ArneBinder commited on
Commit
87b4891
·
verified ·
1 Parent(s): 335a8e6

https://github.com/ArneBinder/pie-datasets/pull/100

Browse files
README.md CHANGED
@@ -3,11 +3,32 @@
3
  This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the
4
  [SciDTB ArgMin Huggingface dataset loading script](https://huggingface.co/datasets/DFKI-SLT/scidtb_argmin).
5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6
  ## Data Schema
7
 
8
  The document type for this dataset is `SciDTBArgminDocument` which defines the following data fields:
9
 
10
- - `tokens` (Tuple of string)
11
  - `id` (str, optional)
12
  - `metadata` (dictionary, optional)
13
 
@@ -23,6 +44,128 @@ See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/a
23
  The dataset provides document converters for the following target document types:
24
 
25
  - `pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations`
 
 
 
 
 
26
 
27
  See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type
28
  definitions.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  This is a [PyTorch-IE](https://github.com/ChristophAlt/pytorch-ie) wrapper for the
4
  [SciDTB ArgMin Huggingface dataset loading script](https://huggingface.co/datasets/DFKI-SLT/scidtb_argmin).
5
 
6
+ ## Usage
7
+
8
+ ```python
9
+ from pie_datasets import load_dataset
10
+ from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations
11
+
12
+ # load English variant
13
+ dataset = load_dataset("pie/scidtb_argmin")
14
+
15
+ # if required, normalize the document type (see section Document Converters below)
16
+ dataset_converted = dataset.to_document_type(TextDocumentWithLabeledSpansAndBinaryRelations)
17
+ assert isinstance(dataset_converted["train"][0], TextDocumentWithLabeledSpansAndBinaryRelations)
18
+
19
+ # get first relation in the first document
20
+ doc = dataset_converted["train"][0]
21
+ print(doc.binary_relations[0])
22
+ # BinaryRelation(head=LabeledSpan(start=251, end=454, label='means', score=1.0), tail=LabeledSpan(start=455, end=712, label='proposal', score=1.0), label='detail', score=1.0)
23
+ print(doc.binary_relations[0].resolve())
24
+ # ('detail', (('means', 'We observe , identify , and detect naturally occurring signals of interestingness in click transitions on the Web between source and target documents , which we collect from commercial Web browser logs .'), ('proposal', 'The DSSM is trained on millions of Web transitions , and maps source-target document pairs to feature vectors in a latent space in such a way that the distance between source documents and their corresponding interesting targets in that space is minimized .')))
25
+ ```
26
+
27
  ## Data Schema
28
 
29
  The document type for this dataset is `SciDTBArgminDocument` which defines the following data fields:
30
 
31
+ - `tokens` (tuple of string)
32
  - `id` (str, optional)
33
  - `metadata` (dictionary, optional)
34
 
 
44
  The dataset provides document converters for the following target document types:
45
 
46
  - `pytorch_ie.documents.TextDocumentWithLabeledSpansAndBinaryRelations`
47
+ - `labeled_spans`: `LabeledSpan` annotations, converted from`SciDTBArgminDocument`'s `units`
48
+ - labels: `proposal`, `assertion`, `result`, `observation`, `means`, `description`
49
+ - tuples of `tokens` are joined with a whitespace to create `text` for `LabeledSpans`
50
+ - `binary_relations`: `BinaryRelation` annotations, converted from `SciDTBArgminDocument`'s `relations`
51
+ - labels: `support`, `attack`, `additional`, `detail`, `sequence`
52
 
