# -*- coding: utf-8 -*- """Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb # Los Angeles MIDI Dataset: Search and Explore (ver. 2.1) *** Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools *** #### Project Los Angeles #### Tegridy Code 2023 *** # (SETUP ENVIRONMENT) """ #@title Install all dependencies (run only once per session) !git clone --depth 1 https://github.com/asigalov61/Los-Angeles-MIDI-Dataset !pip install huggingface_hub !pip install matplotlib !pip install sklearn !pip install tqdm !apt install fluidsynth #Pip does not work for some reason. Only apt works !pip install midi2audio #@title Import all needed modules print('Loading core modules...') import os import copy from collections import Counter import random import pickle from tqdm import tqdm from joblib import Parallel, delayed import multiprocessing if not os.path.exists('/content/LAMD'): os.makedirs('/content/LAMD') print('Loading MIDI.py module...') os.chdir('/content/Los-Angeles-MIDI-Dataset') import MIDI print('Loading aux modules...') from sklearn.metrics import pairwise_distances, pairwise import matplotlib.pyplot as plt from midi2audio import FluidSynth from IPython.display import Audio, display from huggingface_hub import hf_hub_download from google.colab import files os.chdir('/content/') print('Done!') """# (PREP DATA)""" # Commented out IPython magic to ensure Python compatibility. #@title Unzip LAMDa data # %cd /content/Los-Angeles-MIDI-Dataset/META-DATA print('=' * 70) print('Unzipping META-DATA...Please wait...') !cat LAMDa_META_DATA.zip* > LAMDa_META_DATA.zip print('=' * 70) !unzip -j LAMDa_META_DATA.zip print('=' * 70) print('Done! Enjoy! :)') print('=' * 70) # %cd /content/ #================================================ # %cd /content/Los-Angeles-MIDI-Dataset/MIDI-MATRIXES print('=' * 70) print('Unzipping MIDI-MATRIXES...Please wait...') !cat LAMDa_MIDI_MATRIXES.zip* > LAMDa_MIDI_MATRIXES.zip print('=' * 70) !unzip -j LAMDa_MIDI_MATRIXES.zip print('=' * 70) print('Done! Enjoy! :)') print('=' * 70) # %cd /content/ #================================================== # %cd /content/Los-Angeles-MIDI-Dataset/TOTALS print('=' * 70) print('Unzipping TOTALS...Please wait...') !unzip -j LAMDa_TOTALS.zip print('=' * 70) print('Done! Enjoy! :)') print('=' * 70) # %cd /content/ #@title Load LAMDa data print('=' * 70) print('Loading LAMDa data...Please wait...') print('=' * 70) print('Loading LAMDa META-DATA...') meta_data = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/META-DATA/LAMDa_META_DATA.pickle', 'rb')) print('Done!') print('=' * 70) print('Loading LAMDa MIDI-MATRIXES...') midi_matrixes = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/MIDI-MATRIXES/LAMDa_MIDI_MATRIXES.pickle', 'rb')) print('Done!') print('=' * 70) print('Loading LAMDa TOTALS...') totals = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/TOTALS/LAMDa_TOTALS.pickle', 'rb')) print('Done!') print('=' * 70) print('Enjoy!') print('=' * 70) """# (PREP MIDI DATASET)""" #@title Download the dataset print('=' * 70) print('Downloading Los Angeles MIDI Dataset...Please wait...') print('=' * 70) hf_hub_download(repo_id='projectlosangeles/Los-Angeles-MIDI-Dataset', filename='Los-Angeles-MIDI-Dataset-Ver-2-0-CC-BY-NC-SA.zip', repo_type="dataset", local_dir='/content/LAMD', local_dir_use_symlinks=False) print('=' * 70) print('Done! Enjoy! :)') print('=' * 70) # Commented out IPython magic to ensure Python compatibility. #@title Unzip the dataset # %cd /content/LAMD print('=' * 70) print('Unzipping Los Angeles MIDI Dataset...Please wait...') !unzip 'Los-Angeles-MIDI-Dataset-Ver-2-0-CC-BY-NC-SA.zip' print('=' * 70) print('Done! Enjoy! :)') print('=' * 70) # %cd /content/ #@title Create dataset files list print('=' * 70) print('Creating dataset files list...') dataset_addr = "/content/LAMD/MIDIs" # os.chdir(dataset_addr) filez = list() for (dirpath, dirnames, filenames) in os.walk(dataset_addr): filez += [os.path.join(dirpath, file) for file in filenames] if filez == []: print('Could not find any MIDI files. Please check Dataset dir...') print('=' * 70) print('=' * 70) print('Randomizing file list...') random.shuffle(filez) print('=' * 70) LAMD_files_list = [] for f in tqdm(filez): LAMD_files_list.append([f.split('/')[-1].split('.mid')[0], f]) print('Done!') print('=' * 70) """# (PLOT TOTALS)""" #@title Plot Totals cos_sim = pairwise.cosine_similarity( totals[0][0][4] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Times') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][5] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Durations') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][6] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Channels') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][7] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Instruments') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][8] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Pitches') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() cos_sim = pairwise.cosine_similarity( totals[0][0][9] ) plt.figure(figsize=(8, 8)) plt.imshow(cos_sim, cmap="inferno", interpolation="none") im_ratio = 1 plt.colorbar(fraction=0.046 * im_ratio, pad=0.04) plt.title('Velocities') plt.xlabel("Position") plt.ylabel("Position") plt.tight_layout() plt.plot() """# (LOAD SOURCE MIDI)""" #@title Load source MIDI full_path_to_source_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" #@param {type:"string"} render_MIDI_to_audio = False #@param {type:"boolean"} #================================================================================= f = full_path_to_source_MIDI print('=' * 70) print('Loading MIDI file...') score = MIDI.midi2ms_score(open(f, 'rb').read()) events_matrix = [] itrack = 1 while itrack < len(score): for event in score[itrack]: events_matrix.append(event) itrack += 1 # Sorting... events_matrix.sort(key=lambda x: x[1]) # recalculating timings for e in events_matrix: e[1] = int(e[1] / 10) if e[0] == 'note': e[2] = int(e[2] / 20) # final processing... melody_chords = [] patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] pe = events_matrix[0] for e in events_matrix: if e[0] == 'note': # ['note', start_time, duration, channel, note, velocity] time = max(0, min(255, e[1]-pe[1])) duration = max(1, min(255, e[2])) channel = max(0, min(15, e[3])) if e[3] != 9: instrument = max(0, min(127, patches[e[3]])) else: instrument = max(128, min(255, patches[e[3]]+128)) if e[3] != 9: pitch = max(1, min(127, e[4])) else: pitch = max(129, min(255, e[4]+128)) if e[3] != 9: velocity = max(1, min(127, e[5])) else: velocity = max(129, min(255, e[5]+128)) melody_chords.append([time, duration, channel, instrument, pitch, velocity]) if e[0] == 'patch_change': # ['patch_change', dtime, channel, patch] time = max(0, min(127, e[1]-pe[1])) channel = max(0, min(15, e[2])) patch = max(0, min(127, e[3])) patches[channel] = patch pe = e # Previous event MATRIX = [[0]*256 for i in range(38)] for m in melody_chords: MATRIX[0][m[0]] += 1 MATRIX[1][m[1]] += 1 MATRIX[2][m[2]] += 1 MATRIX[3][m[3]] += 1 MATRIX[4][m[4]] += 1 MATRIX[5][m[5]] += 1 MATRIX[m[2]+6][m[3]] += 1 MATRIX[m[2]+22][m[4]] += 1 #================================================== score = MIDI.midi2score(open(f, 'rb').read()) events_matrix = [] track_count = 0 for s in score: if track_count > 0: track = s track.sort(key=lambda x: x[1]) events_matrix.extend(track) else: midi_ticks = s track_count += 1 events_matrix.sort(key=lambda x: x[1]) mult_pitches_counts = [] for i in range(-6, 6): for e in events_matrix: if e[0] == 'note': if e[3] == 9: e[4] = ((e[4] % 128) + 128) else: e[4] = ((e[4] % 128) + i) pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix if y[0] == 'note']).most_common()] pitches_counts.sort(key=lambda x: x[0], reverse=True) mult_pitches_counts.append(pitches_counts) patches_list = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change']))) print('=' * 