6],
|
84 |
+
[0, 3, 6, 9], [0, 3, 6, 10], [0, 3, 7], [0, 3, 7, 10], [0, 3, 8], [0, 3, 9],
|
85 |
+
[0, 3, 10], [0, 4], [0, 4, 6], [0, 4, 6, 9], [0, 4, 6, 10], [0, 4, 7],
|
86 |
+
[0, 4, 7, 10], [0, 4, 8], [0, 4, 9], [0, 4, 10], [0, 5], [0, 5, 8], [0, 5, 9],
|
87 |
+
[0, 5, 10], [0, 6], [0, 6, 9], [0, 6, 10], [0, 7], [0, 7, 10], [0, 8], [0, 9],
|
88 |
+
[0, 10], [1], [1, 4], [1, 4, 6], [1, 4, 6, 9], [1, 4, 6, 10], [1, 4, 6, 11],
|
89 |
+
[1, 4, 7], [1, 4, 7, 10], [1, 4, 7, 11], [1, 4, 8], [1, 4, 8, 11], [1, 4, 9],
|
90 |
+
[1, 4, 10], [1, 4, 11], [1, 5], [1, 5, 8], [1, 5, 8, 11], [1, 5, 9],
|
91 |
+
[1, 5, 10], [1, 5, 11], [1, 6], [1, 6, 9], [1, 6, 10], [1, 6, 11], [1, 7],
|
92 |
+
[1, 7, 10], [1, 7, 11], [1, 8], [1, 8, 11], [1, 9], [1, 10], [1, 11], [2],
|
93 |
+
[2, 5], [2, 5, 8], [2, 5, 8, 11], [2, 5, 9], [2, 5, 10], [2, 5, 11], [2, 6],
|
94 |
+
[2, 6, 9], [2, 6, 10], [2, 6, 11], [2, 7], [2, 7, 10], [2, 7, 11], [2, 8],
|
95 |
+
[2, 8, 11], [2, 9], [2, 10], [2, 11], [3], [3, 5], [3, 5, 8], [3, 5, 8, 11],
|
96 |
+
[3, 5, 9], [3, 5, 10], [3, 5, 11], [3, 6], [3, 6, 9], [3, 6, 10], [3, 6, 11],
|
97 |
+
[3, 7], [3, 7, 10], [3, 7, 11], [3, 8], [3, 8, 11], [3, 9], [3, 10], [3, 11],
|
98 |
+
[4], [4, 6], [4, 6, 9], [4, 6, 10], [4, 6, 11], [4, 7], [4, 7, 10], [4, 7, 11],
|
99 |
+
[4, 8], [4, 8, 11], [4, 9], [4, 10], [4, 11], [5], [5, 8], [5, 8, 11], [5, 9],
|
100 |
+
[5, 10], [5, 11], [6], [6, 9], [6, 10], [6, 11], [7], [7, 10], [7, 11], [8],
|
101 |
+
[8, 11], [9], [10], [11]]
|
102 |
+
|
103 |
+
################################################################################
|
104 |
+
|
105 |
+
CHORDS_TYPES = ['WHITE', 'BLACK', 'UNKNOWN', 'MIXED WHITE', 'MIXED BLACK', 'MIXED GRAY']
|
106 |
+
|
107 |
+
################################################################################
|
108 |
+
|
109 |
+
WHITE_NOTES = [0, 2, 4, 5, 7, 9, 11]
|
110 |
+
|
111 |
+
################################################################################
|
112 |
+
|
113 |
+
BLACK_NOTES = [1, 3, 6, 8, 10]
|
114 |
+
|
115 |
+
################################################################################
|
116 |
+
# Helper functions
|
117 |
+
################################################################################
|
118 |
+
|
119 |
+
def tones_chord_type(tones_chord,
|
120 |
+
return_chord_type_index=True,
|
121 |
+
):
|
122 |
+
|
123 |
+
"""
|
124 |
+
Returns tones chord type
|
125 |
+
"""
|
126 |
+
|
127 |
+
WN = WHITE_NOTES
|
128 |
+
BN = BLACK_NOTES
|
129 |
+
MX = WHITE_NOTES + BLACK_NOTES
|
130 |
+
|
131 |
+
|
132 |
+
CHORDS = ALL_CHORDS_FULL
|
133 |
+
|
134 |
+
tones_chord = sorted(tones_chord)
|
135 |
+
|
136 |
+
ctype = 'UNKNOWN'
|
137 |
+
|
138 |
+
if tones_chord in CHORDS:
|
139 |
+
|
140 |
+
if sorted(set(tones_chord) & set(WN)) == tones_chord:
|
141 |
+
ctype = 'WHITE'
|
142 |
+
|
143 |
+
elif sorted(set(tones_chord) & set(BN)) == tones_chord:
|
144 |
+
ctype = 'BLACK'
|
145 |
+
|
146 |
+
if len(tones_chord) > 1 and sorted(set(tones_chord) & set(MX)) == tones_chord:
|
147 |
+
|
148 |
+
if len(sorted(set(tones_chord) & set(WN))) == len(sorted(set(tones_chord) & set(BN))):
|
149 |
+
ctype = 'MIXED GRAY'
|
150 |
+
|
151 |
+
elif len(sorted(set(tones_chord) & set(WN))) > len(sorted(set(tones_chord) & set(BN))):
|
152 |
+
ctype = 'MIXED WHITE'
|
153 |
+
|
154 |
+
elif len(sorted(set(tones_chord) & set(WN))) < len(sorted(set(tones_chord) & set(BN))):
|
155 |
+
ctype = 'MIXED BLACK'
|
156 |
+
|
157 |
+
if return_chord_type_index:
|
158 |
+
return CHORDS_TYPES.index(ctype)
|
159 |
+
|
160 |
+
else:
|
161 |
+
return ctype
|
162 |
+
|
163 |
+
###################################################################################
|
164 |
+
|
165 |
+
def tone_type(tone,
|
166 |
+
return_tone_type_index=True
|
167 |
+
):
|
168 |
+
|
169 |
+
"""
|
170 |
+
Returns tone type
|
171 |
+
"""
|
172 |
+
|
173 |
+
tone = tone % 12
|
174 |
+
|
175 |
+
if tone in BLACK_NOTES:
|
176 |
+
if return_tone_type_index:
|
177 |
+
return CHORDS_TYPES.index('BLACK')
|
178 |
+
else:
|
179 |
+
return "BLACK"
|
180 |
+
|
181 |
+
else:
|
182 |
+
if return_tone_type_index:
|
183 |
+
return CHORDS_TYPES.index('WHITE')
|
184 |
+
else:
|
185 |
+
return "WHITE"
|
186 |
+
|
187 |
+
###################################################################################
|
188 |
+
|
189 |
+
def find_closest_points(points, return_points=True):
|
190 |
+
|
191 |
+
"""
|
192 |
+
Find closest 2D points
|
193 |
+
"""
|
194 |
+
|
195 |
+
coords = np.array(points)
|
196 |
+
|
197 |
+
num_points = coords.shape[0]
|
198 |
+
closest_matches = np.zeros(num_points, dtype=int)
|
199 |
+
distances = np.zeros((num_points, num_points))
|
200 |
+
|
201 |
+
for i in range(num_points):
|
202 |
+
for j in range(num_points):
|
203 |
+
if i != j:
|
204 |
+
distances[i, j] = np.linalg.norm(coords[i] - coords[j])
|
205 |
+
else:
|
206 |
+
distances[i, j] = np.inf
|
207 |
+
|
208 |
+
closest_matches = np.argmin(distances, axis=1)
|
209 |
+
|
210 |
+
if return_points:
|
211 |
+
points_matches = coords[closest_matches].tolist()
|
212 |
+
return points_matches
|
213 |
+
|
214 |
+
else:
|
215 |
+
return closest_matches.tolist()
|
216 |
+
|
217 |
+
################################################################################
|
218 |
+
|
219 |
+
def reduce_dimensionality_tsne(list_of_valies,
|
220 |
+
n_comp=2,
|
221 |
+
n_iter=5000,
|
222 |
+
verbose=True
|
223 |
+
):
|
224 |
+
|
225 |
+
"""
|
226 |
+
Reduces the dimensionality of the values using t-SNE.
|
227 |
+
"""
|
228 |
+
|
229 |
+
vals = np.array(list_of_valies)
|
230 |
+
|
231 |
+
tsne = TSNE(n_components=n_comp,
|
232 |
+
n_iter=n_iter,
|
233 |
+
verbose=verbose)
|
234 |
+
|
235 |
+
reduced_vals = tsne.fit_transform(vals)
|
236 |
+
|
237 |
+
return reduced_vals.tolist()
|
238 |
+
|
239 |
+
################################################################################
|
240 |
+
|
241 |
+
def compute_mst_edges(similarity_scores_list):
|
242 |
+
|
243 |
+
"""
|
244 |
+
Computes the Minimum Spanning Tree (MST) edges based on the similarity scores.
|
245 |
+
"""
|
246 |
+
|
247 |
+
num_tokens = len(similarity_scores_list[0])
|
248 |
+
|
249 |
+
graph = nx.Graph()
|
250 |
+
|
251 |
+
for i in range(num_tokens):
|
252 |
+
for j in range(i + 1, num_tokens):
|
253 |
+
weight = 1 - similarity_scores_list[i][j]
|
254 |
+
graph.add_edge(i, j, weight=weight)
|
255 |
+
|
256 |
+
mst = nx.minimum_spanning_tree(graph)
|
257 |
+
|
258 |
+
mst_edges = list(mst.edges(data=False))
|
259 |
+
|
260 |
+
return mst_edges
|
261 |
+
|
262 |
+
################################################################################
|
263 |
+
|
264 |
+
def square_binary_matrix(binary_matrix,
|
265 |
+
matrix_size=128,
|
266 |
+
interpolation_order=5,
|
267 |
+
return_square_matrix_points=False
|
268 |
+
):
|
269 |
+
|
270 |
+
"""
|
271 |
+
Reduces an arbitrary binary matrix to a square binary matrix
|
272 |
+
"""
|
273 |
+
|
274 |
+
zoom_factors = (matrix_size / len(binary_matrix), 1)
|
275 |
+
|
276 |
+
resized_matrix = zoom(binary_matrix, zoom_factors, order=interpolation_order)
|
277 |
+
|
278 |
+
resized_matrix = (resized_matrix > 0.5).astype(int)
|
279 |
+
|
280 |
+
final_matrix = np.zeros((matrix_size, matrix_size), dtype=int)
|
281 |
+
final_matrix[:, :resized_matrix.shape[1]] = resized_matrix
|
282 |
+
|
283 |
+
points = np.column_stack(np.where(final_matrix == 1)).tolist()
|
284 |
+
|
285 |
+
if return_square_matrix_points:
|
286 |
+
return points
|
287 |
+
|
288 |
+
else:
|
289 |
+
return resized_matrix
|
290 |
+
|
291 |
+
################################################################################
|
292 |
+
|
293 |
+
def square_matrix_points_colors(square_matrix_points):
|
294 |
+
|
295 |
+
"""
|
296 |
+
Returns colors for square matrix points
|
297 |
+
"""
|
298 |
+
|
299 |
+
cmap = generate_colors(12)
|
300 |
+
|
301 |
+
chords = []
|
302 |
+
chords_dict = set()
|
303 |
+
counts = []
|
304 |
+
|
305 |
+
for k, v in groupby(square_matrix_points, key=lambda x: x[0]):
|
306 |
+
pgroup = [vv[1] for vv in v]
|
307 |
+
chord = sorted(set(pgroup))
|
308 |
+
tchord = sorted(set([p % 12 for p in chord]))
|
309 |
+
chords_dict.add(tuple(tchord))
|
310 |
+
chords.append(tuple(tchord))
|
311 |
+
counts.append(len(pgroup))
|
312 |
+
|
313 |
+
chords_dict = sorted(chords_dict)
|
314 |
+
|
315 |
+
colors = []
|
316 |
+
|
317 |
+
for i, c in enumerate(chords):
|
318 |
+
colors.extend([cmap[round(sum(c) / len(c))]] * counts[i])
|
319 |
+
|
320 |
+
return colors
|
321 |
+
|
322 |
+
################################################################################
|
323 |
+
|
324 |
+
def hsv_to_rgb(h, s, v):
|
325 |
+
|
326 |
+
if s == 0.0:
|
327 |
+
return v, v, v
|
328 |
+
|
329 |
+
i = int(h*6.0)
|
330 |
+
f = (h*6.0) - i
|
331 |
+
p = v*(1.0 - s)
|
332 |
+
q = v*(1.0 - s*f)
|
333 |
+
t = v*(1.0 - s*(1.0-f))
|
334 |
+
i = i%6
|
335 |
+
|
336 |
+
return [(v, t, p), (q, v, p), (p, v, t), (p, q, v), (t, p, v), (v, p, q)][i]
|
337 |
+
|
338 |
+
################################################################################
|
339 |
+
|
340 |
+
def generate_colors(n):
|
341 |
+
return [hsv_to_rgb(i/n, 1, 1) for i in range(n)]
|
342 |
+
|
343 |
+
################################################################################
|
344 |
+
|
345 |
+
def add_arrays(a, b):
|
346 |
+
return [sum(pair) for pair in zip(a, b)]
|
347 |
+
|
348 |
+
################################################################################
|
349 |
+
|
350 |
+
def calculate_similarities(lists_of_values, metric='cosine'):
|
351 |
+
return metrics.pairwise_distances(lists_of_values, metric=metric).tolist()
|
352 |
+
|
353 |
+
################################################################################
|
354 |
+
|
355 |
+
def get_tokens_embeddings(x_transformer_model):
|
356 |
+
return x_transformer_model.net.token_emb.emb.weight.detach().cpu().tolist()
|
357 |
+
|
358 |
+
################################################################################
|
359 |
+
|
360 |
+
def minkowski_distance_matrix(X, p=3):
|
361 |
+
|
362 |
+
X = np.array(X)
|
363 |
+
|
364 |
+
n = X.shape[0]
|
365 |
+
dist_matrix = np.zeros((n, n))
|
366 |
+
|
367 |
+
for i in range(n):
|
368 |
+
for j in range(n):
|
369 |
+
dist_matrix[i, j] = np.sum(np.abs(X[i] - X[j])**p)**(1/p)
|
370 |
+
|
371 |
+
return dist_matrix.tolist()
|
372 |
+
|
373 |
+
################################################################################
|
374 |
+
|
375 |
+
def robust_normalize(values):
|
376 |
+
|
377 |
+
values = np.array(values)
|
378 |
+
q1 = np.percentile(values, 25)
|
379 |
+
q3 = np.percentile(values, 75)
|
380 |
+
iqr = q3 - q1
|
381 |
+
|
382 |
+
filtered_values = values[(values >= q1 - 1.5 * iqr) & (values <= q3 + 1.5 * iqr)]
|
383 |
+
|
384 |
+
min_val = np.min(filtered_values)
|
385 |
+
max_val = np.max(filtered_values)
|
386 |
+
normalized_values = (values - min_val) / (max_val - min_val)
|
387 |
+
|
388 |
+
normalized_values = np.clip(normalized_values, 0, 1)
|
389 |
+
|
390 |
+
return normalized_values.tolist()
|
391 |
+
|
392 |
+
################################################################################
|
393 |
+
|
394 |
+
def min_max_normalize(values):
|
395 |
+
|
396 |
+
scaler = MinMaxScaler()
|
397 |
+
|
398 |
+
return scaler.fit_transform(values).tolist()
|
399 |
+
|
400 |
+
################################################################################
|
401 |
+
|
402 |
+
def remove_points_outliers(points, z_score_threshold=3):
|
403 |
+
|
404 |
+
points = np.array(points)
|
405 |
+
|
406 |
+
z_scores = np.abs(zscore(points, axis=0))
|
407 |
+
|
408 |
+
return points[(z_scores < z_score_threshold).all(axis=1)].tolist()
|
409 |
+
|
410 |
+
################################################################################
|
411 |
+
|
412 |
+
def generate_labels(lists_of_values,
|
413 |
+
return_indices_labels=False
|
414 |
+
):
|
415 |
+
|
416 |
+
ordered_indices = list(range(len(lists_of_values)))
|
417 |
+
ordered_indices_labels = [str(i) for i in ordered_indices]
|
418 |
+
ordered_values_labels = [str(lists_of_values[i]) for i in ordered_indices]
|
419 |
+
|
420 |
+
if return_indices_labels:
|
421 |
+
return ordered_indices_labels
|
422 |
+
|
423 |
+
else:
|
424 |
+
return ordered_values_labels
|
425 |
+
|
426 |
+
################################################################################
|
427 |
+
|
428 |
+
def reduce_dimensionality_pca(list_of_values, n_components=2):
|
429 |
+
|
430 |
+
"""
|
431 |
+
Reduces the dimensionality of the values using PCA.
|
432 |
+
"""
|
433 |
+
|
434 |
+
pca = PCA(n_components=n_components)
|
435 |
+
pca_data = pca.fit_transform(list_of_values)
|
436 |
+
|
437 |
+
return pca_data.tolist()
|
438 |
+
|
439 |
+
def reduce_dimensionality_simple(list_of_values,
|
440 |
+
return_means=True,
|
441 |
+
return_std_devs=True,
|
442 |
+
return_medians=False,
|
443 |
+
return_vars=False
|
444 |
+
):
|
445 |
+
|
446 |
+
'''
|
447 |
+
Reduces dimensionality of the values in a simple way
|
448 |
+
'''
|
449 |
+
|
450 |
+
array = np.array(list_of_values)
|
451 |
+
results = []
|
452 |
+
|
453 |
+
if return_means:
|
454 |
+
means = np.mean(array, axis=1)
|
455 |
+
results.append(means)
|
456 |
+
|
457 |
+
if return_std_devs:
|
458 |
+
std_devs = np.std(array, axis=1)
|
459 |
+
results.append(std_devs)
|
460 |
+
|
461 |
+
if return_medians:
|
462 |
+
medians = np.median(array, axis=1)
|
463 |
+
results.append(medians)
|
464 |
+
|
465 |
+
if return_vars:
|
466 |
+
vars = np.var(array, axis=1)
|
467 |
+
results.append(vars)
|
468 |
+
|
469 |
+
merged_results = np.column_stack(results)
|
470 |
+
|
471 |
+
return merged_results.tolist()
|
472 |
+
|
473 |
+
################################################################################
|
474 |
+
|
475 |
+
def reduce_dimensionality_2d_distance(list_of_values, p=5):
|
476 |
+
|
477 |
+
'''
|
478 |
+
Reduces the dimensionality of the values using 2d distance
|
479 |
+
'''
|
480 |
+
|
481 |
+
values = np.array(list_of_values)
|
482 |
+
|
483 |
+
dist_matrix = distance_matrix(values, values, p=p)
|
484 |
+
|
485 |
+
mst = minimum_spanning_tree(dist_matrix).toarray()
|
486 |
+
|
487 |
+
points = []
|
488 |
+
|
489 |
+
for i in range(len(values)):
|
490 |
+
for j in range(len(values)):
|
491 |
+
if mst[i, j] > 0:
|
492 |
+
points.append([i, j])
|
493 |
+
|
494 |
+
return points
|
495 |
+
|
496 |
+
################################################################################
|
497 |
+
|
498 |
+
def normalize_to_range(values, n):
|
499 |
+
|
500 |
+
min_val = min(values)
|
501 |
+
max_val = max(values)
|
502 |
+
|
503 |
+
range_val = max_val - min_val
|
504 |
+
|
505 |
+
normalized_values = [((value - min_val) / range_val * 2 * n) - n for value in values]
|
506 |
+
|
507 |
+
return normalized_values
|
508 |
+
|
509 |
+
################################################################################
|
510 |
+
|
511 |
+
def reduce_dimensionality_simple_pca(list_of_values, n_components=2):
|
512 |
+
|
513 |
+
'''
|
514 |
+
Reduces the dimensionality of the values using simple PCA
|
515 |
+
'''
|
516 |
+
|
517 |
+
reduced_values = []
|
518 |
+
|
519 |
+
for l in list_of_values:
|
520 |
+
|
521 |
+
norm_values = [round(v * len(l)) for v in normalize_to_range(l, (n_components+1) // 2)]
|
522 |
+
|
523 |
+
pca_values = Counter(norm_values).most_common()
|
524 |
+
pca_values = [vv[0] / len(l) for vv in pca_values]
|
525 |
+
pca_values = pca_values[:n_components]
|
526 |
+
pca_values = pca_values + [0] * (n_components - len(pca_values))
|
527 |
+
|
528 |
+
reduced_values.append(pca_values)
|
529 |
+
|
530 |
+
return reduced_values
|
531 |
+
|
532 |
+
################################################################################
|
533 |
+
|
534 |
+
def filter_and_replace_values(list_of_values,
|
535 |
+
threshold,
|
536 |
+
replace_value,
|
537 |
+
replace_above_threshold=False
|
538 |
+
):
|
539 |
+
|
540 |
+
array = np.array(list_of_values)
|
541 |
+
|
542 |
+
modified_array = np.copy(array)
|
543 |
+
|
544 |
+
if replace_above_threshold:
|
545 |
+
modified_array[modified_array > threshold] = replace_value
|
546 |
+
|
547 |
+
else:
|
548 |
+
modified_array[modified_array < threshold] = replace_value
|
549 |
+
|
550 |
+
return modified_array.tolist()
|
551 |
+
|
552 |
+
################################################################################
|
553 |
+
|
554 |
+
def find_shortest_constellation_path(points,
|
555 |
+
start_point_idx,
|
556 |
+
end_point_idx,
|
557 |
+
p=5,
|
558 |
+
return_path_length=False,
|
559 |
+
return_path_points=False,
|
560 |
+
):
|
561 |
+
|
562 |
+
"""
|
563 |
+
Finds the shortest path between two points of the points constellation
|
564 |
+
"""
|
565 |
+
|
566 |
+
points = np.array(points)
|
567 |
+
|
568 |
+
dist_matrix = distance_matrix(points, points, p=p)
|
569 |
+
|
570 |
+
mst = minimum_spanning_tree(dist_matrix).toarray()
|
571 |
+
|
572 |
+
G = nx.Graph()
|
573 |
+
|
574 |
+
for i in range(len(points)):
|
575 |
+
for j in range(len(points)):
|
576 |
+
if mst[i, j] > 0:
|
577 |
+
G.add_edge(i, j, weight=mst[i, j])
|
578 |
+
|
579 |
+
path = nx.shortest_path(G,
|
580 |
+
source=start_point_idx,
|
581 |
+
target=end_point_idx,
|
582 |
+
weight='weight'
|
583 |
+
)
|
584 |
+
|
585 |
+
path_length = nx.shortest_path_length(G,
|
586 |
+
source=start_point_idx,
|
587 |
+
target=end_point_idx,
|
588 |
+
weight='weight')
|
589 |
+
|
590 |
+
path_points = points[np.array(path)].tolist()
|
591 |
+
|
592 |
+
|
593 |
+
if return_path_points:
|
594 |
+
return path_points
|
595 |
+
|
596 |
+
if return_path_length:
|
597 |
+
return path_length
|
598 |
+
|
599 |
+
return path
|
600 |
+
|
601 |
+
################################################################################
|
602 |
+
# Core functions
|
603 |
+
################################################################################
|
604 |
+
|
605 |
+
def plot_ms_SONG(ms_song,
|
606 |
+
preview_length_in_notes=0,
|
607 |
+
block_lines_times_list = None,
|
608 |
+
plot_title='ms Song',
|
609 |
+
max_num_colors=129,
|
610 |
+
drums_color_num=128,
|
611 |
+
plot_size=(11,4),
|
612 |
+
note_height = 0.75,
|
613 |
+
show_grid_lines=False,
|
614 |
+
return_plt = False,
|
615 |
+
timings_multiplier=1,
|
616 |
+
save_plt='',
|
617 |
+
save_only_plt_image=True,
|
618 |
+
save_transparent=False
|
619 |
+
):
|
620 |
+
|
621 |
+
'''ms SONG plot'''
|
622 |
+
|
623 |
+
notes = [s for s in ms_song if s[0] == 'note']
|
624 |
+
|
625 |
+
if (len(max(notes, key=len)) != 7) and (len(min(notes, key=len)) != 7):
|
626 |
+
print('The song notes do not have patches information')
|
627 |
+
print('Ploease add patches to the notes in the song')
|
628 |
+
|
629 |
+
else:
|
630 |
+
|
631 |
+
start_times = [(s[1] * timings_multiplier) / 1000 for s in notes]
|
632 |
+
durations = [(s[2] * timings_multiplier) / 1000 for s in notes]
|
633 |
+
pitches = [s[4] for s in notes]
|
634 |
+
patches = [s[6] for s in notes]
|
635 |
+
|
636 |
+
colors = generate_colors(max_num_colors)
|
637 |
+
colors[drums_color_num] = (1, 1, 1)
|
638 |
+
|
639 |
+
pbl = (notes[preview_length_in_notes][1] * timings_multiplier) / 1000
|
640 |
+
|
641 |
+
fig, ax = plt.subplots(figsize=plot_size)
|
642 |
+
|
643 |
+
for start, duration, pitch, patch in zip(start_times, durations, pitches, patches):
|
644 |
+
rect = plt.Rectangle((start, pitch), duration, note_height, facecolor=colors[patch])
|
645 |
+
ax.add_patch(rect)
|
646 |
+
|
647 |
+
ax.set_xlim([min(start_times), max(add_arrays(start_times, durations))])
|
648 |
+
ax.set_ylim([min(pitches)-1, max(pitches)+1])
|
649 |
+
|
650 |
+
ax.set_facecolor('black')
|
651 |
+
fig.patch.set_facecolor('white')
|
652 |
+
|
653 |
+
if preview_length_in_notes > 0:
|
654 |
+
ax.axvline(x=pbl, c='white')
|
655 |
+
|
656 |
+
if block_lines_times_list:
|
657 |
+
for bl in block_lines_times_list:
|
658 |
+
ax.axvline(x=bl, c='white')
|
659 |
+
|
660 |
+
if show_grid_lines:
|
661 |
+
ax.grid(color='white')
|
662 |
+
|
663 |
+
plt.xlabel('Time (s)', c='black')
|
664 |
+
plt.ylabel('MIDI Pitch', c='black')
|
665 |
+
|
666 |
+
plt.title(plot_title)
|
667 |
+
|
668 |
+
if save_plt != '':
|
669 |
+
if save_only_plt_image:
|
670 |
+
plt.axis('off')
|
671 |
+
plt.title('')
|
672 |
+
plt.savefig(save_plt,
|
673 |
+
transparent=save_transparent,
|
674 |
+
bbox_inches='tight',
|
675 |
+
pad_inches=0,
|
676 |
+
facecolor='black'
|
677 |
+
)
|
678 |
+
plt.close()
|
679 |
+
|
680 |
+
else:
|
681 |
+
plt.savefig(save_plt)
|
682 |
+
plt.close()
|
683 |
+
|
684 |
+
if return_plt:
|
685 |
+
return fig
|
686 |
+
|
687 |
+
plt.show()
|
688 |
+
plt.close()
|
689 |
+
|
690 |
+
################################################################################
|
691 |
+
|
692 |
+
def plot_square_matrix_points(list_of_points,
|
693 |
+
list_of_points_colors,
|
694 |
+
plot_size=(7, 7),
|
695 |
+
point_size = 10,
|
696 |
+
show_grid_lines=False,
|
697 |
+
plot_title = 'Square Matrix Points Plot',
|
698 |
+
return_plt=False,
|
699 |
+
save_plt='',
|
700 |
+
save_only_plt_image=True,
|
701 |
+
save_transparent=False
|
702 |
+
):
|
703 |
+
|
704 |
+
'''Square matrix points plot'''
|
705 |
+
|
706 |
+
fig, ax = plt.subplots(figsize=plot_size)
|
707 |
+
|
708 |
+
ax.set_facecolor('black')
|
709 |
+
|
710 |
+
if show_grid_lines:
|
711 |
+
ax.grid(color='white')
|
712 |
+
|
713 |
+
plt.xlabel('Time Step', c='black')
|
714 |
+
plt.ylabel('MIDI Pitch', c='black')
|
715 |
+
|
716 |
+
plt.title(plot_title)
|
717 |
+
|
718 |
+
plt.scatter([p[0] for p in list_of_points],
|
719 |
+
[p[1] for p in list_of_points],
|
720 |
+
c=list_of_points_colors,
|
721 |
+
s=point_size
|
722 |
+
)
|
723 |
+
|
724 |
+
if save_plt != '':
|
725 |
+
if save_only_plt_image:
|
726 |
+
plt.axis('off')
|
727 |
+
plt.title('')
|
728 |
+
plt.savefig(save_plt,
|
729 |
+
transparent=save_transparent,
|
730 |
+
bbox_inches='tight',
|
731 |
+
pad_inches=0,
|
732 |
+
facecolor='black'
|
733 |
+
)
|
734 |
+
plt.close()
|
735 |
+
|
736 |
+
else:
|
737 |
+
plt.savefig(save_plt)
|
738 |
+
plt.close()
|
739 |
+
|
740 |
+
if return_plt:
|
741 |
+
return fig
|
742 |
+
|
743 |
+
plt.show()
|
744 |
+
plt.close()
|
745 |
+
|
746 |
+
################################################################################
|
747 |
+
|
748 |
+
def plot_cosine_similarities(lists_of_values,
|
749 |
+
plot_size=(7, 7),
|
750 |
+
save_plot=''
|
751 |
+
):
|
752 |
+
|
753 |
+
"""
|
754 |
+
Cosine similarities plot
|
755 |
+
"""
|
756 |
+
|
757 |
+
cos_sim = metrics.pairwise_distances(lists_of_values, metric='cosine')
|
758 |
+
|
759 |
+
plt.figure(figsize=plot_size)
|
760 |
+
|
761 |
+
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
|
762 |
+
|
763 |
+
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
|
764 |
+
|
765 |
+
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
|
766 |
+
|
767 |
+
plt.xlabel("Index")
|
768 |
+
plt.ylabel("Index")
|
769 |
+
|
770 |
+
plt.tight_layout()
|
771 |
+
|
772 |
+
if save_plot != '':
|
773 |
+
plt.savefig(save_plot, bbox_inches="tight")
|
774 |
+
plt.close()
|
775 |
+
|
776 |
+
plt.show()
|
777 |
+
plt.close()
|
778 |
+
|
779 |
+
################################################################################
|
780 |
+
|
781 |
+
def plot_points_with_mst_lines(points,
|
782 |
+
points_labels,
|
783 |
+
points_mst_edges,
|
784 |
+
plot_size=(20, 20),
|
785 |
+
labels_size=24,
|
786 |
+
save_plot=''
|
787 |
+
):
|
788 |
+
|
789 |
+
"""
|
790 |
+
Plots 2D points with labels and MST lines.
