File size: 31,875 Bytes
b6d498e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968d976
b6d498e
968d976
 
 
 
 
 
 
 
 
 
 
 
 
b6d498e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968d976
b6d498e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
968d976
 
 
 
 
 
 
b6d498e
968d976
b6d498e
968d976
 
 
b6d498e
968d976
 
 
 
 
 
 
 
b6d498e
 
968d976
 
 
b6d498e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
# -*- coding: utf-8 -*-
"""Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/github/asigalov61/Los-Angeles-MIDI-Dataset/blob/main/Los_Angeles_MIDI_Dataset_Search_and_Explore.ipynb

# Los Angeles MIDI Dataset: Search and Explore (ver. 2.1)

***

Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools

***

#### Project Los Angeles

#### Tegridy Code 2023

***

# (SETUP ENVIRONMENT)
"""

#@title Install all dependencies (run only once per session)
!git clone --depth 1 https://github.com/asigalov61/Los-Angeles-MIDI-Dataset
!pip install huggingface_hub
!pip install matplotlib
!pip install sklearn
!pip install tqdm
!apt install fluidsynth #Pip does not work for some reason. Only apt works
!pip install midi2audio

#@title Import all needed modules

print('Loading core modules...')
import os
import copy
from collections import Counter
import random
import pickle
from tqdm import tqdm

from joblib import Parallel, delayed
import multiprocessing

if not os.path.exists('/content/LAMD'):
    os.makedirs('/content/LAMD')

print('Loading MIDI.py module...')
os.chdir('/content/Los-Angeles-MIDI-Dataset')
import MIDI

print('Loading aux modules...')
from sklearn.metrics import pairwise_distances, pairwise
import matplotlib.pyplot as plt

from midi2audio import FluidSynth
from IPython.display import Audio, display

from huggingface_hub import hf_hub_download

from google.colab import files

os.chdir('/content/')
print('Done!')

"""# (PREP DATA)"""

# Commented out IPython magic to ensure Python compatibility.
#@title Unzip LAMDa data
# %cd /content/Los-Angeles-MIDI-Dataset/META-DATA

print('=' * 70)
print('Unzipping META-DATA...Please wait...')

!cat LAMDa_META_DATA.zip* > LAMDa_META_DATA.zip
print('=' * 70)

!unzip -j LAMDa_META_DATA.zip
print('=' * 70)

print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/

#================================================

# %cd /content/Los-Angeles-MIDI-Dataset/MIDI-MATRIXES

print('=' * 70)
print('Unzipping MIDI-MATRIXES...Please wait...')

!cat LAMDa_MIDI_MATRIXES.zip* > LAMDa_MIDI_MATRIXES.zip
print('=' * 70)

!unzip -j LAMDa_MIDI_MATRIXES.zip
print('=' * 70)

print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/

#==================================================

# %cd /content/Los-Angeles-MIDI-Dataset/TOTALS

print('=' * 70)
print('Unzipping TOTALS...Please wait...')

!unzip -j LAMDa_TOTALS.zip
print('=' * 70)

print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/

#@title Load LAMDa data
print('=' * 70)
print('Loading LAMDa data...Please wait...')
print('=' * 70)
print('Loading LAMDa META-DATA...')
meta_data = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/META-DATA/LAMDa_META_DATA.pickle', 'rb'))
print('Done!')
print('=' * 70)
print('Loading LAMDa MIDI-MATRIXES...')
midi_matrixes = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/MIDI-MATRIXES/LAMDa_MIDI_MATRIXES.pickle', 'rb'))
print('Done!')
print('=' * 70)
print('Loading LAMDa TOTALS...')
totals = pickle.load(open('/content/Los-Angeles-MIDI-Dataset/TOTALS/LAMDa_TOTALS.pickle', 'rb'))
print('Done!')
print('=' * 70)
print('Enjoy!')
print('=' * 70)

"""# (PREP MIDI DATASET)"""