70) print('Done!') print('=' * 70) #============================================ # MIDI rendering code #============================================ print('Rendering source MIDI...') print('=' * 70) ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() """# (SEARCH AND EXPLORE)""" #@title Legacy MIDI Matrixes Search (Slow) #@markdown NOTE: You can stop the search at any time to render partial results minimum_match_ratio_to_search_for = 0 #@param {type:"slider", min:0, max:500, step:1} stop_search_on_exact_match = True #@param {type:"boolean"} skip_exact_matches = False #@param {type:"boolean"} render_MIDI_to_audio = False #@param {type:"boolean"} #================================================================================= matching_type = "minkowski" def compress_matrix(midi_matrix): MX = 38 MY = 256 if len(midi_matrix) == MX: compressed_matrix = [] zeros = 0 zeros_shift = 0 zeros_count = 0 for m in midi_matrix: for mm in m: zeros_shift = max(zeros_shift, mm) + 1 compressed_matrix.append(zeros_shift) for m in midi_matrix: if len(m) == MY: for mm in m: if mm != 0: if zeros > 0: compressed_matrix.append(zeros+zeros_shift) zeros = 0 compressed_matrix.append(mm) else: zeros += 1 zeros_count += 1 else: print('Wrong matrix format!') return [1] if zeros > 0: compressed_matrix.append(zeros+zeros_shift) compressed_matrix.append(zeros_count+zeros_shift) compressed_matrix.append(zeros_shift) return compressed_matrix else: print('Wrong matrix format!') return [0] #================================================================================= def decompress_matrix(compressed_midi_matrix): MX = 38 MY = 256 zeros_count = 0 temp_matrix = [] decompressed_matrix = [[0]*MY for i in range(MX)] if compressed_midi_matrix[0] == compressed_midi_matrix[-1]: zeros_shift = compressed_midi_matrix[0] mcount = 0 for c in compressed_midi_matrix[1:-2]: if c > zeros_shift: temp_matrix.extend([0] * (c-zeros_shift)) zeros_count += (c-zeros_shift) else: temp_matrix.extend([c]) if len(temp_matrix) == (MX * MY): for i in range(MX): for j in range(MY): decompressed_matrix[i][j] = copy.deepcopy(temp_matrix[(i*MY) + j]) if len(decompressed_matrix) == MX and zeros_count == (compressed_midi_matrix[-2]-zeros_shift): return decompressed_matrix else: print('Matrix is corrupted!') return [len(decompressed_matrix), (MX * MY), zeros_count, (compressed_midi_matrix[-2]-zeros_shift)] else: print('Matrix is corrupted!') return [len(temp_matrix), zeros_count] else: print('Matrix is corrupted!') return [0] #================================================================================= def batched_scores(matbatch, matrix): sco= [] for D in matbatch: dist = pairwise_distances(matrix, decompress_matrix(D[1]), metric=matching_type)[0][0] if skip_exact_matches: if dist == 0: dist = 999999 if dist <= minimum_match_ratio_to_search_for: dist = 999999 sco.append(dist) return sco #================================================================================= print('=' * 70) print('Searching...Please wait...') print('=' * 70) scores = [] c_count = multiprocessing.cpu_count() par = Parallel(n_jobs=c_count) num_jobs = c_count scores_per_job = 100 MATRIX_X = [MATRIX] * num_jobs for i in tqdm(range(0, len(midi_matrixes), (num_jobs*scores_per_job))): try: MAT_BATCHES = [] for j in range(num_jobs): MAT_BATCHES.append(midi_matrixes[i+(j*scores_per_job):i+((j+1)*scores_per_job)]) output = par(delayed(batched_scores) (MB, MAT) for MB, MAT in zip(MAT_BATCHES, MATRIX_X)) output1 = [] for o in output: output1.extend(o) scores.extend(output1) if stop_search_on_exact_match: if 0 in output1: print('=' * 70) print('Found exact match!') print('Stoping further search...') print('=' * 70) break else: if 0 in output1: print('=' * 70) print('Found exact match!') print('=' * 70) print('LAMDa Index:', scores.index(min(scores))) print('LAMDa File Name:', midi_matrixes[scores.index(min(scores))][0]) print('=' * 