|
791 |
+
"""
|
792 |
+
|
793 |
+
plt.figure(figsize=plot_size)
|
794 |
+
|
795 |
+
for i, label in enumerate(points_labels):
|
796 |
+
plt.scatter(points[i][0], points[i][1])
|
797 |
+
plt.annotate(label, (points[i][0], points[i][1]), fontsize=labels_size)
|
798 |
+
|
799 |
+
for edge in points_mst_edges:
|
800 |
+
i, j = edge
|
801 |
+
plt.plot([points[i][0], points[j][0]], [points[i][1], points[j][1]], 'k-', alpha=0.5)
|
802 |
+
|
803 |
+
plt.title('Points Map with MST Lines', fontsize=labels_size)
|
804 |
+
plt.xlabel('X-axis', fontsize=labels_size)
|
805 |
+
plt.ylabel('Y-axis', fontsize=labels_size)
|
806 |
+
|
807 |
+
if save_plot != '':
|
808 |
+
plt.savefig(save_plot, bbox_inches="tight")
|
809 |
+
plt.close()
|
810 |
+
|
811 |
+
plt.show()
|
812 |
+
|
813 |
+
plt.close()
|
814 |
+
|
815 |
+
################################################################################
|
816 |
+
|
817 |
+
def plot_points_constellation(points,
|
818 |
+
points_labels,
|
819 |
+
p=5,
|
820 |
+
plot_size=(15, 15),
|
821 |
+
labels_size=12,
|
822 |
+
show_grid=False,
|
823 |
+
save_plot=''
|
824 |
+
):
|
825 |
+
|
826 |
+
"""
|
827 |
+
Plots 2D points constellation
|
828 |
+
"""
|
829 |
+
|
830 |
+
points = np.array(points)
|
831 |
+
|
832 |
+
dist_matrix = distance_matrix(points, points, p=p)
|
833 |
+
|
834 |
+
mst = minimum_spanning_tree(dist_matrix).toarray()
|
835 |
+
|
836 |
+
plt.figure(figsize=plot_size)
|
837 |
+
|
838 |
+
plt.scatter(points[:, 0], points[:, 1], color='blue')
|
839 |
+
|
840 |
+
for i, label in enumerate(points_labels):
|
841 |
+
plt.annotate(label, (points[i, 0], points[i, 1]),
|
842 |
+
textcoords="offset points",
|
843 |
+
xytext=(0, 10),
|
844 |
+
ha='center',
|
845 |
+
fontsize=labels_size
|
846 |
+
)
|
847 |
+
|
848 |
+
for i in range(len(points)):
|
849 |
+
for j in range(len(points)):
|
850 |
+
if mst[i, j] > 0:
|
851 |
+
plt.plot([points[i, 0], points[j, 0]], [points[i, 1], points[j, 1]], 'k--')
|
852 |
+
|
853 |
+
plt.xlabel('X-axis', fontsize=labels_size)
|
854 |
+
plt.ylabel('Y-axis', fontsize=labels_size)
|
855 |
+
plt.title('2D Coordinates with Minimum Spanning Tree', fontsize=labels_size)
|
856 |
+
|
857 |
+
plt.grid(show_grid)
|
858 |
+
|
859 |
+
if save_plot != '':
|
860 |
+
plt.savefig(save_plot, bbox_inches="tight")
|
861 |
+
plt.close()
|
862 |
+
|
863 |
+
plt.show()
|
864 |
+
|
865 |
+
plt.close()
|
866 |
+
|
867 |
+
################################################################################
|
868 |
+
|
869 |
+
def binary_matrix_to_images(matrix,
|
870 |
+
step,
|
871 |
+
overlap,
|
872 |
+
output_folder='./Dataset/',
|
873 |
+
output_img_prefix='image',
|
874 |
+
output_img_ext='.png',
|
875 |
+
save_to_array=False,
|
876 |
+
verbose=True
|
877 |
+
):
|
878 |
+
|
879 |
+
if not save_to_array:
|
880 |
+
|
881 |
+
if verbose:
|
882 |
+
print('=' * 70)
|
883 |
+
print('Checking output folder dir...')
|
884 |
+
|
885 |
+
os.makedirs(os.path.dirname(output_folder), exist_ok=True)
|
886 |
+
|
887 |
+
if verbose:
|
888 |
+
print('Done!')
|
889 |
+
|
890 |
+
if verbose:
|
891 |
+
print('=' * 70)
|
892 |
+
print('Writing images...')
|
893 |
+
|
894 |
+
matrix = np.array(matrix, dtype=np.uint8)
|
895 |
+
|
896 |
+
image_array = []
|
897 |
+
|
898 |
+
for i in range(0, max(1, matrix.shape[0]), overlap):
|
899 |
+
|
900 |
+
submatrix = matrix[i:i+step, :]
|
901 |
+
|
902 |
+
if submatrix.shape[0] < 128:
|
903 |
+
zeros_array = np.zeros((128-submatrix.shape[0], 128))
|
904 |
+
submatrix = np.vstack((submatrix, zeros_array))
|
905 |
+
|
906 |
+
img = Image.fromarray(submatrix * 255).convert('1')
|
907 |
+
|
908 |
+
if save_to_array:
|
909 |
+
image_array.append(np.array(img))
|
910 |
+
|
911 |
+
else:
|
912 |
+
img.save(output_folder + output_img_prefix + '_' + str(matrix.shape[1]) + '_' + str(i).zfill(7) + output_img_ext)
|
913 |
+
|
914 |
+
if verbose:
|
915 |
+
print('Done!')
|
916 |
+
print('=' * 70)
|
917 |
+
print('Saved', (matrix.shape[0] // min(step, overlap))+1, 'imges!')
|
918 |
+
print('=' * 70)
|
919 |
+
|
920 |
+
if save_to_array:
|
921 |
+
return np.array(image_array).tolist()
|
922 |
+
|
923 |
+
################################################################################
|
924 |
+
|
925 |
+
def images_to_binary_matrix(list_of_images):
|
926 |
+
|
927 |
+
image_array = np.array(list_of_images)
|
928 |
+
|
929 |
+
original_matrix = []
|
930 |
+
|
931 |
+
for img in image_array:
|
932 |
+
|
933 |
+
submatrix = np.array(img)
|
934 |
+
original_matrix.extend(submatrix.tolist())
|
935 |
+
|
936 |
+
return original_matrix
|
937 |
+
|
938 |
+
################################################################################
|
939 |
+
|
940 |
+
def square_image_matrix(image_matrix,
|
941 |
+
matrix_size=128,
|
942 |
+
num_pca_components=5,
|
943 |
+
filter_out_zero_rows=False,
|
944 |
+
return_square_matrix_points=False
|
945 |
+
):
|
946 |
+
|
947 |
+
"""
|
948 |
+
Reduces an arbitrary image matrix to a square image matrix
|
949 |
+
"""
|
950 |
+
|
951 |
+
matrix = np.array(image_matrix)
|
952 |
+
|
953 |
+
if filter_out_zero_rows:
|
954 |
+
matrix = matrix[~np.all(matrix == 0, axis=1)]
|
955 |
+
|
956 |
+
target_rows = matrix_size
|
957 |
+
|
958 |
+
rows_per_group = matrix.shape[0] // target_rows
|
959 |
+
|
960 |
+
compressed_matrix = np.zeros((target_rows, matrix.shape[1]), dtype=np.int32)
|
961 |
+
|
962 |
+
for i in range(target_rows):
|
963 |
+
start_row = i * rows_per_group
|
964 |
+
end_row = (i + 1) * rows_per_group
|
965 |
+
group = matrix[start_row:end_row, :]
|
966 |
+
|
967 |
+
pca = PCA(n_components=num_pca_components)
|
968 |
+
pca.fit(group)
|
969 |
+
|
970 |
+
principal_component = np.mean(pca.components_, axis=0)
|
971 |
+
contributions = np.dot(group, principal_component)
|
972 |
+
selected_row_index = np.argmax(contributions)
|
973 |
+
|
974 |
+
compressed_matrix[i, :] = group[selected_row_index, :]
|
975 |
+
|
976 |
+
if return_square_matrix_points:
|
977 |
+
filtered_matrix = compressed_matrix[~np.all(compressed_matrix == 0, axis=1)]
|
978 |
+
|
979 |
+
row_indexes, col_indexes = np.where(filtered_matrix != 0)
|
980 |
+
points = np.column_stack((row_indexes, filtered_matrix[row_indexes, col_indexes])).tolist()
|
981 |
+
|
982 |
+
return points
|
983 |
+
|
984 |
+
else:
|
985 |
+
return compressed_matrix.tolist()
|
986 |
+
|
987 |
+
################################################################################
|
988 |
+
|
989 |
+
def image_matrix_to_images(image_matrix,
|
990 |
+
step,
|
991 |
+
overlap,
|
992 |
+
num_img_channels=3,
|
993 |
+
output_folder='./Dataset/',
|
994 |
+
output_img_prefix='image',
|
995 |
+
output_img_ext='.png',
|
996 |
+
save_to_array=False,
|
997 |
+
verbose=True
|
998 |
+
):
|
999 |
+
|
1000 |
+
if num_img_channels > 1:
|
1001 |
+
n_mat_channels = 3
|
1002 |
+
|
1003 |
+
else:
|
1004 |
+
n_mat_channels = 1
|
1005 |
+
|
1006 |
+
if not save_to_array:
|
1007 |
+
|
1008 |
+
if verbose:
|
1009 |
+
print('=' * 70)
|
1010 |
+
print('Checking output folder dir...')
|
1011 |
+
|
1012 |
+
os.makedirs(os.path.dirname(output_folder), exist_ok=True)
|
1013 |
+
|
1014 |
+
if verbose:
|
1015 |
+
print('Done!')
|
1016 |
+
|
1017 |
+
if verbose:
|
1018 |
+
print('=' * 70)
|
1019 |
+
print('Writing images...')
|
1020 |
+
|
1021 |
+
matrix = np.array(image_matrix)
|
1022 |
+
|
1023 |
+
image_array = []
|
1024 |
+
|
1025 |
+
for i in range(0, max(1, matrix.shape[0]), overlap):
|
1026 |
+
|
1027 |
+
submatrix = matrix[i:i+step, :]
|
1028 |
+
|
1029 |
+
if submatrix.shape[0] < 128:
|
1030 |
+
zeros_array = np.zeros((128-submatrix.shape[0], 128))
|
1031 |
+
submatrix = np.vstack((submatrix, zeros_array))
|
1032 |
+
|
1033 |
+
if n_mat_channels == 3:
|
1034 |
+
|
1035 |
+
r = (submatrix // (256*256)) % 256
|
1036 |
+
g = (submatrix // 256) % 256
|
1037 |
+
b = submatrix % 256
|
1038 |
+
|
1039 |
+
rgb_image = np.stack((r, g, b), axis=-1).astype(np.uint8)
|
1040 |
+
img = Image.fromarray(rgb_image, 'RGB')
|
1041 |
+
|
1042 |
+
else:
|
1043 |
+
grayscale_image = submatrix.astype(np.uint8)
|
1044 |
+
img = Image.fromarray(grayscale_image, 'L')
|
1045 |
+
|
1046 |
+
if save_to_array:
|
1047 |
+
image_array.append(np.array(img))
|
1048 |
+
|
1049 |
+
else:
|
1050 |
+
img.save(output_folder + output_img_prefix + '_' + str(matrix.shape[1]) + '_' + str(i).zfill(7) + output_img_ext)
|
1051 |
+
|
1052 |
+
if verbose:
|
1053 |
+
print('Done!')
|
1054 |
+
print('=' * 70)
|
1055 |
+
print('Saved', (matrix.shape[0] // min(step, overlap))+1, 'imges!')
|
1056 |
+
print('=' * 70)
|
1057 |
+
|
1058 |
+
if save_to_array:
|
1059 |
+
return np.array(image_array).tolist()
|
1060 |
+
|
1061 |
+
################################################################################
|
1062 |
+
|
1063 |
+
def images_to_image_matrix(list_of_images,
|
1064 |
+
num_img_channels=3
|
1065 |
+
):
|
1066 |
+
|
1067 |
+
if num_img_channels > 1:
|
1068 |
+
n_mat_channels = 3
|
1069 |
+
|
1070 |
+
else:
|
1071 |
+
n_mat_channels = 1
|
1072 |
+
|
1073 |
+
image_array = np.array(list_of_images)
|
1074 |
+
|
1075 |
+
original_matrix = []
|
1076 |
+
|
1077 |
+
for img in image_array:
|
1078 |
+
|
1079 |
+
if num_img_channels == 3:
|
1080 |
+
|
1081 |
+
rgb_array = np.array(img)
|
1082 |
+
|
1083 |
+
matrix = (rgb_array[..., 0].astype(np.int64) * 256*256 +
|
1084 |
+
rgb_array[..., 1].astype(np.int64) * 256 +
|
1085 |
+
rgb_array[..., 2].astype(np.int64))
|
1086 |
+
|
1087 |
+
else:
|
1088 |
+
matrix = np.array(img)
|
1089 |
+
|
1090 |
+
original_matrix.extend(matrix)
|
1091 |
+
|
1092 |
+
return original_matrix
|
1093 |
+
|
1094 |
+
################################################################################
|
1095 |
+
|
1096 |
+
def square_matrix_to_RGB_matrix(square_matrix):
|
1097 |
+
|
1098 |
+
smatrix = np.array(square_matrix)
|
1099 |
+
sq_matrix = smatrix[:smatrix.shape[1]]
|
1100 |
+
|
1101 |
+
r = (sq_matrix // (256 ** 2)) % 256
|
1102 |
+
g = (sq_matrix // 256) % 256
|
1103 |
+
b = sq_matrix % 256
|
1104 |
+
|
1105 |
+
rgb_array = np.stack((r, g, b), axis=-1)
|
1106 |
+
|
1107 |
+
return rgb_array.tolist()
|
1108 |
+
|
1109 |
+
################################################################################
|
1110 |
+
|
1111 |
+
def upsample_square_matrix(square_matrix, upsampling_factor=4):
|
1112 |
+
|
1113 |
+
smatrix = np.array(square_matrix)
|
1114 |
+
sq_matrix = smatrix[:smatrix.shape[1]]
|
1115 |
+
|
1116 |
+
scaling_array = np.ones((upsampling_factor, upsampling_factor))
|
1117 |
+
scaled_array = np.kron(sq_matrix, scaling_array)
|
1118 |
+
scaled_array = scaled_array.astype('int')
|
1119 |
+
|
1120 |
+
return scaled_array.tolist()
|
1121 |
+
|
1122 |
+
################################################################################
|
1123 |
+
|
1124 |
+
def downsample_square_matrix(square_matrix, downsampling_factor=4):
|
1125 |
+
|
1126 |
+
smatrix = np.array(square_matrix)
|
1127 |
+
sq_matrix = smatrix[:smatrix.shape[1]]
|
1128 |
+
|
1129 |
+
dmatrix = sq_matrix[::downsampling_factor, ::downsampling_factor]
|
1130 |
+
dmatrix = dmatrix.astype('int')
|
1131 |
+
|
1132 |
+
return dmatrix.tolist()
|
1133 |
+
|
1134 |
+
################################################################################
|
1135 |
+
|
1136 |
+
def plot_parsons_code(parsons_code,
|
1137 |
+
start_pitch=60,
|
1138 |
+
return_plot_dict=False,
|
1139 |
+
return_plot_string=False,
|
1140 |
+
plot_size=(10, 10),
|
1141 |
+
labels_size=16,
|
1142 |
+
save_plot=''
|
1143 |
+
):
|
1144 |
+
|
1145 |
+
'''
|
1146 |
+
Plot parsons code string
|
1147 |
+
'''
|
1148 |
+
|
1149 |
+
if parsons_code[0] != "*":
|
1150 |
+
return None
|
1151 |
+
|
1152 |
+
contour_dict = {}
|
1153 |
+
pitch = 0
|
1154 |
+
index = 0
|
1155 |
+
|
1156 |
+
maxp = 0
|
1157 |
+
minp = 0
|
1158 |
+
|
1159 |
+
contour_dict[(pitch, index)] = "*"
|
1160 |
+
|
1161 |
+
for point in parsons_code:
|
1162 |
+
if point == "R":
|
1163 |
+
index += 1
|
1164 |
+
contour_dict[(pitch, index)] = "-"
|
1165 |
+
|
1166 |
+
index += 1
|
1167 |
+
contour_dict[(pitch, index)] = "*"
|
1168 |
+
|
1169 |
+
elif point == "U":
|
1170 |
+
index += 1
|
1171 |
+
pitch -= 1
|
1172 |
+
contour_dict[(pitch, index)] = "/"
|
1173 |
+
|
1174 |
+
index += 1
|
1175 |
+
pitch -= 1
|
1176 |
+
contour_dict[(pitch, index)] = "*"
|
1177 |
+
|
1178 |
+
if pitch < maxp:
|
1179 |
+
maxp = pitch
|
1180 |
+
|
1181 |
+
elif point == "D":
|
1182 |
+
index += 1
|
1183 |
+
pitch += 1
|
1184 |
+
contour_dict[(pitch, index)] = "\\"
|
1185 |
+
|
1186 |
+
index += 1
|
1187 |
+
pitch += 1
|
1188 |
+
contour_dict[(pitch, index)] = "*"
|
1189 |
+
|
1190 |
+
if pitch > minp:
|
1191 |
+
minp = pitch
|
1192 |
+
|
1193 |
+
if return_plot_dict:
|
1194 |
+
return contour_dict
|
1195 |
+
|
1196 |
+
if return_plot_string:
|
1197 |
+
|
1198 |
+
plot_string = ''
|
1199 |
+
|
1200 |
+
for pitch in range(maxp, minp+1):
|
1201 |
+
line = [" " for _ in range(index + 1)]
|
1202 |
+
for pos in range(index + 1):
|
1203 |
+
if (pitch, pos) in contour_dict:
|
1204 |
+
line[pos] = contour_dict[(pitch, pos)]
|
1205 |
+
|
1206 |
+
plot_string = "".join(line)
|
1207 |
+
|
1208 |
+
return plot_string
|
1209 |
+
|
1210 |
+
labels = []
|
1211 |
+
pitches = []
|
1212 |
+
positions = []
|
1213 |
+
cur_pitch = start_pitch
|
1214 |
+
pitch_idx = 0
|
1215 |
+
|
1216 |
+
for k, v in contour_dict.items():
|
1217 |
+
|
1218 |
+
if v != '*':
|
1219 |
+
|
1220 |
+
pitches.append(cur_pitch)
|
1221 |
+
positions.append(pitch_idx)
|
1222 |
+
|
1223 |
+
if v == '/':
|
1224 |
+
cur_pitch += 1
|
1225 |
+
labels.append('U')
|
1226 |
+
|
1227 |
+
elif v == '\\':
|
1228 |
+
cur_pitch -= 1
|
1229 |
+
labels.append('D')
|
1230 |
+
|
1231 |
+
elif v == '-':
|
1232 |
+
labels.append('R')
|
1233 |
+
|
1234 |
+
pitch_idx += 1
|
1235 |
+
|
1236 |
+
plt.figure(figsize=plot_size)
|
1237 |
+
|
1238 |
+
|
1239 |
+
plt.plot(pitches)
|
1240 |
+
|
1241 |
+
for i, point in enumerate(zip(positions, pitches)):
|
1242 |
+
plt.annotate(labels[i], point, fontsize=labels_size)
|
1243 |
+
|
1244 |
+
|
1245 |
+
plt.title('Parsons Code with Labels', fontsize=labels_size)
|
1246 |
+
plt.xlabel('Position', fontsize=labels_size)
|
1247 |
+
plt.ylabel('Pitch', fontsize=labels_size)
|
1248 |
+
|
1249 |
+
if save_plot != '':
|
1250 |
+
plt.savefig(save_plot, bbox_inches="tight")
|
1251 |
+
plt.close()
|
1252 |
+
|
1253 |
+
plt.show()
|
1254 |
+
|
1255 |
+
plt.close()
|
1256 |
+
|
1257 |
+
################################################################################
|
1258 |
+
# [WIP] Future dev functions
|
1259 |
+
################################################################################
|
1260 |
+
|
1261 |
+
'''
|
1262 |
+
import umap
|
1263 |
+
|
1264 |
+
def reduce_dimensionality_umap(list_of_values,
|
1265 |
+
n_comp=2,
|
1266 |
+
n_neighbors=15,
|
1267 |
+
):
|
1268 |
+
|
1269 |
+
"""
|
1270 |
+
Reduces the dimensionality of the values using UMAP.