#@title Download the dataset
print('=' * 70)
print('Downloading Los Angeles MIDI Dataset...Please wait...')
print('=' * 70)

hf_hub_download(repo_id='projectlosangeles/Los-Angeles-MIDI-Dataset', 
                filename='Los-Angeles-MIDI-Dataset-Ver-2-0-CC-BY-NC-SA.zip',
                repo_type="dataset",
                local_dir='/content/LAMD', 
                local_dir_use_symlinks=False)
print('=' * 70)
print('Done! Enjoy! :)')
print('=' * 70)

# Commented out IPython magic to ensure Python compatibility.
#@title Unzip the dataset
# %cd /content/LAMD

print('=' * 70)
print('Unzipping Los Angeles MIDI Dataset...Please wait...')
!unzip 'Los-Angeles-MIDI-Dataset-Ver-2-0-CC-BY-NC-SA.zip'
print('=' * 70)

print('Done! Enjoy! :)')
print('=' * 70)
# %cd /content/

#@title Create dataset files list
print('=' * 70)
print('Creating dataset files list...')
dataset_addr = "/content/LAMD/MIDIs"

# os.chdir(dataset_addr)
filez = list()
for (dirpath, dirnames, filenames) in os.walk(dataset_addr):
    filez += [os.path.join(dirpath, file) for file in filenames]

if filez == []:
    print('Could not find any MIDI files. Please check Dataset dir...')
    print('=' * 70)

print('=' * 70)
print('Randomizing file list...')
random.shuffle(filez)
print('=' * 70)

LAMD_files_list = []

for f in tqdm(filez):
  LAMD_files_list.append([f.split('/')[-1].split('.mid')[0], f])
print('Done!')
print('=' * 70)

"""# (PLOT TOTALS)"""

#@title Plot Totals

cos_sim = pairwise.cosine_similarity(
      totals[0][0][4] 
  )
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Times')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()

cos_sim = pairwise.cosine_similarity(
      totals[0][0][5] 
  )
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Durations')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()

cos_sim = pairwise.cosine_similarity(
      totals[0][0][6] 
  )
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Channels')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()

cos_sim = pairwise.cosine_similarity(
      totals[0][0][7] 
  )
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Instruments')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()

cos_sim = pairwise.cosine_similarity(
      totals[0][0][8] 
  )
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Pitches')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()

cos_sim = pairwise.cosine_similarity(
      totals[0][0][9] 
  )
plt.figure(figsize=(8, 8))
plt.imshow(cos_sim, cmap="inferno", interpolation="none")
im_ratio = 1
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.title('Velocities')
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()

"""# (LOAD SOURCE MIDI)"""

#@title Load source MIDI

full_path_to_source_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" #@param {type:"string"}
render_MIDI_to_audio = False #@param {type:"boolean"}

#=================================================================================

f = full_path_to_source_MIDI

print('=' * 70)
print('Loading MIDI file...')

score = MIDI.midi2ms_score(open(f, 'rb').read())

events_matrix = []

itrack = 1

while itrack < len(score):
    for event in score[itrack]:         
      events_matrix.append(event)
    itrack += 1

# Sorting...
events_matrix.sort(key=lambda x: x[1])

# recalculating timings
for e in events_matrix:
    e[1] = int(e[1] / 10)
    if e[0] == 'note':
      e[2] = int(e[2] / 20)

# final processing...

melody_chords = []

patches = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

pe = events_matrix[0]
for e in events_matrix:

  if e[0] == 'note':
    # ['note', start_time, duration, channel, note, velocity]
    time = max(0, min(255, e[1]-pe[1]))
    duration = max(1, min(255, e[2]))
    channel = max(0, min(15, e[3]))

    if e[3] != 9:
      instrument = max(0, min(127, patches[e[3]]))
    else:
      instrument = max(128, min(255, patches[e[3]]+128))

    if e[3] != 9:

      pitch = max(1, min(127, e[4]))
    else:
      pitch = max(129, min(255, e[4]+128))

    if e[3] != 9:
      velocity = max(1, min(127, e[5]))
    else:
      velocity = max(129, min(255, e[5]+128))

    melody_chords.append([time, duration, channel, instrument, pitch, velocity])

  if e[0] == 'patch_change':
    # ['patch_change', dtime, channel, patch]
    time = max(0, min(127, e[1]-pe[1]))
    channel = max(0, min(15, e[2]))
    patch = max(0, min(127, e[3]))

    patches[channel] = patch

  pe = e # Previous event

MATRIX = [[0]*256 for i in range(38)]

for m in melody_chords:

  MATRIX[0][m[0]] += 1
  MATRIX[1][m[1]] += 1
  MATRIX[2][m[2]] += 1 
  MATRIX[3][m[3]] += 1
  MATRIX[4][m[4]] += 1
  MATRIX[5][m[5]] += 1
  MATRIX[m[2]+6][m[3]] += 1
  MATRIX[m[2]+22][m[4]] += 1

#==================================================

score = MIDI.midi2score(open(f, 'rb').read())

events_matrix = []

track_count = 0

for s in score:
    
    if track_count > 0:
        track = s
        track.sort(key=lambda x: x[1])
        events_matrix.extend(track)
    else:
        midi_ticks = s

    track_count += 1
    
events_matrix.sort(key=lambda x: x[1])

mult_pitches_counts = []

for i in range(-6, 6):

  for e in events_matrix:
      if e[0] == 'note':
          if e[3] == 9:
              e[4] = ((e[4] % 128) + 128)
          else:
            e[4] = ((e[4] % 128) + i)

  pitches_counts = [[y[0],y[1]] for y in Counter([y[4] for y in events_matrix if y[0] == 'note']).most_common()]
  pitches_counts.sort(key=lambda x: x[0], reverse=True)
  
  mult_pitches_counts.append(pitches_counts)

patches_list = sorted(list(set([y[3] for y in events_matrix if y[0] == 'patch_change'])))

print('=' * 70)
print('Done!')
print('=' * 70)

#============================================
# MIDI rendering code
#============================================

print('Rendering source MIDI...')
print('=' * 70)

ms_score = MIDI.midi2ms_score(open(f, 'rb').read())

itrack = 1
song_f = []

while itrack < len(ms_score):
    for event in ms_score[itrack]:         
        if event[0] == 'note':
            song_f.append(event)
    itrack += 1

song_f.sort(key=lambda x: x[1])

fname = f.split('.mid')[0]

x = []
y =[]
c = []

colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']

for s in song_f:
  x.append(s[1] / 1000)
  y.append(s[4])
  c.append(colors[s[3]])

if render_MIDI_to_audio:
  FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
  display(Audio(str(fname + '.wav'), rate=16000))

plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')

plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()

"""# (SEARCH AND EXPLORE)"""

#@title Legacy MIDI Matrixes Search (Slow)

#@markdown NOTE: You can stop the search at any time to render partial results

minimum_match_ratio_to_search_for = 0 #@param {type:"slider", min:0, max:500, step:1}
stop_search_on_exact_match = True #@param {type:"boolean"}
skip_exact_matches = False #@param {type:"boolean"}
render_MIDI_to_audio = False #@param {type:"boolean"}

#=================================================================================

matching_type = "minkowski"

def compress_matrix(midi_matrix):

  MX = 38
  MY = 256

  if len(midi_matrix) == MX:

    compressed_matrix = []
    zeros = 0
    zeros_shift = 0
    zeros_count = 0

    for m in midi_matrix:
      for mm in m:
        zeros_shift = max(zeros_shift, mm) + 1

    compressed_matrix.append(zeros_shift)

    for m in midi_matrix:
      if len(m) == MY:
        for mm in m:
          if mm != 0:
            if zeros > 0:
              compressed_matrix.append(zeros+zeros_shift)
              zeros = 0
            compressed_matrix.append(mm)
          
          else:
            zeros += 1
            zeros_count += 1
      
      else:
        print('Wrong matrix format!')
        return [1]

    if zeros > 0:
      compressed_matrix.append(zeros+zeros_shift)

    compressed_matrix.append(zeros_count+zeros_shift)
    compressed_matrix.append(zeros_shift)

    return compressed_matrix

  else:
    print('Wrong matrix format!')
    return [0]