53
  See [here](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py) for the document type
54
  definitions.
55
+
56
+ ### Collected Statistics after Document Conversion
57
+
58
+ We use the script `evaluate_documents.py` from [PyTorch-IE-Hydra-Template](https://github.com/ArneBinder/pytorch-ie-hydra-template-1) to generate these statistics.
59
+ After checking out that code, the statistics and plots can be generated by the command:
60
+
61
+ ```commandline
62
+ python src/evaluate_documents.py dataset=scidtb_argmin_base metric=METRIC
63
+ ```
64
+
65
+ where a `METRIC` is called according to the available metric configs in `config/metric/METRIC` (see [metrics](https://github.com/ArneBinder/pytorch-ie-hydra-template-1/tree/main/configs/metric)).
66
+
67
+ This also requires to have the following dataset config in `configs/dataset/scidtb_argmin_base.yaml` of this dataset within the repo directory:
68
+
69
+ ```commandline
70
+ _target_: src.utils.execute_pipeline
71
+ input:
72
+ _target_: pie_datasets.DatasetDict.load_dataset
73
+ path: pie/scidtb_argmin
74
+ revision: 335a8e6168919d7f204c6920eceb96745dbd161b
75
+ ```
76
+
77
+ For token based metrics, this uses `bert-base-uncased` from `transformer.AutoTokenizer` (see [AutoTokenizer](https://huggingface.co/docs/transformers/v4.37.1/en/model_doc/auto#transformers.AutoTokenizer), and [bert-based-uncased](https://huggingface.co/bert-base-uncased) to tokenize `text` in `TextDocumentWithLabeledSpansAndBinaryRelations` (see [document type](https://github.com/ChristophAlt/pytorch-ie/blob/main/src/pytorch_ie/documents.py)).
78
+
79
+ #### Relation argument (outer) token distance per label
80
+
81
+ The distance is measured from the first token of the first argumentative unit to the last token of the last unit, a.k.a. outer distance.
82
+
83
+ We collect the following statistics: number of documents in the split (*no. doc*), no. of relations (*len*), mean of token distance (*mean*), standard deviation of the distance (*std*), minimum outer distance (*min*), and maximum outer distance (*max*).
84
+ We also present histograms in the collapsible, showing the distribution of these relation distances (x-axis; and unit-counts in y-axis), accordingly.
85
+
86
+ <details>
87
+ <summary>Command</summary>
88
+
89
+ ```
90
+ python src/evaluate_documents.py dataset=scidtb_argmin_base metric=relation_argument_token_distances
91
+ ```
92
+
93
+ </details>
94
+
95
+ | | len | max | mean | min | std |
96
+ | :--------- | --: | --: | -----: | --: | -----: |
97
+ | ALL | 586 | 277 | 75.239 | 21 | 40.312 |
98
+ | additional | 54 | 180 | 59.593 | 36 | 29.306 |
99
+ | detail | 258 | 163 | 65.62 | 22 | 29.21 |
100
+ | sequence | 22 | 93 | 59.727 | 38 | 17.205 |
101
+ | support | 252 | 277 | 89.794 | 21 | 48.118 |
102
+
103
+ <details>
104
+ <summary>Histogram (split: train, 60 documents)</summary>
105
+
106
+ ![rtd-label_scitdb-argmin.png](img%2Frtd-label_scitdb-argmin.png)
107
+
108
+ </details>
109
+
110
+ #### Span lengths (tokens)
111
+
112
+ The span length is measured from the first token of the first argumentative unit to the last token of the particular unit.
113
+
114
+ We collect the following statistics: number of documents in the split (*no. doc*), no. of spans (*len*), mean of number of tokens in a span (*mean*), standard deviation of the number of tokens (*std*), minimum tokens in a span (*min*), and maximum tokens in a span (*max*).
115
+ We also present histograms in the collapsible, showing the distribution of these token-numbers (x-axis; and unit-counts in y-axis), accordingly.
116
+
117
+ <details>
118
+ <summary>Command</summary>
119
+
120
+ ```
121
+ python src/evaluate_documents.py dataset=scidtb_argmin_base metric=span_lengths_tokens
122
+ ```
123
+
124
+ </details>
125
+
126
+ | statistics | train |
127
+ | :--------- | -----: |
128
+ | no. doc | 60 |
129
+ | len | 353 |
130
+ | mean | 27.946 |
131
+ | std | 13.054 |
132
+ | min | 7 |
133
+ | max | 123 |
134
+
135
+ <details>
136
+ <summary>Histogram (split: train, 60 documents)</summary>
137
+
138
+ ![slt_scitdb-argmin.png](img%2Fslt_scitdb-argmin.png)
139
+
140
+ </details>
141
+
142
+ #### Token length (tokens)
143
+
144
+ The token length is measured from the first token of the document to the last one.
145
+
146
+ We collect the following statistics: number of documents in the split (*no. doc*), mean of document token-length (*mean*), standard deviation of the length (*std*), minimum number of tokens in a document (*min*), and maximum number of tokens in a document (*max*).
147
+ We also present histograms in the collapsible, showing the distribution of these token lengths (x-axis; and unit-counts in y-axis), accordingly.
148
+
149
+ <details>
150
+ <summary>Command</summary>
151
+
152
+ ```
153
+ python src/evaluate_documents.py dataset=scidtb_argmin_base metric=count_text_tokens
154
+ ```
155
+
156
+ </details>
157
+
158
+ | statistics | train |
159
+ | :--------- | ------: |
160
+ | no. doc | 60 |
161
+ | mean | 164.417 |
162
+ | std | 64.572 |
163
+ | min | 80 |
164
+ | max | 532 |
165
+
166
+ <details>
167
+ <summary>Histogram (split: train, 60 documents)</summary>
168
+
169
+ ![tl_scidtb-argmin.png](img%2Ftl_scidtb-argmin.png)
170
+
171
+ </details>
img/rtd-label_scitdb-argmin.png ADDED