|
1271 |
+
"""
|
1272 |
+
|
1273 |
+
vals = np.array(list_of_values)
|
1274 |
+
|
1275 |
+
umap_reducer = umap.UMAP(n_components=n_comp,
|
1276 |
+
n_neighbors=n_neighbors,
|
1277 |
+
n_epochs=5000,
|
1278 |
+
verbose=True
|
1279 |
+
)
|
1280 |
+
|
1281 |
+
reduced_vals = umap_reducer.fit_transform(vals)
|
1282 |
+
|
1283 |
+
return reduced_vals.tolist()
|
1284 |
+
'''
|
1285 |
+
|
1286 |
+
################################################################################
|
1287 |
+
|
1288 |
+
'''
|
1289 |
+
import alphashape
|
1290 |
+
from shapely.geometry import Point
|
1291 |
+
from matplotlib.tri import Triangulation, LinearTriInterpolator
|
1292 |
+
from scipy.stats import zscore
|
1293 |
+
|
1294 |
+
#===============================================================================
|
1295 |
+
|
1296 |
+
coordinates = points
|
1297 |
+
|
1298 |
+
dist_matrix = minkowski_distance_matrix(coordinates, p=3) # You can change the value of p as needed
|
1299 |
+
|
1300 |
+
# Centering matrix
|
1301 |
+
n = dist_matrix.shape[0]
|
1302 |
+
H = np.eye(n) - np.ones((n, n)) / n
|
1303 |
+
|
1304 |
+
# Apply double centering
|
1305 |
+
B = -0.5 * H @ dist_matrix**2 @ H
|
1306 |
+
|
1307 |
+
# Eigen decomposition
|
1308 |
+
eigvals, eigvecs = np.linalg.eigh(B)
|
1309 |
+
|
1310 |
+
# Sort eigenvalues and eigenvectors
|
1311 |
+
idx = np.argsort(eigvals)[::-1]
|
1312 |
+
eigvals = eigvals[idx]
|
1313 |
+
eigvecs = eigvecs[:, idx]
|
1314 |
+
|
1315 |
+
# Select the top 2 eigenvectors
|
1316 |
+
X_transformed = eigvecs[:, :2] * np.sqrt(eigvals[:2])
|
1317 |
+
|
1318 |
+
#===============================================================================
|
1319 |
+
|
1320 |
+
src_points = X_transformed
|
1321 |
+
src_values = np.array([[p[1]] for p in points]) #np.random.rand(X_transformed.shape[0])
|
1322 |
+
|
1323 |
+
#===============================================================================
|
1324 |
+
|
1325 |
+
# Normalize the points to the range [0, 1]
|
1326 |
+
scaler = MinMaxScaler()
|
1327 |
+
points_normalized = scaler.fit_transform(src_points)
|
1328 |
+
|
1329 |
+
values_normalized = custom_normalize(src_values)
|
1330 |
+
|
1331 |
+
# Remove outliers based on z-score
|
1332 |
+
z_scores = np.abs(zscore(points_normalized, axis=0))
|
1333 |
+
filtered_points = points_normalized[(z_scores < 3).all(axis=1)]
|
1334 |
+
filtered_values = values_normalized[(z_scores < 3).all(axis=1)]
|
1335 |
+
|
1336 |
+
# Compute the concave hull (alpha shape)
|
1337 |
+
alpha = 8 # Adjust alpha as needed
|
1338 |
+
hull = alphashape.alphashape(filtered_points, alpha)
|
1339 |
+
|
1340 |
+
# Create a triangulation
|
1341 |
+
tri = Triangulation(filtered_points[:, 0], filtered_points[:, 1])
|
1342 |
+
|
1343 |
+
# Interpolate the values on the triangulation
|
1344 |
+
interpolator = LinearTriInterpolator(tri, filtered_values[:, 0])
|
1345 |
+
xi, yi = np.meshgrid(np.linspace(0, 1, 100), np.linspace(0, 1, 100))
|
1346 |
+
zi = interpolator(xi, yi)
|
1347 |
+
|
1348 |
+
# Mask out points outside the concave hull
|
1349 |
+
mask = np.array([hull.contains(Point(x, y)) for x, y in zip(xi.flatten(), yi.flatten())])
|
1350 |
+
zi = np.ma.array(zi, mask=~mask.reshape(zi.shape))
|
1351 |
+
|
1352 |
+
# Plot the filled contour based on the interpolated values
|
1353 |
+
plt.contourf(xi, yi, zi, levels=50, cmap='viridis')
|
1354 |
+
|
1355 |
+
# Plot the original points
|
1356 |
+
#plt.scatter(filtered_points[:, 0], filtered_points[:, 1], c=filtered_values, edgecolors='k')
|
1357 |
+
|
1358 |
+
plt.title('Filled Contour Plot with Original Values')
|
1359 |
+
plt.xlabel('X-axis')
|
1360 |
+
plt.ylabel('Y-axis')
|
1361 |
+
plt.colorbar(label='Value')
|
1362 |
+
plt.show()
|
1363 |
+
'''
|
1364 |
+
|
1365 |
+
################################################################################
|
1366 |
+
#
|
1367 |
+
# This is the end of TPLOTS Python modules
|
1368 |
+
#
|
1369 |
+
################################################################################
|
tegridy-tools-main.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:86cec8475a0e0cd4ec7ddaf3dee37b892611afb6d3f17dac7f3411f64ae79960
|
3 |
+
size 108223519
|
x_transformer_1_23_2.py
ADDED
@@ -0,0 +1,2481 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#===================================================================================================================
|
2 |
+
#
|
3 |
+
# X Trasformer Module
|
4 |
+
#
|
5 |
+
# Partial x-transformers code With useful modifications
|
6 |
+
#
|
7 |
+
# Version 1.0
|
8 |
+
#
|
9 |
+
# Original source code courtesy of lucidrains
|
10 |
+
# https://github.com/lucidrains/x-transformers
|
11 |
+
#
|
12 |
+
# Original source code retrieved on 10/10/2023
|
13 |
+
#
|
14 |
+
# Project Los Angeles
|
15 |
+
# Tegridy Code 2023
|
16 |
+
|
17 |
+
#===================================================================================================================
|
18 |
+
|
19 |
+
# Critical dependencies
|
20 |
+
#
|
21 |
+
# !pip install torch
|
22 |
+
# !pip install einops
|
23 |
+
|
24 |
+
#===================================================================================================================
|
25 |
+
|
26 |
+
from functools import partial
|
27 |
+
from typing import Optional, Tuple
|
28 |
+
|
29 |
+
import os
|
30 |
+
os.environ['USE_FLASH_ATTENTION'] = '1'
|
31 |
+
|
32 |
+
import torch
|
33 |
+
from torch import nn, einsum, Tensor
|
34 |
+
import torch.nn.functional as F
|
35 |
+
|
36 |
+
# Flash attention
|
37 |
+
from torch.nn.attention import SDPBackend, sdpa_kernel
|
38 |
+
torch.backends.cuda.enable_flash_sdp(True)
|
39 |
+
|
40 |
+
from collections import namedtuple
|
41 |
+
from functools import wraps
|
42 |
+
from packaging import version
|
43 |
+
from dataclasses import dataclass
|
44 |
+
|
45 |
+
from einops import rearrange, repeat
|
46 |
+
|
47 |
+
# constants
|
48 |
+
|
49 |
+
EfficientAttentionConfig = namedtuple('EfficientAttentionConfig', ['enable_flash', 'enable_math', 'enable_mem_efficient'])
|
50 |
+
|
51 |
+
@dataclass
|
52 |
+
class Intermediates:
|
53 |
+
qk_similarities: Optional[Tensor] = None
|
54 |
+
pre_softmax_attn: Optional[Tensor] = None
|
55 |
+
post_softmax_attn: Optional[Tensor] = None
|
56 |
+
cached_kv: Optional[Tuple[Tensor, Tensor]] = None
|
57 |
+
|
58 |
+
def to_tuple(self):
|
59 |
+
return (self.qk_similarities, self.pre_softmax_attn, self.post_softmax_attn)
|
60 |
+
|
61 |
+
# helpers
|
62 |
+
|
63 |
+
def exists(val):
|
64 |
+
return val is not None
|
65 |
+
|
66 |
+
def default(val, d):
|
67 |
+
return val if exists(val) else d
|
68 |
+
|
69 |
+
def compact(arr):
|
70 |
+
return [*filter(exists, arr)]
|
71 |
+
|
72 |
+
def once(fn):
|
73 |
+
called = False
|
74 |
+
@wraps(fn)
|
75 |
+
def inner(x):
|
76 |
+
nonlocal called
|
77 |
+
if called:
|
78 |
+
return
|
79 |
+
called = True
|
80 |
+
return fn(x)
|
81 |
+
return inner
|
82 |
+
|
83 |
+
print_once = once(print)
|
84 |
+
|
85 |
+
# functions for creating causal mask
|
86 |
+
# need a special one for onnx cpu (no support for .triu)
|
87 |
+
|
88 |
+
def create_causal_mask(i, j, device):
|
89 |
+
return torch.ones((i, j), device = device, dtype = torch.bool).triu(j - i + 1)
|
90 |
+
|
91 |
+
def onnx_create_causal_mask(i, j, device):
|
92 |
+
r = torch.arange(i, device = device)
|
93 |
+
causal_mask = rearrange(r, 'i -> i 1') < rearrange(r, 'j -> 1 j')
|
94 |
+
causal_mask = F.pad(causal_mask, (j - i, 0), value = False)
|
95 |
+
return causal_mask
|
96 |
+
|
97 |
+
# main class
|
98 |
+
|
99 |
+
class Attend(nn.Module):
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
*,
|
103 |
+
dropout = 0.,
|
104 |
+
causal = False,
|
105 |
+
heads = None,
|
106 |
+
talking_heads = False,
|
107 |
+
sparse_topk = None,
|
108 |
+
scale = None,
|
109 |
+
qk_norm = False,
|
110 |
+
flash = False,
|
111 |
+
add_zero_kv = False,
|
112 |
+
onnxable = False
|
113 |
+
):
|
114 |
+
super().__init__()
|
115 |
+
self.scale = scale
|
116 |
+
self.qk_norm = qk_norm
|
117 |
+
|
118 |
+
self.causal = causal
|
119 |
+
self.create_causal_mask = onnx_create_causal_mask if onnxable else create_causal_mask
|
120 |
+
|
121 |
+
self.attn_fn = partial(F.softmax, dtype = torch.float32) if not qk_norm else F.softmax
|
122 |
+
|
123 |
+
self.dropout = dropout
|
124 |
+
self.attn_dropout = nn.Dropout(dropout)
|
125 |
+
|
126 |
+
# talking heads
|
127 |
+
|
128 |
+
assert not (flash and talking_heads), 'talking heads not compatible with flash attention'
|
129 |
+
|
130 |
+
self.talking_heads = talking_heads
|
131 |
+
if talking_heads:
|
132 |
+
self.pre_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
|
133 |
+
self.post_softmax_talking_heads = nn.Conv2d(heads, heads, 1, bias = False)
|
134 |
+
|
135 |
+
# sparse topk
|
136 |
+
|
137 |
+
assert not (flash and sparse_topk), 'sparse topk not compatible with flash attention'
|
138 |
+
self.sparse_topk = sparse_topk
|
139 |
+
|
140 |
+
# add a key / value token composed of zeros
|
141 |
+
# in case this helps controlling outliers, proposed by https://www.evanmiller.org/attention-is-off-by-one.html
|
142 |
+
|
143 |
+
self.add_zero_kv = add_zero_kv
|
144 |
+
|
145 |
+
# flash attention
|
146 |
+
|
147 |
+
self.flash = flash
|
148 |
+
assert not (flash and version.parse(torch.__version__) < version.parse('2.0.0')), 'in order to use flash attention, you must be using pytorch 2.0 or above'
|
149 |
+
|
150 |
+
# determine efficient attention configs for cuda and cpu
|
151 |
+
|
152 |
+
self.cpu_config = EfficientAttentionConfig(True, True, True)
|
153 |
+
self.cuda_config = None
|
154 |
+
|
155 |
+
if not torch.cuda.is_available() or not flash:
|
156 |
+
return
|
157 |
+
|
158 |
+
device_properties = torch.cuda.get_device_properties(torch.device('cuda'))
|
159 |
+
|
160 |
+
major, minor = device_properties.major, device_properties.minor
|
161 |
+
|
162 |
+
if (major, minor) == (8, 0):
|
163 |
+
print_once('A100 GPU detected, using flash attention if input tensor is on cuda')
|
164 |
+
self.cuda_config = EfficientAttentionConfig(True, False, False)
|
165 |
+
elif (major, minor) == (9, 0):
|
166 |
+
print_once('H100 GPU detected, using flash attention')
|
167 |
+
self.cuda_config = EfficientAttentionConfig(True, False, False)
|
168 |
+
else:
|
169 |
+
print_once('Non-A100 GPU detected, using math or mem efficient attention if input tensor is on cuda')
|
170 |
+
self.cuda_config = EfficientAttentionConfig(False, True, True)
|
171 |
+
|
172 |
+
def flash_attn(
|
173 |
+
self,
|
174 |
+
q, k, v,
|
175 |
+
mask = None,
|
176 |
+
attn_bias = None
|
177 |
+
):
|
178 |
+
batch, heads, q_len, _, k_len, is_cuda, device = *q.shape, k.shape[-2], q.is_cuda, q.device
|
179 |
+
|
180 |
+
# Recommended for multi-query single-key-value attention by Tri Dao
|
181 |
+
# kv shape torch.Size([1, 512, 64]) -> torch.Size([1, 8, 512, 64])
|
182 |
+
|
183 |
+
if k.ndim == 3:
|
184 |
+
k = rearrange(k, 'b ... -> b 1 ...').expand_as(q)
|
185 |
+
|
186 |
+
if v.ndim == 3:
|
187 |
+
v = rearrange(v, 'b ... -> b 1 ...').expand_as(q)
|
188 |
+
|
189 |
+
# handle scale - by default they scale by dim_head ** -0.5, but need to take care if using cosine sim attention
|
190 |
+
|
191 |
+
if self.qk_norm:
|
192 |
+
default_scale = q.shape[-1] ** -0.5
|
193 |
+
q = q * (self.scale / default_scale)
|
194 |
+
|
195 |
+
# Check if mask exists and expand to compatible shape
|
196 |
+
# The mask is B L, so it would have to be expanded to B H N L
|
197 |
+
|
198 |
+
causal = self.causal
|
199 |
+
|
200 |
+
# in the case of kv caching with one token (q_len == 1), just turn off causal masking
|
201 |
+
# in speculative decoding, this may go up to 5-6, so right aligned causal mask will be needed there
|
202 |
+
|
203 |
+
if q_len == 1 and causal:
|
204 |
+
causal = False
|
205 |
+
|
206 |
+
# expand key padding mask
|
207 |
+
|
208 |
+
if exists(mask):
|
209 |
+
assert mask.ndim == 4
|
210 |
+
mask = mask.expand(batch, heads, q_len, k_len)
|
211 |
+
|
212 |
+
# handle kv cache - this should be bypassable in updated flash attention 2
|
213 |
+
|
214 |
+
if k_len > q_len and causal:
|
215 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
216 |
+
if not exists(mask):
|
217 |
+
mask = ~causal_mask
|
218 |
+
else:
|
219 |
+
mask = mask & ~causal_mask
|
220 |
+
causal = False
|
221 |
+
|
222 |
+
# manually handle causal mask, if another mask was given
|
223 |
+
|
224 |
+
row_is_entirely_masked = None
|
225 |
+
|
226 |
+
if exists(mask) and causal:
|
227 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
228 |
+
mask = mask & ~causal_mask
|
229 |
+
|
230 |
+
# protect against an entire row being masked out
|
231 |
+
|
232 |
+
row_is_entirely_masked = ~mask.any(dim = -1)
|
233 |
+
mask[..., 0] = mask[..., 0] | row_is_entirely_masked
|
234 |
+
|
235 |
+
causal = False
|
236 |
+
|
237 |
+
# handle alibi positional bias
|
238 |
+
# convert from bool to float
|
239 |
+
|
240 |
+
if exists(attn_bias):
|
241 |
+
attn_bias = rearrange(attn_bias, 'h i j -> 1 h i j').expand(batch, heads, -1, -1)
|
242 |
+
|
243 |
+
# if mask given, the mask would already contain the causal mask from above logic
|
244 |
+
# otherwise, if no mask given but still causal, mask out alibi positional bias to a large negative number
|
245 |
+
|
246 |
+
mask_value = -torch.finfo(q.dtype).max
|
247 |
+
|
248 |
+
if exists(mask):
|
249 |
+
attn_bias = attn_bias.masked_fill(~mask, mask_value // 2)
|
250 |
+
elif causal:
|
251 |
+
causal_mask = self.create_causal_mask(q_len, k_len, device = device)
|
252 |
+
attn_bias = attn_bias.masked_fill(causal_mask, mask_value // 2)
|
253 |
+
causal = False
|
254 |
+
|
255 |
+
# scaled_dot_product_attention handles attn_mask either as bool or additive bias
|
256 |
+
# make it an additive bias here
|
257 |
+
|
258 |
+
mask = attn_bias
|
259 |
+
|
260 |
+
# Check if there is a compatible device for flash attention
|
261 |
+
|
262 |
+
config = self.cuda_config if is_cuda else self.cpu_config
|
263 |
+
|
264 |
+
# pytorch 2.0 flash attn: q, k, v, mask, dropout, causal, softmax_scale
|
265 |
+
|
266 |
+
# Legacy code...
|
267 |
+
# with torch.backends.cuda.sdp_kernel(enable_math=True, enable_mem_efficient=True):
|
268 |
+
# with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION]):
|
269 |
+
|
270 |
+
# PyTorch 2.3-2.4 SDPA backend code...
|
271 |
+
with sdpa_kernel([SDPBackend.MATH, SDPBackend.EFFICIENT_ATTENTION, SDPBackend.FLASH_ATTENTION, SDPBackend.CUDNN_ATTENTION]):
|
272 |
+
# with sdpa_kernel([SDPBackend.FLASH_ATTENTION]):
|
273 |
+
|
274 |
+
# New PyTorch 2.5 SDPA backend code:
|
275 |
+
# with sdpa_kernel(SDPBackend.CUDNN_ATTENTION):
|
276 |
+
|
277 |
+
out = F.scaled_dot_product_attention(
|
278 |
+
q, k, v,
|
279 |
+
attn_mask = mask,
|
280 |
+
dropout_p = self.dropout if self.training else 0.,
|
281 |
+
is_causal = causal
|
282 |
+
)
|
283 |
+
|
284 |
+
# for a row that is entirely masked out, should zero out the output of that row token
|
285 |
+
|
286 |
+
if exists(row_is_entirely_masked):
|
287 |
+
out = out.masked_fill(row_is_entirely_masked[..., None], 0.)
|
288 |
+
|
289 |
+
return out, Intermediates()
|
290 |
+
|
291 |
+
def forward(
|
292 |
+
self,
|
293 |
+
q, k, v,
|
294 |
+
mask = None,
|
295 |
+
attn_bias = None,
|
296 |
+
prev_attn = None
|
297 |
+
):
|
298 |
+
"""
|
299 |
+
einstein notation
|
300 |
+
b - batch
|
301 |
+
h - heads
|
302 |
+
n, i, j - sequence length (base sequence length, source, target)
|
303 |
+
d - feature dimension
|
304 |
+
"""
|
305 |
+
|
306 |
+
n, heads, kv_heads, device = q.shape[-2], q.shape[1], k.shape[1], q.device
|
307 |
+
|
308 |
+
scale = default(self.scale, q.shape[-1] ** -0.5)
|
309 |
+
|
310 |
+
causal = self.causal
|
311 |
+
|
312 |
+
# handle kv cached decoding
|
313 |
+
|
314 |
+
if n == 1 and causal:
|
315 |
+
causal = False
|
316 |
+
|
317 |
+
# handle grouped multi-query attention
|
318 |
+
|
319 |
+
if kv_heads == 1:
|
320 |
+
k, v = map(lambda t: rearrange(t, 'b 1 n d -> b n d'), (k, v))
|
321 |
+
elif kv_heads < heads:
|
322 |
+
k, v = map(lambda t: repeat(t, 'b kvh n d -> b (r kvh) n d', r = heads // kv_heads), (k, v))
|
323 |
+
|
324 |
+
# handle zero kv, as means for allowing network to attend to nothing
|
325 |
+
|
326 |
+
if self.add_zero_kv:
|
327 |
+
k, v = map(lambda t: F.pad(t, (0, 0, 1, 0), value = 0.), (k, v))
|
328 |
+
|
329 |
+
if exists(mask):
|
330 |
+
mask = F.pad(mask, (1, 0), value = True)
|
331 |
+
|
332 |
+
if exists(attn_bias):
|
333 |
+
attn_bias = F.pad(attn_bias, (1, 0), value = 0.)
|
334 |
+
|
335 |
+
if self.flash:
|
336 |
+
assert not exists(prev_attn), 'residual attention not compatible with flash attention'
|
337 |
+
return self.flash_attn(q, k, v, mask = mask, attn_bias = attn_bias)
|
338 |
+
|
339 |
+
kv_einsum_eq = 'b j d' if k.ndim == 3 else 'b h j d'
|
340 |
+
|
341 |
+
dots = einsum(f'b h i d, {kv_einsum_eq} -> b h i j', q, k) * scale
|
342 |
+
|
343 |
+
if exists(prev_attn):
|
344 |
+
dots = dots + prev_attn
|
345 |
+
|
346 |
+
qk_similarities = dots.clone()
|
347 |
+
|
348 |
+
if self.talking_heads:
|
349 |
+
dots = self.pre_softmax_talking_heads(dots)
|
350 |
+
|
351 |
+
if exists(attn_bias):
|
352 |
+
dots = dots + attn_bias
|
353 |
+
|
354 |
+
i, j, dtype = *dots.shape[-2:], dots.dtype
|
355 |
+
|
356 |
+
mask_value = -torch.finfo(dots.dtype).max
|
357 |
+
|
358 |
+
if exists(self.sparse_topk) and self.sparse_topk < j:
|
359 |
+
top_values, _ = dots.topk(self.sparse_topk, dim = -1)
|
360 |
+
sparse_topk_mask = dots < top_values[..., -1:]
|
361 |
+
mask = (mask & sparse_topk_mask) if exists(mask) else sparse_topk_mask
|
362 |
+
|
363 |
+
if exists(mask):
|
364 |
+
dots = dots.masked_fill(~mask, mask_value)
|
365 |
+
|
366 |
+
if causal:
|
367 |
+
causal_mask = self.create_causal_mask(i, j, device = device)
|
368 |
+
dots = dots.masked_fill(causal_mask, mask_value)
|
369 |
+
|
370 |
+
pre_softmax_attn = dots.clone()
|
371 |
+
|
372 |
+
attn = self.attn_fn(dots, dim = -1)
|
373 |
+
attn = attn.type(dtype)
|
374 |
+
|
375 |
+
post_softmax_attn = attn.clone()
|
376 |
+
|
377 |
+
attn = self.attn_dropout(attn)
|
378 |
+
|
379 |
+
if self.talking_heads:
|
380 |
+
attn = self.post_softmax_talking_heads(attn)
|
381 |
+
|
382 |
+
out = einsum(f'b h i j, {kv_einsum_eq} -> b h i d', attn, v)
|
383 |
+
|
384 |
+
intermediates = Intermediates(
|
385 |
+
qk_similarities = qk_similarities,
|
386 |
+
pre_softmax_attn = pre_softmax_attn,
|
387 |
+
post_softmax_attn = post_softmax_attn
|
388 |
+
)
|
389 |
+
|
390 |
+
return out, intermediates
|
391 |
+
|
392 |
+
#===================================================================================================================
|
393 |
+
|
394 |
+
from math import ceil, log
|
395 |
+
from typing import Optional, Union, Tuple, Callable
|
396 |
+
|
397 |
+
import torch
|
398 |
+
from torch import nn, Tensor
|
399 |
+
from torch.nn import Module
|
400 |
+
import torch.nn.functional as F
|
401 |
+
|
402 |
+
from einops import rearrange, pack, unpack
|
403 |
+
|
404 |
+
def exists(val):
|
405 |
+
return val is not None
|
406 |
+
|
407 |
+
def default(val, d):
|
408 |
+
return val if exists(val) else d
|
409 |
+
|
410 |
+
def identity(t, *args, **kwargs):
|
411 |
+
return t
|
412 |
+
|
413 |
+
def cast_tuple(t, length = 1):
|
414 |
+
return t if isinstance(t, tuple) else (t,) * length
|
415 |
+
|
416 |
+
def eval_decorator(fn):
|
417 |
+
def inner(self, *args, **kwargs):
|
418 |
+
was_training = self.training
|
419 |
+
self.eval()
|
420 |
+
out = fn(self, *args, **kwargs)
|
421 |
+
self.train(was_training)
|
422 |
+
return out
|
423 |
+
return inner
|
424 |
+
|
425 |
+
# for variable lengthed prefixes
|
426 |
+
|
427 |
+
def align_right(t, lens, pad_id = 0):
|
428 |
+
batch, seq_len, device, dtype = *t.shape, t.device, t.dtype
|
429 |
+
|
430 |
+
assert lens.ndim == 1 and lens.shape[0] == batch
|
431 |
+
assert lens.amax() <= seq_len
|
432 |
+
|
433 |
+
pad_lens = seq_len - lens
|
434 |
+
max_pad_len = pad_lens.amax()
|
435 |
+
|
436 |
+
batch_arange = torch.arange(batch, device = device, dtype = torch.long)[..., None]
|
437 |
+
prompt_len_arange = torch.arange(seq_len, device = device, dtype = torch.long)
|
438 |
+
|
439 |
+
t = F.pad(t, (max_pad_len, 0), value = 0)
|
440 |
+
offset = max_pad_len - pad_lens
|
441 |
+
|
442 |
+
aligned = t[batch_arange, prompt_len_arange + offset[..., None]]
|
443 |
+
return aligned
|
444 |
+
|
445 |
+
# nucleus
|
446 |
+
|
447 |
+
def top_p(logits, thres = 0.9):
|
448 |
+
sorted_logits, sorted_indices = torch.sort(logits, descending = True)
|
449 |
+
cum_probs = torch.cumsum(F.softmax(sorted_logits, dim = -1), dim = -1)
|
450 |
+
|
451 |
+
sorted_indices_to_remove = cum_probs > thres
|
452 |
+
sorted_indices_to_remove = F.pad(sorted_indices_to_remove, (1, -1), value = False)
|
453 |
+
|
454 |
+
sorted_logits[sorted_indices_to_remove] = float('-inf')
|
455 |
+
return sorted_logits.scatter(1, sorted_indices, sorted_logits)
|
456 |
+
|
457 |
+
# topk
|
458 |
+
|
459 |
+
def top_k(logits, frac_num_tokens = 0.1, k = None):
|
460 |
+
num_tokens = logits.shape[-1]
|
461 |
+
|
462 |
+
k = default(k, ceil(frac_num_tokens * num_tokens))
|
463 |
+
k = min(k, num_tokens)
|
464 |
+
|
465 |
+
val, ind = torch.topk(logits, k)
|
466 |
+
probs = torch.full_like(logits, float('-inf'))
|
467 |
+
probs.scatter_(1, ind, val)
|
468 |
+
return probs
|
469 |
+
|
470 |
+
# top_a
|
471 |
+
|
472 |
+
def top_a(logits, min_p_pow = 2.0, min_p_ratio = 0.02):
|
473 |
+
probs = F.softmax(logits, dim = -1)
|
474 |
+
max_probs = torch.amax(probs, dim = -1, keepdim = True)
|
475 |
+
limit = torch.pow(max_probs, min_p_pow) * min_p_ratio
|
476 |
+
return torch.where(probs < limit, float('-inf'), logits)
|
477 |
+
|
478 |
+
# contrastive decoding function
|
479 |
+
|
480 |
+
def contrastive_decode_fn(
|
481 |
+
expert_logits,
|
482 |
+
amateur_logits,
|
483 |
+
alpha = 0.1,
|
484 |
+
beta = 0.5
|
485 |
+
):
|
486 |
+
"""
|
487 |
+
Appendix A Algorithm 2
|
488 |
+
https://arxiv.org/abs/2309.09117
|
489 |
+
"""
|
490 |
+
|
491 |
+
cutoff = log(alpha) + expert_logits.amax(dim = -1, keepdim = True)
|
492 |
+
diffs = (1 + beta) * expert_logits - beta * amateur_logits
|
493 |
+
contrastive_decode_logits = diffs.masked_fill(expert_logits < cutoff, -torch.finfo(expert_logits.dtype).max)
|
494 |
+
return contrastive_decode_logits
|
495 |
+
|
496 |
+
# autoregressive wrapper class
|
497 |
+
|
498 |
+
class AutoregressiveWrapper(Module):
|
499 |
+
def __init__(
|
500 |
+
self,
|
501 |
+
net,
|
502 |
+
ignore_index = -100,
|
503 |
+
pad_value = 0,
|
504 |
+
mask_prob = 0.,
|
505 |
+
add_attn_z_loss = False,
|
506 |
+
return_cache=False
|
507 |
+
):
|
508 |
+
super().__init__()
|
509 |
+
self.pad_value = pad_value
|
510 |
+
self.ignore_index = ignore_index
|
511 |
+
|
512 |
+
self.net = net
|
513 |
+
self.max_seq_len = net.max_seq_len
|
514 |
+
|
515 |
+
# paper shows masking (MLM) in conjunction with autoregressive decoder-only training leads to big improvements https://arxiv.org/abs/2210.13432
|
516 |
+
assert mask_prob < 1.