#=================================================================================

def decompress_matrix(compressed_midi_matrix):

  MX = 38
  MY = 256

  zeros_count = 0

  temp_matrix = []
  decompressed_matrix = [[0]*MY for i in range(MX)]

  if compressed_midi_matrix[0] == compressed_midi_matrix[-1]:
    zeros_shift = compressed_midi_matrix[0]
    mcount = 0

    for c in compressed_midi_matrix[1:-2]:
      if c > zeros_shift:
        temp_matrix.extend([0] * (c-zeros_shift))
        zeros_count += (c-zeros_shift)

      else:
        temp_matrix.extend([c])

    if len(temp_matrix) == (MX * MY):

      for i in range(MX):
        for j in range(MY):
          decompressed_matrix[i][j] = copy.deepcopy(temp_matrix[(i*MY) + j])
      
      if len(decompressed_matrix) == MX and zeros_count == (compressed_midi_matrix[-2]-zeros_shift):
        return decompressed_matrix

      else:
        print('Matrix is corrupted!')
        return [len(decompressed_matrix), (MX * MY), zeros_count, (compressed_midi_matrix[-2]-zeros_shift)]
    
    else:
      print('Matrix is corrupted!')
      return [len(temp_matrix), zeros_count]

  else:
    print('Matrix is corrupted!')
    return [0]

#=================================================================================

def batched_scores(matbatch, matrix):

  sco= []
  for D in matbatch:

    dist = pairwise_distances(matrix, decompress_matrix(D[1]), metric=matching_type)[0][0]

    if skip_exact_matches:
      if dist == 0:
        dist = 999999

    if dist <= minimum_match_ratio_to_search_for:
      dist = 999999

    sco.append(dist)

  return sco

#=================================================================================

print('=' * 70)
print('Searching...Please wait...')
print('=' * 70)

scores = []

c_count = multiprocessing.cpu_count()

par = Parallel(n_jobs=c_count)

num_jobs = c_count
scores_per_job = 100

MATRIX_X = [MATRIX] * num_jobs

for i in tqdm(range(0, len(midi_matrixes), (num_jobs*scores_per_job))):
  
  try:

    MAT_BATCHES = []

    for j in range(num_jobs):
      MAT_BATCHES.append(midi_matrixes[i+(j*scores_per_job):i+((j+1)*scores_per_job)])

    output = par(delayed(batched_scores) (MB, MAT) for MB, MAT in zip(MAT_BATCHES, MATRIX_X))

    output1 = []

    for o in output:
      output1.extend(o)

    scores.extend(output1)                            

    if stop_search_on_exact_match:
      if 0 in output1:
        print('=' * 70)
        print('Found exact match!')
        print('Stoping further search...')
        print('=' * 70)
        break

    else:
      if 0 in output1:
        print('=' * 70)
        print('Found exact match!')
        print('=' * 70)
        print('LAMDa Index:', scores.index(min(scores)))
        print('LAMDa File Name:', midi_matrixes[scores.index(min(scores))][0])
        print('=' * 70)
        print('Continuing search...')
        print('=' * 70)

  except KeyboardInterrupt:
    break
  
  except:
    continue

print('Done!')
print('=' * 70)
print('Best match:')
print('=' * 70)   
print(matching_type.title(), 'distance ==', min(scores))
print('LAMDa Index:', scores.index(min(scores)))
print('LAMDa File Name:', midi_matrixes[scores.index(min(scores))][0])
print('=' * 70)

#============================================
# MIDI rendering code
#============================================

print('Rendering source MIDI...')
print('=' * 70)

fn = midi_matrixes[scores.index(min(scores))][0]

try:
  fn_idx = [y[0] for y in LAMD_files_list].index(fn)

  f = LAMD_files_list[fn_idx][1]

  ms_score = MIDI.midi2ms_score(open(f, 'rb').read())

  itrack = 1
  song_f = []

  while itrack < len(ms_score):
      for event in ms_score[itrack]:         
          if event[0] == 'note':
              song_f.append(event)
      itrack += 1

  song_f.sort(key=lambda x: x[1])

  fname = f.split('.mid')[0]