Git LFS Details

  • SHA256: a1fd3d504224fff7c396cec3a8bf7a3725f8a7efc3703b4aaf1bd497c5518394
  • Pointer size: 130 Bytes
  • Size of remote file: 16.9 kB
img/slt_scitdb-argmin.png ADDED

Git LFS Details

  • SHA256: 237b365fe916ffadca33f61b740cb6d69392f614115c365f3f0d91f1405aca86
  • Pointer size: 130 Bytes
  • Size of remote file: 12.5 kB
img/tl_scidtb-argmin.png ADDED

Git LFS Details

  • SHA256: 5e03a7c12df3bb2028d3017da170f04c32322ed270010855e39b340d073a34e9
  • Pointer size: 130 Bytes
  • Size of remote file: 12.1 kB
requirements.txt CHANGED
@@ -1,2 +1,2 @@
1
- pie-datasets>=0.6.0,<0.9.0
2
- pie-modules>=0.8.0,<0.9.0
 
1
+ pie-datasets>=0.6.0,<0.11.0
2
+ pie-modules>=0.8.0,<0.12.0
scidtb_argmin.py CHANGED
@@ -1,173 +1,173 @@
1
- import dataclasses
2
- import logging
3
- from typing import Any, Dict, List, Tuple
4
-
5
- import datasets
6
- from pie_modules.document.processing import token_based_document_to_text_based
7
- from pytorch_ie.annotations import BinaryRelation, LabeledSpan
8
- from pytorch_ie.core import AnnotationList, annotation_field
9
- from pytorch_ie.documents import (
10
- TextDocumentWithLabeledSpansAndBinaryRelations,
11
- TokenBasedDocument,
12
- )
13
- from pytorch_ie.utils.span import bio_tags_to_spans
14
-
15
- from pie_datasets import GeneratorBasedBuilder
16
-
17
- log = logging.getLogger(__name__)
18
-
19
-
20
- def labels_and_spans_to_bio_tags(
21
- labels: List[str], spans: List[Tuple[int, int]], sequence_length: int
22
- ) -> List[str]:
23
- bio_tags = ["O"] * sequence_length
24
- for label, (start, end) in zip(labels, spans):
25
- bio_tags[start] = f"B-{label}"
26
- for i in range(start + 1, end):
27
- bio_tags[i] = f"I-{label}"
28
- return bio_tags
29
-
30
-
31
- @dataclasses.dataclass
32
- class SciDTBArgminDocument(TokenBasedDocument):
33
- units: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
34
- relations: AnnotationList[BinaryRelation] = annotation_field(target="units")
35
-
36
-
37
- @dataclasses.dataclass
38
- class SimplifiedSciDTBArgminDocument(TokenBasedDocument):
39
- labeled_spans: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
40
- binary_relations: AnnotationList[BinaryRelation] = annotation_field(target="labeled_spans")
41
-
42
-
43
- def example_to_document(
44
- example: Dict[str, Any],
45
- unit_bio: datasets.ClassLabel,
46
- unit_label: datasets.ClassLabel,
47
- relation: datasets.ClassLabel,
48
- ):
49
- document = SciDTBArgminDocument(id=example["id"], tokens=tuple(example["data"]["token"]))
50
- bio_tags = unit_bio.int2str(example["data"]["unit-bio"])
51
- unit_labels = unit_label.int2str(example["data"]["unit-label"])
52
- roles = relation.int2str(example["data"]["role"])
53
- tag_sequence = [
54
- f"{bio}-{label}|{role}|{parent_offset}"
55
- for bio, label, role, parent_offset in zip(
56
- bio_tags, unit_labels, roles, example["data"]["parent-offset"]
57
- )
58
- ]
59
- spans_with_label = sorted(
60
- bio_tags_to_spans(tag_sequence), key=lambda label_and_span: label_and_span[1][0]
61
- )
62
- labels, spans = zip(*spans_with_label)
63
- span_unit_labels, span_roles, span_parent_offsets = zip(
64
- *[label.split("|") for label in labels]
65
- )
66
-
67
- units = [
68
- LabeledSpan(start=start, end=end + 1, label=label)
69
- for (start, end), label in zip(spans, span_unit_labels)
70
- ]
71
- document.units.extend(units)
72
-
73
- # The relation direction is as in "f{head} {relation_label} {tail}"