|
517 |
+
self.mask_prob = mask_prob
|
518 |
+
|
519 |
+
# whether to add router z-loss
|
520 |
+
self.add_attn_z_loss = add_attn_z_loss
|
521 |
+
self.return_cache = return_cache
|
522 |
+
|
523 |
+
@torch.inference_mode()
|
524 |
+
@eval_decorator
|
525 |
+
def generate(
|
526 |
+
self,
|
527 |
+
prompts,
|
528 |
+
seq_len,
|
529 |
+
eos_token = None,
|
530 |
+
temperature = 1.,
|
531 |
+
prompt_lens: Optional[Tensor] = None,
|
532 |
+
filter_logits_fn: Callable = top_k,
|
533 |
+
restrict_to_max_seq_len = True,
|
534 |
+
amateur_model: Optional[Union[Module, Tuple[Module]]] = None,
|
535 |
+
filter_kwargs: dict = dict(),
|
536 |
+
contrastive_decode_kwargs: Union[dict, Tuple[dict]] = dict(
|
537 |
+
beta = 0.5,
|
538 |
+
alpha = 0.1
|
539 |
+
),
|
540 |
+
cache_kv = True,
|
541 |
+
verbose=True,
|
542 |
+
return_prime=False,
|
543 |
+
**kwargs
|
544 |
+
):
|
545 |
+
max_seq_len, device = self.max_seq_len, prompts.device
|
546 |
+
|
547 |
+
prompts, ps = pack([prompts], '* n')
|
548 |
+
|
549 |
+
b, t = prompts.shape
|
550 |
+
|
551 |
+
# handle variable lengthed prompts (prefixes)
|
552 |
+
|
553 |
+
seq_start_pos = None
|
554 |
+
if exists(prompt_lens):
|
555 |
+
prompts = align_right(prompts, prompt_lens, pad_id = self.pad_value)
|
556 |
+
seq_start_pos = t - prompt_lens
|
557 |
+
|
558 |
+
# output from which sampled tokens appended to
|
559 |
+
|
560 |
+
out = prompts
|
561 |
+
|
562 |
+
if verbose:
|
563 |
+
print("Generating sequence of max length:", seq_len)
|
564 |
+
|
565 |
+
# kv caches
|
566 |
+
|
567 |
+
cache = None
|
568 |
+
|
569 |
+
# if doing contrastive decoding, turn off filter automatically
|
570 |
+
|
571 |
+
if exists(amateur_model):
|
572 |
+
amateur_model = cast_tuple(amateur_model)
|
573 |
+
contrastive_decode_kwargs = cast_tuple(contrastive_decode_kwargs)
|
574 |
+
|
575 |
+
assert len(amateur_model) == len(contrastive_decode_kwargs)
|
576 |
+
|
577 |
+
amateur_caches = [None] * len(amateur_model)
|
578 |
+
filter_logits_fn = identity
|
579 |
+
|
580 |
+
for i, module in enumerate(amateur_model):
|
581 |
+
if isinstance(module, AutoregressiveWrapper):
|
582 |
+
amateur_model[i] = module.net
|
583 |
+
|
584 |
+
module.eval()
|
585 |
+
|
586 |
+
# sampling up to seq_len
|
587 |
+
|
588 |
+
for sl in range(seq_len):
|
589 |
+
|
590 |
+
if restrict_to_max_seq_len:
|
591 |
+
x = out[:, -max_seq_len:]
|
592 |
+
|
593 |
+
if exists(cache):
|
594 |
+
for inter in cache.attn_intermediates:
|
595 |
+
inter.cached_kv = [t[..., -(max_seq_len - 1):, :] for t in inter.cached_kv]
|
596 |
+
|
597 |
+
logits, new_cache = self.net(
|
598 |
+
x,
|
599 |
+
return_intermediates = True,
|
600 |
+
cache = cache,
|
601 |
+
seq_start_pos = seq_start_pos,
|
602 |
+
**kwargs
|
603 |
+
)
|
604 |
+
|
605 |
+
if cache_kv and self.net.can_cache_kv:
|
606 |
+
cache = new_cache
|
607 |
+
|
608 |
+
logits = logits[:, -1]
|
609 |
+
|
610 |
+
# handle contrastive decoding, Li et al.
|
611 |
+
# https://arxiv.org/abs/2210.15097
|
612 |
+
|
613 |
+
if exists(amateur_model):
|
614 |
+
for i, (amateur, amateur_cache, amateur_contrastive_decode_kwargs) in enumerate(zip(amateur_model, amateur_caches, contrastive_decode_kwargs)):
|
615 |
+
amateur_logits, next_amateur_cache = amateur(
|
616 |
+
x,
|
617 |
+
return_intermediates = True,
|
618 |
+
cache = amateur_cache,
|
619 |
+
seq_start_pos = seq_start_pos,
|
620 |
+
**kwargs
|
621 |
+
)
|
622 |
+
|
623 |
+
amateur_logits = amateur_logits[:, -1]
|
624 |
+
|
625 |
+
assert amateur_logits.shape == logits.shape, 'logits dimension are not the same between amateur and expert model'
|
626 |
+
logits = contrastive_decode_fn(logits, amateur_logits, **amateur_contrastive_decode_kwargs)
|
627 |
+
|
628 |
+
if cache_kv and amateur.can_cache_kv:
|
629 |
+
amateur_caches[i] = next_amateur_cache
|
630 |
+
|
631 |
+
# filter by top_k, top_p (nucleus), top_a, or custom
|
632 |
+
|
633 |
+
filtered_logits = filter_logits_fn(logits, **filter_kwargs)
|
634 |
+
|
635 |
+
probs = F.softmax(filtered_logits / temperature, dim=-1)
|
636 |
+
|
637 |
+
sample = torch.multinomial(probs, 1)
|
638 |
+
|
639 |
+
out = torch.cat((out, sample), dim=-1)
|
640 |
+
|
641 |
+
if verbose:
|
642 |
+
if sl % 32 == 0:
|
643 |
+
print(sl, '/', seq_len)
|
644 |
+
|
645 |
+
if exists(eos_token):
|
646 |
+
is_eos_tokens = (out == eos_token)
|
647 |
+
|
648 |
+
if is_eos_tokens.any(dim = -1).all():
|
649 |
+
# mask out everything after the eos tokens
|
650 |
+
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
|
651 |
+
mask = shifted_is_eos_tokens.float().cumsum(dim = -1) >= 1
|
652 |
+
out = out.masked_fill(mask, self.pad_value)
|
653 |
+
|
654 |
+
if verbose:
|
655 |
+
print('Model called the end of sequence at:', sl, '/', seq_len)
|
656 |
+
|
657 |
+
break
|
658 |
+
|
659 |
+
if return_prime:
|
660 |
+
return out[:, :]
|
661 |
+
|
662 |
+
else:
|
663 |
+
return out[:, t:]
|
664 |
+
|
665 |
+
# out, = unpack(out, ps, '* n')
|
666 |
+
|
667 |
+
# return out
|
668 |
+
|
669 |
+
def compute_accuracy(self, logits, labels):
|
670 |
+
out = torch.argmax(logits, dim=-1)
|
671 |
+
out = out.flatten()
|
672 |
+
labels = labels.flatten()
|
673 |
+
|
674 |
+
mask = (labels != self.ignore_index) # can also be self.pad_value (your choice)
|
675 |
+
out = out[mask]
|
676 |
+
labels = labels[mask]
|
677 |
+
|
678 |
+
num_right = (out == labels)
|
679 |
+
num_right = torch.sum(num_right).type(torch.float32)
|
680 |
+
|
681 |
+
acc = num_right / len(labels)
|
682 |
+
return acc
|
683 |
+
|
684 |
+
def forward(self, x, **kwargs):
|
685 |
+
seq, ignore_index, add_attn_z_loss = x.shape[1], self.ignore_index, self.add_attn_z_loss
|
686 |
+
|
687 |
+
inp, target = x[:, :-1], x[:, 1:]
|
688 |
+
inp = torch.where(inp == ignore_index, self.pad_value, inp)
|
689 |
+
|
690 |
+
if self.mask_prob > 0.:
|
691 |
+
rand = torch.randn(inp.shape, device = x.device)
|
692 |
+
rand[:, 0] = -torch.finfo(rand.dtype).max # first token should not be masked out
|
693 |
+
num_mask = min(int(seq * self.mask_prob), seq - 1)
|
694 |
+
indices = rand.topk(num_mask, dim = -1).indices
|
695 |
+
mask = ~torch.zeros_like(inp).scatter(1, indices, 1.).bool()
|
696 |
+
kwargs.update(self_attn_kv_mask = mask)
|
697 |
+
|
698 |
+
logits, cache = self.net(
|
699 |
+
inp,
|
700 |
+
return_intermediates = True,
|
701 |
+
return_attn_z_loss = add_attn_z_loss,
|
702 |
+
**kwargs
|
703 |
+
)
|
704 |
+
|
705 |
+
acc = self.compute_accuracy(logits, target)
|
706 |
+
|
707 |
+
loss = F.cross_entropy(
|
708 |
+
rearrange(logits, 'b n c -> b c n'),
|
709 |
+
target,
|
710 |
+
ignore_index = ignore_index
|
711 |
+
)
|
712 |
+
|
713 |
+
if add_attn_z_loss:
|
714 |
+
loss = loss + cache.attn_z_loss
|
715 |
+
|
716 |
+
if self.return_cache:
|
717 |
+
return loss, acc, cache
|
718 |
+
|
719 |
+
else:
|
720 |
+
return loss, acc
|
721 |
+
|
722 |
+
#===============================================================================
|
723 |
+
|
724 |
+
import math
|
725 |
+
from random import random
|
726 |
+
|
727 |
+
import torch
|
728 |
+
from torch import nn, einsum, Tensor
|
729 |
+
import torch.nn.functional as F
|
730 |
+
|
731 |
+
from functools import partial, wraps
|
732 |
+
from inspect import isfunction
|
733 |
+
from collections import namedtuple
|
734 |
+
from dataclasses import dataclass
|
735 |
+
from typing import List, Callable, Optional
|
736 |
+
|
737 |
+
from einops import rearrange, repeat, reduce, pack, unpack
|
738 |
+
from einops.layers.torch import Rearrange
|
739 |
+
|
740 |
+
# constants
|
741 |
+
|
742 |
+
DEFAULT_DIM_HEAD = 64
|
743 |
+
|
744 |
+
@dataclass
|
745 |
+
class LayerIntermediates:
|
746 |
+
hiddens: Optional[List[Tensor]] = None
|
747 |
+
attn_intermediates: Optional[List[Intermediates]] = None
|
748 |
+
layer_hiddens: Optional[List[Tensor]] = None
|
749 |
+
attn_z_loss: Optional[Tensor] = None
|
750 |
+
mems: Optional[Tensor] = None
|
751 |
+
|
752 |
+
# helpers
|
753 |
+
|
754 |
+
def exists(val):
|
755 |
+
return val is not None
|
756 |
+
|
757 |
+
def default(val, d):
|
758 |
+
if exists(val):
|
759 |
+
return val
|
760 |
+
return d() if isfunction(d) else d
|
761 |
+
|
762 |
+
def cast_tuple(val, depth):
|
763 |
+
return val if isinstance(val, tuple) else (val,) * depth
|
764 |
+
|
765 |
+
def divisible_by(num, den):
|
766 |
+
return (num % den) == 0
|
767 |
+
|
768 |
+
def maybe(fn):
|
769 |
+
@wraps(fn)
|
770 |
+
def inner(x, *args, **kwargs):
|
771 |
+
if not exists(x):
|
772 |
+
return x
|
773 |
+
return fn(x, *args, **kwargs)
|
774 |
+
return inner
|
775 |
+
|
776 |
+
class always():
|
777 |
+
def __init__(self, val):
|
778 |
+
self.val = val
|
779 |
+
def __call__(self, *args, **kwargs):
|
780 |
+
return self.val
|
781 |
+
|
782 |
+
class not_equals():
|
783 |
+
def __init__(self, val):
|
784 |
+
self.val = val
|
785 |
+
def __call__(self, x, *args, **kwargs):
|
786 |
+
return x != self.val
|
787 |
+
|
788 |
+
class equals():
|
789 |
+
def __init__(self, val):
|
790 |
+
self.val = val
|
791 |
+
def __call__(self, x, *args, **kwargs):
|
792 |
+
return x == self.val
|
793 |
+
|
794 |
+
def Sequential(*modules):
|
795 |
+
return nn.Sequential(*filter(exists, modules))
|
796 |
+
|
797 |
+
# tensor helpers
|
798 |
+
|
799 |
+
def max_neg_value(tensor):
|
800 |
+
return -torch.finfo(tensor.dtype).max
|
801 |
+
|
802 |
+
def l2norm(t, groups = 1):
|
803 |
+
t = rearrange(t, '... (g d) -> ... g d', g = groups)
|
804 |
+
t = F.normalize(t, p = 2, dim = -1)
|
805 |
+
return rearrange(t, '... g d -> ... (g d)')
|
806 |
+
|
807 |
+
def pad_at_dim(t, pad, dim = -1, value = 0.):
|
808 |
+
dims_from_right = (- dim - 1) if dim < 0 else (t.ndim - dim - 1)
|
809 |
+
zeros = ((0, 0) * dims_from_right)
|
810 |
+
return F.pad(t, (*zeros, *pad), value = value)
|
811 |
+
|
812 |
+
def or_reduce(masks):
|
813 |
+
head, *body = masks
|
814 |
+
for rest in body:
|
815 |
+
head = head | rest
|
816 |
+
return head
|
817 |
+
|
818 |
+
# auxiliary loss helpers
|
819 |
+
|
820 |
+
def calc_z_loss(
|
821 |
+
pre_softmax_attns: List[Tensor],
|
822 |
+
mask = None,
|
823 |
+
weight = 1.
|
824 |
+
):
|
825 |
+
# the same loss applied to the mixture of experts router logits in https://arxiv.org/abs/2202.08906
|
826 |
+
# in the paper, in a tiny footnote, they mention using it on attention logits with stabilizing effects
|
827 |
+
# also used in PaLM as one of the measures
|
828 |
+
|
829 |
+
lse = 0.
|
830 |
+
|
831 |
+
for attn in pre_softmax_attns:
|
832 |
+
lse = lse + attn.logsumexp(dim = -1)
|
833 |
+
|
834 |
+
loss = torch.square(lse)
|
835 |
+
loss = reduce(loss, 'b h n -> b n', 'sum')
|
836 |
+
|
837 |
+
if not exists(mask):
|
838 |
+
return loss.mean() * weight
|
839 |
+
|
840 |
+
loss = loss[mask].sum() / mask.sum().clamp(min = 1e-5)
|
841 |
+
return loss * weight
|
842 |
+
|
843 |
+
# init helpers
|
844 |
+
|
845 |
+
def init_zero_(layer):
|
846 |
+
nn.init.constant_(layer.weight, 0.)
|
847 |
+
if exists(layer.bias):
|
848 |
+
nn.init.constant_(layer.bias, 0.)
|
849 |
+
|
850 |
+
# keyword argument helpers
|
851 |
+
|
852 |
+
def pick_and_pop(keys, d):
|
853 |
+
values = list(map(lambda key: d.pop(key), keys))
|
854 |
+
return dict(zip(keys, values))
|
855 |
+
|
856 |
+
def group_dict_by_key(cond, d):
|
857 |
+
return_val = [dict(),dict()]
|
858 |
+
for key in d.keys():
|
859 |
+
match = bool(cond(key))
|
860 |
+
ind = int(not match)
|
861 |
+
return_val[ind][key] = d[key]
|
862 |
+
return (*return_val,)
|
863 |
+
|
864 |
+
def string_begins_with(prefix, str):
|
865 |
+
return str.startswith(prefix)
|
866 |
+
|
867 |
+
def group_by_key_prefix(prefix, d):
|
868 |
+
return group_dict_by_key(partial(string_begins_with, prefix), d)
|
869 |
+
|
870 |
+
def groupby_prefix_and_trim(prefix, d):
|
871 |
+
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
|
872 |
+
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
|
873 |
+
return kwargs_without_prefix, kwargs
|
874 |
+
|
875 |
+
# structured dropout, more effective than traditional attention dropouts
|
876 |
+
|
877 |
+
def dropout_seq(seq, mask, dropout):
|
878 |
+
b, n, *_, device = *seq.shape, seq.device
|
879 |
+
logits = torch.randn(b, n, device = device)
|
880 |
+
|
881 |
+
if exists(mask):
|
882 |
+
mask_value = max_neg_value(logits)
|
883 |
+
logits = logits.masked_fill(~mask, mask_value)
|
884 |
+
|
885 |
+
keep_prob = 1. - dropout
|
886 |
+
num_keep = max(1, int(keep_prob * n))
|
887 |
+
keep_indices = logits.topk(num_keep, dim = 1).indices
|
888 |
+
|
889 |
+
batch_indices = torch.arange(b, device = device)
|
890 |
+
batch_indices = rearrange(batch_indices, 'b -> b 1')
|
891 |
+
|
892 |
+
seq = seq[batch_indices, keep_indices]
|
893 |
+
|
894 |
+
if exists(mask):
|
895 |
+
seq_counts = mask.sum(dim = -1)
|
896 |
+
seq_keep_counts = torch.ceil(seq_counts * keep_prob).int()
|
897 |
+
keep_mask = torch.arange(num_keep, device = device) < rearrange(seq_keep_counts, 'b -> b 1')
|
898 |
+
|
899 |
+
mask = mask[batch_indices, keep_indices] & keep_mask
|
900 |
+
|
901 |
+
return seq, mask
|
902 |
+
|
903 |
+
# activations
|
904 |
+
|
905 |
+
class ReluSquared(nn.Module):
|
906 |
+
def forward(self, x):
|
907 |
+
return F.relu(x) ** 2
|
908 |
+
|
909 |
+
# embedding
|
910 |
+
|
911 |
+
class TokenEmbedding(nn.Module):
|
912 |
+
def __init__(self, dim, num_tokens, l2norm_embed = False):
|
913 |
+
super().__init__()
|
914 |
+
self.l2norm_embed = l2norm_embed
|
915 |
+
self.emb = nn.Embedding(num_tokens, dim)
|
916 |
+
|
917 |
+
def forward(self, x):
|
918 |
+
token_emb = self.emb(x)
|
919 |
+
return l2norm(token_emb) if self.l2norm_embed else token_emb
|
920 |
+
|
921 |
+
# positional embeddings
|
922 |
+
|
923 |
+
class AbsolutePositionalEmbedding(nn.Module):
|
924 |
+
def __init__(self, dim, max_seq_len, l2norm_embed = False):
|
925 |
+
super().__init__()
|
926 |
+
self.scale = dim ** -0.5 if not l2norm_embed else 1.