  x = []
  y =[]
  c = []

  colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']

  for s in song_f:
    x.append(s[1] / 1000)
    y.append(s[4])
    c.append(colors[s[3]])

  if render_MIDI_to_audio:
    FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
    display(Audio(str(fname + '.wav'), rate=16000))

  plt.figure(figsize=(14,5))
  ax=plt.axes(title=fname)
  ax.set_facecolor('black')

  plt.scatter(x,y, c=c)
  plt.xlabel("Time")
  plt.ylabel("Pitch")
  plt.show()

except:
  pass

#============================================

print('Top 100 matches')
print('=' * 70)

top_matches = []

for i in range(len(scores)):
  top_matches.append([midi_matrixes[i][0], scores[i]])

top_matches.sort(key=lambda x: x[1])

for t in top_matches[:100]:
  print(t)
  
print('=' * 70)

#@title MIDI Pitches Search (Fast)

#@markdown NOTE: You can stop the search at any time to render partial results

maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01}
pitches_counts_cutoff_threshold_ratio = 0.2 #@param {type:"slider", min:0, max:1, step:0.05}
search_transposed_pitches = False #@param {type:"boolean"}
skip_exact_matches = False #@param {type:"boolean"}
render_MIDI_to_audio = False #@param {type:"boolean"}

print('=' * 70)
print('MIDI Pitches Search')
print('=' * 70)

ratios = []

for d in tqdm(meta_data):

  try:
    p_counts = d[1][3][1]
    p_counts.sort(reverse = True, key = lambda x: x[1])
    max_p_count = p_counts[1][0]
    trimmed_p_counts = [y for y in p_counts if y[1] >= (max_p_count * pitches_counts_cutoff_threshold_ratio)] 
    
    if search_transposed_pitches:
      search_pitches = mult_pitches_counts
    else:
      search_pitches = [mult_pitches_counts[6]]
    
    rat = []

    for m in search_pitches:

      m.sort(reverse = True, key = lambda x: x[1])
      max_pitches_count = m[1][0]
      trimmed_pitches_counts = [y for y in m if y[1] >= (max_pitches_count * pitches_counts_cutoff_threshold_ratio)] 

      num_same_pitches = len(set([T[0] for T in trimmed_p_counts]) & set([m[0] for m in trimmed_pitches_counts]))
      same_pitches_ratio = (num_same_pitches / len(set([m[0] for m in trimmed_p_counts]+[T[0] for T in trimmed_pitches_counts])))

      if skip_exact_matches:
        if same_pitches_ratio == 1:
          same_pitches_ratio = 0

      if same_pitches_ratio > maximum_match_ratio_to_search_for:
        same_pitches_ratio = 0

      rat.append(same_pitches_ratio)

    ratios.append(max(rat))
  
  except KeyboardInterrupt:
    break
  
  except:
    break

max_ratio = max(ratios)
max_ratio_index = ratios.index(max(ratios))

print('FOUND')
print('=' * 70)
print('Match ratio', max_ratio)
print('MIDI file name', meta_data[max_ratio_index][0])
print('=' * 70)
print('First metadata MIDI event', meta_data[max_ratio_index][1][0])
print('=' * 70)

#============================================
# MIDI rendering code
#============================================

print('Rendering source MIDI...')
print('=' * 70)

fn = meta_data[max_ratio_index][0]
fn_idx = [y[0] for y in LAMD_files_list].index(fn)

f = LAMD_files_list[fn_idx][1]

ms_score = MIDI.midi2ms_score(open(f, 'rb').read())

itrack = 1
song_f = []

while itrack < len(ms_score):
    for event in ms_score[itrack]:         
        if event[0] == 'note':
            song_f.append(event)
    itrack += 1

song_f.sort(key=lambda x: x[1])

fname = f.split('.mid')[0]

x = []
y =[]
c = []

colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']

for s in song_f:
  x.append(s[1] / 1000)
  y.append(s[4])
  c.append(colors[s[3]])

if render_MIDI_to_audio:
  FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
  display(Audio(str(fname + '.wav'), rate=16000))

plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')

plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()