74
- relations = []
75
- for idx, parent_offset in enumerate(span_parent_offsets):
76
- if span_roles[idx] != "none":
77
- relations.append(
78
- BinaryRelation(
79
- head=units[idx], tail=units[idx + int(parent_offset)], label=span_roles[idx]
80
- )
81
- )
82
-
83
- document.relations.extend(relations)
84
-
85
- return document
86
-
87
-
88
- def document_to_example(
89
- document: SciDTBArgminDocument,
90
- unit_bio: datasets.ClassLabel,
91
- unit_label: datasets.ClassLabel,
92
- relation: datasets.ClassLabel,
93
- ) -> Dict[str, Any]:
94
- unit2idx = {unit: idx for idx, unit in enumerate(document.units)}
95
- unit2parent_relation = {relation.head: relation for relation in document.relations}
96
-
97
- unit_labels = [unit.label for unit in document.units]
98
- roles = [
99
- unit2parent_relation[unit].label if unit in unit2parent_relation else "none"
100
- for unit in document.units
101
- ]
102
- parent_offsets = [
103
- unit2idx[unit2parent_relation[unit].tail] - idx if unit in unit2parent_relation else 0
104
- for idx, unit in enumerate(document.units)
105
- ]
106
- labels = [
107
- f"{unit_label}-{role}-{parent_offset}"
108
- for unit_label, role, parent_offset in zip(unit_labels, roles, parent_offsets)
109
- ]
110
-
111
- tag_sequence = labels_and_spans_to_bio_tags(
112
- labels=labels,
113
- spans=[(unit.start, unit.end) for unit in document.units],
114
- sequence_length=len(document.tokens),
115
- )
116
- bio_tags, unit_labels, roles, parent_offsets = zip(
117
- *[tag.split("-", maxsplit=3) for tag in tag_sequence]
118
- )
119
-
120
- data = {
121
- "token": list(document.tokens),
122
- "unit-bio": unit_bio.str2int(bio_tags),
123
- "unit-label": unit_label.str2int(unit_labels),
124
- "role": relation.str2int(roles),
125
- "parent-offset": [int(idx_str) for idx_str in parent_offsets],
126
- }
127
- result = {"id": document.id, "data": data}
128
- return result
129
-
130
-
131
- def convert_to_text_document_with_labeled_spans_and_binary_relations(
132
- document: SciDTBArgminDocument,
133
- ) -> TextDocumentWithLabeledSpansAndBinaryRelations:
134
- doc_simplified = document.as_type(
135
- SimplifiedSciDTBArgminDocument,
136
- field_mapping={"units": "labeled_spans", "relations": "binary_relations"},
137
- )
138
- result = token_based_document_to_text_based(
139
- doc_simplified,
140
- result_document_type=TextDocumentWithLabeledSpansAndBinaryRelations,
141
- join_tokens_with=" ",
142
- )
143
- return result
144
-
145
-
146
- class SciDTBArgmin(GeneratorBasedBuilder):
147
- DOCUMENT_TYPE = SciDTBArgminDocument
148
-
149
- DOCUMENT_CONVERTERS = {
150
- TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
151
- }
152
-
153
- BASE_DATASET_PATH = "DFKI-SLT/scidtb_argmin"
154
- BASE_DATASET_REVISION = "8c02587edcb47ab5b102692bd10bfffd1844a09b"
155
-
156
- BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")]
157
-
158
- DEFAULT_CONFIG_NAME = "default"
159
-
160
- def _generate_document_kwargs(self, dataset):
161
- return {
162
- "unit_bio": dataset.features["data"].feature["unit-bio"],
163
- "unit_label": dataset.features["data"].feature["unit-label"],
164
- "relation": dataset.features["data"].feature["role"],
165
- }
166
-
167
- def _generate_document(self, example, unit_bio, unit_label, relation):
168
- return example_to_document(
169
- example,
170
- unit_bio=unit_bio,
171
- unit_label=unit_label,
172
- relation=relation,
173
- )
 