|
927 |
+
self.max_seq_len = max_seq_len
|
928 |
+
self.l2norm_embed = l2norm_embed
|
929 |
+
self.emb = nn.Embedding(max_seq_len, dim)
|
930 |
+
|
931 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
932 |
+
seq_len, device = x.shape[1], x.device
|
933 |
+
assert seq_len <= self.max_seq_len, f'you are passing in a sequence length of {seq_len} but your absolute positional embedding has a max sequence length of {self.max_seq_len}'
|
934 |
+
|
935 |
+
if not exists(pos):
|
936 |
+
pos = torch.arange(seq_len, device = device)
|
937 |
+
|
938 |
+
if exists(seq_start_pos):
|
939 |
+
pos = (pos - seq_start_pos[..., None]).clamp(min = 0)
|
940 |
+
|
941 |
+
pos_emb = self.emb(pos)
|
942 |
+
pos_emb = pos_emb * self.scale
|
943 |
+
return l2norm(pos_emb) if self.l2norm_embed else pos_emb
|
944 |
+
|
945 |
+
class ScaledSinusoidalEmbedding(nn.Module):
|
946 |
+
def __init__(self, dim, theta = 10000):
|
947 |
+
super().__init__()
|
948 |
+
assert divisible_by(dim, 2)
|
949 |
+
self.scale = nn.Parameter(torch.ones(1) * dim ** -0.5)
|
950 |
+
|
951 |
+
half_dim = dim // 2
|
952 |
+
freq_seq = torch.arange(half_dim).float() / half_dim
|
953 |
+
inv_freq = theta ** -freq_seq
|
954 |
+
self.register_buffer('inv_freq', inv_freq, persistent = False)
|
955 |
+
|
956 |
+
def forward(self, x, pos = None, seq_start_pos = None):
|
957 |
+
seq_len, device = x.shape[1], x.device
|
958 |
+
|
959 |
+
if not exists(pos):
|
960 |
+
pos = torch.arange(seq_len, device = device)
|
961 |
+
|
962 |
+
if exists(seq_start_pos):
|
963 |
+
pos = pos - seq_start_pos[..., None]
|
964 |
+
|
965 |
+
emb = einsum('i, j -> i j', pos, self.inv_freq)
|
966 |
+
emb = torch.cat((emb.sin(), emb.cos()), dim = -1)
|
967 |
+
return emb * self.scale
|
968 |
+
|
969 |
+
class RelativePositionBias(nn.Module):
|
970 |
+
def __init__(self, scale, causal = False, num_buckets = 32, max_distance = 128, heads = 8):
|
971 |
+
super().__init__()
|
972 |
+
self.scale = scale
|
973 |
+
self.causal = causal
|
974 |
+
self.num_buckets = num_buckets
|
975 |
+
self.max_distance = max_distance
|
976 |
+
self.relative_attention_bias = nn.Embedding(num_buckets, heads)
|
977 |
+
|
978 |
+
@staticmethod
|
979 |
+
def _relative_position_bucket(relative_position, causal = True, num_buckets = 32, max_distance = 128):
|
980 |
+
ret = 0
|
981 |
+
n = -relative_position
|
982 |
+
if not causal:
|
983 |
+
num_buckets //= 2
|
984 |
+
ret += (n < 0).long() * num_buckets
|
985 |
+
n = torch.abs(n)
|
986 |
+
else:
|
987 |
+
n = torch.max(n, torch.zeros_like(n))
|
988 |
+
|
989 |
+
max_exact = num_buckets // 2
|
990 |
+
is_small = n < max_exact
|
991 |
+
|
992 |
+
val_if_large = max_exact + (
|
993 |
+
torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
|
994 |
+
).long()
|
995 |
+
val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))
|
996 |
+
|
997 |
+
ret += torch.where(is_small, n, val_if_large)
|
998 |
+
return ret
|
999 |
+
|
1000 |
+
@property
|
1001 |
+
def device(self):
|
1002 |
+
return next(self.parameters()).device
|
1003 |
+
|
1004 |
+
def forward(self, i, j):
|
1005 |
+
device = self.device
|
1006 |
+
q_pos = torch.arange(j - i, j, dtype = torch.long, device = device)
|
1007 |
+
k_pos = torch.arange(j, dtype = torch.long, device = device)
|
1008 |
+
rel_pos = k_pos[None, :] - q_pos[:, None]
|
1009 |
+
rp_bucket = self._relative_position_bucket(rel_pos, causal = self.causal, num_buckets = self.num_buckets, max_distance = self.max_distance)
|
1010 |
+
values = self.relative_attention_bias(rp_bucket)
|
1011 |
+
bias = rearrange(values, 'i j h -> h i j')
|
1012 |
+
return bias * self.scale
|
1013 |
+
|
1014 |
+
class DynamicPositionBias(nn.Module):
|
1015 |
+
def __init__(self, dim, *, heads, depth, log_distance = False, norm = False):
|
1016 |
+
super().__init__()
|
1017 |
+
assert depth >= 1, 'depth for dynamic position bias MLP must be greater or equal to 1'
|
1018 |
+
self.log_distance = log_distance
|
1019 |
+
|
1020 |
+
self.mlp = nn.ModuleList([])
|
1021 |
+
|
1022 |
+
self.mlp.append(Sequential(
|
1023 |
+
nn.Linear(1, dim),
|
1024 |
+
nn.LayerNorm(dim) if norm else None,
|
1025 |
+
nn.SiLU()
|
1026 |
+
))
|
1027 |
+
|
1028 |
+
for _ in range(depth - 1):
|
1029 |
+
self.mlp.append(Sequential(
|
1030 |
+
nn.Linear(dim, dim),
|
1031 |
+
nn.LayerNorm(dim) if norm else None,
|
1032 |
+
nn.SiLU()
|
1033 |
+
))
|
1034 |
+
|
1035 |
+
self.mlp.append(nn.Linear(dim, heads))
|
1036 |
+
|
1037 |
+
@property
|
1038 |
+
def device(self):
|
1039 |
+
return next(self.parameters()).device
|
1040 |
+
|
1041 |
+
def forward(self, i, j):
|
1042 |
+
assert i == j
|
1043 |
+
n, device = j, self.device
|
1044 |
+
|
1045 |
+
# get the (n x n) matrix of distances
|
1046 |
+
seq_arange = torch.arange(n, device = device)
|
1047 |
+
context_arange = torch.arange(n, device = device)
|
1048 |
+
indices = rearrange(seq_arange, 'i -> i 1') - rearrange(context_arange, 'j -> 1 j')
|
1049 |
+
indices += (n - 1)
|
1050 |
+
|
1051 |
+
# input to continuous positions MLP
|
1052 |
+
pos = torch.arange(-n + 1, n, device = device).float()
|
1053 |
+
pos = rearrange(pos, '... -> ... 1')
|
1054 |
+
|
1055 |
+
if self.log_distance:
|
1056 |
+
pos = torch.sign(pos) * torch.log(pos.abs() + 1) # log of distance is sign(rel_pos) * log(abs(rel_pos) + 1)
|
1057 |
+
|
1058 |
+
for layer in self.mlp:
|
1059 |
+
pos = layer(pos)
|
1060 |
+
|
1061 |
+
# get position biases
|
1062 |
+
bias = pos[indices]
|
1063 |
+
bias = rearrange(bias, 'i j h -> h i j')
|
1064 |
+
return bias
|
1065 |
+
|
1066 |
+
class AlibiPositionalBias(nn.Module):
|
1067 |
+
def __init__(self, heads, total_heads, **kwargs):
|
1068 |
+
super().__init__()
|
1069 |
+
self.heads = heads
|
1070 |
+
self.total_heads = total_heads
|
1071 |
+
|
1072 |
+
slopes = Tensor(self._get_slopes(heads))
|
1073 |
+
slopes = rearrange(slopes, 'h -> h 1 1')
|
1074 |
+
self.register_buffer('slopes', slopes, persistent = False)
|
1075 |
+
self.register_buffer('bias', None, persistent = False)
|
1076 |
+
|
1077 |
+
def get_bias(self, i, j, device):
|
1078 |
+
i_arange = torch.arange(j - i, j, device = device)
|
1079 |
+
j_arange = torch.arange(j, device = device)
|
1080 |
+
bias = -torch.abs(rearrange(j_arange, 'j -> 1 1 j') - rearrange(i_arange, 'i -> 1 i 1'))
|
1081 |
+
return bias
|
1082 |
+
|
1083 |
+
@staticmethod
|
1084 |
+
def _get_slopes(heads):
|
1085 |
+
def get_slopes_power_of_2(n):
|
1086 |
+
start = (2**(-2**-(math.log2(n)-3)))
|
1087 |
+
ratio = start
|
1088 |
+
return [start*ratio**i for i in range(n)]
|
1089 |
+
|
1090 |
+
if math.log2(heads).is_integer():
|
1091 |
+
return get_slopes_power_of_2(heads)
|
1092 |
+
|
1093 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(heads))
|
1094 |
+
return get_slopes_power_of_2(closest_power_of_2) + get_slopes_power_of_2(2 * closest_power_of_2)[0::2][:heads-closest_power_of_2]
|
1095 |
+
|
1096 |
+
@property
|
1097 |
+
def device(self):
|
1098 |
+
return next(self.buffers()).device
|
1099 |
+
|
1100 |
+
def forward(self, i, j):
|
1101 |
+
h, device = self.total_heads, self.device
|
1102 |
+
|
1103 |
+
if exists(self.bias) and self.bias.shape[-1] >= j and self.bias.shape[-2] >= i:
|
1104 |
+
return self.bias[..., -i:, -j:]
|
1105 |
+
|
1106 |
+
bias = self.get_bias(i, j, device)
|
1107 |
+
bias = bias * self.slopes
|
1108 |
+
|
1109 |
+
num_heads_unalibied = h - bias.shape[0]
|
1110 |
+
bias = pad_at_dim(bias, (0, num_heads_unalibied), dim = 0)
|
1111 |
+
self.register_buffer('bias', bias, persistent = False)
|
1112 |
+
|
1113 |
+
return self.bias
|
1114 |
+
|
1115 |
+
class RotaryEmbedding(nn.Module):
|
1116 |
+
def __init__(
|
1117 |
+
self,
|
1118 |
+
dim,
|
1119 |
+
use_xpos = False,
|
1120 |
+
scale_base = 512,
|
1121 |
+
interpolation_factor = 1.,
|
1122 |
+
base = 10000,
|
1123 |
+
base_rescale_factor = 1.
|
1124 |
+
):
|
1125 |
+
super().__init__()
|
1126 |
+
# proposed by reddit user bloc97, to rescale rotary embeddings to longer sequence length without fine-tuning
|
1127 |
+
# has some connection to NTK literature
|
1128 |
+
# https://www.reddit.com/r/LocalLLaMA/comments/14lz7j5/ntkaware_scaled_rope_allows_llama_models_to_have/
|
1129 |
+
base *= base_rescale_factor ** (dim / (dim - 2))
|
1130 |
+
|
1131 |
+
inv_freq = 1. / (base ** (torch.arange(0, dim, 2).float() / dim))
|
1132 |
+
self.register_buffer('inv_freq', inv_freq)
|
1133 |
+
|
1134 |
+
assert interpolation_factor >= 1.
|
1135 |
+
self.interpolation_factor = interpolation_factor
|
1136 |
+
|
1137 |
+
if not use_xpos:
|
1138 |
+
self.register_buffer('scale', None)
|
1139 |
+
return
|
1140 |
+
|
1141 |
+
scale = (torch.arange(0, dim, 2) + 0.4 * dim) / (1.4 * dim)
|
1142 |
+
|
1143 |
+
self.scale_base = scale_base
|
1144 |
+
self.register_buffer('scale', scale)
|
1145 |
+
|
1146 |
+
def forward(self, seq_len):
|
1147 |
+
device = self.inv_freq.device
|
1148 |
+
t = torch.arange(seq_len, device = device).type_as(self.inv_freq)
|
1149 |
+
|
1150 |
+
t = t / self.interpolation_factor
|
1151 |
+
|
1152 |
+
freqs = torch.einsum('i , j -> i j', t, self.inv_freq)
|
1153 |
+
freqs = torch.cat((freqs, freqs), dim = -1)
|
1154 |
+
|
1155 |
+
if not exists(self.scale):
|
1156 |
+
return freqs, 1.
|
1157 |
+
|
1158 |
+
power = (torch.arange(seq_len, device = device) - (seq_len // 2)) / self.scale_base
|
1159 |
+
scale = self.scale ** rearrange(power, 'n -> n 1')
|
1160 |
+
scale = torch.cat((scale, scale), dim = -1)
|
1161 |
+
|
1162 |
+
return freqs, scale
|
1163 |
+
|
1164 |
+
|
1165 |
+
def rotate_half(x):
|
1166 |
+
x = rearrange(x, '... (j d) -> ... j d', j = 2)
|
1167 |
+
x1, x2 = x.unbind(dim = -2)
|
1168 |
+
return torch.cat((-x2, x1), dim = -1)
|
1169 |
+
|
1170 |
+
def apply_rotary_pos_emb(t, freqs, scale = 1):
|
1171 |
+
rot_dim, seq_len = freqs.shape[-1], t.shape[-2]
|
1172 |
+
freqs = freqs[-seq_len:, :]
|
1173 |
+
|
1174 |
+
if t.ndim == 4 and freqs.ndim == 3:
|
1175 |
+
freqs = rearrange(freqs, 'b n d -> b 1 n d')
|
1176 |
+
|
1177 |
+
# partial rotary embeddings, Wang et al. GPT-J
|
1178 |
+
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
|
1179 |
+
t = (t * freqs.cos() * scale) + (rotate_half(t) * freqs.sin() * scale)
|
1180 |
+
return torch.cat((t, t_unrotated), dim = -1)
|
1181 |
+
|
1182 |
+
# norms
|
1183 |
+
|
1184 |
+
class Scale(nn.Module):
|
1185 |
+
def __init__(self, value, fn):
|
1186 |
+
super().__init__()
|
1187 |
+
self.value = value
|
1188 |
+
self.fn = fn
|
1189 |
+
|
1190 |
+
def forward(self, x, **kwargs):
|
1191 |
+
out = self.fn(x, **kwargs)
|
1192 |
+
scale_fn = lambda t: t * self.value
|
1193 |
+
|
1194 |
+
if not isinstance(out, tuple):
|
1195 |
+
return scale_fn(out)
|
1196 |
+
|
1197 |
+
return (scale_fn(out[0]), *out[1:])
|
1198 |
+
|
1199 |
+
class ScaleNorm(nn.Module):
|
1200 |
+
def __init__(self, dim, eps = 1e-5):
|
1201 |
+
super().__init__()
|
1202 |
+
self.eps = eps
|
1203 |
+
self.g = nn.Parameter(torch.ones(1) * (dim ** -0.5))
|
1204 |
+
|
1205 |
+
def forward(self, x):
|
1206 |
+
norm = torch.norm(x, dim = -1, keepdim = True)
|
1207 |
+
return x / norm.clamp(min = self.eps) * self.g
|
1208 |
+
|
1209 |
+
class RMSNorm(nn.Module):
|
1210 |
+
def __init__(self, dim):
|
1211 |
+
super().__init__()
|
1212 |
+
self.scale = dim ** 0.5
|
1213 |
+
self.g = nn.Parameter(torch.ones(dim))
|
1214 |
+
|
1215 |
+
def forward(self, x):
|
1216 |
+
return F.normalize(x, dim = -1) * self.scale * self.g
|
1217 |
+
|
1218 |
+
class SimpleRMSNorm(nn.Module):
|
1219 |
+
def __init__(self, dim):
|
1220 |
+
super().__init__()
|
1221 |
+
self.scale = dim ** 0.5
|
1222 |
+
|
1223 |
+
def forward(self, x):
|
1224 |
+
return F.normalize(x, dim = -1) * self.scale
|
1225 |
+
|
1226 |
+
# residual and residual gates
|
1227 |
+
|
1228 |
+
class Residual(nn.Module):
|
1229 |
+
def __init__(self, dim, scale_residual = False, scale_residual_constant = 1.):
|
1230 |
+
super().__init__()
|
1231 |
+
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
|
1232 |
+
self.scale_residual_constant = scale_residual_constant
|
1233 |
+
|
1234 |
+
def forward(self, x, residual):
|
1235 |
+
if exists(self.residual_scale):
|
1236 |
+
residual = residual * self.residual_scale
|
1237 |
+
|
1238 |
+
if self.scale_residual_constant != 1:
|
1239 |
+
residual = residual * self.scale_residual_constant
|
1240 |
+
|
1241 |
+
return x + residual
|
1242 |
+
|
1243 |
+
class GRUGating(nn.Module):
|
1244 |
+
def __init__(self, dim, scale_residual = False, **kwargs):
|
1245 |
+
super().__init__()
|
1246 |
+
self.gru = nn.GRUCell(dim, dim)
|
1247 |
+
self.residual_scale = nn.Parameter(torch.ones(dim)) if scale_residual else None
|
1248 |
+
|
1249 |
+
def forward(self, x, residual):
|
1250 |
+
if exists(self.residual_scale):
|
1251 |
+
residual = residual * self.residual_scale
|
1252 |
+
|
1253 |
+
gated_output = self.gru(
|
1254 |
+
rearrange(x, 'b n d -> (b n) d'),
|
1255 |
+
rearrange(residual, 'b n d -> (b n) d')
|
1256 |
+
)
|
1257 |
+
|
1258 |
+
return gated_output.reshape_as(x)
|
1259 |
+
|
1260 |
+
# token shifting
|
1261 |
+
|
1262 |
+
def shift(t, amount, mask = None):
|
1263 |
+
if amount == 0:
|
1264 |
+
return t
|
1265 |
+
else:
|
1266 |
+
amount = min(amount, t.shape[1])
|
1267 |
+
|
1268 |
+
if exists(mask):
|
1269 |
+
t = t.masked_fill(~mask[..., None], 0.)
|
1270 |
+
|
1271 |
+
return pad_at_dim(t, (amount, -amount), dim = - 2, value = 0.)
|
1272 |
+
|
1273 |
+
class ShiftTokens(nn.Module):
|
1274 |
+
def __init__(self, shifts, fn):
|
1275 |
+
super().__init__()
|
1276 |
+
self.fn = fn
|
1277 |
+
self.shifts = tuple(shifts)
|
1278 |
+
|
1279 |
+
def forward(self, x, **kwargs):
|
1280 |
+
mask = kwargs.get('mask', None)
|
1281 |
+
shifts = self.shifts
|
1282 |
+
segments = len(shifts)
|
1283 |
+
feats_per_shift = x.shape[-1] // segments
|
1284 |
+
splitted = x.split(feats_per_shift, dim = -1)
|
1285 |
+
segments_to_shift, rest = splitted[:segments], splitted[segments:]
|
1286 |
+
segments_to_shift = list(map(lambda args: shift(*args, mask = mask), zip(segments_to_shift, shifts)))
|
1287 |
+
x = torch.cat((*segments_to_shift, *rest), dim = -1)
|
1288 |
+
return self.fn(x, **kwargs)
|
1289 |
+
|
1290 |
+
# feedforward
|
1291 |
+
|
1292 |
+
class GLU(nn.Module):
|
1293 |
+
def __init__(
|
1294 |
+
self,
|
1295 |
+
dim_in,
|
1296 |
+
dim_out,
|
1297 |
+
activation: Callable,
|
1298 |
+
mult_bias = False
|
1299 |
+
):
|
1300 |
+
super().__init__()
|
1301 |
+
self.act = activation
|
1302 |
+
self.proj = nn.Linear(dim_in, dim_out * 2)
|
1303 |
+
self.mult_bias = nn.Parameter(torch.ones(dim_out)) if mult_bias else 1.
|
1304 |
+
|
1305 |
+
def forward(self, x):
|
1306 |
+
x, gate = self.proj(x).chunk(2, dim = -1)
|
1307 |
+
return x * self.act(gate) * self.mult_bias
|
1308 |
+
|
1309 |
+
class FeedForward(nn.Module):
|
1310 |
+
def __init__(
|
1311 |
+
self,
|
1312 |
+
dim,
|
1313 |
+
dim_out = None,
|
1314 |
+
mult = 4,
|
1315 |
+
glu = False,
|
1316 |
+
glu_mult_bias = False,
|
1317 |
+
swish = False,
|
1318 |
+
relu_squared = False,
|
1319 |
+
post_act_ln = False,
|
1320 |
+
dropout = 0.,
|
1321 |
+
no_bias = False,
|
1322 |
+
zero_init_output = False
|
1323 |
+
):
|
1324 |
+
super().__init__()
|
1325 |
+
inner_dim = int(dim * mult)
|
1326 |
+
dim_out = default(dim_out, dim)
|
1327 |
+
|
1328 |
+
if relu_squared:
|
1329 |
+
activation = ReluSquared()
|
1330 |
+
elif swish:
|
1331 |
+
activation = nn.SiLU()
|
1332 |
+
else:
|
1333 |
+
activation = nn.GELU()
|
1334 |
+
|
1335 |
+
if glu:
|
1336 |
+
project_in = GLU(dim, inner_dim, activation, mult_bias = glu_mult_bias)
|
1337 |
+
else:
|
1338 |
+
project_in = nn.Sequential(
|
1339 |
+
nn.Linear(dim, inner_dim, bias = not no_bias),
|
1340 |
+
activation
|
1341 |
+
)
|
1342 |
+
|
1343 |
+
self.ff = Sequential(
|
1344 |
+
project_in,
|
1345 |
+
nn.LayerNorm(inner_dim) if post_act_ln else None,
|
1346 |
+
nn.Dropout(dropout),
|
1347 |
+
nn.Linear(inner_dim, dim_out, bias = not no_bias)
|
1348 |
+
)
|
1349 |
+
|
1350 |
+
# init last linear layer to 0
|
1351 |
+
if zero_init_output:
|
1352 |
+
init_zero_(self.ff[-1])
|
1353 |
+
|
1354 |
+
def forward(self, x):
|
1355 |
+
return self.ff(x)
|
1356 |
+
|
1357 |
+
# attention. it is all we need
|
1358 |
+
|
1359 |
+
class Attention(nn.Module):
|
1360 |
+
def __init__(
|
1361 |
+
self,
|
1362 |
+
dim,
|
1363 |
+
dim_head = DEFAULT_DIM_HEAD,
|
1364 |
+
heads = 8,
|
1365 |
+
causal = False,
|
1366 |
+
flash = False,
|
1367 |
+
talking_heads = False,
|
1368 |
+
head_scale = False,
|
1369 |
+
sparse_topk = None,
|
1370 |
+
num_mem_kv = 0,
|
1371 |
+
dropout = 0.,
|
1372 |
+
on_attn = False,
|
1373 |
+
gate_value_heads = False,
|
1374 |
+
gate_values = False,
|
1375 |
+
zero_init_output = False,
|
1376 |
+
max_attend_past = None,
|
1377 |
+
qk_norm = False,
|
1378 |
+
qk_norm_groups = 1,
|
1379 |
+
qk_norm_scale = 10,
|
1380 |
+
qk_norm_dim_scale = False,
|
1381 |
+
one_kv_head = False,
|
1382 |
+
kv_heads = None,
|
1383 |
+
shared_kv = False,
|
1384 |
+
value_dim_head = None,
|
1385 |
+
tensor_product = False, # https://arxiv.org/abs/2208.06061
|
1386 |
+
add_zero_kv = False, # same as add_zero_attn in pytorch
|
1387 |
+
rotary_embed_values = False,
|
1388 |
+
onnxable = False
|
1389 |
+
):
|
1390 |
+
super().__init__()
|
1391 |
+
self.scale = dim_head ** -0.5
|
1392 |
+
|
1393 |
+
self.heads = heads
|
1394 |
+
self.causal = causal
|
1395 |
+
self.max_attend_past = max_attend_past
|
1396 |
+
|
1397 |
+
assert not (exists(kv_heads) and one_kv_head), 'either attn_one_kv_head is set to True (in which case kv_heads is set to 1), or attn_kv_heads is set, but not both'
|
1398 |
+
|
1399 |
+
value_dim_head = default(value_dim_head, dim_head)
|
1400 |
+
kv_heads = default(kv_heads, heads)
|
1401 |
+
|
1402 |
+
kv_heads = 1 if one_kv_head else kv_heads
|
1403 |
+
assert divisible_by(heads, kv_heads)
|
1404 |
+
|
1405 |
+
self.kv_heads = kv_heads
|
1406 |
+
|
1407 |
+
q_dim = dim_head * heads
|
1408 |
+
k_dim = dim_head * kv_heads
|
1409 |
+
v_dim = value_dim_head * kv_heads
|
1410 |
+
out_dim = value_dim_head * heads
|
1411 |
+
|
1412 |
+
self.to_q = nn.Linear(dim, q_dim, bias = False)
|
1413 |
+
self.to_k = nn.Linear(dim, k_dim, bias = False)
|
1414 |
+
|
1415 |
+
# shared key / values, for further memory savings during inference
|
1416 |
+
assert not (shared_kv and value_dim_head != dim_head), 'key and value head dimensions must be equal for shared key / values'
|
1417 |
+
self.to_v = nn.Linear(dim, v_dim, bias = False) if not shared_kv else None
|
1418 |
+
|
1419 |
+
# relations projection from tp-attention
|
1420 |
+
self.to_r = nn.Linear(dim, v_dim, bias = False) if tensor_product else None
|
1421 |
+
|
1422 |
+
# add GLU gating for aggregated values, from alphafold2
|
1423 |
+
self.to_v_gate = None
|
1424 |
+
if gate_values:
|
1425 |
+
self.to_v_gate = nn.Linear(dim, out_dim)
|
1426 |
+
nn.init.constant_(self.to_v_gate.weight, 0)
|
1427 |
+
nn.init.constant_(self.to_v_gate.bias, 10)
|
1428 |
+
|
1429 |
+
# add per head gating of the output values, from 'Attend to nothing' paper
|
1430 |
+
self.to_v_head_gate = None
|
1431 |
+
if gate_value_heads:
|
1432 |
+
self.to_v_head_gate = nn.Linear(dim, heads)
|
1433 |
+
nn.init.constant_(self.to_v_head_gate.weight, 0)
|
1434 |
+
nn.init.constant_(self.to_v_head_gate.bias, 10)
|
1435 |
+
|
1436 |
+
# cosine sim attention
|
1437 |
+
self.qk_norm = qk_norm
|
1438 |
+
self.qk_norm_groups = qk_norm_groups
|
1439 |
+
self.qk_norm_scale = qk_norm_scale
|
1440 |
+
|
1441 |
+
# whether to use the rmsnorm (equivalent to cosine sim attention when scale is equal to 1) - https://arxiv.org/abs/2302.05442
|
1442 |
+
self.qk_norm_dim_scale = qk_norm_dim_scale
|
1443 |
+
|
1444 |
+
self.qk_norm_q_scale = self.qk_norm_k_scale = 1
|
1445 |
+
if qk_norm and qk_norm_dim_scale:
|
1446 |
+
self.qk_norm_q_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
|
1447 |
+
self.qk_norm_k_scale = nn.Parameter(torch.ones(heads, 1, dim_head))
|
1448 |
+
|
1449 |
+
assert (not qk_norm) or divisible_by(dim_head, qk_norm_groups), 'dimension per attention head must be divisible by the qk norm groups'
|
1450 |
+
assert not (qk_norm and (dim_head // qk_norm_groups) <= 2), 'the group dimension may be too small (2 was too small in my tests, but 4 still works, surprisingly)'
|
1451 |
+
|
1452 |
+
# attend class - includes core attention algorithm + talking heads
|
1453 |
+
|
1454 |
+
self.attend = Attend(
|
1455 |
+
heads = heads,
|
1456 |
+
causal = causal,
|
1457 |
+
talking_heads = talking_heads,
|
1458 |
+
dropout = dropout,
|
1459 |
+
sparse_topk = sparse_topk,
|
1460 |
+
qk_norm = qk_norm,
|
1461 |
+
scale = qk_norm_scale if qk_norm else self.scale,
|
1462 |
+
add_zero_kv = add_zero_kv,
|
1463 |
+
flash = flash,
|
1464 |
+
onnxable = onnxable
|
1465 |
+
)
|
1466 |
+
|
1467 |
+
# head scaling
|
1468 |
+
self.head_scale = head_scale
|
1469 |
+
if head_scale:
|
1470 |
+
self.head_scale_params = nn.Parameter(torch.ones(1, heads, 1, 1))
|
1471 |
+
|
1472 |
+
# explicit topk sparse attention
|
1473 |
+
self.sparse_topk = sparse_topk
|
1474 |
+
|
1475 |
+
# add memory key / values
|
1476 |
+
self.num_mem_kv = num_mem_kv
|
1477 |
+
if num_mem_kv > 0:
|
1478 |
+
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
1479 |
+
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head))
|
1480 |
+
|
1481 |
+
# attention on attention
|
1482 |
+
self.attn_on_attn = on_attn
|
1483 |
+
self.to_out = nn.Sequential(nn.Linear(out_dim, dim * 2, bias = False), nn.GLU()) if on_attn else nn.Linear(out_dim, dim, bias = False)
|
1484 |
+
|
1485 |
+
# whether to rotate positions into values, for absolute positions in addition to relative
|
1486 |
+
self.rotary_embed_values = rotary_embed_values
|
1487 |
+
|
1488 |
+
# init output projection 0
|
1489 |
+
if zero_init_output:
|
1490 |
+
init_zero_(self.to_out)
|
1491 |
+
|
1492 |
+
def forward(
|
1493 |
+
self,
|
1494 |
+
x,
|
1495 |
+
context = None,
|
1496 |
+
mask = None,
|
1497 |
+
context_mask = None,
|
1498 |
+
attn_mask = None,
|
1499 |
+
rel_pos = None,
|
1500 |
+
rotary_pos_emb = None,
|
1501 |
+
prev_attn = None,
|
1502 |
+
mem = None,
|
1503 |
+
return_intermediates = False,
|
1504 |
+
cache: Optional[Intermediates] = None,
|
1505 |
+
):
|
1506 |
+
b, n, _, h, kv_h, head_scale, device, has_context = *x.shape, self.heads, self.kv_heads, self.head_scale, x.device, exists(context)
|
1507 |
+
kv_input = default(context, x)
|
1508 |
+
|
1509 |
+
q_input = x
|
1510 |
+
k_input = kv_input
|
1511 |
+
v_input = kv_input
|
1512 |
+
r_input = x
|
1513 |
+
|
1514 |
+
if exists(mem):
|
1515 |
+
k_input, mem_packed_shape = pack([mem, k_input], 'b * d')
|
1516 |
+
v_input, _ = pack([mem, v_input], 'b * d')
|
1517 |
+
|
1518 |
+
q = self.to_q(q_input)
|
1519 |
+
k = self.to_k(k_input)
|
1520 |
+
v = self.to_v(v_input) if exists(self.to_v) else k
|
1521 |
+
r = self.to_r(r_input) if exists(self.to_r) else None
|
1522 |
+
|
1523 |
+
q = rearrange(q, 'b n (h d) -> b h n d', h = h)
|
1524 |
+
|
1525 |
+
k, v, r = map(lambda t: maybe(rearrange)(t, 'b n (h d) -> b h n d', h = kv_h), (k, v, r))
|
1526 |
+
|
1527 |
+
if exists(cache) and not has_context:
|
1528 |
+
ck, cv = cache.cached_kv
|
1529 |
+
|
1530 |
+
if exists(mem):
|
1531 |
+
mk, k = unpack(k, mem_packed_shape, 'b h * d')
|
1532 |
+
mv, v = unpack(v, mem_packed_shape, 'b h * d')
|
1533 |
+
|
1534 |
+
k = torch.cat((ck, k), dim = -2)
|
1535 |
+
v = torch.cat((cv, v), dim = -2)
|
1536 |
+
|
1537 |
+
if exists(mem):
|
1538 |
+
k = torch.cat((mk, k), dim = -2)
|
1539 |
+
v = torch.cat((mv, v), dim = -2)
|
1540 |
+
|
1541 |
+
if return_intermediates:
|
1542 |
+
mem_len = mem.shape[-2] if exists(mem) else 0
|
1543 |
+
cached_kv = (k[..., mem_len:, :], v[..., mem_len:, :])
|
1544 |
+
|
1545 |
+
if self.qk_norm:
|
1546 |
+
qk_l2norm = partial(l2norm, groups = self.qk_norm_groups)
|
1547 |
+
q, k = map(qk_l2norm, (q, k))
|
1548 |
+
scale = self.qk_norm_scale
|
1549 |
+
|
1550 |
+
q = q * self.qk_norm_q_scale
|
1551 |
+
k = k * self.qk_norm_k_scale
|
1552 |
+
|
1553 |
+
if exists(rotary_pos_emb) and not has_context:
|
1554 |
+
freqs, xpos_scale = rotary_pos_emb
|
1555 |
+
q_xpos_scale, k_xpos_scale = (xpos_scale, xpos_scale ** -1.) if exists(xpos_scale) else (1., 1.)