#@title MIDI Patches Search (Fast)

#@markdown NOTE: You can stop the search at any time to render partial results

maximum_match_ratio_to_search_for = 1 #@param {type:"slider", min:0, max:1, step:0.01}
skip_exact_matches = False #@param {type:"boolean"}
render_MIDI_to_audio = False #@param {type:"boolean"}

print('=' * 70)
print('MIDI Patches Search')
print('=' * 70)

ratios = []

for d in tqdm(meta_data):

  try:

    p_list= d[1][4][1]

    num_same_patches = len(set(p_list) & set(patches_list))
    
    if len(set(p_list + patches_list)) > 0:
      same_patches_ratio = num_same_patches / len(set(p_list + patches_list))
    else:
      same_patches_ratio = 0

    if skip_exact_matches:
      if same_patches_ratio == 1:
        same_patches_ratio = 0

    if same_patches_ratio > maximum_match_ratio_to_search_for:
      same_patches_ratio = 0
      
    ratios.append(same_patches_ratio)
  
  except KeyboardInterrupt:
    break
  
  except:
    break

max_ratio = max(ratios)
max_ratio_index = ratios.index(max(ratios))

print('FOUND')
print('=' * 70)
print('Match ratio', max_ratio)
print('MIDI file name', meta_data[max_ratio_index][0])
print('=' * 70)
print('Found MIDI patches list', meta_data[max_ratio_index][1][4][1])
print('=' * 70)

#============================================
# MIDI rendering code
#============================================

print('Rendering source MIDI...')
print('=' * 70)

fn = meta_data[max_ratio_index][0]
fn_idx = [y[0] for y in LAMD_files_list].index(fn)

f = LAMD_files_list[fn_idx][1]

ms_score = MIDI.midi2ms_score(open(f, 'rb').read())

itrack = 1
song_f = []

while itrack < len(ms_score):
    for event in ms_score[itrack]:         
        if event[0] == 'note':
            song_f.append(event)
    itrack += 1

song_f.sort(key=lambda x: x[1])

fname = f.split('.mid')[0]

x = []
y =[]
c = []

colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']

for s in song_f:
  x.append(s[1] / 1000)
  y.append(s[4])
  c.append(colors[s[3]])

if render_MIDI_to_audio:
  FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
  display(Audio(str(fname + '.wav'), rate=16000))

plt.figure(figsize=(14,5))
ax=plt.axes(title=fname)
ax.set_facecolor('black')

plt.scatter(x,y, c=c)
plt.xlabel("Time")
plt.ylabel("Pitch")
plt.show()

#@title Metadata Search

#@markdown You can search the metadata by search query or by MIDI md5 hash file name

search_query = "Come To My Window" #@param {type:"string"}
md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"}
case_sensitive_search = False #@param {type:"boolean"}

fields_to_search = ['track_name', 
                    'text_event', 
                    'lyric', 
                    'copyright_text_event', 
                    'marker',
                    'text_event_08',
                    'text_event_09',
                    'text_event_0a',
                    'text_event_0b',
                    'text_event_0c',
                    'text_event_0d',
                    'text_event_0e',
                    'text_event_0f',
                    ]

print('=' * 70)
print('Los Angeles MIDI Dataset Metadata Search')
print('=' * 70)
print('Searching...')
print('=' * 70)

if md5_hash_MIDI_file_name != '':
  for d in tqdm(meta_data):
    try:
      if d[0] == md5_hash_MIDI_file_name:
        print('Found!')
        print('=' * 70)
        print('Metadata index:', meta_data.index(d))
        print('MIDI file name:', meta_data[meta_data.index(d)][0])
        print('Result:', d[1])
        print('=' * 70)
        break
 
    except KeyboardInterrupt:
      print('Ending search...')
      print('=' * 70)
      break
    
    except:
      print('Ending search...')
      print('=' * 70)
      break

  if d[0] != md5_hash_MIDI_file_name:
    print('Not found!')
    print('=' * 70)
    print('md5 hash was not found!')
    print('Ending search...')
    print('=' * 70)