70) print('Continuing search...') print('=' * 70) except KeyboardInterrupt: break except: continue print('Done!') print('=' * 70) print('Best match:') print('=' * 70) print(matching_type.title(), 'distance ==', min(scores)) print('LAMDa Index:', scores.index(min(scores))) print('LAMDa File Name:', midi_matrixes[scores.index(min(scores))][0]) print('=' * 70) #============================================ # MIDI rendering code #============================================ print('Rendering source MIDI...') print('=' * 70) fn = midi_matrixes[scores.index(min(scores))][0] try: fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() except: pass #============================================ print('Top 100 matches') print('=' * 70) top_matches = [] for i in range(len(scores)): top_matches.append([midi_matrixes[i][0], scores[i]]) top_matches.sort(key=lambda x: x[1]) for t in top_matches[:100]: print(t) print('=' * 70) #@title MIDI Pitches Search (Fast) #@markdown NOTE: You can stop the search at any time to render partial results maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01} pitches_counts_cutoff_threshold_ratio = 0.2 #@param {type:"slider", min:0, max:1, step:0.05} search_transposed_pitches = False #@param {type:"boolean"} skip_exact_matches = False #@param {type:"boolean"} render_MIDI_to_audio = False #@param {type:"boolean"} print('=' * 70) print('MIDI Pitches Search') print('=' * 70) ratios = [] for d in tqdm(meta_data): try: p_counts = d[1][3][1] p_counts.sort(reverse = True, key = lambda x: x[1]) max_p_count = p_counts[1][0] trimmed_p_counts = [y for y in p_counts if y[1] >= (max_p_count * pitches_counts_cutoff_threshold_ratio)] if search_transposed_pitches: search_pitches = mult_pitches_counts else: search_pitches = [mult_pitches_counts[6]] rat = [] for m in search_pitches: m.sort(reverse = True, key = lambda x: x[1]) max_pitches_count = m[1][0] trimmed_pitches_counts = [y for y in m if y[1] >= (max_pitches_count * pitches_counts_cutoff_threshold_ratio)] num_same_pitches = len(set([T[0] for T in trimmed_p_counts]) & set([m[0] for m in trimmed_pitches_counts])) same_pitches_ratio = (num_same_pitches / len(set([m[0] for m in trimmed_p_counts]+[T[0] for T in trimmed_pitches_counts]))) if skip_exact_matches: if same_pitches_ratio == 1: same_pitches_ratio = 0 if same_pitches_ratio > maximum_match_ratio_to_search_for: same_pitches_ratio = 0 rat.append(same_pitches_ratio) ratios.append(max(rat)) except KeyboardInterrupt: break except: break max_ratio = max(ratios) max_ratio_index = ratios.index(max(ratios)) print('FOUND') print('=' * 70) print('Match ratio', max_ratio) print('MIDI file name', meta_data[max_ratio_index][0]) print('=' * 70) print('First metadata MIDI event', meta_data[max_ratio_index][1][0]) print('=' * 70) #============================================ # MIDI rendering code #============================================ print('Rendering source MIDI...') print('=' * 70) fn = meta_data[max_ratio_index][0] fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() #@title MIDI Patches Search (Fast) #@markdown NOTE: You can stop the search at any time to render partial results maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01} skip_exact_matches = False #@param {type:"boolean"} render_MIDI_to_audio = False #@param {type:"boolean"} print('=' * 70) print('MIDI Patches Search') print('=' * 70) ratios = [] for d in tqdm(meta_data): try: p_list= d[1][4][1] num_same_patches = len(set(p_list) & set(patches_list)) if len(set(p_list + patches_list)) > 0: same_patches_ratio = num_same_patches / len(set(p_list + patches_list)) else: same_patches_ratio = 0 if skip_exact_matches: if same_patches_ratio == 1: same_patches_ratio = 0 if same_patches_ratio > maximum_match_ratio_to_search_for: same_patches_ratio = 0 ratios.append(same_patches_ratio) except KeyboardInterrupt: break except: break max_ratio = max(ratios) max_ratio_index = ratios.index(max(ratios)) print('FOUND') print('=' * 