|
1556 |
+
|
1557 |
+
q = apply_rotary_pos_emb(q, freqs, q_xpos_scale)
|
1558 |
+
k = apply_rotary_pos_emb(k, freqs, k_xpos_scale)
|
1559 |
+
|
1560 |
+
if self.rotary_embed_values:
|
1561 |
+
v = apply_rotary_pos_emb(v, freqs, k_xpos_scale)
|
1562 |
+
|
1563 |
+
input_mask = context_mask
|
1564 |
+
|
1565 |
+
if not exists(input_mask) and not has_context:
|
1566 |
+
input_mask = mask
|
1567 |
+
|
1568 |
+
if self.num_mem_kv > 0:
|
1569 |
+
mem_k, mem_v = map(lambda t: repeat(t, 'h n d -> b h n d', b = b), (self.mem_k, self.mem_v))
|
1570 |
+
|
1571 |
+
if self.qk_norm:
|
1572 |
+
mem_k = l2norm(mem_k)
|
1573 |
+
mem_k = mem_k * self.qk_norm_k_scale
|
1574 |
+
|
1575 |
+
k = torch.cat((mem_k, k), dim = -2)
|
1576 |
+
v = torch.cat((mem_v, v), dim = -2)
|
1577 |
+
|
1578 |
+
if exists(input_mask):
|
1579 |
+
input_mask = pad_at_dim(input_mask, (self.num_mem_kv, 0), dim = -1, value = True)
|
1580 |
+
|
1581 |
+
i, j = map(lambda t: t.shape[-2], (q, k))
|
1582 |
+
|
1583 |
+
# determine masking
|
1584 |
+
|
1585 |
+
mask_value = max_neg_value(q)
|
1586 |
+
masks = []
|
1587 |
+
final_attn_mask = None
|
1588 |
+
|
1589 |
+
if exists(input_mask):
|
1590 |
+
input_mask = rearrange(input_mask, 'b j -> b 1 1 j')
|
1591 |
+
masks.append(~input_mask)
|
1592 |
+
|
1593 |
+
if exists(attn_mask):
|
1594 |
+
assert 2 <= attn_mask.ndim <= 4, 'attention mask must have greater than 2 dimensions but less than or equal to 4'
|
1595 |
+
if attn_mask.ndim == 2:
|
1596 |
+
attn_mask = rearrange(attn_mask, 'i j -> 1 1 i j')
|
1597 |
+
elif attn_mask.ndim == 3:
|
1598 |
+
attn_mask = rearrange(attn_mask, 'h i j -> 1 h i j')
|
1599 |
+
masks.append(~attn_mask)
|
1600 |
+
|
1601 |
+
if exists(self.max_attend_past):
|
1602 |
+
range_q = torch.arange(j - i, j, device = device)
|
1603 |
+
range_k = torch.arange(j, device = device)
|
1604 |
+
dist = rearrange(range_q, 'i -> 1 1 i 1') - rearrange(range_k, 'j -> 1 1 1 j')
|
1605 |
+
max_attend_past_mask = dist > self.max_attend_past
|
1606 |
+
masks.append(max_attend_past_mask)
|
1607 |
+
|
1608 |
+
if len(masks) > 0:
|
1609 |
+
final_attn_mask = ~or_reduce(masks)
|
1610 |
+
|
1611 |
+
# prepare relative positional bias, if needed
|
1612 |
+
|
1613 |
+
attn_bias = None
|
1614 |
+
if exists(rel_pos):
|
1615 |
+
attn_bias = rel_pos(i, j)
|
1616 |
+
|
1617 |
+
# attention is all we need
|
1618 |
+
|
1619 |
+
out, intermediates = self.attend(
|
1620 |
+
q, k, v,
|
1621 |
+
mask = final_attn_mask,
|
1622 |
+
attn_bias = attn_bias,
|
1623 |
+
prev_attn = prev_attn
|
1624 |
+
)
|
1625 |
+
|
1626 |
+
# https://arxiv.org/abs/2208.06061 proposes to add a residual for better gradients
|
1627 |
+
|
1628 |
+
if exists(r):
|
1629 |
+
out = out * r + out
|
1630 |
+
|
1631 |
+
# normformer scaling of heads
|
1632 |
+
|
1633 |
+
if head_scale:
|
1634 |
+
out = out * self.head_scale_params
|
1635 |
+
|
1636 |
+
# per head gating, from https://arxiv.org/abs/2306.12929
|
1637 |
+
|
1638 |
+
if exists(self.to_v_head_gate):
|
1639 |
+
head_gate = self.to_v_head_gate(x)
|
1640 |
+
out = out * rearrange(head_gate, 'b n h -> b h n 1').sigmoid()
|
1641 |
+
|
1642 |
+
# merge heads
|
1643 |
+
|
1644 |
+
out = rearrange(out, 'b h n d -> b n (h d)')
|
1645 |
+
|
1646 |
+
# alphafold2 styled gating of the values
|
1647 |
+
|
1648 |
+
if exists(self.to_v_gate):
|
1649 |
+
gates = self.to_v_gate(x)
|
1650 |
+
out = out * gates.sigmoid()
|
1651 |
+
|
1652 |
+
# combine the heads
|
1653 |
+
|
1654 |
+
out = self.to_out(out)
|
1655 |
+
|
1656 |
+
if exists(mask):
|
1657 |
+
mask = rearrange(mask, 'b n -> b n 1')
|
1658 |
+
out = out.masked_fill(~mask, 0.)
|
1659 |
+
|
1660 |
+
if not return_intermediates:
|
1661 |
+
return out
|
1662 |
+
|
1663 |
+
intermediates.cached_kv = cached_kv
|
1664 |
+
|
1665 |
+
return out, intermediates
|
1666 |
+
|
1667 |
+
class AttentionLayers(nn.Module):
|
1668 |
+
def __init__(
|
1669 |
+
self,
|
1670 |
+
dim,
|
1671 |
+
depth,
|
1672 |
+
heads = 8,
|
1673 |
+
causal = False,
|
1674 |
+
cross_attend = False,
|
1675 |
+
only_cross = False,
|
1676 |
+
use_scalenorm = False,
|
1677 |
+
use_rmsnorm = False,
|
1678 |
+
use_simple_rmsnorm = False,
|
1679 |
+
alibi_pos_bias = False,
|
1680 |
+
alibi_num_heads = None,
|
1681 |
+
rel_pos_bias = False,
|
1682 |
+
rel_pos_num_buckets = 32,
|
1683 |
+
rel_pos_max_distance = 128,
|
1684 |
+
dynamic_pos_bias = False,
|
1685 |
+
dynamic_pos_bias_log_distance = False,
|
1686 |
+
dynamic_pos_bias_mlp_depth = 2,
|
1687 |
+
dynamic_pos_bias_norm = False,
|
1688 |
+
rotary_pos_emb = False,
|
1689 |
+
rotary_emb_dim = None,
|
1690 |
+
rotary_xpos = False,
|
1691 |
+
rotary_interpolation_factor = 1.,
|
1692 |
+
rotary_xpos_scale_base = 512,
|
1693 |
+
rotary_base_rescale_factor = 1.,
|
1694 |
+
custom_layers = None,
|
1695 |
+
sandwich_coef = None,
|
1696 |
+
par_ratio = None,
|
1697 |
+
weight_tie_layers = False, # Albert - https://arxiv.org/abs/1909.11942
|
1698 |
+
layers_execute_order = None, # generalizes weight tying, can do arbitrary layer execution orders
|
1699 |
+
residual_attn = False,
|
1700 |
+
cross_residual_attn = False,
|
1701 |
+
macaron = False,
|
1702 |
+
pre_norm = True,
|
1703 |
+
pre_norm_has_final_norm = True,
|
1704 |
+
gate_residual = False,
|
1705 |
+
scale_residual = False,
|
1706 |
+
scale_residual_constant = 1.,
|
1707 |
+
shift_tokens = 0,
|
1708 |
+
sandwich_norm = False,
|
1709 |
+
resi_dual = False,
|
1710 |
+
resi_dual_scale = 1.,
|
1711 |
+
zero_init_branch_output = False,
|
1712 |
+
layer_dropout = 0.,
|
1713 |
+
cross_attn_tokens_dropout = 0.,
|
1714 |
+
**kwargs
|
1715 |
+
):
|
1716 |
+
super().__init__()
|
1717 |
+
rotary_pos_emb = rotary_pos_emb or rotary_xpos
|
1718 |
+
|
1719 |
+
ff_kwargs, kwargs = groupby_prefix_and_trim('ff_', kwargs)
|
1720 |
+
attn_kwargs, kwargs = groupby_prefix_and_trim('attn_', kwargs)
|
1721 |
+
|
1722 |
+
dim_head = attn_kwargs.get('dim_head', DEFAULT_DIM_HEAD)
|
1723 |
+
|
1724 |
+
self.dim = dim
|
1725 |
+
self.depth = depth
|
1726 |
+
self.causal = causal
|
1727 |
+
self.layers = nn.ModuleList([])
|
1728 |
+
|
1729 |
+
self.has_pos_emb = rel_pos_bias or rotary_pos_emb
|
1730 |
+
|
1731 |
+
rotary_emb_dim = max(default(rotary_emb_dim, dim_head // 2), 32)
|
1732 |
+
|
1733 |
+
assert not (rotary_xpos and not causal), 'rotary xpos is not compatible with bidirectional attention'
|
1734 |
+
self.rotary_pos_emb = RotaryEmbedding(rotary_emb_dim, use_xpos = rotary_xpos, scale_base = rotary_xpos_scale_base, interpolation_factor = rotary_interpolation_factor, base_rescale_factor = rotary_base_rescale_factor) if rotary_pos_emb else None
|
1735 |
+
|
1736 |
+
assert not (alibi_pos_bias and rel_pos_bias), 'you can only choose Alibi positional bias or T5 relative positional bias, not both'
|
1737 |
+
assert rel_pos_num_buckets <= rel_pos_max_distance, 'number of relative position buckets must be less than the relative position max distance'
|
1738 |
+
|
1739 |
+
# relative positional bias
|
1740 |
+
|
1741 |
+
flash_attn = attn_kwargs.get('flash', False)
|
1742 |
+
assert (int(rel_pos_bias) + int(dynamic_pos_bias) + int(alibi_pos_bias)) <= 1, 'you can only choose up to one of t5, alibi, or dynamic positional bias'
|
1743 |
+
|
1744 |
+
self.rel_pos = None
|
1745 |
+
if rel_pos_bias:
|
1746 |
+
assert not flash_attn, 'flash attention not compatible with t5 relative positional bias'
|
1747 |
+
self.rel_pos = RelativePositionBias(scale = dim_head ** 0.5, causal = causal, heads = heads, num_buckets = rel_pos_num_buckets, max_distance = rel_pos_max_distance)
|
1748 |
+
elif dynamic_pos_bias:
|
1749 |
+
assert not flash_attn, 'flash attention not compatible with dynamic positional bias'
|
1750 |
+
self.rel_pos = DynamicPositionBias(dim = dim // 4, heads = heads, log_distance = dynamic_pos_bias_log_distance, depth = dynamic_pos_bias_mlp_depth, norm = dynamic_pos_bias_norm)
|
1751 |
+
elif alibi_pos_bias:
|
1752 |
+
alibi_num_heads = default(alibi_num_heads, heads)
|
1753 |
+
assert alibi_num_heads <= heads, 'number of ALiBi heads must be less than the total number of heads'
|
1754 |
+
self.rel_pos = AlibiPositionalBias(heads = alibi_num_heads, total_heads = heads)
|
1755 |
+
|
1756 |
+
assert (int(sandwich_norm) + int(resi_dual)) <= 1, 'either sandwich norm or resiDual is selected, but not both'
|
1757 |
+
assert not (not pre_norm and sandwich_norm), 'sandwich norm cannot be used when not using prenorm'
|
1758 |
+
|
1759 |
+
if resi_dual:
|
1760 |
+
pre_norm = False
|
1761 |
+
|
1762 |
+
self.pre_norm = pre_norm
|
1763 |
+
self.sandwich_norm = sandwich_norm
|
1764 |
+
|
1765 |
+
self.resi_dual = resi_dual
|
1766 |
+
assert 0 < resi_dual_scale <= 1., 'resiDual prenorm residual must be scaled by a factor greater than 0 and less than or equal to 1.'
|
1767 |
+
self.resi_dual_scale = resi_dual_scale
|
1768 |
+
|
1769 |
+
self.residual_attn = residual_attn
|
1770 |
+
self.cross_residual_attn = cross_residual_attn
|
1771 |
+
assert not (flash_attn and (residual_attn or cross_residual_attn)), 'flash attention is not compatible with residual attention'
|
1772 |
+
|
1773 |
+
self.cross_attend = cross_attend
|
1774 |
+
|
1775 |
+
assert (int(use_scalenorm) + int(use_rmsnorm) + int(use_simple_rmsnorm)) <= 1, 'you can only use either scalenorm, rmsnorm, or simple rmsnorm'
|
1776 |
+
|
1777 |
+
if use_scalenorm:
|
1778 |
+
norm_class = ScaleNorm
|
1779 |
+
elif use_rmsnorm:
|
1780 |
+
norm_class = RMSNorm
|
1781 |
+
elif use_simple_rmsnorm:
|
1782 |
+
norm_class = SimpleRMSNorm
|
1783 |
+
else:
|
1784 |
+
norm_class = nn.LayerNorm
|
1785 |
+
|
1786 |
+
norm_fn = partial(norm_class, dim)
|
1787 |
+
|
1788 |
+
if cross_attend and not only_cross:
|
1789 |
+
default_block = ('a', 'c', 'f')
|
1790 |
+
elif cross_attend and only_cross:
|
1791 |
+
default_block = ('c', 'f')
|
1792 |
+
else:
|
1793 |
+
default_block = ('a', 'f')
|
1794 |
+
|
1795 |
+
if macaron:
|
1796 |
+
default_block = ('f',) + default_block
|
1797 |
+
|
1798 |
+
# zero init
|
1799 |
+
|
1800 |
+
if zero_init_branch_output:
|
1801 |
+
attn_kwargs = {**attn_kwargs, 'zero_init_output': True}
|
1802 |
+
ff_kwargs = {**ff_kwargs, 'zero_init_output': True}
|
1803 |
+
|
1804 |
+
# setup weight tying, which is a special case of `layer_execute_order`
|
1805 |
+
|
1806 |
+
assert not (weight_tie_layers and any([*map(exists, (custom_layers, par_ratio, sandwich_coef))]))
|
1807 |
+
|
1808 |
+
if weight_tie_layers:
|
1809 |
+
assert not exists(layers_execute_order)
|
1810 |
+
layers_execute_order = tuple(range(len(default_block))) * depth
|
1811 |
+
depth = 1
|
1812 |
+
|
1813 |
+
# calculate layer block order
|
1814 |
+
|
1815 |
+
if exists(custom_layers):
|
1816 |
+
layer_types = custom_layers
|
1817 |
+
elif exists(par_ratio):
|
1818 |
+
par_depth = depth * len(default_block)
|
1819 |
+
assert 1 < par_ratio <= par_depth, 'par ratio out of range'
|
1820 |
+
default_block = tuple(filter(not_equals('f'), default_block))
|
1821 |
+
par_attn = par_depth // par_ratio
|
1822 |
+
depth_cut = par_depth * 2 // 3 # 2 / 3 attention layer cutoff suggested by PAR paper
|
1823 |
+
par_width = (depth_cut + depth_cut // par_attn) // par_attn
|
1824 |
+
assert len(default_block) <= par_width, 'default block is too large for par_ratio'
|
1825 |
+
par_block = default_block + ('f',) * (par_width - len(default_block))
|
1826 |
+
par_head = par_block * par_attn
|
1827 |
+
layer_types = par_head + ('f',) * (par_depth - len(par_head))
|
1828 |
+
elif exists(sandwich_coef):
|
1829 |
+
assert sandwich_coef > 0 and sandwich_coef <= depth, 'sandwich coefficient should be less than the depth'
|
1830 |
+
layer_types = ('a',) * sandwich_coef + default_block * (depth - sandwich_coef) + ('f',) * sandwich_coef
|
1831 |
+
else:
|
1832 |
+
layer_types = default_block * depth
|
1833 |
+
|
1834 |
+
self.layer_types = layer_types
|
1835 |
+
self.layers_execute_order = default(layers_execute_order, tuple(range(len(layer_types))))
|
1836 |
+
|
1837 |
+
assert all([i < len(self.layer_types) for i in self.layers_execute_order])
|
1838 |
+
|
1839 |
+
self.num_attn_layers = len(list(filter(equals('a'), layer_types)))
|
1840 |
+
|
1841 |
+
# stochastic depth
|
1842 |
+
|
1843 |
+
self.layer_dropouts = cast_tuple(layer_dropout, len(layer_types))
|
1844 |
+
|
1845 |
+
# structured dropout for cross attending
|
1846 |
+
|
1847 |
+
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout
|
1848 |
+
|
1849 |
+
# calculate token shifting
|
1850 |
+
|
1851 |
+
shift_tokens = cast_tuple(shift_tokens, len(layer_types))
|
1852 |
+
|
1853 |
+
# whether it has post norm
|
1854 |
+
|
1855 |
+
self.final_norm = norm_fn() if pre_norm or resi_dual else nn.Identity()
|
1856 |
+
|
1857 |
+
# iterate and construct layers
|
1858 |
+
|
1859 |
+
for ind, (layer_type, layer_shift_tokens) in enumerate(zip(self.layer_types, shift_tokens)):
|
1860 |
+
is_last_layer = ind == (len(self.layer_types) - 1)
|
1861 |
+
|
1862 |
+
if layer_type == 'a':
|
1863 |
+
layer = Attention(dim, heads = heads, causal = causal, **attn_kwargs)
|
1864 |
+
elif layer_type == 'c':
|
1865 |
+
layer = Attention(dim, heads = heads, **attn_kwargs)
|
1866 |
+
elif layer_type == 'f':
|
1867 |
+
layer = FeedForward(dim, **ff_kwargs)
|
1868 |
+
layer = layer if not macaron else Scale(0.5, layer)
|
1869 |
+
else:
|
1870 |
+
raise Exception(f'invalid layer type {layer_type}')
|
1871 |
+
|
1872 |
+
if layer_shift_tokens > 0:
|
1873 |
+
shift_range_upper = layer_shift_tokens + 1
|
1874 |
+
shift_range_lower = -layer_shift_tokens if not causal else 0
|
1875 |
+
layer = ShiftTokens(range(shift_range_lower, shift_range_upper), layer)
|
1876 |
+
|
1877 |
+
residual_fn = GRUGating if gate_residual else Residual
|
1878 |
+
residual = residual_fn(dim, scale_residual = scale_residual, scale_residual_constant = scale_residual_constant)
|
1879 |
+
|
1880 |
+
pre_branch_norm = norm_fn() if pre_norm else None
|
1881 |
+
post_branch_norm = norm_fn() if sandwich_norm else None
|
1882 |
+
post_main_norm = norm_fn() if not pre_norm else None
|
1883 |
+
|
1884 |
+
norms = nn.ModuleList([
|
1885 |
+
pre_branch_norm,
|
1886 |
+
post_branch_norm,
|
1887 |
+
post_main_norm
|
1888 |
+
])
|
1889 |
+
|
1890 |
+
self.layers.append(nn.ModuleList([
|
1891 |
+
norms,
|
1892 |
+
layer,
|
1893 |
+
residual
|
1894 |
+
]))
|
1895 |
+
|
1896 |
+
def forward(
|
1897 |
+
self,
|
1898 |
+
x,
|
1899 |
+
context = None,
|
1900 |
+
mask = None,
|
1901 |
+
context_mask = None,
|
1902 |
+
attn_mask = None,
|
1903 |
+
self_attn_kv_mask = None,
|
1904 |
+
mems = None,
|
1905 |
+
seq_start_pos: Optional[Tensor] = None,
|
1906 |
+
cache: Optional[LayerIntermediates] = None,
|
1907 |
+
cache_age = 1,
|
1908 |
+
return_hiddens = False
|
1909 |
+
):
|
1910 |
+
assert not (self.cross_attend ^ exists(context)), 'context must be passed in if cross_attend is set to True'
|
1911 |
+
|
1912 |
+
# initialize accums
|
1913 |
+
|
1914 |
+
hiddens = []
|
1915 |
+
layer_hiddens = []
|
1916 |
+
intermediates = []
|
1917 |
+
|
1918 |
+
prev_attn = None
|
1919 |
+
prev_cross_attn = None
|
1920 |
+
|
1921 |
+
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers
|
1922 |
+
|
1923 |
+
# handle left padded sequences
|
1924 |
+
|
1925 |
+
if exists(seq_start_pos):
|
1926 |
+
seq_arange = torch.arange(x.shape[-2], device = x.device, dtype = torch.long)
|
1927 |
+
left_pad_mask = seq_arange >= seq_start_pos[..., None]
|
1928 |
+
|
1929 |
+
if exists(self_attn_kv_mask):
|
1930 |
+
self_attn_kv_mask = self_attn_kv_mask & left_pad_mask
|
1931 |
+
else:
|
1932 |
+
self_attn_kv_mask = left_pad_mask
|
1933 |
+
|
1934 |
+
# rotary positions
|
1935 |
+
|
1936 |
+
rotary_pos_emb = None
|
1937 |
+
|
1938 |
+
if exists(self.rotary_pos_emb):
|
1939 |
+
max_rotary_emb_length = max(list(map(lambda m: (m.shape[1] if exists(m) else 0) + x.shape[1], mems)))
|
1940 |
+
rotary_pos_emb = self.rotary_pos_emb(max_rotary_emb_length)
|
1941 |
+
|
1942 |
+
# assume cached key / values
|
1943 |
+
|
1944 |
+
attn_cache = []
|
1945 |
+
|
1946 |
+
if exists(cache):
|
1947 |
+
assert not self.training and self.causal and not any([*map(exists, (mask, attn_mask))])
|
1948 |
+
|
1949 |
+
if cache_age > 0:
|
1950 |
+
x = x[:, -cache_age:] # for spec decoding, may be greater than 1
|
1951 |
+
|
1952 |
+
attn_cache = cache.attn_intermediates
|
1953 |
+
|
1954 |
+
iter_attn_cache = iter(attn_cache)
|
1955 |
+
|
1956 |
+
# outer residual - for resiDual paper
|
1957 |
+
|
1958 |
+
outer_residual = x * self.resi_dual_scale
|
1959 |
+
|
1960 |
+
# get layers to be executed
|
1961 |
+
|
1962 |
+
layer_variables = (
|
1963 |
+
self.layer_types,
|
1964 |
+
self.layers,
|
1965 |
+
self.layer_dropouts
|
1966 |
+
)
|
1967 |
+
|
1968 |
+
layer_variables = tuple(tuple(layer_variable[i] for i in self.layers_execute_order) for layer_variable in layer_variables)
|
1969 |
+
|
1970 |
+
# go through the attention and feedforward layers
|
1971 |
+
|
1972 |
+
for ind, (layer_type, (norm, block, residual_fn), layer_dropout) in enumerate(zip(*layer_variables)):
|
1973 |
+
is_last = ind == (len(self.layers) - 1)
|
1974 |
+
|
1975 |
+
if self.training and layer_dropout > 0. and random() < layer_dropout:
|
1976 |
+
continue
|
1977 |
+
|
1978 |
+
if layer_type == 'a':
|
1979 |
+
if return_hiddens:
|
1980 |
+
hiddens.append(x)
|
1981 |
+
layer_mem = mems.pop(0) if mems else None
|
1982 |
+
|
1983 |
+
if layer_type == 'c':
|
1984 |
+
if self.training and self.cross_attn_tokens_dropout > 0.:
|
1985 |
+
context, context_mask = dropout_seq(context, context_mask, self.cross_attn_tokens_dropout)
|
1986 |
+
|
1987 |
+
inner_residual = x
|
1988 |
+
|
1989 |
+
if return_hiddens:
|
1990 |
+
layer_hiddens.append(x)
|
1991 |
+
|
1992 |
+
pre_norm, post_branch_norm, post_main_norm = norm
|
1993 |
+
|
1994 |
+
if exists(pre_norm):
|
1995 |
+
x = pre_norm(x)
|
1996 |
+
|
1997 |
+
if layer_type == 'a':
|
1998 |
+
out, inter = block(x, mask = mask, context_mask = self_attn_kv_mask, attn_mask = attn_mask, rel_pos = self.rel_pos, rotary_pos_emb = rotary_pos_emb, prev_attn = prev_attn, cache = next(iter_attn_cache, None), mem = layer_mem, return_intermediates = True)
|
1999 |
+
elif layer_type == 'c':
|
2000 |
+
out, inter = block(x, context = context, mask = mask, context_mask = context_mask, prev_attn = prev_cross_attn, cache = next(iter_attn_cache, None), return_intermediates = True)
|
2001 |
+
elif layer_type == 'f':
|
2002 |
+
out = block(x)
|
2003 |
+
|
2004 |
+
if self.resi_dual:
|
2005 |
+
outer_residual = outer_residual + out * self.resi_dual_scale
|
2006 |
+
|
2007 |
+
if exists(post_branch_norm):
|
2008 |
+
out = post_branch_norm(out)
|
2009 |
+
|
2010 |
+
x = residual_fn(out, inner_residual)
|
2011 |
+
|
2012 |
+
if layer_type in ('a', 'c') and return_hiddens:
|
2013 |
+
intermediates.append(inter)
|
2014 |
+
|
2015 |
+
if layer_type == 'a' and self.residual_attn:
|
2016 |
+
prev_attn = inter.pre_softmax_attn
|
2017 |
+
elif layer_type == 'c' and self.cross_residual_attn:
|
2018 |
+
prev_cross_attn = inter.pre_softmax_attn
|
2019 |
+
|
2020 |
+
if exists(post_main_norm):
|
2021 |
+
x = post_main_norm(x)
|
2022 |
+
|
2023 |
+
if return_hiddens:
|
2024 |
+
layer_hiddens.append(x)
|
2025 |
+
|
2026 |
+
if self.resi_dual:
|
2027 |
+
x = x + self.final_norm(outer_residual)
|
2028 |
+
else:
|
2029 |
+
x = self.final_norm(x)
|
2030 |
+
|
2031 |
+
if not return_hiddens:
|
2032 |
+
return x
|
2033 |
+
|
2034 |
+
intermediates = LayerIntermediates(
|
2035 |
+
hiddens = hiddens,
|
2036 |
+
attn_intermediates = intermediates,
|
2037 |
+
layer_hiddens = layer_hiddens
|
2038 |
+
)
|
2039 |
+
|
2040 |
+
return x, intermediates
|
2041 |
+
|
2042 |
+
class Encoder(AttentionLayers):
|
2043 |
+
def __init__(self, **kwargs):
|
2044 |
+
assert 'causal' not in kwargs, 'cannot set causality on encoder'
|
2045 |
+
super().__init__(causal = False, **kwargs)
|
2046 |
+
|
2047 |
+
class Decoder(AttentionLayers):
|
2048 |
+
def __init__(self, **kwargs):
|
2049 |
+
assert 'causal' not in kwargs, 'cannot set causality on decoder'
|
2050 |
+
super().__init__(causal = True, **kwargs)
|
2051 |
+
|
2052 |
+
class CrossAttender(AttentionLayers):
|
2053 |
+
def __init__(self, **kwargs):
|
2054 |
+
super().__init__(cross_attend = True, only_cross = True, **kwargs)
|
2055 |
+
|
2056 |
+
class ViTransformerWrapper(nn.Module):
|
2057 |
+
def __init__(
|
2058 |
+
self,
|
2059 |
+
*,
|
2060 |
+
image_size,
|
2061 |
+
patch_size,
|
2062 |
+
attn_layers,
|
2063 |
+
channels = 3,
|
2064 |
+
num_classes = None,
|
2065 |
+
post_emb_norm = False,
|
2066 |
+
num_register_tokens = 0,
|
2067 |
+
emb_dropout = 0.