else:
  for d in tqdm(meta_data):
    try:
      for dd in d[1]:
        if dd[0] in fields_to_search:
          if case_sensitive_search:
            if str(search_query) in str(dd[2]):
              print('Found!')
              print('=' * 70)
              print('Metadata index:', meta_data.index(d))
              print('MIDI file name:', meta_data[meta_data.index(d)][0])
              print('Result:', dd[2])
              print('=' * 70)
          
          else:
            if str(search_query).lower() in str(dd[2]).lower():
              print('Found!')
              print('=' * 70)
              print('Metadata index:', meta_data.index(d))
              print('MIDI file name:', meta_data[meta_data.index(d)][0])
              print('Result:', dd[2])
              print('=' * 70)
    
    except KeyboardInterrupt:
      print('Ending search...')
      print('=' * 70)
      break
    
    except:
      print('Ending search...')
      print('=' * 70)
      break

"""# (MIDI FILE PLAYER)"""

#@title MIDI file player

#@markdown NOTE: You can use md5 hash file name or full MIDI file path to play it

md5_hash_MIDI_file_name = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"}
full_path_to_MIDI = "/content/Los-Angeles-MIDI-Dataset/Come-To-My-Window-Modified-Sample-MIDI.mid" #@param {type:"string"}
render_MIDI_to_audio = False #@param {type:"boolean"}

#============================================
# MIDI rendering code
#============================================

print('=' * 70)
print('MIDI file player')
print('=' * 70)

try:

  if os.path.exists(full_path_to_MIDI):
    f = full_path_to_MIDI
    print('Using full path to MIDI')

  else:
    fn = md5_hash_MIDI_file_name
    fn_idx = [y[0] for y in LAMD_files_list].index(fn)
    f = LAMD_files_list[fn_idx][1]
    
    print('Using md5 hash filename')
  
  print('=' * 70)
  print('Rendering MIDI...')
  print('=' * 70)

  ms_score = MIDI.midi2ms_score(open(f, 'rb').read())

  itrack = 1
  song_f = []

  while itrack < len(ms_score):
      for event in ms_score[itrack]:         
          if event[0] == 'note':
              song_f.append(event)
      itrack += 1

  song_f.sort(key=lambda x: x[1])

  fname = f.split('.mid')[0]

  x = []
  y =[]
  c = []

  colors = ['red', 'yellow', 'green', 'cyan', 'blue', 'pink', 'orange', 'purple', 'gray', 'white', 'gold', 'silver', 'aqua', 'azure', 'bisque', 'coral']

  for s in song_f:
    x.append(s[1] / 1000)
    y.append(s[4])
    c.append(colors[s[3]])

  if render_MIDI_to_audio:
    FluidSynth("/usr/share/sounds/sf2/FluidR3_GM.sf2", 16000).midi_to_audio(str(fname + '.mid'), str(fname + '.wav'))
    display(Audio(str(fname + '.wav'), rate=16000))

  plt.figure(figsize=(14,5))
  ax=plt.axes(title=fname)
  ax.set_facecolor('black')

  plt.scatter(x,y, c=c)
  plt.xlabel("Time")
  plt.ylabel("Pitch")
  plt.show()

except:
  print('File not found!!!')
  print('Check the filename!')
  print('=' * 70)

"""# (COLAB MIDI FILES LOCATOR/DOWNLOADER)"""

#@title Loacate and/or download desired MIDI files by MIDI md5 hash file names

MIDI_md5_hash_file_name_1 = "d9a7e1c6a375b8e560155a5977fc10f8" #@param {type:"string"}
MIDI_md5_hash_file_name_2 = "" #@param {type:"string"}
MIDI_md5_hash_file_name_3 = "" #@param {type:"string"}
MIDI_md5_hash_file_name_4 = "" #@param {type:"string"}
MIDI_md5_hash_file_name_5 = "" #@param {type:"string"}
download_located_files = False #@param {type:"boolean"}

print('=' * 70)
print('MIDI files locator and downloader')
print('=' * 70)

md5_list = []