1
+ import dataclasses
2
+ import logging
3
+ from typing import Any, Dict, List, Tuple
4
+
5
+ import datasets
6
+ from pie_modules.document.processing import token_based_document_to_text_based
7
+ from pytorch_ie.annotations import BinaryRelation, LabeledSpan
8
+ from pytorch_ie.core import AnnotationList, annotation_field
9
+ from pytorch_ie.documents import (
10
+ TextDocumentWithLabeledSpansAndBinaryRelations,
11
+ TokenBasedDocument,
12
+ )
13
+ from pytorch_ie.utils.span import bio_tags_to_spans
14
+
15
+ from pie_datasets import GeneratorBasedBuilder
16
+
17
+ log = logging.getLogger(__name__)
18
+
19
+
20
+ def labels_and_spans_to_bio_tags(
21
+ labels: List[str], spans: List[Tuple[int, int]], sequence_length: int
22
+ ) -> List[str]:
23
+ bio_tags = ["O"] * sequence_length
24
+ for label, (start, end) in zip(labels, spans):
25
+ bio_tags[start] = f"B-{label}"
26
+ for i in range(start + 1, end):
27
+ bio_tags[i] = f"I-{label}"
28
+ return bio_tags
29
+
30
+
31
+ @dataclasses.dataclass
32
+ class SciDTBArgminDocument(TokenBasedDocument):
33
+ units: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
34
+ relations: AnnotationList[BinaryRelation] = annotation_field(target="units")
35
+
36
+
37
+ @dataclasses.dataclass
38
+ class SimplifiedSciDTBArgminDocument(TokenBasedDocument):
39
+ labeled_spans: AnnotationList[LabeledSpan] = annotation_field(target="tokens")
40
+ binary_relations: AnnotationList[BinaryRelation] = annotation_field(target="labeled_spans")
41
+
42
+
43
+ def example_to_document(
44
+ example: Dict[str, Any],
45
+ unit_bio: datasets.ClassLabel,
46
+ unit_label: datasets.ClassLabel,
47
+ relation: datasets.ClassLabel,
48
+ ):
49
+ document = SciDTBArgminDocument(id=example["id"], tokens=tuple(example["data"]["token"]))
50
+ bio_tags = unit_bio.int2str(example["data"]["unit-bio"])
51
+ unit_labels = unit_label.int2str(example["data"]["unit-label"])
52
+ roles = relation.int2str(example["data"]["role"])
53
+ tag_sequence = [
54
+ f"{bio}-{label}|{role}|{parent_offset}"
55
+ for bio, label, role, parent_offset in zip(
56
+ bio_tags, unit_labels, roles, example["data"]["parent-offset"]
57
+ )
58
+ ]
59
+ spans_with_label = sorted(
60
+ bio_tags_to_spans(tag_sequence), key=lambda label_and_span: label_and_span[1][0]
61
+ )
62
+ labels, spans = zip(*spans_with_label)
63
+ span_unit_labels, span_roles, span_parent_offsets = zip(
64
+ *[label.split("|") for label in labels]
65
+ )
66
+
67
+ units = [
68
+ LabeledSpan(start=start, end=end + 1, label=label)
69
+ for (start, end), label in zip(spans, span_unit_labels)
70
+ ]
71
+ document.units.extend(units)
72
+
73
+ # The relation direction is as in "f{head} {relation_label} {tail}"
74
+ relations = []
75
+ for idx, parent_offset in enumerate(span_parent_offsets):
76
+ if span_roles[idx] != "none":
77
+ relations.append(
78
+ BinaryRelation(
79
+ head=units[idx], tail=units[idx + int(parent_offset)], label=span_roles[idx]
80
+ )
81
+ )
82
+
83
+ document.relations.extend(relations)
84
+
85
+ return document
86
+
87
+
88
+ def document_to_example(
89