|
2068 |
+
):
|
2069 |
+
super().__init__()
|
2070 |
+
assert isinstance(attn_layers, Encoder), 'attention layers must be an Encoder'
|
2071 |
+
assert divisible_by(image_size, patch_size), 'image dimensions must be divisible by the patch size'
|
2072 |
+
dim = attn_layers.dim
|
2073 |
+
num_patches = (image_size // patch_size) ** 2
|
2074 |
+
patch_dim = channels * patch_size ** 2
|
2075 |
+
|
2076 |
+
self.patch_size = patch_size
|
2077 |
+
|
2078 |
+
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches, dim))
|
2079 |
+
|
2080 |
+
has_register_tokens = num_register_tokens > 0
|
2081 |
+
self.has_register_tokens = has_register_tokens
|
2082 |
+
|
2083 |
+
if has_register_tokens:
|
2084 |
+
self.register_tokens = nn.Parameter(torch.randn(num_register_tokens, dim))
|
2085 |
+
|
2086 |
+
self.patch_to_embedding = nn.Sequential(
|
2087 |
+
nn.LayerNorm(patch_dim),
|
2088 |
+
nn.Linear(patch_dim, dim),
|
2089 |
+
nn.LayerNorm(dim)
|
2090 |
+
)
|
2091 |
+
|
2092 |
+
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
|
2093 |
+
self.dropout = nn.Dropout(emb_dropout)
|
2094 |
+
|
2095 |
+
self.attn_layers = attn_layers
|
2096 |
+
|
2097 |
+
self.mlp_head = nn.Linear(dim, num_classes) if exists(num_classes) else nn.Identity()
|
2098 |
+
|
2099 |
+
def forward(
|
2100 |
+
self,
|
2101 |
+
img,
|
2102 |
+
return_embeddings = False
|
2103 |
+
):
|
2104 |
+
b, p = img.shape[0], self.patch_size
|
2105 |
+
|
2106 |
+
x = rearrange(img, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = p, p2 = p)
|
2107 |
+
x = self.patch_to_embedding(x)
|
2108 |
+
n = x.shape[1]
|
2109 |
+
|
2110 |
+
x = x + self.pos_embedding[:, :n]
|
2111 |
+
|
2112 |
+
x = self.post_emb_norm(x)
|
2113 |
+
x = self.dropout(x)
|
2114 |
+
|
2115 |
+
if self.has_register_tokens:
|
2116 |
+
r = repeat(self.register_tokens, 'n d -> b n d', b = b)
|
2117 |
+
x, ps = pack((x, r), 'b * d')
|
2118 |
+
|
2119 |
+
x = self.attn_layers(x)
|
2120 |
+
|
2121 |
+
if self.has_register_tokens:
|
2122 |
+
x, _ = unpack(x, ps, 'b * d')
|
2123 |
+
|
2124 |
+
if not exists(self.mlp_head) or return_embeddings:
|
2125 |
+
return x
|
2126 |
+
|
2127 |
+
x = x.mean(dim = -2)
|
2128 |
+
return self.mlp_head(x)
|
2129 |
+
|
2130 |
+
class TransformerWrapper(nn.Module):
|
2131 |
+
def __init__(
|
2132 |
+
self,
|
2133 |
+
*,
|
2134 |
+
num_tokens,
|
2135 |
+
max_seq_len,
|
2136 |
+
attn_layers,
|
2137 |
+
emb_dim = None,
|
2138 |
+
max_mem_len = 0,
|
2139 |
+
shift_mem_down = 0,
|
2140 |
+
emb_dropout = 0.,
|
2141 |
+
post_emb_norm = False,
|
2142 |
+
num_memory_tokens = None,
|
2143 |
+
memory_tokens_interspersed_every = None,
|
2144 |
+
tie_embedding = False,
|
2145 |
+
logits_dim = None,
|
2146 |
+
use_abs_pos_emb = True,
|
2147 |
+
scaled_sinu_pos_emb = False,
|
2148 |
+
l2norm_embed = False,
|
2149 |
+
emb_frac_gradient = 1., # GLM-130B and Cogview successfully used this, set at 0.1
|
2150 |
+
attn_z_loss_weight = 1e-4,
|
2151 |
+
):
|
2152 |
+
super().__init__()
|
2153 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
2154 |
+
|
2155 |
+
dim = attn_layers.dim
|
2156 |
+
emb_dim = default(emb_dim, dim)
|
2157 |
+
self.emb_dim = emb_dim
|
2158 |
+
self.num_tokens = num_tokens
|
2159 |
+
|
2160 |
+
self.max_seq_len = max_seq_len
|
2161 |
+
self.max_mem_len = max_mem_len
|
2162 |
+
self.shift_mem_down = shift_mem_down
|
2163 |
+
|
2164 |
+
self.l2norm_embed = l2norm_embed
|
2165 |
+
self.token_emb = TokenEmbedding(emb_dim, num_tokens, l2norm_embed = l2norm_embed)
|
2166 |
+
|
2167 |
+
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
|
2168 |
+
self.pos_emb = always(0)
|
2169 |
+
elif scaled_sinu_pos_emb:
|
2170 |
+
self.pos_emb = ScaledSinusoidalEmbedding(emb_dim)
|
2171 |
+
else:
|
2172 |
+
self.pos_emb = AbsolutePositionalEmbedding(emb_dim, max_seq_len, l2norm_embed = l2norm_embed)
|
2173 |
+
|
2174 |
+
self.emb_frac_gradient = emb_frac_gradient # fraction of the gradient that should go to the embedding, https://arxiv.org/abs/2105.13290
|
2175 |
+
|
2176 |
+
self.post_emb_norm = nn.LayerNorm(emb_dim) if post_emb_norm else nn.Identity()
|
2177 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
2178 |
+
|
2179 |
+
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity()
|
2180 |
+
self.attn_layers = attn_layers
|
2181 |
+
|
2182 |
+
self.init_()
|
2183 |
+
|
2184 |
+
logits_dim = default(logits_dim, num_tokens)
|
2185 |
+
self.to_logits = nn.Linear(dim, logits_dim) if not tie_embedding else lambda t: t @ self.token_emb.emb.weight.t()
|
2186 |
+
|
2187 |
+
# memory tokens (like [cls]) from Memory Transformers paper
|
2188 |
+
|
2189 |
+
num_memory_tokens = default(num_memory_tokens, 0)
|
2190 |
+
self.num_memory_tokens = num_memory_tokens
|
2191 |
+
if num_memory_tokens > 0:
|
2192 |
+
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim))
|
2193 |
+
|
2194 |
+
self.memory_tokens_interspersed_every = memory_tokens_interspersed_every
|
2195 |
+
|
2196 |
+
# whether can do cached kv decoding
|
2197 |
+
|
2198 |
+
self.can_cache_kv = self.num_memory_tokens == 0
|
2199 |
+
|
2200 |
+
def init_(self):
|
2201 |
+
if self.l2norm_embed:
|
2202 |
+
nn.init.normal_(self.token_emb.emb.weight, std = 1e-5)
|
2203 |
+
if not isinstance(self.pos_emb, always):
|
2204 |
+
nn.init.normal_(self.pos_emb.emb.weight, std = 1e-5)
|
2205 |
+
return
|
2206 |
+
|
2207 |
+
nn.init.kaiming_normal_(self.token_emb.emb.weight)
|
2208 |
+
|
2209 |
+
def forward(
|
2210 |
+
self,
|
2211 |
+
x,
|
2212 |
+
return_embeddings = False,
|
2213 |
+
return_logits_and_embeddings = False,
|
2214 |
+
return_intermediates = False,
|
2215 |
+
mask = None,
|
2216 |
+
return_mems = False,
|
2217 |
+
return_attn = False,
|
2218 |
+
mems = None,
|
2219 |
+
pos = None,
|
2220 |
+
prepend_embeds = None,
|
2221 |
+
sum_embeds = None,
|
2222 |
+
return_attn_z_loss = False,
|
2223 |
+
attn_z_loss_weight = 1e-4,
|
2224 |
+
seq_start_pos = None,
|
2225 |
+
cache: Optional[LayerIntermediates] = None,
|
2226 |
+
**kwargs
|
2227 |
+
):
|
2228 |
+
b, n, device, num_mems, has_memory_tokens, emb_frac_gradient = *x.shape, x.device, self.num_memory_tokens, self.num_memory_tokens > 0, self.emb_frac_gradient
|
2229 |
+
return_hiddens = return_mems | return_attn | return_intermediates | return_attn_z_loss
|
2230 |
+
|
2231 |
+
# absolute positional embedding
|
2232 |
+
|
2233 |
+
external_pos_emb = exists(pos) and pos.dtype != torch.long
|
2234 |
+
pos_emb = self.pos_emb(x, pos = pos, seq_start_pos = seq_start_pos) if not external_pos_emb else pos
|
2235 |
+
x = self.token_emb(x) + pos_emb
|
2236 |
+
|
2237 |
+
# for summing embeddings passed externally - needs this for self-conditioning in non-autoregressive training
|
2238 |
+
|
2239 |
+
if exists(sum_embeds):
|
2240 |
+
x = x + sum_embeds
|
2241 |
+
|
2242 |
+
# post embedding norm, purportedly leads to greater stabilization
|
2243 |
+
|
2244 |
+
x = self.post_emb_norm(x)
|
2245 |
+
|
2246 |
+
# whether to append embeds, as in PaLI, for image embeddings
|
2247 |
+
|
2248 |
+
if exists(prepend_embeds):
|
2249 |
+
prepend_seq, prepend_dim = prepend_embeds.shape[1:]
|
2250 |
+
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as text model dimensions'
|
2251 |
+
|
2252 |
+
x = torch.cat((prepend_embeds, x), dim = -2)
|
2253 |
+
|
2254 |
+
# whether to reduce the gradient going to the embedding, from cogview paper, corroborated by GLM-130B model
|
2255 |
+
|
2256 |
+
if emb_frac_gradient < 1:
|
2257 |
+
assert emb_frac_gradient > 0
|
2258 |
+
x = x * emb_frac_gradient + x.detach() * (1 - emb_frac_gradient)
|
2259 |
+
|
2260 |
+
# embedding dropout
|
2261 |
+
|
2262 |
+
x = self.emb_dropout(x)
|
2263 |
+
|
2264 |
+
x = self.project_emb(x)
|
2265 |
+
|
2266 |
+
if has_memory_tokens:
|
2267 |
+
mem_every = self.memory_tokens_interspersed_every
|
2268 |
+
|
2269 |
+
if exists(mem_every):
|
2270 |
+
assert mem_every > 0
|
2271 |
+
assert isinstance(self.attn_layers, Decoder), 'only for decoder'
|
2272 |
+
next_seq_len = math.ceil(n / mem_every) * mem_every
|
2273 |
+
|
2274 |
+
x = pad_at_dim(x, (0, next_seq_len - n), dim = -2, value = 0.)
|
2275 |
+
x = rearrange(x, 'b (n m) d -> (b n) m d', m = mem_every)
|
2276 |
+
|
2277 |
+
mem = repeat(self.memory_tokens, 'n d -> b n d', b = x.shape[0])
|
2278 |
+
x, mem_packed_shape = pack((mem, x), 'b * d')
|
2279 |
+
|
2280 |
+
# auto-handle masking after appending memory tokens
|
2281 |
+
if not exists(mem_every) and exists(mask):
|
2282 |
+
mask = pad_at_dim(mask, (num_mems, 0), dim = -1, value = True)
|
2283 |
+
|
2284 |
+
if exists(mem_every):
|
2285 |
+
x = rearrange(x, '(b n) m d -> b (n m) d', b = b)
|
2286 |
+
|
2287 |
+
if self.shift_mem_down and exists(mems):
|
2288 |
+
mems_l, mems_r = mems[:self.shift_mem_down], mems[self.shift_mem_down:]
|
2289 |
+
mems = [*mems_r, *mems_l]
|
2290 |
+
|
2291 |
+
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, cache = cache, return_hiddens = True, seq_start_pos = seq_start_pos, **kwargs)
|
2292 |
+
|
2293 |
+
if has_memory_tokens:
|
2294 |
+
if exists(mem_every):
|
2295 |
+
x = rearrange(x, 'b (n m) d -> (b n) m d', m = (mem_every + num_mems))
|
2296 |
+
|
2297 |
+
mem, x = unpack(x, mem_packed_shape, 'b * d')
|
2298 |
+
|
2299 |
+
if exists(mem_every):
|
2300 |
+
x = rearrange(x, '(b n) m d -> b (n m) d', b = b)
|
2301 |
+
|
2302 |
+
x = x[:, :n]
|
2303 |
+
|
2304 |
+
if return_logits_and_embeddings:
|
2305 |
+
out = (self.to_logits(x), x)
|
2306 |
+
elif return_embeddings:
|
2307 |
+
out = x
|
2308 |
+
else:
|
2309 |
+
out = self.to_logits(x)
|
2310 |
+
|
2311 |
+
if return_attn_z_loss:
|
2312 |
+
pre_softmax_attns = list(map(lambda t: t.pre_softmax_attn, intermediates.attn_intermediates))
|
2313 |
+
intermediates.attn_z_loss = calc_z_loss(pre_softmax_attns, weight = attn_z_loss_weight)
|
2314 |
+
return_intermediates = True
|
2315 |
+
|
2316 |
+
if return_mems:
|
2317 |
+
hiddens = intermediates.hiddens
|
2318 |
+
new_mems = list(map(lambda pair: torch.cat(pair, dim = -2), zip(mems, hiddens))) if exists(mems) else hiddens
|
2319 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), new_mems))
|
2320 |
+
|
2321 |
+
if not return_intermediates:
|
2322 |
+
return out, new_mems
|
2323 |
+
|
2324 |
+
intermediates.mems = new_mems
|
2325 |
+
|
2326 |
+
if return_intermediates:
|
2327 |
+
return out, intermediates
|
2328 |
+
|
2329 |
+
if return_attn:
|
2330 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
2331 |
+
return out, attn_maps
|
2332 |
+
|
2333 |
+
return out
|
2334 |
+
|
2335 |
+
class ContinuousTransformerWrapper(nn.Module):
|
2336 |
+
def __init__(
|
2337 |
+
self,
|
2338 |
+
*,
|
2339 |
+
max_seq_len,
|
2340 |
+
attn_layers,
|
2341 |
+
dim_in = None,
|
2342 |
+
dim_out = None,
|
2343 |
+
emb_dim = None,
|
2344 |
+
max_mem_len = 0,
|
2345 |
+
post_emb_norm = False,
|
2346 |
+
emb_dropout = 0.,
|
2347 |
+
use_abs_pos_emb = True,
|
2348 |
+
scaled_sinu_pos_emb = False
|
2349 |
+
):
|
2350 |
+
super().__init__()
|
2351 |
+
assert isinstance(attn_layers, AttentionLayers), 'attention layers must be one of Encoder or Decoder'
|
2352 |
+
|
2353 |
+
dim = attn_layers.dim
|
2354 |
+
|
2355 |
+
self.max_seq_len = max_seq_len
|
2356 |
+
|
2357 |
+
self.max_mem_len = max_mem_len
|
2358 |
+
|
2359 |
+
if not (use_abs_pos_emb and not attn_layers.has_pos_emb):
|
2360 |
+
self.pos_emb = always(0)
|
2361 |
+
elif scaled_sinu_pos_emb:
|
2362 |
+
self.pos_emb = ScaledSinusoidalEmbedding(dim)
|
2363 |
+
else:
|
2364 |
+
self.pos_emb = AbsolutePositionalEmbedding(dim, max_seq_len)
|
2365 |
+
|
2366 |
+
self.post_emb_norm = nn.LayerNorm(dim) if post_emb_norm else nn.Identity()
|
2367 |
+
self.emb_dropout = nn.Dropout(emb_dropout)
|
2368 |
+
|
2369 |
+
self.project_in = nn.Linear(dim_in, dim) if exists(dim_in) else nn.Identity()
|
2370 |
+
|
2371 |
+
self.attn_layers = attn_layers
|
2372 |
+
|
2373 |
+
self.project_out = nn.Linear(dim, dim_out) if exists(dim_out) else nn.Identity()
|
2374 |
+
|
2375 |
+
def forward(
|
2376 |
+
self,
|
2377 |
+
x,
|
2378 |
+
return_embeddings = False,
|
2379 |
+
return_intermediates = False,
|
2380 |
+
return_mems = False,
|
2381 |
+
mask = None,
|
2382 |
+
return_attn = False,
|
2383 |
+
mems = None,
|
2384 |
+
pos = None,
|
2385 |
+
prepend_embeds = None,
|
2386 |
+
**kwargs
|
2387 |
+
):
|
2388 |
+
x = self.project_in(x)
|
2389 |
+
x = x + self.pos_emb(x, pos = pos)
|
2390 |
+
|
2391 |
+
x = self.post_emb_norm(x)
|
2392 |
+
|
2393 |
+
# whether to append embeds, as in PaLI, for image embeddings
|
2394 |
+
|
2395 |
+
if exists(prepend_embeds):
|
2396 |
+
_, prepend_dim = prepend_embeds.shape[1:]
|
2397 |
+
assert prepend_dim == x.shape[-1], 'prepended embeddings need to have same dimensions as model dimensions'
|
2398 |
+
|
2399 |
+
x = torch.cat((prepend_embeds, x), dim = -2)
|
2400 |
+
|
2401 |
+
x = self.emb_dropout(x)
|
2402 |
+
|
2403 |
+
x, intermediates = self.attn_layers(x, mask = mask, mems = mems, return_hiddens = True, **kwargs)
|
2404 |
+
|
2405 |
+
out = self.project_out(x) if not return_embeddings else x
|
2406 |
+
|
2407 |
+
if return_intermediates:
|
2408 |
+
return out, intermediates
|
2409 |
+
|
2410 |
+
if return_mems:
|
2411 |
+
hiddens = intermediates.hiddens
|
2412 |
+
new_mems = list(map(lambda t: t[..., -self.max_mem_len:, :].detach(), hiddens))
|
2413 |
+
return out, new_mems
|
2414 |
+
|
2415 |
+
if return_attn:
|
2416 |
+
attn_maps = list(map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates))
|
2417 |
+
return out, attn_maps
|
2418 |
+
|
2419 |
+
return out
|
2420 |
+
|
2421 |
+
class XTransformer(nn.Module):
|
2422 |
+
def __init__(
|
2423 |
+
self,
|
2424 |
+
*,
|
2425 |
+
dim,
|
2426 |
+
tie_token_emb = False,
|
2427 |
+
ignore_index = -100,
|
2428 |
+
pad_value = 0,
|
2429 |
+
cross_attn_tokens_dropout = 0.,
|
2430 |
+
**kwargs
|
2431 |
+
):
|
2432 |
+
super().__init__()
|
2433 |
+
enc_kwargs, kwargs = groupby_prefix_and_trim('enc_', kwargs)
|
2434 |
+
dec_kwargs, kwargs = groupby_prefix_and_trim('dec_', kwargs)
|
2435 |
+
|
2436 |
+
assert 'dim' not in enc_kwargs and 'dim' not in dec_kwargs, 'dimension of either encoder or decoder must be set with `dim` keyword'
|
2437 |
+
enc_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], enc_kwargs)
|
2438 |
+
enc_transformer_kwargs['emb_dropout'] = enc_kwargs.pop('emb_dropout', 0)
|
2439 |
+
enc_transformer_kwargs['num_memory_tokens'] = enc_kwargs.pop('num_memory_tokens', None)
|
2440 |
+
enc_transformer_kwargs['scaled_sinu_pos_emb'] = enc_kwargs.pop('scaled_sinu_pos_emb', False)
|
2441 |
+
enc_transformer_kwargs['use_abs_pos_emb'] = enc_kwargs.pop('use_abs_pos_emb', True)
|
2442 |
+
|
2443 |
+
dec_transformer_kwargs = pick_and_pop(['num_tokens', 'max_seq_len'], dec_kwargs)
|
2444 |
+
dec_transformer_kwargs['emb_dropout'] = dec_kwargs.pop('emb_dropout', 0)
|
2445 |
+
dec_transformer_kwargs['scaled_sinu_pos_emb'] = dec_kwargs.pop('scaled_sinu_pos_emb', False)
|
2446 |
+
dec_transformer_kwargs['use_abs_pos_emb'] = dec_kwargs.pop('use_abs_pos_emb', True)
|
2447 |
+
|
2448 |
+
self.cross_attn_tokens_dropout = cross_attn_tokens_dropout # how many tokens from the encoder to dropout when cross attending from decoder - seen in a couple papers, including Perceiver AR - this will also be very effective regularization when cross attending to very long memories
|
2449 |
+
|
2450 |
+
self.encoder = TransformerWrapper(
|
2451 |
+
**enc_transformer_kwargs,
|
2452 |
+
attn_layers = Encoder(dim = dim, **enc_kwargs)
|
2453 |
+
)
|
2454 |
+
|
2455 |
+
self.decoder = TransformerWrapper(
|
2456 |
+
**dec_transformer_kwargs,
|
2457 |
+
attn_layers = Decoder(dim = dim, cross_attend = True, **dec_kwargs)
|
2458 |
+
)
|
2459 |
+
|
2460 |
+
if tie_token_emb:
|
2461 |
+
self.decoder.token_emb = self.encoder.token_emb
|
2462 |
+
|
2463 |
+
self.decoder = AutoregressiveWrapper(self.decoder, ignore_index=ignore_index, pad_value=pad_value)
|
2464 |
+
|
2465 |
+
@torch.no_grad()
|
2466 |
+
def generate(self, seq_in, seq_out_start, seq_len, mask = None, attn_mask = None, **kwargs):
|
2467 |
+
encodings = self.encoder(seq_in, mask = mask, attn_mask = attn_mask, return_embeddings = True)
|
2468 |
+
return self.decoder.generate(seq_out_start, seq_len, context = encodings, context_mask = mask, **kwargs)
|
2469 |
+
|
2470 |
+
def forward(self, src, tgt, mask = None, attn_mask = None, src_prepend_embeds = None):
|
2471 |
+
|
2472 |
+
if exists(src_prepend_embeds) and exists(mask):
|
2473 |
+
mask = pad_at_dim(mask, (src_prepend_embeds.shape[-2], 0), dim = -1, value = True)
|
2474 |
+
|
2475 |
+
enc = self.encoder(src, mask = mask, attn_mask = attn_mask, prepend_embeds = src_prepend_embeds, return_embeddings = True)
|
2476 |
+
|
2477 |
+
if self.training and self.cross_attn_tokens_dropout > 0:
|
2478 |
+
enc, mask = dropout_seq(enc, mask, self.cross_attn_tokens_dropout)
|
2479 |
+
|
2480 |
+
out = self.decoder(tgt, context = enc, context_mask = mask)
|
2481 |
+
return out
|
x_transformer_1_27_16.py
CHANGED
@@ -21,7 +21,16 @@ r'''############################################################################
|
|
21 |
#
|
22 |
# !pip install torch
|
23 |
# !pip install einops
|
24 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
#
|
26 |
#===============================================================================
|
27 |
'''
|
@@ -3046,11 +3055,7 @@ class AutoregressiveWrapper(Module):
|
|
3046 |
|
3047 |
# sampling up to seq_len
|
3048 |
|
3049 |
-
|
3050 |
-
|
3051 |
for sl in range(seq_len):
|
3052 |
-
|
3053 |
-
try:
|
3054 |
|
3055 |
if restrict_to_max_seq_len:
|
3056 |
max_len_exceeded = out.shape[-1] > max_seq_len
|
@@ -3124,14 +3129,6 @@ class AutoregressiveWrapper(Module):
|
|
3124 |
print('Model called the end of sequence at:', sl, '/', seq_len)
|
3125 |
break
|
3126 |
|
3127 |
-
except KeyboardInterrupt:
|
3128 |
-
print('Stopping generation...')