70) print('Match ratio', max_ratio) print('MIDI file name', meta_data[max_ratio_index][0]) print('=' * 70) print('Found MIDI patches list', meta_data[max_ratio_index][1][4][1]) print('=' * 70) #============================================ # MIDI rendering code #============================================ print('Rendering source MIDI...') print('=' * 70) fn = meta_data[max_ratio_index][0] fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() #@title Metadata Search #@markdown You can search the metadata by search query or by MIDI md5 hash file name search_query = "Come To My Window" #@param {type:"string"} md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"} case_sensitive_search = False #@param {type:"boolean"} fields_to_search = ['track_name', 'text_event', 'lyric', 'copyright_text_event', 'marker', 'text_event_08', 'text_event_09', 'text_event_0a', 'text_event_0b', 'text_event_0c', 'text_event_0d', 'text_event_0e', 'text_event_0f', ] print('=' * 70) print('Los Angeles MIDI Dataset Metadata Search') print('=' * 70) print('Searching...') print('=' * 70) if md5_hash_MIDI_file_name != '': for d in tqdm(meta_data): try: if d[0] == md5_hash_MIDI_file_name: print('Found!') print('=' * 70) print('Metadata index:', meta_data.index(d)) print('MIDI file name:', meta_data[meta_data.index(d)][0]) print('Result:', d[1]) print('=' * 70) break except KeyboardInterrupt: print('Ending search...') print('=' * 70) break except: print('Ending search...') print('=' * 70) break if d[0] != md5_hash_MIDI_file_name: print('Not found!') print('=' * 70) print('md5 hash was not found!') print('Ending search...') print('=' * 70) else: for d in tqdm(meta_data): try: for dd in d[1]: if dd[0] in fields_to_search: if case_sensitive_search: if str(search_query) in str(dd[2]): print('Found!') print('=' * 70) print('Metadata index:', meta_data.index(d)) print('MIDI file name:', meta_data[meta_data.index(d)][0]) print('Result:', dd[2]) print('=' * 70) else: if str(search_query).lower() in str(dd[2]).lower(): print('Found!') print('=' * 70) print('Metadata index:', meta_data.index(d)) print('MIDI file name:', meta_data[meta_data.index(d)][0]) print('Result:', dd[2]) print('=' * 70) except KeyboardInterrupt: print('Ending search...') print('=' * 70) break except: print('Ending search...') print('=' * 70) break """# (MIDI FILE PLAYER)""" #@title MIDI file player #@markdown NOTE: You can use md5 hash file name or full MIDI file path to play it md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"} full_path_to_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" #@param {type:"string"} render_MIDI_to_audio = False #@param {type:"boolean"} #============================================ # MIDI rendering code #============================================ print('=' * 70) print('MIDI file player') print('=' * 70) try: if os.path.exists(full_path_to_MIDI): f = full_path_to_MIDI print('Using full path to MIDI') else: fn = md5_hash_MIDI_file_name fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] print('Using md5 hash filename') print('=' * 70) print('Rendering MIDI...') print('=' * 70) ms_score = MIDI.midi2ms_score(open(f, 'rb').read()) itrack = 1 song_f = [] while itrack < len(ms_score): for event in ms_score[itrack]: if event[0] == 'note': song_f.append(event) itrack += 1 song_f.sort(key=lambda x: x[1]) fname = f.split('.mid')[0] x = [] y =[] c = [] colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral'] for s in song_f: x.append(s[1] / 1000) y.append(s[4]) c.append(colors[s[3]]) if render_MIDI_to_audio: FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav')) display(Audio(str(fname + '.wav'), rate=16000)) plt.figure(figsize=(14,5)) ax=plt.axes(title=fname) ax.set_facecolor('black') plt.scatter(x,y, c=c) plt.xlabel("Time") plt.ylabel("Pitch") plt.show() except: print('File not found!!!') print('Check the filename!') print('=' * 70) """# (COLAB MIDI FILES LOCATOR/DOWNLOADER)""" #@title