if MIDI_md5_hash_file_name_1 != '':
  md5_list.append(MIDI_md5_hash_file_name_1)

if MIDI_md5_hash_file_name_2 != '':
  md5_list.append(MIDI_md5_hash_file_name_2)

if MIDI_md5_hash_file_name_3 != '':
  md5_list.append(MIDI_md5_hash_file_name_3)

if MIDI_md5_hash_file_name_4 != '':
  md5_list.append(MIDI_md5_hash_file_name_4)

if MIDI_md5_hash_file_name_5 != '':
  md5_list.append(MIDI_md5_hash_file_name_5)

if len(md5_list) > 0:
  for m in md5_list:
    try:

      fn = m
      fn_idx = [y[0] for y in LAMD_files_list].index(fn)
      f = LAMD_files_list[fn_idx][1]

      print('Found md5 hash file name', m)

      location_str = ''

      fl = f.split('/')
      for fa in fl[:-1]:
        if fa != '' and fa != 'content':
          location_str += '/'
          location_str += str(fa)

      print('Colab location/folder', location_str)

      if download_located_files:
        print('Downloading MIDI file', str(m) + '.mid')
        files.download(f)

      print('=' * 70)

    except:
      print('md5 hash file name', m, 'not found!!!')
      print('Check the file name!')
      print('=' * 70)
      continue

else:
  print('No md5 hash file names were specified!')
  print('Check input!')
  print('=' * 70)

"""# (CUSTOM ANALYSIS TEMPLATE)"""

#@title Los Angeles MIDI Dataset Reader

print('=' * 70)
print('Los Angeles MIDI Dataset Reader')
print('=' * 70)
print('Starting up...')
print('=' * 70)

###########

print('Loading MIDI files...')
print('This may take a while on a large dataset in particular.')

dataset_addr = "/content/LAMD/MIDIs"

# os.chdir(dataset_addr)
filez = list()
for (dirpath, dirnames, filenames) in os.walk(dataset_addr):
    filez += [os.path.join(dirpath, file) for file in filenames]

if filez == []:
    print('Could not find any MIDI files. Please check Dataset dir...')
    print('=' * 70)

print('=' * 70)
print('Randomizing file list...')
random.shuffle(filez)
print('=' * 70)

###########

START_FILE_NUMBER = 0
LAST_SAVED_BATCH_COUNT = 0

input_files_count = START_FILE_NUMBER
files_count = LAST_SAVED_BATCH_COUNT

stats = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

print('Reading MIDI files. Please wait...')
print('=' * 70)

for f in tqdm(filez[START_FILE_NUMBER:]):
    try:
        input_files_count += 1

        fn = os.path.basename(f)
        fn1 = fn.split('.mid')[0]

        #=======================================================
        # START PROCESSING
        #=======================================================

        # Convering MIDI to score with MIDI.py module
        score = MIDI.midi2score(open(f, 'rb').read())

        events_matrix = []
        
        itrack = 1

        while itrack < len(score):
            for event in score[itrack]:        
              events_matrix.append(event)
            itrack += 1

        # Sorting...
        events_matrix.sort(key=lambda x: x[1])

        if len(events_matrix) > 0:
          
          #=======================================================
          # INSERT YOUR CUSTOM ANAYLSIS CODE RIGHT HERE
          #=======================================================

          # Processed files counter
          files_count += 1

          # Saving every 5000 processed files
          if files_count % 10000 == 0:
            print('=' * 70)
            print('Processed so far:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
            print('=' * 70)

    except KeyboardInterrupt:
        print('Saving current progress and quitting...')
        break  

    except Exception as ex:
        print('WARNING !!!')
        print('=' * 70)
        print('Bad MIDI:', f)
        print('Error detected:', ex)
        print('=' * 70)
        continue

print('=' * 70)
print('Final files counts:', files_count, 'out of', input_files_count, '===', files_count / input_files_count, 'good files ratio')
print('=' * 70)

print('Resulting Stats:')
print('=' * 70)
print('Total good processed MIDI files:', files_count)
print('=' * 70)
print('Done!')   
print('=' * 70)

"""# Congrats! You did it! :)"""