|
3129 |
-
break
|
3130 |
-
|
3131 |
-
except Exception as e:
|
3132 |
-
print('Error:', e)
|
3133 |
-
break
|
3134 |
-
|
3135 |
if exists(eos_token):
|
3136 |
# mask out everything after the eos tokens
|
3137 |
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
|
@@ -3659,11 +3656,11 @@ import importlib
|
|
3659 |
|
3660 |
#===============================================================================
|
3661 |
|
3662 |
-
def instantiate_x_transformer_model(
|
3663 |
-
|
3664 |
dim=1024,
|
3665 |
-
depth=
|
3666 |
-
heads=
|
3667 |
attn_flash=True,
|
3668 |
ignore_index=-1,
|
3669 |
verbose=True):
|
@@ -3686,10 +3683,7 @@ def instantiate_x_transformer_model(max_seq_len,
|
|
3686 |
ignore_index=ignore_index
|
3687 |
)
|
3688 |
|
3689 |
-
|
3690 |
-
model.cuda()
|
3691 |
-
else:
|
3692 |
-
model.cpu()
|
3693 |
|
3694 |
if verbose:
|
3695 |
print('Done!')
|
@@ -3700,12 +3694,14 @@ def instantiate_x_transformer_model(max_seq_len,
|
|
3700 |
#===============================================================================
|
3701 |
|
3702 |
def save_x_transformer_model(model,
|
3703 |
-
|
3704 |
-
|
|
|
|
|
|
|
3705 |
dim=1024,
|
3706 |
-
depth=
|
3707 |
-
heads=
|
3708 |
-
ignore_index=-1,
|
3709 |
use_flash_attn=True,
|
3710 |
batch_size=4,
|
3711 |
grad_acc_rate=4,
|
@@ -3714,8 +3710,6 @@ def save_x_transformer_model(model,
|
|
3714 |
num_steps=1,
|
3715 |
loss=0,
|
3716 |
accuracy=1,
|
3717 |
-
checkpoint_dir='./',
|
3718 |
-
checkpoint_name='model_checkpoint',
|
3719 |
verbose=True
|
3720 |
):
|
3721 |
|
@@ -3783,11 +3777,7 @@ def load_x_transformer_model(checkpoint_file_path,
|
|
3783 |
attn_layers=attn_layers)
|
3784 |
model = class_(transformer_model, ignore_index=checkpoint['ignore_index'])
|
3785 |
model.load_state_dict(checkpoint['model_state_dict'])
|
3786 |
-
|
3787 |
-
if torch.cuda.is_available():
|
3788 |
-
model.cuda()
|
3789 |
-
else:
|
3790 |
-
model.cpu()
|
3791 |
|
3792 |
if verbose:
|
3793 |
print('Done!')
|
@@ -3809,367 +3799,6 @@ def load_x_transformer_model(checkpoint_file_path,
|
|
3809 |
print('Model accuracy:', checkpoint['accuracy'])
|
3810 |
print('=' * 70)
|
3811 |
|
3812 |
-
return model
|
3813 |
-
|
3814 |
-
################################################################################
|
3815 |
-
|
3816 |
-
def generate_from_x_transformer_model(model=None,
|
3817 |
-
num_tokens_to_generate=32,
|
3818 |
-
prime_tokens_list=[0],
|
3819 |
-
return_prime=False,
|
3820 |
-
batch_size=1,
|
3821 |
-
temperature=0.9,
|
3822 |
-
precision='bfloat16',
|
3823 |
-
device='cuda',
|
3824 |
-
verbose=True
|
3825 |
-
):
|
3826 |
-
|
3827 |
-
if model is not None:
|
3828 |
-
|
3829 |
-
device_options = ['cuda', 'cpu', 'cuda:0']
|
3830 |
-
|
3831 |
-
if device not in device_options or not torch.cuda.is_available():
|
3832 |
-
device_type = 'cpu'
|
3833 |
-
else:
|
3834 |
-
device_type = device
|
3835 |
-
|
3836 |
-
precision_options = ['float32', 'bfloat16', 'float16']
|
3837 |
-
|
3838 |
-
if precision == 'bfloat16' and device_type != 'cpu' and not torch.cuda.is_bf16_supported():
|
3839 |
-
precision = 'float16'
|
3840 |
-
|
3841 |
-
if precision in precision_options:
|
3842 |
-
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[precision]
|
3843 |
-
else:
|
3844 |
-
ptdtype = torch.bfloat16
|
3845 |
-
|
3846 |
-
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
3847 |
-
|
3848 |
-
model.to(device_type)
|
3849 |
-
|
3850 |
-
model.eval()
|
3851 |
-
|
3852 |
-
if verbose:
|
3853 |
-
print('=' * 70)
|
3854 |
-
print('Generation information')
|
3855 |
-
print('=' * 70)
|
3856 |
-
print('Device:', device)
|
3857 |
-
print('Precision:', precision)
|
3858 |
-
print('=' * 70)
|
3859 |
-
print('Prime tokens sample:', prime_tokens_list[:10])
|
3860 |
-
print('=' * 70)
|
3861 |
-
print('Model will generate', batch_size, 'batches', num_tokens_to_generate, 'tokens each', )
|
3862 |
-
print('Total number of tokens to generate:', num_tokens_to_generate * batch_size)
|
3863 |
-
print('=' * 70)
|
3864 |
-
print('Model temeperature', temperature)
|
3865 |
-
print('=' * 70)
|
3866 |
-
|
3867 |
-
input = torch.tensor([prime_tokens_list] * batch_size, dtype=torch.long, device=device_type)
|
3868 |
-
|
3869 |
-
with ctx:
|
3870 |
-
out = model.generate(input,
|
3871 |
-
num_tokens_to_generate,
|
3872 |
-
temperature=temperature,
|
3873 |
-
return_prime=return_prime,
|
3874 |
-
verbose=verbose
|
3875 |
-
)
|
3876 |
-
if verbose:
|
3877 |
-
print('=' * 70)
|
3878 |
-
print('Done!')
|
3879 |
-
print('=' * 70)
|
3880 |
-
|
3881 |
-
return out.tolist()
|
3882 |
-
|
3883 |
-
else:
|
3884 |
-
print('=' * 70)
|
3885 |
-
print('Please check the model!')
|
3886 |
-
print('=' * 70)
|
3887 |
-
|
3888 |
-
################################################################################
|
3889 |
-
|
3890 |
-
from torch.utils.data import Dataset
|
3891 |
-
|
3892 |
-
class X_Transformer_Dataset(Dataset):
|
3893 |
-
def __init__(self, data, seq_len, batch_size):
|
3894 |
-
super().__init__()
|
3895 |
-
self.data = data
|
3896 |
-
self.seq_len = seq_len
|
3897 |
-
self.batch_size = batch_size
|
3898 |
-
|
3899 |
-
def __getitem__(self, index):
|
3900 |
-
|
3901 |
-
full_seq = torch.Tensor(self.data[index][:self.seq_len+1]).long()
|
3902 |
-
|
3903 |
-
return full_seq.cuda()
|
3904 |
-
|
3905 |
-
def __len__(self):
|
3906 |
-
return (len(self.data) // self.batch_size) * self.batch_size
|
3907 |
-
|
3908 |
-
################################################################################
|
3909 |
-
|
3910 |
-
import tqdm
|
3911 |
-
import pickle
|
3912 |
-
import matplotlib.pyplot as plt
|
3913 |
-
|
3914 |
-
#===============================================================================
|
3915 |
-
|
3916 |
-
def save_data(data, filename):
|
3917 |
-
with open(filename, 'wb') as f:
|
3918 |
-
pickle.dump(data, f)
|
3919 |
-
|
3920 |
-
def cycle_train_data(loader):
|
3921 |
-
while True:
|
3922 |
-
for data in loader:
|
3923 |
-
yield data
|
3924 |
-
|
3925 |
-
def default_output_func(output):
|
3926 |
-
print(output)
|
3927 |
-
|
3928 |
-
#===============================================================================
|
3929 |
-
|
3930 |
-
def train_x_transformer_model(model,
|
3931 |
-
model_sequence_length,
|
3932 |
-
model_number_of_tokens,
|
3933 |
-
model_name,
|
3934 |
-
training_data,
|
3935 |
-
model_ignore_index=-1,
|
3936 |
-
model_dimension=1024,
|
3937 |
-
model_depth=4,
|
3938 |
-
model_number_of_heads=8,
|
3939 |
-
model_uses_flash_attention=True,
|
3940 |
-
training_data_batch_size=1,
|
3941 |
-
training_learning_rate=1e-4,
|
3942 |
-
accumulate_gradients_every=4,
|
3943 |
-
number_of_training_epochs=1,
|
3944 |
-
validate_every=100,
|
3945 |
-
save_every=500,
|
3946 |
-
generate_every=100,
|
3947 |
-
generate_length=100,
|
3948 |
-
generate_num_prime_tokens=512,
|
3949 |
-
generate_output_custom_func=default_output_func,
|
3950 |
-
print_stats_every=20,
|
3951 |
-
device='cuda',
|
3952 |
-
precision='float16',
|
3953 |
-
clip_grad_norm_value=1.0,
|
3954 |
-
scaler_enabled=True,
|
3955 |
-
save_directory='./',
|
3956 |
-
plot_statistics=True,
|
3957 |
-
verbose=True
|
3958 |
-
):
|
3959 |
-
|
3960 |
-
#===========================================================================
|
3961 |
-
|
3962 |
-
device_options = ['cuda', 'cpu', 'cuda:0']
|
3963 |
-
|
3964 |
-
if device not in device_options or not torch.cuda.is_available():
|
3965 |
-
device_type = 'cpu'
|
3966 |
-
else:
|
3967 |
-
device_type = device
|
3968 |
-
|
3969 |
-
precision_options = ['float32', 'bfloat16', 'float16']
|
3970 |
-
|
3971 |
-
if precision == 'bfloat16' and device_type != 'cpu' and not torch.cuda.is_bf16_supported():
|
3972 |
-
precision = 'float16'
|
3973 |
-
|
3974 |
-
if precision in precision_options:
|
3975 |
-
ptdtype = {'float32': torch.float32, 'bfloat16': torch.bfloat16, 'float16': torch.float16}[precision]
|
3976 |
-
else:
|
3977 |
-
ptdtype = torch.bfloat16
|
3978 |
-
|
3979 |
-
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
|
3980 |
-
|
3981 |
-
model.to(device_type)
|
3982 |
-
|
3983 |
-
optim = torch.optim.Adam(model.parameters(), lr=training_learning_rate)
|
3984 |
-
|
3985 |
-
scaler = torch.cuda.amp.GradScaler(enabled=scaler_enabled)
|
3986 |
-
|
3987 |
-
#===========================================================================
|
3988 |
-
|
3989 |
-
train_losses = []
|
3990 |
-
val_losses = []
|
3991 |
-
|
3992 |
-
train_accs = []
|
3993 |
-
val_accs = []
|
3994 |
-
|
3995 |
-
nsteps = 0
|
3996 |
-
|
3997 |
-
for ep in range(number_of_training_epochs):
|
3998 |
-
|
3999 |
-
print('=' * 70)
|
4000 |
-
print('Epoch #', ep)
|
4001 |
-
print('=' * 70)
|
4002 |
-
|
4003 |
-
random.shuffle(training_data)
|
4004 |
-
|
4005 |
-
train_dataset = X_Transformer_Dataset(training_data, model_sequence_length, training_data_batch_size)
|
4006 |
-
val_dataset = X_Transformer_Dataset(training_data, model_sequence_length, training_data_batch_size)
|
4007 |
-
train_loader = cycle_train_data(DataLoader(train_dataset, batch_size = training_data_batch_size))
|
4008 |
-
val_loader = cycle_train_data(DataLoader(val_dataset, batch_size = training_data_batch_size))
|
4009 |
-
|
4010 |
-
NUM_BATCHES = len(training_data) // training_data_batch_size // accumulate_gradients_every
|
4011 |
-
|
4012 |
-
for i in tqdm.tqdm(range(NUM_BATCHES), mininterval=10., desc='Training'):
|
4013 |
-
model.train()
|
4014 |
-
|
4015 |
-
for __ in range(accumulate_gradients_every):
|
4016 |
-
with ctx:
|
4017 |
-
loss, acc = model(next(train_loader))
|
4018 |
-
loss = loss / accumulate_gradients_every
|
4019 |
-
scaler.scale(loss).backward(torch.ones(loss.shape).cuda())
|
4020 |
-
|
4021 |
-
if i % print_stats_every == 0:
|
4022 |
-
print(f'Training loss: {loss.mean().item() * accumulate_gradients_every}')
|
4023 |
-
print(f'Training acc: {acc.mean().item()}')
|
4024 |
-
|
4025 |
-
train_losses.append(loss.mean().item() * accumulate_gradients_every)
|
4026 |
-
train_accs.append(acc.mean().item())
|
4027 |
-
|
4028 |
-
scaler.unscale_(optim)
|
4029 |
-
torch.nn.utils.clip_grad_norm_(model.parameters(), clip_grad_norm_value)
|
4030 |
-
scaler.step(optim)
|
4031 |
-
scaler.update()
|
4032 |
-
optim.zero_grad(set_to_none=True)
|
4033 |
-
|
4034 |
-
nsteps += 1
|
4035 |
-
|
4036 |
-
if i % validate_every == 0:
|
4037 |
-
model.eval()
|
4038 |
-
with torch.no_grad():
|
4039 |
-
with ctx:
|
4040 |
-
val_loss, val_acc = model(next(val_loader))
|
4041 |
-
|
4042 |
-
print(f'Validation loss: {val_loss.mean().item()}')
|
4043 |
-
print(f'Validation acc: {val_acc.mean().item()}')
|
4044 |
-
|
4045 |
-
val_losses.append(val_loss.mean().item())
|
4046 |
-
val_accs.append(val_acc.mean().item())
|
4047 |
-
|
4048 |
-
if plot_statistics:
|
4049 |
-
|
4050 |
-
print('Plotting training loss graph...')
|
4051 |
-
|
4052 |
-
tr_loss_list = train_losses
|
4053 |
-
plt.plot([i for i in range(len(tr_loss_list))] ,tr_loss_list, 'b')
|
4054 |
-
plt.show()
|
4055 |
-
plt.close()
|
4056 |
-
print('Done!')
|
4057 |
-
|
4058 |
-
print('Plotting training acc graph...')
|
4059 |
-
|
4060 |
-
tr_loss_list = train_accs
|
4061 |
-
plt.plot([i for i in range(len(tr_loss_list))] ,tr_loss_list, 'b')
|
4062 |
-
plt.show()
|
4063 |
-
plt.close()
|
4064 |
-
print('Done!')
|
4065 |
-
|
4066 |
-
print('Plotting validation loss graph...')
|
4067 |
-
tr_loss_list = val_losses
|
4068 |
-
plt.plot([i for i in range(len(tr_loss_list))] ,tr_loss_list, 'b')
|
4069 |
-
plt.show()
|
4070 |
-
plt.close()
|
4071 |
-
print('Done!')
|
4072 |
-
|
4073 |
-
print('Plotting validation acc graph...')
|
4074 |
-
tr_loss_list = val_accs
|
4075 |
-
plt.plot([i for i in range(len(tr_loss_list))] ,tr_loss_list, 'b')
|
4076 |
-
plt.show()
|
4077 |
-
plt.close()
|
4078 |
-
print('Done!')
|
4079 |
-
|
4080 |
-
#=====================================================================
|
4081 |
-
|
4082 |
-
if i % generate_every == 0:
|
4083 |
-
model.eval()
|
4084 |
-
|
4085 |
-
inp = random.choice(val_dataset)[:generate_num_prime_tokens]
|
4086 |
-
|
4087 |
-
print(inp)
|
4088 |
-
|
4089 |
-
with ctx:
|
4090 |
-
|
4091 |
-
sample = model.generate(inp[None, ...], generate_length)
|
4092 |
-
|
4093 |
-
generate_output_custom_func(sample.tolist())
|
4094 |
-
|
4095 |
-
#=====================================================================
|
4096 |
-
|
4097 |
-
if i % save_every == 0:
|
4098 |
-
|
4099 |
-
print('Saving model progress. Please wait...')
|
4100 |
-
print('model_checkpoint_' + str(nsteps) + '_steps_' + str(round(float(train_losses[-1]), 4)) + '_loss_' + str(round(float(train_accs[-1]), 4)) + '_acc.pth')
|
4101 |
-
|
4102 |
-
fname = save_directory+'/model_checkpoint_' + str(nsteps) + '_steps_' + str(round(float(train_losses[-1]), 4)) + '_loss_' + str(round(float(train_accs[-1]), 4)) + '_acc.pth'
|
4103 |
-
|
4104 |
-
save_x_transformer_model(model,
|
4105 |
-
checkpoint_dir=save_directory,
|
4106 |
-
checkpoint_name=model_name,
|
4107 |
-
number_of_tokens=model_number_of_tokens,
|
4108 |
-
ignore_index=model_ignore_index,
|
4109 |
-
max_seq_len=model_sequence_length,
|
4110 |
-
dim=model_dimension,
|
4111 |
-
depth=model_depth,
|
4112 |
-
heads=model_number_of_heads,
|
4113 |
-
use_flash_attn=model_uses_flash_attention,
|
4114 |
-
batch_size=training_data_batch_size,
|
4115 |
-
grad_acc_rate=accumulate_gradients_every,
|
4116 |
-
learning_rate=training_learning_rate,
|
4117 |
-
num_epochs=number_of_training_epochs,
|
4118 |
-
num_steps=nsteps,
|
4119 |
-
loss=str(round(float(train_losses[-1]), 4)),
|
4120 |
-
accuracy=str(round(float(train_accs[-1]), 4)),
|
4121 |
-
verbose=verbose)
|
4122 |
-
|
4123 |
-
data = [train_losses, train_accs, val_losses, val_accs]
|
4124 |
-
|
4125 |
-
save_data(data, save_directory+'losses_accuracies.pickle')
|
4126 |
-
|
4127 |
-
print('Done!')
|
4128 |
-
|
4129 |
-
#===========================================================================
|
4130 |
-
|
4131 |
-
print('Saving model progress. Please wait...')
|
4132 |
-
print('model_checkpoint_' + str(nsteps) + '_steps_' + str(round(float(train_losses[-1]), 4)) + '_loss_' + str(round(float(train_accs[-1]), 4)) + '_acc.pth')
|
4133 |
-
|
4134 |
-
fname = save_directory+'model_checkpoint_' + str(nsteps) + '_steps_' + str(round(float(train_losses[-1]), 4)) + '_loss_' + str(round(float(train_accs[-1]), 4)) + '_acc.pth'
|
4135 |
-
|
4136 |
-
torch.save(model.state_dict(), fname)
|
4137 |
-
|
4138 |
-
print('Done!')
|
4139 |
-
|
4140 |
-
data = [train_losses, train_accs, val_losses, val_accs]
|
4141 |
-
|
4142 |
-
save_data(data, save_directory+'losses_accuracies')
|
4143 |
-
|
4144 |
-
# Save training loss graph
|
4145 |
-
|
4146 |
-
plt.plot([i for i in range(len(train_losses))] ,train_losses, 'b')
|
4147 |
-
plt.savefig(save_directory+'training_loss_graph.png')
|
4148 |
-
plt.close()
|
4149 |
-
print('Done!')
|
4150 |
-
|
4151 |
-
# Save training acc graph
|
4152 |
-
|
4153 |
-
plt.plot([i for i in range(len(train_accs))] ,train_accs, 'b')
|
4154 |
-
plt.savefig(save_directory+'training_accuracy_graph.png')
|
4155 |
-
plt.close()
|
4156 |
-
print('Done!')
|
4157 |
-
|
4158 |
-
# Save validation loss graph
|
4159 |
-
|
4160 |
-
plt.plot([i for i in range(len(val_losses))] ,val_losses, 'b')
|
4161 |
-
plt.savefig(save_directory+'validation_loss_graph.png')
|
4162 |
-
plt.close()
|
4163 |
-
print('Done!')
|
4164 |
-
|
4165 |
-
# Save validation acc graph
|
4166 |
-
|
4167 |
-
plt.plot([i for i in range(len(val_accs))] ,val_accs, 'b')
|
4168 |
-
plt.savefig(save_directory+'validation_accuracy_graph.png')
|
4169 |
-
plt.close()
|
4170 |
-
print('Done!')
|
4171 |
-
|
4172 |
################################################################################
|
4173 |
-
|
4174 |
# This is the end of x-transformer Python module
|
4175 |
################################################################################
|
|
|
21 |
#
|
22 |
# !pip install torch
|
23 |
# !pip install einops
|
24 |
+
#
|
25 |
+
#===============================================================================
|
26 |
+
#
|
27 |
+
# Basic use example
|
28 |
+
#
|
29 |
+
# from x_transformer_1_27_16 import *
|
30 |
+
#
|
31 |
+
# model = instantiate_x_transformer_model()
|
32 |
+
# save_x_transformer_model(model)
|
33 |
+
# load_x_transformer_model('model_checkpoint_1_epochs_1_steps_0_loss_1_acc.pth')
|
34 |
#
|
35 |
#===============================================================================
|
36 |
'''
|
|
|
3055 |
|
3056 |
# sampling up to seq_len
|
3057 |
|
|
|
|
|
3058 |
for sl in range(seq_len):
|
|
|
|
|
3059 |
|
3060 |
if restrict_to_max_seq_len:
|
3061 |
max_len_exceeded = out.shape[-1] > max_seq_len
|
|
|
3129 |
print('Model called the end of sequence at:', sl, '/', seq_len)
|
3130 |
break
|
3131 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3132 |
if exists(eos_token):
|
3133 |
# mask out everything after the eos tokens
|
3134 |
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
|
|
|
3656 |
|
3657 |
#===============================================================================
|
3658 |
|
3659 |
+
def instantiate_x_transformer_model(num_tokens=20000,
|
3660 |
+
max_seq_len=8192,
|
3661 |
dim=1024,
|
3662 |
+
depth=32,
|
3663 |
+
heads=32,
|
3664 |
attn_flash=True,
|
3665 |
ignore_index=-1,
|
3666 |
verbose=True):
|
|
|
3683 |
ignore_index=ignore_index
|
3684 |
)
|
3685 |
|
3686 |
+
model.cuda()
|
|
|
|
|
|
|
3687 |
|
3688 |
if verbose:
|
3689 |
print('Done!')
|
|
|
3694 |
#===============================================================================
|
3695 |
|
3696 |
def save_x_transformer_model(model,
|
3697 |
+
checkpoint_dir='./',
|
3698 |
+
checkpoint_name='model_checkpoint',
|
3699 |
+
number_of_tokens=20000,
|
3700 |
+
ignore_index=-1,
|
3701 |
+
max_seq_len=8192,
|
3702 |
dim=1024,
|
3703 |
+
depth=32,
|
3704 |
+
heads=32,
|
|
|
3705 |
use_flash_attn=True,
|
3706 |
batch_size=4,
|
3707 |
grad_acc_rate=4,
|
|
|
3710 |
num_steps=1,
|
3711 |
loss=0,
|
3712 |
accuracy=1,
|
|
|
|
|
3713 |
verbose=True
|
3714 |
):
|
3715 |
|
|
|
3777 |
attn_layers=attn_layers)
|
3778 |
model = class_(transformer_model, ignore_index=checkpoint['ignore_index'])
|
3779 |
model.load_state_dict(checkpoint['model_state_dict'])
|
3780 |
+
model.cuda()
|
|
|
|
|
|
|
|
|
3781 |
|
3782 |
if verbose:
|
3783 |
print('Done!')
|
|
|
3799 |
print('Model accuracy:', checkpoint['accuracy'])
|
3800 |
print('=' * 70)
|
3801 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3802 |
################################################################################
|
|
|
3803 |
# This is the end of x-transformer Python module
|
3804 |
################################################################################
|