+ document: SciDTBArgminDocument,
90
+ unit_bio: datasets.ClassLabel,
91
+ unit_label: datasets.ClassLabel,
92
+ relation: datasets.ClassLabel,
93
+ ) -> Dict[str, Any]:
94
+ unit2idx = {unit: idx for idx, unit in enumerate(document.units)}
95
+ unit2parent_relation = {relation.head: relation for relation in document.relations}
96
+
97
+ unit_labels = [unit.label for unit in document.units]
98
+ roles = [
99
+ unit2parent_relation[unit].label if unit in unit2parent_relation else "none"
100
+ for unit in document.units
101
+ ]
102
+ parent_offsets = [
103
+ unit2idx[unit2parent_relation[unit].tail] - idx if unit in unit2parent_relation else 0
104
+ for idx, unit in enumerate(document.units)
105
+ ]
106
+ labels = [
107
+ f"{unit_label}-{role}-{parent_offset}"
108
+ for unit_label, role, parent_offset in zip(unit_labels, roles, parent_offsets)
109
+ ]
110
+
111
+ tag_sequence = labels_and_spans_to_bio_tags(
112
+ labels=labels,
113
+ spans=[(unit.start, unit.end) for unit in document.units],
114
+ sequence_length=len(document.tokens),
115
+ )
116
+ bio_tags, unit_labels, roles, parent_offsets = zip(
117
+ *[tag.split("-", maxsplit=3) for tag in tag_sequence]
118
+ )
119
+
120
+ data = {
121
+ "token": list(document.tokens),
122
+ "unit-bio": unit_bio.str2int(bio_tags),
123
+ "unit-label": unit_label.str2int(unit_labels),
124
+ "role": relation.str2int(roles),
125
+ "parent-offset": [int(idx_str) for idx_str in parent_offsets],
126
+ }
127
+ result = {"id": document.id, "data": data}
128
+ return result
129
+
130
+
131
+ def convert_to_text_document_with_labeled_spans_and_binary_relations(
132
+ document: SciDTBArgminDocument,
133
+ ) -> TextDocumentWithLabeledSpansAndBinaryRelations:
134
+ doc_simplified = document.as_type(
135
+ SimplifiedSciDTBArgminDocument,
136
+ field_mapping={"units": "labeled_spans", "relations": "binary_relations"},
137
+ )
138
+ result = token_based_document_to_text_based(
139
+ doc_simplified,
140
+ result_document_type=TextDocumentWithLabeledSpansAndBinaryRelations,
141
+ join_tokens_with=" ",
142
+ )
143
+ return result
144
+
145
+
146
+ class SciDTBArgmin(GeneratorBasedBuilder):
147
+ DOCUMENT_TYPE = SciDTBArgminDocument
148
+
149
+ DOCUMENT_CONVERTERS = {
150
+ TextDocumentWithLabeledSpansAndBinaryRelations: convert_to_text_document_with_labeled_spans_and_binary_relations
151
+ }
152
+
153
+ BASE_DATASET_PATH = "DFKI-SLT/scidtb_argmin"
154
+ BASE_DATASET_REVISION = "8c02587edcb47ab5b102692bd10bfffd1844a09b"
155
+
156
+ BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")]
157
+
158
+ DEFAULT_CONFIG_NAME = "default"
159
+
160
+ def _generate_document_kwargs(self, dataset):
161
+ return {
162
+ "unit_bio": dataset.features["data"].feature["unit-bio"],
163
+ "unit_label": dataset.features["data"].feature["unit-label"],
164
+ "relation": dataset.features["data"].feature["role"],
165
+ }
166
+
167
+ def _generate_document(self, example, unit_bio, unit_label, relation):
168
+ return example_to_document(
169
+ example,
170
+ unit_bio=unit_bio,
171
+ unit_label=unit_label,
172
+ relation=relation,
173
+ )