Datasets:
File size: 3,140 Bytes
2ec92eb e2c6244 29da68d 638b5b6 1375d45 638b5b6 1375d45 30dbd93 1375d45 30dbd93 e2c6244 b7718ce 1375d45 2c7a6c8 02ea898 2c7a6c8 427c16b f38a785 427c16b 58600bb 0c7d06c 58600bb 02ea898 427c16b 2c7a6c8 427c16b 2c7a6c8 02ea898 2c7a6c8 6ebb02b 4a1a4ac b17b542 4a1a4ac 51bbf1b 8451750 51bbf1b 8451750 51bbf1b 4a1a4ac 51bbf1b 9c67949 51bbf1b 58600bb 51bbf1b 8451750 51bbf1b 42dc7dc 58600bb 51bbf1b 2c7a6c8 427c16b 2c7a6c8 e6c0765 2c7a6c8 e6c0765 2c7a6c8 e6c0765 2c7a6c8 e6c0765 2c7a6c8 e6c0765 2c7a6c8 e6c0765 1375d45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 |
---
license: cc-by-4.0
configs:
- config_name: default
data_files:
- split: train
path: data/train.parquet
- split: test
path: data/test.parquet
task_categories:
- text-classification
- tabular-classification
- token-classification
- text2text-generation
size_categories:
- n<1K
annotations_creators:
- found
tags:
- phishing
- url
- security
language:
- en
pretty_name: TabNetone
---
# Dataset Description
The provided dataset includes **11430** URLs with **87** extracted features.
The dataset are designed to be used as a benchmark for machine learning based **phishing detection** systems.
The datatset is balanced, it containes exactly 50% phishing and 50% legitimate URLs.
Features are from three different classes:
- **56** extracted from the structure and syntax of URLs
- **24** extracted from the content of their correspondent pages
- **7** are extracetd by querying external services.
The dataset was partitioned randomly into training and testing sets, with a ratio of **two-thirds for training** and **one-third for testing**.
## Details
- **Funded by:** Abdelhakim Hannousse, Salima Yahiouche
- **Shared by:** [pirocheto](https://github.com/pirocheto)
- **License:** [CC-BY-4.0](https://creativecommons.org/licenses/by/4.0/)
- **Paper:** [https://arxiv.org/abs/2010.12847](https://arxiv.org/abs/2010.12847)
## Source Data
The diagram below illustrates the procedure for creating the corpus.
For details, please refer to the paper.
<div align="center">
<img src="images/source_data.png" alt="Diagram source data">
</div>
<p align="center">
<em>Source: Extract form the <a href="https://arxiv.org/abs/2010.12847">paper</a></em>
</p>
## Load Dataset
- With **datasets**:
```python
from datasets import load_dataset
dataset = load_dataset("pirocheto/phishing-url")
```
- With **pandas** and **huggingface_hub**:
```python
import pandas as pd
from huggingface_hub import hf_hub_download
REPO_ID = "pirocheto/phishing-url"
FILENAME = "data/train.parquet"
df = pd.read_parquet(
hf_hub_download(repo_id=REPO_ID, filename=FILENAME, repo_type="dataset")
)
```
- With **pandas** only:
```python
import pandas as pd
url = "https://huggingface.co./datasets/pirocheto/phishing-url/resolve/main/data/train.parquet"
df = pd.read_parquet(url)
```
## Citation
To give credit to the creators of this dataset, please use the following citation in your work:
- BibTeX format
```
@article{Hannousse_2021,
title={Towards benchmark datasets for machine learning based website phishing detection: An experimental study},
volume={104},
ISSN={0952-1976},
url={http://dx.doi.org/10.1016/j.engappai.2021.104347},
DOI={10.1016/j.engappai.2021.104347},
journal={Engineering Applications of Artificial Intelligence},
publisher={Elsevier BV},
author={Hannousse, Abdelhakim and Yahiouche, Salima},
year={2021},
month=sep, pages={104347} }
```
- APA format
```
Hannousse, A., & Yahiouche, S. (2021).
Towards benchmark datasets for machine learning based website phishing detection: An experimental study.
Engineering Applications of Artificial Intelligence, 104, 104347.
``` |