Loacate and/or download desired MIDI files by MIDI md5 hash file names MIDI_md5_hash_file_name_1 = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"} MIDI_md5_hash_file_name_2 = "" #@param {type:"string"} MIDI_md5_hash_file_name_3 = "" #@param {type:"string"} MIDI_md5_hash_file_name_4 = "" #@param {type:"string"} MIDI_md5_hash_file_name_5 = "" #@param {type:"string"} download_located_files = False #@param {type:"boolean"} print('=' * 70) print('MIDI files locator and downloader') print('=' * 70) md5_list = [] if MIDI_md5_hash_file_name_1 != '': md5_list.append(MIDI_md5_hash_file_name_1) if MIDI_md5_hash_file_name_2 != '': md5_list.append(MIDI_md5_hash_file_name_2) if MIDI_md5_hash_file_name_3 != '': md5_list.append(MIDI_md5_hash_file_name_3) if MIDI_md5_hash_file_name_4 != '': md5_list.append(MIDI_md5_hash_file_name_4) if MIDI_md5_hash_file_name_5 != '': md5_list.append(MIDI_md5_hash_file_name_5) if len(md5_list) > 0: for m in md5_list: try: fn = m fn_idx = [y[0] for y in LAMD_files_list].index(fn) f = LAMD_files_list[fn_idx][1] print('Found md5 hash file name', m) location_str = '' fl = f.split('/') for fa in fl[:-1]: if fa != '' and fa != 'content': location_str += '/' location_str += str(fa) print('Colab location/folder', location_str) if download_located_files: print('Downloading MIDI file', str(m) + '.mid') files.download(f) print('=' * 70) except: print('md5 hash file name', m, 'not found!!!') print('Check the file name!') print('=' * 70) continue else: print('No md5 hash file names were specified!') print('Check input!') print('=' * 70) """# (CUSTOM ANALYSIS TEMPLATE)""" #@title Los Angeles MIDI Dataset Reader print('=' * 70) print('Los Angeles MIDI Dataset Reader') print('=' * 70) print('Starting up...') print('=' * 70) ########### print('Loading MIDI files...') print('This may take a while on a large dataset in particular.') dataset_addr = "/content/LAMD/MIDIs" # os.chdir(dataset_addr) filez = list() for (dirpath, dirnames, filenames) in os.walk(dataset_addr): filez += [os.path.join(dirpath, file) for file in filenames] if filez == []: print('Could not find any MIDI files. Please check Dataset dir...') print('=' * 70) print('=' * 70) print('Randomizing file list...') random.shuffle(filez) print('=' * 70) ########### START_FILE_NUMBER = 0 LAST_SAVED_BATCH_COUNT = 0 input_files_count = START_FILE_NUMBER files_count = LAST_SAVED_BATCH_COUNT stats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] print('Reading MIDI files. Please wait...') print('=' * 70) for f in tqdm(filez[START_FILE_NUMBER:]): try: input_files_count += 1 fn = os.path.basename(f) fn1 = fn.split('.mid')[0] #======================================================= # START PROCESSING #======================================================= # Convering MIDI to score with MIDI.py module score = MIDI.midi2score(open(f, 'rb').read()) events_matrix = [] itrack = 1 while itrack < len(score): for event in score[itrack]: events_matrix.append(event) itrack += 1 # Sorting... events_matrix.sort(key=lambda x: x[1]) if len(events_matrix) > 0: #======================================================= # INSERT YOUR CUSTOM ANAYLSIS CODE RIGHT HERE #======================================================= # Processed files counter files_count += 1 # Saving every 5000 processed files if files_count % 10000 == 0: print('=' * 70) print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio') print('=' * 70) except KeyboardInterrupt: print('Saving current progress and quitting...') break except Exception as ex: print('WARNING !!!') print('=' * 70) print('Bad MIDI:', f) print('Error detected:', ex) print('=' * 70) continue print('=' * 70) print('Final files counts:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio') print('=' * 70) print('Resulting Stats:') print('=' * 70) print('Total good processed MIDI files:', files_count) print('=' * 70) print('Done!') print('=' * 70) """# Congrats! You did it! :)"""